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Abstract

Skorokhod’s M1 topology is defined for càdlàg paths taking values in the space of
tempered distributions (more generally, in the dual of a countably Hilbertian nuclear
space). Compactness and tightness characterisations are derived which allow us to
study a collection of stochastic processes through their projections on the familiar
space of real-valued càdlàg processes. It is shown how this topological space can be
used in analysing the convergence of empirical process approximations to distribution-
valued evolution equations with Dirichlet boundary conditions.
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1 Introduction

In [28] Skorokhod introduced four topologies (labelled J1, J2, M1 and M2) on the
space of càdlàg paths that take values in a Banach space. The most well-known of these
is the J1 topology, which has been used extensively for studying stochastic-process limits
[6, 11, 34]. However, the weaker and less popular M1 topology has an important feature:
its modulus of continuity vanishes when a monotone function is passed as an argument
[34, Ch. 12 (4.7)]. This feature has proven useful in applications such as queuing theory
[12, 18, 21, 25, 27, 32, 33], functional statistics [2, 3, 10, 20, 31, 35], scaling limits for
random walks [5] and mathematical neuroscience [9].

The purpose of this paper is to extend the M1 topology to collections of càdlàg
processes taking values in the space of tempered distributions or, more generally, in
the dual of a countably Hilbertian nuclear space (CHNS). Following the work of Itô
[14], in which a central limit theorem was developed for distribution-valued processes,
the J1 topology was extended to these spaces by Mitoma [24]. These results were
extended by Jakubowski to completely regular range spaces [16] and this is the focus
of recent work by Kouritzin [19]. The advantage of working in the dual of a CHNS (as
opposed to some Hilbertian subspace, as explored in [26]) is that these spaces have a
strong finite-dimensional character. Consequently, compactness in the path space can be
checked test-function-by-test-function: if A is a collection of càdlàg paths taking values
in the dual of a CHNS, then A is J1-compact if and only if {f(φ) = (t 7→ ft(φ)) : f ∈ A}
is J1-compact in the space of real-valued càdlàg paths, for every test function, φ, in the
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Skorokhod’s M1 topology for distribution-valued processes

CHNS [24, Thm. 3.1 & 4.1]. Hence the tightness of a sequence of distribution-valued
càdlàg processes can be established by projecting down to the familiar space of real-
valued càdlàg processes. It should be mentioned that contributions like [16], [7] and
[19] also contain results using real-valued projections for more general spaces, but they
require establishing point-wise tightness or existence of a limit.

Our aim is to fill the gap in theory between these two settings and to combine the
temporal properties of the M1 topology with the spatial properties of the tempered
distributions. In Section 2 we construct the M1 topology for càdlàg paths taking values
in the dual of a CHNS (Definition 2.6). The corresponding compactness and tightness
criteria to those of [24] are stated and proved in Section 3 (Theorems 3.1, 3.2 and 3.3).
Finally, we use our tools on a concrete example in Section 4, specifically we prove the
tightness of a sequence of discrete empirical-measure processes that approximate the
solution of a stochastic evolution equation with Dirichlet boundary conditions. Here,
the mass lost at the boundary is a monotone process, hence the M1 topology offers a
simple decomposition trick for controlling the fluctuations in the approximating sequence
(Proposition 4.2).

2 Construction of the topology

We refer the reader to [4, 17, 28, 34] for the basic theory of countably Hilbertian
nuclear spaces (CHNS) and the standard Skorokhod topologies for Banach range spaces.
Our construction will mirror [24] for the J1 topology.

Throughout, E will denote a general CHNS (a specific example being S, the space of
rapidly decreasing functions [17, Ex. 1.3.2]). The properties we will use are:

• E is a linear topological space generated by an increasing sequence of Hilbertian
semi-norms ‖·‖0 ≤ ‖·‖1 ≤ ‖·‖2 ≤ · · · ,

• The closure, En, of (E, ‖·‖n) is a separable Hilbert space with E0 ⊇ E1 ⊇ E2 ⊇ · · ·
and E =

⋂
n≥0En,

• For every n ≥ 0, there exists m > n such that the canonical injection Em ↪→ En is
Hilbert–Schmidt, that is

∞∑
i=1

‖emi ‖2n <∞, whenever {emi }i≥1 is an orthonormal system of Em,

• The topological duals, E−n = E′n, satisfy ‖·‖0 ≥ ‖·‖−1 ≥ ‖·‖−2 ≥ · · · , E0 ⊆ E−1 ⊆
E−2 ⊆ · · · and E′ =

⋃
n≥0E−n,

• The strong topology of E′ is that generated by the collection of semi-norms {pB :

E′ → [0,∞)}B∈B, where pB(f) := supx∈B |f(x)| and B is the collection of bounded
subsets of E.

Definition 2.1 (DE′). The space of càdlàg paths, DE′ , is defined to be the collection of
functions mapping [0, T ] to E′ that are right-continuous and have left limits with respect
to the strong topology on E′.

In practice checking Definition 2.1 is straightforward due to [23]. As in the classical
case, we define the M1 topology on DE′ through a (pseudo-)graph distance on E′× [0, T ].
The graph of an element in DE′ is formed by joining up its points of discontinuity with
intervals (see Figure 1):

Definition 2.2 (Interval). For f and g in E′, define the interval between these points to
be

[f, g]E′ := {(1− λ) f + λg ∈ E′ : λ ∈ [0, 1]} .
If h1 and h2 are two points in the interval, h1 = (1− λ1)f + λ1g and h2 = (1− λ2)f + λ2g,
then we write h1 ≤[f,g]E′

h2 whenever λ1 ≤ λ2.
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Figure 1: An element of DR (left) together with its graph, γx ⊆ R × [0, T ], and graph
ordering (right).

Definition 2.3 (Graph). The graph of an element x ∈ DE′ is defined to be the closed
subset of E′ × [0, T ]

γx := {(z, t) ∈ E′ × [0, T ] : z ∈ [x (t−) , x (t)]E′} .

For (z1, t1) , (z2, t2) ∈ γx, we say that (z1, t1) ≤γx (z2, t2) if either:

(i) t1 < t2 or (ii) t1 = t2 and z1 ≤[x(t1−),x(t1)]E′
z2.

Definition 2.4 (Parametric representation). A parametric representation, λx, of the
graph γx is a continuous surjection λx : [0, 1]→ γx that is non-decreasing with respect to
the graph ordering on γx. For x ∈ DX , let the collection of all such parametrisations of
γx be denoted Λx.

We can define a family of pseudometrics on DE′ by using the family of semi-norms,
{pB}B∈B, on E′ to measure the graph distance between two parametric representations:

Definition 2.5 (A family of pseudometrics). Fix B ∈ B. Let x and y be elements of DE′ .
For parametric representations λx = (zx, tx) ∈ Λx and λy = (zy, ty) ∈ Λx define

gB(λx, λy) := sup
s∈[0,1]

max{pB(zx(s)− zy(s)), |tx(s)− ty(s)|}.

A pseudometric on DE′ is given by

dB,M1(x, y) := inf
λx∈Λx,λy∈Λy

gB(λx, λy), for x, y ∈ DE′ .

The reader can verify that Definition 2.5 gives a pseudometric using [34, Thm. 12.3.1].
The family {dB,M1}B∈B generates a topology which we will call the M1 topology on DE′ :

Definition 2.6 (M1 topology). The M1 topology on DE′ is defined to be the projective
limit topology of {dB,M1}B∈B. That is, the topology with neighbourhoods

{x ∈ DE′ : dBi,M1(x, x0) < εi, for 1 ≤ i ≤ n},

where x0 ∈ DE′ , Bi ∈ B, εi > 0 and n ∈ N.

The following is a collection of facts that are either straightforward or have very
similar proofs to the J1 topology case, and so we omit the full details.

Proposition 2.7 (Some properties of (DE′ ,M1)). We have the following:

(i) For every φ ∈ E, the canonical projection

πφ : (DE′ ,M1)→ (DR,M1), πφ(x) = (xt(φ))t∈[0,T ] =: x(φ)

is continuous,
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(ii) For every n ≥ 0, the canonical inclusion ιn : (DE−n ,M1)→ (DE′ ,M1) is continuous,

(iii) (DE′ ,M1) is completely regular,

(iv) Let B(DE′) denote the Borel σ-algebra on (DE′ ,M1) and K the Kolmogorov σ-
algebra generated by the projections

πφ1,φ2,...,φn
t1,t2,...,tn : DE′ → Rn, πφ1,φ2,...,φn

t1,t2,...,tn (x) = (xt1(φ1), xt2(φ2), . . . , xtn(φn)).

Then B(DE′) = K.

Proof. (i) Use that {φ} ∈ B for every φ ∈ E. (ii) Straightforward.

(iii) From [17, Thm. 2.1.1] it suffices to show that for every x1 6= x2 ∈ DE′ there exists
a bounded set, B, such that dB,M1(x1, x2) > 0. So take B = {φ} for any φ ∈ E such that
x1(φ) 6= x2(φ).

(iv) The inclusion K ⊆ B(DE′) is straightforward since πφt = πt ◦πφ with the canonical
projections

πφ : (DE′ ,M1)→ (DR,M1) and πt : (DE′ ,R)→ R

and πφ is continuous by (i) and πt is measurable by [34, Thm 11.5.2]. To show B(DE′) ⊆
K, let ιn : DE−n ↪→ DE′ be the canonical inclusion. From [17, Thm. 1.3.1], DE′ =⋃
n≥0DE−n , thus for any open subset, U , of (DE′ ,M1)

U =

∞⋃
n=0

ι−1
n (U). (2.1)

By (ii) ιn is continuous, so

ι−1
n (U) ∈ B(DE−n ,M1) = B(DE−n , J1) = σ(πt : DE−n → E−n) ⊆ σ(πt : DE′ → E′),

where the first equality follows from [34, Thm. 11.5.2] (since E−n is a Banach space) and
the second equality follows from the reasoning in [11, Prop. 3.7.1]. From [17, Thm. 3.1.1],
B(E′) = σ(πφ : E′ → R), so it follows that K = σ(πt : DE′ → E′). Therefore ι−1

n (U) ∈ K,
and the result is complete by (2.1).

3 Compactness and tightness characterisations

The following three theorems characterise compactness, tightness and weak conver-
gence in (DE′ ,M1). All notation is as defined in Section 2.

Theorem 3.1 (Compactness characterisation). Let A ⊆ DE′ . The following are equiva-
lent:

(i) A is compact in (DE′ ,M1),

(ii) For every φ ∈ E, πφ(A) = {x(φ) : x ∈ A} is compact in (DR,M1),

(iii) There exists p ∈ N such that A ⊆ DE−p and A is compact in (DE−p ,M1).

Theorem 3.2 (Tightness characterisation). Let (µn)n≥1 be a sequence of probability

measures on DE′ . Then (µn)n≥1 is tight on (DE′ ,M1) if and only if
(
µn ◦ (πφ)−1

)
n≥1

is

tight on (DR,M1) for every φ ∈ E.

Furthermore, if (µn)n≥1 is tight on (DE′ ,M1), then it is relatively compact on
(DE′ ,M1).
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Theorem 3.3 (Weak convergence). If (µn)n≥1 is tight on (DE′ ,M1) and for every k ≥ 1,
φ1, φ2, . . . , φk ∈ E and t1, t2, . . . , tk ∈ cont(µ)

µn ◦ (πφ1,φ2,...,φk
t1,t2,...,tk

)−1 → µ ◦ (πφ1,φ2,...,φk
t1,t2,...,tk

)−1, weakly on Rk,

as n → ∞, where cont(µ) = {t ∈ [0, T ] : µ{x ∈ DE′ : xt− = xt} = 1}, then (µn)n≥1

converges weakly to µ on (DE′ ,M1).

Before proving these results we need the following technical result, which exploits
the nuclear space structure of E to enable a generic subset A ⊆ DE′ to be controlled in
terms of its projection onto a finite number of basis vectors. For a normed linear space
X, we will denote the M1 modulus of continuity on DX by

wX,M1(x; δ) := sup
t∈[0,T ]

sup
trip(t;δ)

inf
λ∈[0,1]

‖xt2 − (1− λ)xt1 − λxt3‖X , x ∈ DX , δ > 0, (3.1)

where trip(t; δ) = {(t1, t2, t3) : max(0, t− δ) ≤ t1 < t2 < t3 < min(t+ δ, T )}.
Lemma 3.4 (Controlling the modulus of continuity). Let p > n be such that the inclusion
Ep ↪→ En is Hilbert–Schmidt and let A ⊆ DE′ be such that

c := sup
x∈A

sup
t∈[0,T ]

‖xt‖−n <∞.

Then, for every ε > 0, there exists k ≥ 1 and φ1, φ2, . . . , φk ∈ E such that

sup
x∈A

wE−p,M1(x; δ) ≤ 2cε−1 max
i=1,...,k

sup
x∈A

wR,M1(x(φi); δ) + 3cε, for every δ > 0.

The proof is a technical computation for which the next lemma will be helpful. This
argument is just a repackaging of the Heine–Borel theorem and is adapted from [13,
Lem. A.28].

Lemma 3.5 (A geometric argument). Fix M ∈ N and ε > 0, and let B be the closed unit
ball in RM . Then there exists a finite set Θ = {θ1, . . . , θk} ⊆ RM such that ‖θi‖RM = 1,
and for all v1, v2 ∈ B satisfying

min
λ∈[0,1]

‖λv1 + (1− λ) v2‖RM ≥ ε,

there is an i ∈ {1, 2, . . . , k} for which

‖λv1 + (1− λ) v2‖RM ≤ 2ε−1 |(λv1 + (1− λ) v2) · θi| ,

for every λ ∈ [0, 1]. Here, ‖·‖RM is the Euclidean norm and k depends on M and ε.

Proof. For v1, v2 ∈ B, let λ0 = λ0 (v1, v2) be a minimiser of

λ 7→ ‖λv1 + (1− λ) v2‖RM

on [0, 1]. Define

S = {(v1, v2) ∈ B ×B : ‖λ0v1 + (1− λ0) v2‖RM ≥ ε} ,

then for (v1, v2) ∈ S set θ (v1, v2) to be the unit vector in the direction of the pair’s
minimiser:

θ (v1, v2) =
λ0v1 + (1− λ0) v2

‖λ0v1 + (1− λ0) v2‖RM
,

so that for every λ ∈ [0, 1]

(λv1 + (1− λ) v2) · θ (v1, v2) ≥ ε ≥ ε ‖λv1 + (1− λ) v2‖RM >
ε

4
‖λv1 + (1− λ) v2‖RM .
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Hence there is an open neighbourhood, N(v1, v2), in RM ×RM about (v1, v2) such that
for all (w1, w2) ∈ N(v1, v2)

ε

2
‖λw1 + (1− λ)w2‖RM ≤ (λw1 + (1− λ)w2) · θ (v1, v2) .

Now S is a compact set with open cover {N(v1, v2)}(v1,v2)∈S , therefore it is possible to

take a finite sub-cover, {N
(
vi1, v

i
2

)
}i=1,...,k. To complete the proof let Θ = {θ

(
vi1, v

i
2

)
}i=1,...,k.

Proof of Lemma 3.4. For readability, introduce the notation

yλ = y(λ;x; t1, t2, t3) := xt2 − λxt1 − (1− λ)xt3 ∈ E′,

where λ ∈ [0, 1], x ∈ DE′ and t1, t2, t3 ∈ [0, T ]. Then, recalling the notation of (3.1),

wE−p,M1(x; δ) = sup
t,trip(t;δ)

inf
λ∈[0,1]

∥∥y(λ;x; t1, t2, t3)
∥∥
−p,

and the triangle inequality gives that ‖yλ‖−n ≤ c, whenever x ∈ A.
To construct the finite family of vectors, first notice that E−n ⊆ E−p, so for an

orthonormal basis, {epi }i≥1, of Ep∣∣yλ(epi )
∣∣ ≤ ∥∥yλ∥∥−n∥∥epi ∥∥n ≤ c∥∥epi ∥∥n,

for x ∈ A. Therefore if M is chosen large enough so that
∑∞
i=M+1

∥∥epi ∥∥2

n
≤ ε, then

∥∥yλ∥∥2

−p ≤
M∑
i=1

∣∣yλ(epi )
∣∣2 + cε, (3.2)

so it now suffices to work with ep1, e
p
2 . . . , e

p
M . By introducing the RM vectors

v1 :=


(xt2 − xt1) (ep1)

(xt2 − xt1) (ep2)
...

(xt2 − xt1) (epM )

 and v2 :=


(xt2 − xt3) (ep1)

(xt2 − xt3) (ep2)
...

(xt2 − xt3) (epM )

 ,

the bound in (3.2) gives

wE−p,M1(x; δ) ≤ sup
t,trip(t;δ)

inf
λ∈[0,1]

∥∥λv1 + (1− λ)v2

∥∥
RM

+ cε.

With this fixed choice of ε and M , take Θ = {θ1, θ2, . . . , θk} from Lemma 3.5. If it is
the case that

inf
λ∈[0,1]

∥∥λv1 + (1− λ)v2

∥∥
RM
≥ 2cε (3.3)

then, by normalising v1 and v2 by 2c, it follows that there is some i ∈ {1, 2, . . . , k} such
that

inf
λ∈[0,1]

∥∥λv1 + (1− λ)v2

∥∥
RM
≤ 2cε−1 inf

λ∈[0,1]

∣∣θi · (λv1 + (1− λ)v2)
∣∣.

If (3.3) fails to be true, then clearly the upper bound above can be replaced by 2cε.
Hence, for every x ∈ A

wE−p,M1(x; δ) ≤ 2cε−1 sup
t,trip(t;δ)

max
i=1,...,k

inf
λ∈[0,1]

∣∣θi · (λv1 + (1− λ)v2)
∣∣+ 3cε. (3.4)
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For each i ∈ {1, 2, . . . , k}, φi can now be constructed by defining

φi :=

M∑
j=1

θ
(j)
i epj ∈ Ep,

where θ(j)
i ∈ R is the jth coordinate of θi. Inequality (3.4) therefore reduces to

wE−p,M1(x; δ) ≤ 2cε−1 sup
t,trip(t;δ)

max
i=1,...,k

inf
λ∈[0,1]

∣∣yλ(φi)
∣∣+ 3cε ≤ 2cε−1 max

i=1,...,k
wR,M1(x(φi;δ)) + 3cε

where the second inequality is due to switching the maximum and supremum. Taking a
supremum over x ∈ A and repeating the switch once more yields the result.

By taking λ = 1 in the above proof, the corresponding result for the increments of x
is given:

Corollary 3.6 (Controlling increments). With x, A, c, ε and φ1, φ2, . . . , φk as in the state-
ment of Lemma 3.4,

sup
x∈A

sup
t∈(s−δ,s+δ)∩[0,T ]

‖xt − xs‖E−p ≤ 2cε−1 max
i=1,...,k

sup
x∈A

sup
t∈(s−δ,s+δ)∩[0,T ]

|xt(φi)− xs(φi)|+ 3cε,

for every δ > 0 and s ∈ [0, T ].

Proof of Theorem 3.1. (i)⇒ (ii) and (iii)⇒ (i) follow from Proposition 2.7 (i) and (ii). We
now prove (ii)⇒ (iii).

The first half of the proof of [17, Thm. 2.4.4] does not depend on the choice of
temporal topology, hence we have p > n for which A ⊆ DE−n ⊆ DE−p , Ep ↪→ En is
Hilbert–Schmidt and

c := sup
x∈A

sup
t∈[0,T ]

‖xt‖−n <∞.

Therefore A will be compact in (DE−p ,M1) if we can verify the second condition in [34,
Thm. 12.12.2] (with DE−p as the range space).

Let φ1, φ2, . . . , φk ∈ E be as in the conclusion of Lemma 3.4. Since each πφi(A) is
compact (by hypothesis), [34, Thm. 12.12.2] implies (recall the notation of (3.1))

max
i=1,2,...,k

sup
x∈A

wR,M1(x(φi); δ)→ 0, as δ → 0.

Therefore by Lemma 3.4, lim supδ→0 supx∈A wE−p,M1(x; δ) ≤ 3cε, and likewise for the
terms in Corollary 3.6. Since ε > 0 is arbitrary, we are done.

Proof of Theorem 3.2. To prove the second statement, assume that (µn) is tight on
(DE′ ,M1). For every p ≥ 0, DE−p is a Polish space, so [29, Sec. 3, Def. 2, Ex. 1] implies
thatDE−p is a topological Radon space. From [29, Sec. 3, Ex. 4] (DE′ ,M1) is a topological
Radon space, hence every probability measure on (DE′ ,M1) is a Radon measure. By
Theorem 3.1 (iii), every compact subset of (DE′ ,M1) is metrizable, therefore [29, Sec. 5,
Thm. 2] completes the proof of the second result, since (DE′ ,M1) is completely regular
(Proposition 2.7 (iii)).

The first part of the theorem follows from the work in the proof of Theorem 3.1 and
[17, Thm. 2.5.1].

Proof of Theorem 3.3. Since the Borel and Kolmogorov σ-algebras on (DE′ ,M1) coincide
(Proposition 2.7 (iv)), the result follows by [24, Prop. 5.1].
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4 Application to empirical processes with Dirichlet boundary con-
ditions

In the remainder of the paper we will show how our machinery can be applied to the
problem of approximating stochastic evolution equations through empirical averages
of microscopic particles. We will be very concrete and consider a problem from mathe-
matical finance, specifically large portfolio credit modelling. Our analysis will show that
(DE′ ,M1) can be a convenient space on which to prove tightness when studying systems
with Dirichlet boundary conditions.

Define a collection of correlated Brownian motions, {Xi,N}i=1,...,N , started on the
half-line and evolving with the dynamics

Xi,N
t = Xi

0 +

∫ t

0

ρ(LNs )dWs +

∫ t

0

√
1− ρ(LNs )2dW i

s , LNt :=
1

N

N∑
i=1

1τ i,N≤t, (4.1)

where τ i,N := inf{t > 0 : Xi,N
t ≤ 0}. Here, W,W 1,W 2, . . . are independent Brownian

motions, {Xi}i≥1 are i.i.d. with some density f : (0,∞)→ [0,∞) and ρ : [0, 1]→ [0, 1] is a
measurable function. We will not impose any further regularity constraints on ρ in the
following tightness calculations. This is a system in which the proportion of particles
that have hit the origin determines the correlation in the system.

(To see that such {Xi,N}i=1,...,N exist, notice that t 7→ LNt is piecewise constant.
Therefore, to construct the discrete system, take N Brownian motions with initial
correlation ρ(0), stop the system at the first hitting of zero, restart the system with
correlation ρ(1/N) and repeat.)

Our set-up extends the constant correlation model introduced in [8]. The motivation
for this particular form is to address the correlation skew seen in [8, Sec. 5]. To analyse
the model, the quantity of interest is the empirical measure of the population:

νNt =
1

N

N∑
i=1

1t<τ i,N δXi,Nt
, (hence LNt = 1− νNt (0,∞)), (4.2)

where δx is the usual Dirac delta measure at the point x ∈ R.
We would like to establish the weak convergence (at the process level) of (νN )N≥1 to

some limit ν, which should be the solution of the non-linear evolution equation

dνt(φ) =
1

2
νt(φ

′′)dt+ ρ(Lt)νt(φ
′)dWt, Lt = 1− νt(0,∞). (4.3)

with test functions φ ∈ S that satisfy φ(0) = 0. This is an example of a (stochastic)
McKean–Vlasov equation [30]. Proving existence and uniqueness of solutions to this
equation would require further regularity constraints on ρ. For now, we will only
demonstrate that (νN )N≥1 is tight on the space (DS′ ,M1), where S ′ is the space of
tempered distributions.

Notice that, for every t, νNt is a sub-probability measure, so is an element of S ′, and
for every φ, νNt (φ) is a real-valued càdlàg function. Therefore νN has a version that
is càdlàg, by [23], so DS′ is an appropriate space to work with. By Theorem 3.2, it
suffices to show νN (φ) is tight in (DR,M1) for every φ ∈ S, and for that it is sufficient to
verify [34, Thm. 12.12.3], the first condition of which is trivial since |νNt (φ)| ≤ ‖φ‖∞. For
demonstrating that the second condition of [34, Thm. 12.12.3] holds, we can employ the
helpful result [1, Thm. 1], so to summarise what is now required:

Proposition 4.1. The sequence (νN )N≥1 is tight in (DS′ ,M1) if, for every fixed φ ∈ S,
there exists a, b, c > 0 such that

P(HR(νNt1 (φ), νNt2 (φ), νNt3 (φ)) ≥ η) ≤ cη−a|t3 − t1|1+b

for all N ≥ 1, η > 0, and 0 ≤ t1 < t2 < t3 ≤ T , and
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lim
N→∞

P( sup
t∈(0,δ)

|νNt (φ)− νN0 (φ)|+ sup
t∈(T−δ,T )

|νNT (φ)− νNt (φ)| ≥ η) = 0, for every η > 0.

Here, HR(v1, v2, v3) := infλ∈[0,1] |v2 − (1− λ)v1 + λv3|.
The challenge in working with (νN )N≥1 is the discontinuity presented by the ab-

sorbing boundary at the origin. For the constant ρ case, the authors of [8] use explicit
estimates based on 2d Brownian motion in a wedge [15, 22] to control for the boundary
effects. With the more complicated interactions in our present model such methods
seem intractable, however, the M1 topology provides an alternative approach.

Introduce the process ν̄N ∈ DS′ defined by

ν̄Nt :=
1

N

N∑
i=1

δXi,N
t∧τi,N

.

This has the advantage of being continuous (in time), so its increments are easy to
control, and it can be related to νN through the simple fact

ν̄Nt (φ) = νNt (φ) + φ(0)LNt , for every φ ∈ S. (4.4)

Thus, νN is a linear combination of a process with well-behaved increments and a process
that has zero M1 modulus of continuity (LN is monotone). Substituting (4.4) into HR
from Proposition 4.1 gives:

Proposition 4.2 (Decomposition trick). For every φ ∈ S, N ≥ 1 and 0 ≤ t1 < t2 < t3 ≤ T

HR(νNt1 (φ), νNt2 (φ), νNt3 (φ)) ≤ |ν̄Nt1 (φ)− ν̄Nt2 (φ)|+ |ν̄Nt2 (φ)− ν̄Nt3 (φ)|.

Proof. Carry out the aforementioned substitution and apply the triangle inequality to get

l.h.s. ≤ r.h.s. + |φ(0)| inf
λ∈[0,1]

|LNt2 − (1− λ)LNt1 − λL
N
t3 |.

Since LN is monotone increasing, the final term is zero for t1 < t2 < t3, and this
completes the proof.

Our trick makes the remainder of the tightness proof routine:

Theorem 4.3. The sequence (νN )N≥1 is tight on (DS′ ,M1).

Proof. For φ ∈ E, let ‖φ‖lip denote its Lipschitz constant. Since the Xi,N are just 1d
Brownian motions, Hölder’s inequality gives

E[|ν̄Nt (φ)− ν̄Ns (φ)|4] ≤ 1

N

N∑
i=1

E[|φ(Xi,N
t∧τ i,N )−φ(Xi,N

s∧τ i,N )|4] ≤ ‖φ‖4lipE[|X1,N
t∧τ1,N −X1,N

s∧τ1,N |4],

and the final expression is O(|t− s|2), uniformly in N . Therefore Markov’s inequality and
Proposition 4.2 give the first statement in Proposition 4.1.

For the second statement in Proposition 4.1, we can first apply the decomposition in
(4.4) to get

sup
t∈(0,δ)

|νNt (φ)− νN0 (φ)| ≤ sup
t∈(0,δ)

|ν̄Nt (φ)− ν̄N0 (φ)|+ |φ(0)|LNδ ,

and likewise for the term at T − δ. Using Doob’s maximal inequality and repeating the
Hölder calculation above gives

E sup
t∈(0,δ)

|νNt (φ)− νN0 (φ)| ≤ o(1) + |φ(0)|ELNδ = o(1) + |φ(0)|P(0 < τ1,N ≤ δ).

Since X1,N is a Brownian motion, the final term is o(1) uniformly in N , as δ → 0. So
applying Markov’s inequality gives the second statement in Proposition 4.1.

Remark 4.4 (Full convergence). To prove full weak convergence of (νN )N≥1, one ap-
proach would be to show that all limit points are supported on solutions of the evolution
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equation (4.3) and that this equation has a unique solution. The latter task is dependent
on the level of regularity of ρ, however the former could be proved using martingale
methods. To this end, an application of Itô’s formula gives

dνNt (φ) =
1

2
νNt (φ′′)dt+ ρ(LNt )νNt (φ′)dWt + dINt (φ), where E|INt (φ)|2 = O(N−1),

for every φ ∈ S such that φ(0) = 0. By Theorem 4.3, we have subsequential weak limits
for every term in this equation, and the M1 topology (on R) is well-behaved with respect
to integrals [34, Thm. 11.5.1].

Remark 4.5 (Why not work with ν̄N?). It might seem easier to work with the process
ν̄N from the start. Notice, however, that the above evolution equation would only hold
for ν̄N if φ′(0) = 0 = φ′′(0). This has the effect of moving the boundary problems we
had in calculating the J1 modulus of continuity of (νN )N≥1 to the analysis of the limiting
evolution equation.

Remark 4.6 (Why S ′?). S ′ seems an excessively large range space for the above example,
however, it is easy to recover that any limiting process must be measure-valued by the
Riesz–Markov–Kakutani theorem. Developing a general theory for S ′ also allows us to
approach fluctuation problems where the limiting processes would no longer take values
in the finite measures.
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[3] B. Basrak and D. Krizmanić. A Multivariate Functional Limit Theorem in Weak M1 Topology.
Journal of Theoretical Probability, 28:119–136, 2015. MR-3320962

[4] J.J. Becnel and A.N. Sengupta. Nuclear space facts, strange and plain. http://www.math.lsu.
ed/~sengupta/papers/BecSenNuclear.pdf, 2009.

[5] G. Ben Arous and J. Černy̌. Scaling limit for trap models on Zd. The Annals of Probability,
35(6):2356–2384, 2007. MR-2353391

[6] P. Billingsley. Convergence of probability measures. Wiley Series in Probability and Statistics:
Probability and Statistics. John Wiley & Sons Inc., New York, second edition, 1999. A Wiley-
Interscience Publication. MR-1700749

[7] D. Blount and M.A. Kouritzin. On convergence determining and separating classes of func-
tions. Stochastic Processes and their Applications, 120:1898–1907, 2010. MR-2673979

[8] N. Bush, B.M. Hambly, H. Haworth, L. Jin, and C. Reisinger. Stochastic Evolution Equations
in Portfolio Credit Modelling. SIAM Journal of Financial Mathematics, 2(1):627–664, 2011.
MR-2836495

[9] F. Delarue, J. Inglis, S. Rubenthaler, and E. Tanré. Particle systems with singular mean-field
self-excitation. Application to neuronal networks. Stochastic Processes and their Applications,
125(6):2451–2492, 2015. MR-3322871

[10] K. R. Duffy, C. Macci, and G.L. Torrisi. Sample path large deviations for order statistics.
Journal of Applied Probability, 48(1):238–257, 2011. MR-2809898

[11] S. Ethier and T. Kurtz. Markov Processes: Characterization and Convergence. Wiley, 1986.
MR-0838085

[12] J.M. Harrison and R.J. William. A multiclasss closed queueing network with unconventional
heavy traffic behavior. The Annals of Applied Probability, 6(1):1–47, 1996. MR-1389830

[13] R. Holley and D.W. Stroock. Central limit phenomena of various interacting systems. The
Annals of Mathematics, 110(2):333–393, 1979. MR-0549491

ECP 21 (2016), paper 34.
Page 10/11

http://www.imstat.org/ecp/

http://www.ams.org/mathscinet-getitem?mr=1027108
http://www.ams.org/mathscinet-getitem?mr=1143432
http://www.ams.org/mathscinet-getitem?mr=3320962
http://www.math.lsu.ed/~sengupta/papers/BecSenNuclear.pdf
http://www.math.lsu.ed/~sengupta/papers/BecSenNuclear.pdf
http://www.ams.org/mathscinet-getitem?mr=2353391
http://www.ams.org/mathscinet-getitem?mr=1700749
http://www.ams.org/mathscinet-getitem?mr=2673979
http://www.ams.org/mathscinet-getitem?mr=2836495
http://www.ams.org/mathscinet-getitem?mr=3322871
http://www.ams.org/mathscinet-getitem?mr=2809898
http://www.ams.org/mathscinet-getitem?mr=0838085
http://www.ams.org/mathscinet-getitem?mr=1389830
http://www.ams.org/mathscinet-getitem?mr=0549491
http://dx.doi.org/10.1214/16-ECP4754
http://www.imstat.org/ecp/


Skorokhod’s M1 topology for distribution-valued processes

[14] K. Itô. Distribution-valued processes arising from independent Brownian motions. Mathema-
tische Zeitschrift, 182(1):17–33, 1983. MR-0686883

[15] S. Iyengar. Hitting lines with two-dimensional Brownian motion. SIAM Journal of Applied
Mathematics, 45(6):983–989, 1985. MR-0813460

[16] A. Jakubowski. On the Skorokhod topology. Annales de l’Institut Henri Poincaré, Probabilités
et Statistiques, 22(3):263–285, 1986. MR-0871083

[17] G. Kallianpur and J. Xiong. Stochastic Differential Equations in Infinite Dimensional Spaces.
Institute of Mathematical Statistics: Lecture notes, monograph series. Institute of Mathemat-
ical Statistics, 1995. MR-1465436

[18] O. Kella and W. Whitt. Diffusion Approximations for Queues of Server Vacations. Advances in
Applied Probability, 22(3):706–729, 1990. MR-1066971

[19] M.A. Kouritzin. On tightness of probability measures on Skorokhod spaces. http://hdl.
handle.net/10402/era.37299, 2014.
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