
Electron. Commun. Probab. 21 (2016), no. 26, 1–10.
DOI: 10.1214/16-ECP4750
ISSN: 1083-589X

ELECTRONIC
COMMUNICATIONS
in PROBABILITY

Mixing time for the random walk on the range of the
random walk on tori
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Abstract

Consider the subgraph of the discrete d-dimensional torus of size length N , d ≥ 3,
induced by the range of the simple random walk on the torus run until the time uNd.
We prove that for all d ≥ 3 and u > 0, the mixing time for the random walk on this
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1 Introduction

Let Xn be a simple random walk on a large d-dimensional discrete torus TdN =

(Z/NZ)d, d ≥ 3, started from the uniform distribution on TdN . For u > 0 and N ∈ N, let

IuN =
{
X0, . . . , XbuNdc

}
be its range on the time interval [0, uNd]. We view IuN as a subgraph of TdN in which the
edges are drawn between any two vertices within `1-distance 1 from each other.

In this note, we are interested in the behavior of the mixing time of the random walk
on this graph as N grows while u > 0 remains fixed. We prove that the mixing time is of
order N2 and give bounds on the probability of the good event.

To state our main theorem, we recall that a lazy random walk on a finite connected
graph G = (V,E) is a Markov chain with the transition probabilities {p(x, y)}x,y∈V given
by

p(x, y) =


1
2 if x = y,
1

2dx
if |x− y|1 = 1,

0 otherwise,

where dx is the degree of x in G. The 1
4 -uniform mixing time (or simply mixing time) of

the lazy random walk on G is defined by

tmix(G) = min

{
n :

∣∣∣∣pn(x, y)− π(y)

π(y)

∣∣∣∣ ≤ 1

4
, for all x, y ∈ V

}
,
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Mixing time for the random walk on the range of the random walk on tori

where π denotes the (unique) stationary distribution of the walk, and pn its n-step
transition probability.

Our main result is the following theorem.

Theorem 1.1. Let d ≥ 3 and u > 0. There exist c = c(d, u) > 0 and C = C(d, u) < ∞
such that for all N ∈ N,

P
[
cN2 ≤ tmix(IuN ) ≤ CN2

]
≥ 1− Ce−(logN)2 . (1.1)

The lower bound on tmix(IuN ) of Theorem 1.1 is not difficult to show. In fact, its

probability can be easily improved to ≥ 1 − Ce−Nδ . The substantial contribution of
this note is the upper bound on tmix(IuN ) of correct order. Previously, it was shown by
Procaccia and Shellef in [8, Theorem 2.2] that

lim
N→∞

P
[
tmix(IuN ) ≤ N2 log(k)N

]
= 1, for every k ≥ 0,

where log(k)N is the k-th iterated logarithm. Our theorem on the one hand sharpens
their result, and on the other hand gives a bound on the probability of the good event.
The decay rate in (1.1) can be easily improved from e−(logN)2 to any e−(logN)p , p > 2, but
our method does not allow to obtain a stretched exponential rate e−N

δ

.
The main ingredient of the proof of Theorem 1.1 is the following isoperimetric

inequality for subsets of IuN , which may be of independent interest. For A ⊆ IuN , let

∂IuNA = {{x, y} : x ∈ A, y ∈ IuN \A, |x− y|1 = 1}

be the edge boundary of A in IuN .

Theorem 1.2. Let d ≥ 3, u > 0, and µ ∈ (0, 1). There exist γ = γ(d, u, µ) > 0 and
C = C(d, u, µ) <∞ such that for all N ∈ N,

P

[
for any A ⊂ IuN with |A| ≤ µ|IuN |,
|∂IuNA| ≥ γ · |A|

1− 1
d+

1
d2 ·N− 1

d

]
≥ 1− Ce−(logN)2 . (1.2)

Theorem 1.2 is proved by combining a new isoperimetric inequality for (deterministic)
graphs from [10] with the strong coupling of the IuN and the random interlacements
from [3]. We will recall these results in Section 2. In the remaining two sections of this
note we then prove Theorem 1.2 and Theorem 1.1, respectively.

In the remainder of this note, we omit the dependence of various constants on d. The
constants inherit their numbers from the theorems where they appear for the first time,
and their dependence on other parameters is explicitly mentioned.

2 Preliminaries

We introduce some notation first. For x = (x1, . . . , xd) ∈ Rd, its `1 and `∞ norms are
defined by |x|1 =

∑d
i=1 |xi| and |x|∞ = max{|x1|, . . . |xd|}, respectively. For x ∈ Zd and

r > 0, we denote by B(x, r) = {y ∈ Zd : |x − y|∞ ≤ brc} the closed `∞-ball in Zd with
radius brc and center at x. For two subsets of Zd, A ⊆ B, we denote the boundary of A
in B by

∂BA = {{x, y} : x ∈ A, y ∈ B \A, |x− y|1 = 1} .

We consider the measurable space Ω = {0, 1}Zd , d ≥ 3, equipped with the σ-algebra

F generated by the coordinate maps {ω 7→ ω(x)}x∈Zd . For any ω ∈ {0, 1}Zd , we denote
the induced subset of Zd by

S = S(ω) = {x ∈ Zd : ω(x) = 1} ⊆ Zd.

We view S as a subgraph of Zd in which the edges are drawn between any two vertices
of S within `1-distance 1 from each other.
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Mixing time for the random walk on the range of the random walk on tori

2.1 Deterministic isoperimetric inequality

One of the main tools for our proofs is an isoperimetric inequality from [10] for
subsets of a (deterministic) graph, satisfied uniformly over a large class of graphs. Each
graph in this class is contained in a large box, well-connected on a mesoscopic scale,
and admits a dense well-structured connected subset identified through a multiscale
renormalization scheme. In this section we recall some notation and necessary results
from [10].

Let λ and L0 be positive integers. For n ≥ 0 we consider the following sequences of
scales

ln = λ2 4n
2

, rn = λ 2n
2

, Ln+1 = ln Ln. (2.1)

To each Ln we associate the rescaled lattice

Gn = Ln ·Zd =
{
Ln · x : x ∈ Zd

}
,

with edges between any pair of `1-nearest neighbor vertices of Gn. Let η = (η1, η2) be an
ordered pair of real numbers satisfying

η1 ∈ (0, 1), η1 ≤ η2 < 2 η1. (2.2)

To set up a multiscale renormalization with scales Ln, we introduce two families of
good vertices. Their precise definition will not be used in the paper. The reader may skip
directly to the statement of Theorem 2.4.

Definition 2.1. We say that x ∈ G0 is (0a)-good in configuration ω ∈ Ω if for each y ∈ G0

with |y − x|1 ≤ L0, the set S ∩ (y + [0, L0)d) contains a connected component Cy with at
least η1Ld0 vertices such that for all y ∈ G0 with |y − x|1 ≤ L0, Cy and Cx are connected in
S ∩ ((x+ [0, L0)d) ∪ (y + [0, L0)d)).

If x ∈ G0 is not (0a)-good, then we call it (0a)-bad. For n ≥ 1, we recursively
define x ∈ Gn to be (na)-bad in ω ∈ Ω if there exist two ((n− 1)a)-bad vertices x1, x2 ∈
Gn−1 ∩ (x + [0, Ln)d) with |x1 − x2|∞ ≥ rn−1Ln−1. Otherwise, we call the vertex x

(na)-good.

Definition 2.2. We say that x ∈ G0 is (0b)-good in configuration ω ∈ Ω if∣∣S ∩ (x+ [0, L0)d)
∣∣ ≤ η2Ld0.

If x ∈ G0 is not (0b)-good, then we call it (0b)-bad. For n ≥ 1, we recursively
define x ∈ Gn to be (nb)-bad in ω ∈ Ω if there exist two ((n− 1)b)-bad vertices x1, x2 ∈
Gn−1 ∩ (x + [0, Ln)d) with |x1 − x2|∞ ≥ rn−1 Ln−1. Otherwise, we call the vertex x

(nb)-good.

Definition 2.3. For n ≥ 0, we say that x ∈ Gn is n-good in configuration ω ∈ Ω if it is at
the same time (na) and (nb) good. Otherwise, we call the vertex x n-bad.

Let us briefly comment on the above definitions. In classical renormalization tech-
niques on percolation clusters, good boxes are usually defined as the ones containing a
unique cluster with large diameter. In our case, it is crucial to define good boxes in terms
of only monotone events, as for these one can get a good control of correlations with a
help of sprinkling, even in models with polynomial decay of correlations (see [11, 12, 6]).

The main motivation behind the choice of η2 < 2η1 comes from the following ob-
servation. If neighbors x, y ∈ G0 are 0-good, then Cx and Cy are defined uniquely and
locally connected (see [10, Lemma 3.1]). This property is essential to identify a ubiqui-
tous well-structured connected subset of S through a multiscale renormalization. (See
[9, 4, 7, 10].)

The following statement is a special case of [10, Lemma 3.3 and Theorem 3.8]. It
gives an isoperimetric inequality for subsets of a local enlargement of S ∩ [0,KLs)

d. This
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enlargement serves as a smoothening of a possibly rough boundary of S ∩ [0,KLs)
d, thus

improving isoperimetric properties of S ∩ [0,KLs)
d near its boundary.

Theorem 2.4. Let d ≥ 3 and η as above. There exist C = C(η) <∞, β = β(η) > 0, and
γ = γ(η) > 0 such that for all λ ≥ C, L0 ≥ 1, s ≥ 0, and K ≥ 2Lds , the following statement
holds: If ω ∈ Ω satisfies

(a) all the vertices in Gs ∩ [−2Ls, (K + 2)Ls)
d are s-good,

(b) all x, y ∈ S ∩ [0,KLs)
d with |x− y|∞ ≤ Ls are connected in S ∩ B(x, 2Ls),

(c) for every x ∈ [0,KLs)
d such that (x+ [0, Ls)

d) ⊂ [0,KLs)
d, S ∩ (x+ [0, Ls)

d) 6= ∅,

then

|S ∩ [0,KLs)
d| ≥ β · (KLs)d,

the set

C̃ =
{
x ∈ S : x is connected to some y ∈ S ∩ [0,KLs)

d by a path in S ∩ B(y, 2Ls)
}

is connected, and for all A ⊂ C̃ with Ld(d+1)
s ≤ |A| ≤ 1

2 |C̃|,

|∂C̃A| ≥ γ · |A|
d−1
d .

Remark 2.5. (a) There is a small difference between our definition of 0-good vertices
and that of [10, Section 3.1], where SL0 is used instead of S. (SL0 is the set of
vertices from S that belong to connected components of diameter at least L0.) In
this note, we only consider connected S, thus SL0 = S.

(b) All the conditions on the scales ln and rn in [10, Lemma 3.3 and Theorem 3.8] are
satisfied if

∑∞
j=0

rj
lj

is sufficiently small. This can be achieved by making λ large
enough.

(c) Assumptions (a) and (b) in the statement of Theorem 2.4 are identical to those in
[10, Definition 3.7]. An additional assumption (c) is imposed so that (b) and (c) imply
that C̃ is connected and coincides with C̃K,s,L0

from [10, Definition 3.5].

Theorem 2.4 controls the size of the boundary of sets larger than Ld(d+1)
s . For smaller

sets, the following corollary will be useful.

Corollary 2.6. In the setting of Theorem 2.4, assume in addition that K ≥ Ld3s . Then for
every ω ∈ Ω satisfying (a)–(c) of Theorem 2.4 and for all A ⊂ C̃ with |A| ≤ 1

2 |C̃|,

|∂C̃A| ≥ γ|A|
1− 1

d+
1
d2 ((K + 4)Ls)

− 1
d .

Proof. For A with L
d(d+1)
s ≤ |A| ≤ 1

2 |C̃| ≤ ((K + 4)Ls)
d, the claim follows from Theo-

rem 2.4. On the other hand, for A with |A| ≤ Ld(d+1)
s ,

|∂C̃A| ≥ 1 =
L
d(d+1)(1− 1

d+
1
d2

)
s

L
(d3+1) 1

d
s

≥ |A|1−
1
d+

1
d2 ((K + 4)Ls)

− 1
d ,

as required.
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2.2 Coupling with random interlacements

Another principal ingredient for the proofs of our main results is the coupling of IuN
with the random interlacements inside of macroscopic subsets of the torus which was
constructed in [3]. We use here Iu to denote the random interlacements on Zd at level u
as introduced in [11, (1.53)]. In the next theorem, we identify the torus TdN with the set
[0, N)d ∩Zd.
Theorem 2.7. [3, Theorem 4.1] Let d ≥ 3, u > 0. For any ε > 0 and α ∈ (0, 1), there exist
δ2.7 > 0, C2.7 <∞, and a coupling Q of IuN , Iu(1−ε), and Iu(1+ε), such that for all N ≥ 1,

Q
[
Iu(1−ε) ∩ [0, αN ]d ⊆ IuN ∩ [0, αN ]d ⊆ Iu(1+ε)

]
≥ 1− C2.7e

−Nδ2.7 .

3 Proof of the isoperimetric inequality

We may now proceed to the proof of Theorem 1.2. To this end, we need to check that
assumptions (a)–(c) of Theorem 2.4 hold true with high probability. We fix u > 0 and
consider the function

η(u) = 1− e−
u

g(0,0) ,

where g(·, ·) is the Green function of the simple random walk on Zd. (The function η(u) is
the density of random interlacements at level u.) We further fix ε > 0 small enough so
that

η1 :=
3

4
η(u(1− ε)) and η2 :=

5

4
η(u(1 + ε)) satisfy condition (2.2). (3.1)

The first lemma provides an estimate on the probability that a vertex is s-bad. Its proof
relies on corresponding results for random interlacements [4, Lemmas 4.2 and 4.4] and
the coupling from Theorem 2.7. In its statement, we consider IuN as a subset of Zd

obtained by the canonical periodic embedding of TdN in Zd.

Lemma 3.1. For any u > 0, α ∈ (0, 1), and ε as in (3.1), there exist C3.1 = C3.1(u, ε, α) <

∞ and C ′3.1 = C ′3.1(u, ε, α, λ) < ∞ such that for all λ ≥ C3.1, L0 ≥ C ′3.1, and s ≥ 0 with
Ls + 2L0 ≤ αN ,

P [0 is s-bad in IuN ] ≤ 2 · 2−2
s

+ C2.7e
−Nδ2.7 .

Proof of Lemma 3.1. Observe first that the event {0 is s-bad in IuN} depends only on the
state of vertices inside of B := [−L0, Ls + L0]d ∩ Zd. By assumption, Ls + 2L0 ≤ αN .
Thus, using Theorem 2.7, we can couple IuN with Iu(1±ε) so that

P
[
Iu(1−ε) ∩B ⊆ IuN ∩B ⊆ Iu(1+ε)

]
≥ 1− C2.7e

−Nδ2.7 .

Further, by the monotonicity of (sa) and (sb) bad events, the following inclusion holds:{
0 is s-bad for the realization of IuN , Iu(1−ε) ∩B ⊆ IuN ∩B ⊆ Iu(1+ε)

}
⊆
{

0 is (sa)-bad for the realization of Iu(1−ε)
}

∪
{

0 is (sb)-bad for the realization of Iu(1+ε)
}
.

By [4, Lemmas 4.2 and 4.4], the probabilities of the two events in the right hand side are
bounded from above by 2 · 2−2s .

The next lemma implies that the assumptions of Theorem 2.4 hold with a large
probability for S = IuN .
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Lemma 3.2. For each u > 0, α ∈ (0, 1), and ε as in (3.1), there are C3.2 = C3.2(u, ε, α) <

∞ and δ3.2 = δ3.2(u, ε, α) > 0 such that for all λ ≥ C3.1, L0 ≥ C ′3.1, s ≥ 0, and K ≥ Ls with
(K + 4)Ls ≤ αN

P

[
realization of IuN does not satisfy

any of (a)–(c) in Theorem 2.4

]
≤ C3.2 · (KLs)d ·

(
2−2

s

+ e−L
δ3.2
s

)
. (3.2)

Proof of Lemma 3.2. By Lemma 3.1 and translation invariance,

P

[
realization of IuN does not satisfy

(a) in Theorem 2.4

]
≤ (K + 4)d ·

(
2 · 2−2

s

+ C2.7e
−Nδ2.7

)
.

By [11, (1.65)], there exists c > 0 such that for any u > 0 ε ∈ (0, 12 ), and m ≥ 1,

P[Iu(1−ε) ∩ [0,m)d = ∅] ≤ e−cm
d−2u. (3.3)

Choosing m = Ls and combining this fact with Theorem 2.7, we obtain that

P

[
realization of IuN does not satisfy

(c) in Theorem 2.4

]
≤ (KLs)

d · e−cuL
d−2
s + C2.7e

−Nδ2.7 .

To estimate the probability that (b) does not occur, it is not enough to use the coupling
from Theorem 2.7 and corresponding random interlacements results because the event
in (b) is not monotone. We thus need to adapt the techniques of [2, Section 8].

We first claim that there are large C = C(u) and small δ = δ(u) ∈ (0, 1) such that

P
[
∃x, y ∈ [0, δLs]

d ∩ IuN s.t. x, y are not connected in IuN ∩ B(x, Ls)
]
≤ Ce−L

δ
s .

Indeed, this can be proved as [2, Lemma 8.1], replacing the box of size lnγ N used
there with the box of size δLs. The proof in [2] uses ingredients from [14], namely
Lemmas 3.9, 3.10 and 4.3, which hold true for boxes up to size N

1
2 . Since δLs ≤ N1/2,

by the assumption on K, we can use them without modifications.
Using the translation invariance,

P

[
∃x, y ∈ IuN ∩ [0,KLs)

d s.t. |x− y|∞ ≤ δLs and x, y

are not connected in IuN ∩ B(x, Ls)

]
≤ C(KLs)

de−L
δ
s .

Moreover, using (3.3) with m = δLs,

P
[
∃x ∈ IuN ∩ [0,KLs)

d s.t.
(
x+ [0, δLs)

d
)
∩ IuN = ∅

]
≤ C(KLs)

de−cuL
d−2
s .

Finally, as in the proof of [2, Theorem 1.6], assuming that the events of the last two
displays hold, then for every x, y ∈ IuN ∩ [0,KLs)

d such that |x− y|∞ ≤ Ls we can find a
sequence x = x0, . . . , xk = y with k ≤ 2δ−1, xi ∈ IuN ∩ [0,KLs)

d, and |xi − xi−1|∞ ≤ δLs
for all 1 ≤ i ≤ k. In particular also xi−1 and xi are connected in IuN ∩ B(xi, Ls) and thus
x, y are connected in IuN ∩ B(x, 2Ls). It follows that

P

[
realization of IuN does not satisfy

(b) in Theorem 2.4

]
≤ C(KLs)

de−L
δ
s .

By combining the three bounds and using the relation Ls ≤ αN , we obtain the desired
bound (3.2).

We will prove Theorem 1.2 by making a suitable choice of s and K in Lemma 3.2 as
functions of N .
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Proof of Theorem 1.2. Fix N ≥ 1, u > 0, µ ∈ (0, 1), ε > 0 satisfying (3.1), and α = 6
7 . It

suffices to consider µ = 1
2 . Indeed, if µ > 1

2 , then the isoperimetric inequality for sets
A ⊂ IuN with 1

2 |I
u
N | ≤ |A| ≤ µ|IuN | follows from the isoperimetric inequality for IuN \ A,

see, e.g., [10, Remark 5.2].
Take the scales as in (2.1) with λ ≥ C3.1 and L0 ≥ C ′3.1. Without loss of generality, we

assume that N ≥ 7Ld
3+1

0 . Let

s = max

{
s′ ≥ 0 : Ld

3+1
s′ ≤ N

7

}
and K = min

{
K ′ ≥ 1 : K ′Ls ≥

N

7

}
.

Notice that K ≥ Ld
3

s and (K + 4)Ls ≤ 6N
7 . Thus, the parameters s and K satisfy the

conditions of Corollary 2.6 and Lemma 3.2. To apply Corollary 2.6, for each x ∈ [0, N)d,
we define the local enlargement of IuN ∩ (x+ [0,KLs)

d) by

C̃x =

{
y ∈ IuN :

y is connected to some z ∈ IuN ∩ (x+ [0,KLs)
d)

by a path in IuN ∩ B(z, 2Ls)

}
.

Here as before, we consider IuN as a subset of Zd obtained by the canonical periodic
embedding of TdN in Zd. By Corollary 2.6, Lemma 3.2, and translation invariance, for
some β = β(u) > 0 and γ = γ(u) > 0,

P

[
for all x ∈ [0, N)d, |IuN ∩ (x+ [0,KLs)

d| ≥ βNd, and

for all A ⊂ C̃x with |A| ≤ 1
2 |C̃x|, |∂C̃xA| ≥ γ · |A|

1− 1
d+

1
d2 ·N− 1

d

]
≥ 1−Nd · RHS3.2 ,

(3.4)
where

RHS3.2 = C3.2 · (KLs)d ·
(

2−2
s

+ e−L
δ3.2
s

)
is the right hand side of (3.2). The proof of Theorem 1.2 will be completed once we prove
that for all N ≥ N0(u), (a) the event in (3.4) implies the event in (1.2), with a possibly
different γ, and (b) Nd · RHS3.2 ≤ e−(logN)2 .

We begin showing (a). Assume that the event in (3.4) occurs. Let A be a subset of IuN
with |A| ≤ 1

2 |I
u
N |. For each x ∈ [0, N)d, let Ax = A ∩ C̃x.

We choose points x1, . . . , x7d ∈ [0, N)d such that

IuN =

7d⋃
i=1

C̃xi .

Then A = ∪iAxi and |A| ≤
∑
i |Axi |. Assume first that for all i, |Axi | ≤ 1

2 |C̃xi |. Then,

|∂C̃xiAxi | ≥ γ · |Axi |
1− 1

d+
1
d2 ·N− 1

d .

Since for each i, ∂C̃xi
Axi ⊂ ∂IuNA, we obtain that

|∂IuNA| ≥
1

7d

∑
i

|∂C̃xiAxi | ≥
1

7d

∑
i

γ · |Axi |
1− 1

d+
1
d2 ·N− 1

d ≥ 1

7d
γ · |A|1−

1
d+

1
d2 ·N− 1

d ,

where in the last step we used the inequality
∑
i |Axi |

1− 1
d+

1
d2 ≥ (

∑
i |Axi |)

1− 1
d+

1
d2 . Thus,

in this case, the event in (3.4) implies the event in (1.2) with γ1.2 = 1
7d
γ.

It remains to consider the case when for some x, |Ax| > 1
2 |C̃x|. We claim that in this

case for N ≥ N0(u), there exist x such that

1

2
βNd ≤ |Ax| ≤

(
1− β

2 · 7d

)
|C̃x|. (3.5)
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Assume that it is not the case. Since there exists x such that |Ax| > 1
2 |C̃x| and |C̃x| ≥ βNd,

the non-validity of (3.5) implies that |Ax| >
(

1− β
2·7d

)
|C̃x|. Assume that the last inequality

holds for all x. Then,

|IuN \A| ≤
∑
i

|C̃xi \Axi | <
β

2 · 7d
∑
i

|C̃xi | ≤
β

2 · 7d
· 7d|IuN | ≤

1

2
|IuN |,

which contradicts the assumption that |A| ≤ 1
2 |I

u
N |. Thus, for each x, either |Ax| <

1
2βN

d or |Ax| >
(

1− β
2·7d

)
|C̃x|, and both types exist. In particular, there exist x, y with

|x − y|1 = 1 such that |Ax| < 1
2βN

d and |Ay| >
(

1− β
2·7d

)
|C̃y| ≥ β

(
1− β

2·7d

)
Nd. For

these x and y, on the one hand,

|Ay \Ax| ≥ |Ay| − |Ax| ≥
1

3
βNd,

and on the other,

|Ay \Ax| ≤ |C̃y \ C̃x| ≤ 2
(

((K + 4)Ls)
d − (KLs)

d
)
≤ 16d

K
(KLs)

d,

where the last inequality holds for large enough K. Since KLs ≤ N and K ≥
√

N
7 ,

the two bounds for |Ay \ Ax| cannot be fulfilled simultaneously if N ≥ N0(u). This
contradiction proves (3.5).

Let x ∈ [0, N)d satisfy (3.5). Either |Ax| ≤ 1
2 |C̃x| or |C̃x \Ax| ≤ 1

2 |C̃x|. Thus,

|∂C̃xAx| ≥ γ ·min
(
|Ax|, |C̃x \Ax|

)1− 1
d+

1
d2 ·N− 1

d .

Since ∂IuNA ⊇ ∂C̃xAx and

min
(
|Ax|, |C̃x \Ax|

)
≥ min

(
1

2
βNd,

β

2 · 7d
|C̃x|

)
≥ β2

2 · 7d
Nd ≥ β2

7d
|A|,

we obtain that |∂IuNA| ≥
β2

7d
γ · |A|1−

1
d+

1
d2 · N− 1

d . Thus, if (3.5) holds, then the event in

(3.4) implies the event in (1.2) with γ1.2 = β2

7d
γ. Putting the two cases together gives

P

[
for any A ⊂ IuN with |A| ≤ 1

2 |I
u
N |,

|∂IuNA| ≥
β2

7d
γ · |A|1−

1
d+

1
d2 ·N− 1

d

]
≥ 1−Nd · RHS3.2.

It remains to prove that Nd · RHS3.2 ≤ e−(logN)2 for N ≥ N0(u). By (2.1),

1

2
·N

1
d3+1 ≤

(
N

7

) 1
d3+1

< Ls+1 = ls · Ls ≤ (4ls−1)2 · Ls ≤ 16 · L3
s.

Thus, Ls ≥ 1
4 · N

1
3(d3+1) . On the other hand, by (2.1), Ls ≤ L0 · λ2s · 4s

3

, which implies

that there exists c = c(L0, λ) > 0 such that s ≥ c(logN)
1
3 − 1 and 2s ≥ c(logN)4. Thus,

there exists C = C(u) <∞ such that (KLs)
d ·
(

2−2
s

+ e−L
δ3.2
s

)
≤ Ce−(logN)3 . By taking

N large enough,

Nd · RHS3.2 < e−(logN)2 . (3.6)

The proof of Theorem 1.2 is complete.
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4 Proof of Theorem 1.1

We begin with the proof of the upper bound. It is very similar to the proof of [8,
Theorem 3.1], which relies on the bound on the mixing time from [5, Theorem 1]. For
r > 0, let

φ(r) = inf

{ |∂IuNA|
|A|

: A ⊂ IuN , 0 < |A| ≤ min

{
r,

(
1− 1

4d

)
|IuN |

}}
.

By [8, (16)], there exists C = C(d) <∞ such that

tmix(IuN ) ≤ C
∫ 32dNd

1

dr

rφ(r)2
.

Consider the event from (1.2) for µ = (1− 1
4d ). For each realization of IuN from this event

and all r, φ(r) ≥ γ ·N− 1
d · r−

d−1

d2 . Thus,

∫ 32dNd

1

dr

rφ(r)2
≤ 1

γ2
·N 2

d ·
∫ 32dNd

1

r
2(d−1)

d2
−1dr ≤ C ·N2.

By (1.2), there exists C = C(u) <∞ such that

P
[
tmix(IuN ) ≤ CN2

]
≥ 1− Ce−(logN)2 .

We proceed with the proof of the lower bound. By the volume bound in (3.4) and
(3.6), there exist C = C(u) <∞ and β = β(u) > 0 such that for all N ≥ 1,

P

[
for all x ∈ [0, N)d, |IuN ∩ (x+ [0,

N

7
)d)| ≥ βNd

]
≥ 1− Ce−(logN)2 .

Assume the occurrence of event under the probability. By [1, Theorem 2.1], there exists
C = C(u) < ∞ such that for each ε > 0 and n < 1

3N , one can find x = x(ε, n) ∈ IuN so
that ∑

y∈B(x,n)

pbεn2c(x, y) ≥ 1− C ε.

On the other hand, ∑
y∈B(x,n)

π(y) ≤ 2d(2n+ 1)d

βNd
.

We take ε small enough and n < εN so that the first sum is larger than 1
2 and the second

smaller than 1
4 . Then there exists at least one y ∈ B(x, n) such that |pbεn2c(x, y)− π(y)| ≥

1
4π(y). Thus, tmix(IuN ) ≥ ε3N2, and we conclude that for some c = c(u) > 0 and
C = C(u) <∞,

P
[
tmix(IuN ) ≥ cN2

]
≥ 1− Ce−(logN)2 .

The proof of Theorem 1.1 is complete.

Remark 4.1. (a) In the proof of the lower bound on tmix(IuN ) we only used that IuN
has positive density in large subboxes of TdN . This follows from the facts that IuN
dominates random interlacements and the random interlacements are dense in large
boxes. Both facts hold with probability ≥ 1 − Ce−Nδ . Thus, P

[
tmix(IuN ) ≥ cN2

]
≥

1− Ce−Nδ .
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(b) The method of this note also applies (with minimal changes) to the largest connected
component of the vacant set of the range VuN = TdN \ IuN , when u is strongly su-
percritical, see [14, Definition 2.4]. For instance, the property (b) of Theorem 2.4
for the largest cluster is shown to be very likely for strongly supercritical u’s in [4,
Section 2.5]. So far, it is only known that strongly supercritical u’s exist if d ≥ 5, see
[13].

(c) It is natural to consider IuN as a random subgraph of TdN with edges traversed by
the random walk. All our results remain true in this case. The proofs presented in
the note are robust to this change, but the external ingredients should be adapted
to corresponding bond models. Although the changes needed are only notational,
presenting them would deviate us from the main goal of this note.
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