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Abstract

We consider a q-deformed version of the uniform Gibbs measure on dimers on the
periodized hexagonal lattice (equivalently, on interlacing particle configurations, if
vertical dimers are seen as particles) and show that it is invariant under a certain
irreversible q-Whittaker dynamic. Thereby we provide a new non-trivial example of
driven interacting two-dimensional particle system, or of (2+1)-dimensional stochastic
growth model, with explicit stationary measure. We emphasize that this measure is
far from being a product Bernoulli measure. These Gibbs measures and dynamics
both arose earlier in the theory of Macdonald processes [7]. The q = 0 degeneration
of the Gibbs measures reduce to the usual uniform dimer measures with given tilt
[12], the degeneration of the dynamics originate in the study of Schur processes [5, 6]
and the degeneration of the results contained herein were recently treated in [19].
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1 Introduction

Irreversible Markovian dynamics on two-dimensional dimers or interlaced particle
configurations (see Figure 3) are closely related to driven interacting particle systems
as well as random surface growth models in (2 + 1)-dimensions. It is a challenge to find
local irreversible dynamics whose invariant measures (on the torus or on the infinite
lattice) are likewise local and explicit. Knowledge of a dynamic’s invariant measures
can be useful in establishing its hydrodynamic / fluctuation theory and in understanding
general properties (i.e. universality classes) of two-dimensional driven systems.

The state space for the Gibbs measures / dynamics we consider is that of interlacing
particles on a discrete torus. Each particle interlaces with two particles above it, two
particle below it, and has two neighbors at the same row (see Figure 1). For a particle
p we let Ap, Bp, Cp, Dp, Ep, Fp denote the absolute value of the horizontal distances
between the particle and its neighbors starting with the right neighbor on the same row
and going clockwise (actually, the values of Ap, Bp, Dp, Ep are this distance minus 1 –
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Stationary measure of the q-Whittaker particle system

see Section 2.1 for precise definitions). In continuous time, each particle p jumps to the
right by one lattice space according to an exponential clock of rate

(1− qBp)(1− qDp+1)

(1− qCp+1)

where q ∈ [0, 1). This dynamic is local and irreversible. Moreover, it preserves the
interlacing of particles – particle p cannot jump past the particle below and to its right
since the factor 1− qBp = 0 in that scenario; and if a particle p jumps so as to pass its
upper-right neighbor, then that neighbor is immediately pushed right by one space since
the denominator for that neighbor’s jump rate is zero, hence it jumps right at an infinite
rate.

The main result of this paper, Theorem 1, provides an explicit two-parameter family
of translation invariant Gibbs measures on the torus which are invariant for this dynamic.
One parameter represents the number of particles per row, and the other is topological,
related to how much the particles rotate right between rows (in terms of dimers, the
parameters relate to the slopes of the height function). The Gibbs measures are local
and proportional to ∏

p

(q; q)Ap

(q; q)Bp
(q; q)Cp

where the product is over all particles p and where (q; q)n = (1− q)(1− q2) · · · (1− qn) is
the q-Pochhammer symbol. These dynamics are irreversible (i.e. driven); the proof of
the invariance of the Gibbs measure involves unexpected cancelations of contributions
from every particle. For q = 0, the dynamic reduces to the one introduced by A. Borodin
and P. L. Ferrari [5] and the Gibbs measures reduce to uniform measures over the
configurations of interlacing particles. Their stationarity on the torus was proved in [19]
and the argument is simpler than in the q ∈ (0, 1) case.

In general, there is no hope of computing explicitly the stationary measures of
a driven particle system. In the lucky cases when it is possible, often the invariant
measures turn out to be of product type. This is the case, for instance, for the ASEP
on Zd, d ≥ 1 and certain modifications thereof [15], zero range processes [18, 1], mass
transport models [9], and certain discretizations of the one-dimensional KPZ equation
including directed polymer models [16, 17, 13, 2]. In contrast, our stationary measures π
are far from being product: for instance, for q = 0 it is known that they show power-law
decaying spatial correlations and the same presumably holds for q 6= 0.

The dynamics and Gibbs measures we study in this work were initially considered in
the study of Macdonald processes (in fact, q-Whittaker processes) [7, Chapter 3], though
our results do not rely at all on this technology. Still, let us briefly explain the origins.
The q-Whittaker process is a measure on interlacing triangular arrays with 1 particle
on the first (bottom) row, 2 on the second, up to N on the top (N th) row. Given the
configuration of particles on the top row, the q-Whittaker process enjoys the property
that the measure on the remaining N − 1 lower rows is given by the above described
Gibbs measure. The dynamics we described were also introduced in [7, Chapter 3]
and play nice with such measures on triangular arrays. In particular, if one starts with
an interlacing triangular array satisfying the Gibbs property, then after running the
dynamics for a fixed time, the resulting triangular array also enjoys the same Gibbs
property (of course, the top row will have moved to the right). This fact follows from
results in [7, Section 2.3].

While our main result does not follow from the results of [7], it was partially inspired
by it. After all, if the Gibbs property is preserved on these triangular arrays, it would
seem reasonable that it should also be preserved on the periodized version of the model.
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Stationary measure of the q-Whittaker particle system

In [7] a more general class of dynamics and Gibbs measures are discussed which are
inhomogeneous with row-dependent parameters ak > 0. Our approach applies equally
well in that more general context and so we state and prove our main theorem for
general ak (it reduces to the case described above when all ak ≡ 1). There actually exist
many types of continuous time Markov dynamics on triangular arrays which preserve
the Gibbs property [8], however the other known dynamics do not easily admit periodic
versions (i.e. they are not translation invariant). There is also a discrete time version of
the above introduced dynamic described in [7], however it is not as simple and we do
not pursue studying its periodized version.

The other inspiration for our result is the recent work [19] regarding the q = 0 case of
this model (that work was inspired by the Schur process work of [5, 6]). The q = 0 case of
the dynamics is known to lie in the (2 + 1)-dimensional anisotropic Kardar-Parisi-Zhang
universality class [5, 6, 19]. Based on the approach developed in [19], the results of the
present paper can be seen as a step towards extending this universality to q ∈ (0, 1).
In the q = 0 case, the next step in [19] is to extend the invariance of Gibbs measures
from the finite torus to infinite volume. A crucial ingredient used in this extension was
the fact that, for q = 0, the infinite-volume Gibbs states are known and have an explicit
determinantal structure and GFF-like height fluctuations [12]. All of this is missing in
the q ∈ (0, 1) case, so at present, the extension of our result to the infinite lattice and the
proof of its KPZ class behavior is an open problem.

Recently, Borodin-Bufetov [4] considered another deformation of the Borodin-Ferrari
particle system (q = 0 case of our dynamics) and they showed that the invariant measures
are given by 6-vertex Gibbs measures. This deformation is different from the one we
consider here (ours originates from q-Whittaker processes [7] and the other from vertex
models [3]). Let us also mention that another example of (2 + 1)-dimensional growth
model with explicit (non-product form) stationary measure is the Gates-Westcott model
[10, 14].

Outline

In Section 2 we introduce the state space for our Markov dynamics (in terms of dimers
as well as interlacing particle configurations) and describe the class of Gibbs measures
we will work with. Section 3 introduces the periodized q-Whittaker dynamics. Section 4
contains the proof that the Gibbs measures are invariant for the q-Whittaker dynamics.

2 State space and Gibbs measure

The dynamics we study can be described as a driven interacting particle system,
or as dynamics of a dimer model on the (periodized) hexagonal lattice. While the
former description may be more natural, the latter allows to get more directly certain
statements, notably ergodicity of the Markov chain. We start by introducing the state
spaces for our dynamics.

2.1 Description as an interacting particle system

The particle process lives on the L×N discrete torus TL,N = Z/(LZ)×Z/(NZ). The
horizontal size is L and the vertical size is N .

The particle configuration space will be denoted ΩL,N ;m1,m2
, and depends on two

integers 1 < m1 < L and 1 ≤ m2 < N such that

m1/L+m2/N < 1. (2.1)

At each site x = (x1, x2) ∈ TL,N there is at most one particle. On each row there are
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Stationary measure of the q-Whittaker particle system

exactly m1 particles. We exclude m1 = 1 and m1 = L to avoid trivialities. The parameter
m2 has a more topological nature and its meaning will be explained below.

Particle positions are interlaced, in the following sense. The horizontal position of
particle p is denoted xp ∈ Z/(LZ). Given any p (say on row i), we let p1, p4 denote its
right/left neighbor on the same row (note that if m1 = 2 then p1 = p4). Then, we require
that in row i− 1 there is exactly one particle, denoted p2, whose position satisfies

xp2 ∈ {xp + 1, xp + 2, . . . , xp1} (2.2)

and exactly one particle, denoted p3, satisfying

xp3 ∈ {xp4 + 1, xp4 + 2, . . . , xp}. (2.3)

See Figure 1. Note that, automatically, in row i+ 1 there are exactly one particle p5 and
one particle p6 satisfying respectively

xp5 ∈ {xp4 , . . . , xp − 1}, xp6 ∈ {xp, . . . , xp1 − 1}. (2.4)

p p1p4

p6p5

p3 p2

row i

row i+1

row i-1

Figure 1: The neighbors p1, . . . , p6 of particle p. Note that conditions (2.2), (2.3) allow
Cp := xp − xp3 = 0 but they impose Bp + 1 := xp2 − xp ≥ 1.

We define non-negative integers Ap, . . . , Fp as

Ap = xp1 − xp − 1; Bp = xp2 − xp − 1; Cp = xp − xp3 (2.5)

Dp = xp − xp4 − 1; Ep = xp − xp5 − 1; Fp = xp6 − xp.

The particles p1, . . . , p6 are the six neighbors of p, labeled clockwise starting from the one
on the right. The definition of the dynamics will be such that the labels of the neighbors
of a particle p do not change with time.

Let ΩL,N ;m1 be the set of particle occupation functions, i.e. of functions η : TL,N 7→
{0, 1}, with m1 particles per row, whose positions satisfy the constraints (2.2)-(2.4). The
set ΩL,N ;m1 decomposes into disjoint “sectors”:

ΩL,N ;m1
= ∪m2

ΩL,N ;m1,m2
(2.6)

as follows. Given any particle p, connect p to its up-right neighbor p6, then p6 with its
own up-right neighbor and repeat the operation until the path Γ thus obtained gets back
to the starting particle p. Note that Γ forms a simple loop: otherwise, there would be a
particle r which is reached along Γ from two different particles r′, r′′. This is impossible,
since both r′ and r′′ would be the r3 neighbor of r. Call Nv ∈ N ∪ {0}, Nh ∈ N ∪ {0} the
vertical and horizontal winding numbers of Γ around the torus TL,N . It is easy to see
that Nh, Nv are independent of the chosen initial particle p. It is possible to check (see
Remark 2 below) that

m2 := m1
Nh
Nv

(2.7)

is an integer and that it satisfies (2.1). The set ΩL,N ;m1,k is the subset of ΩL,N ;m1
such

that m2 = k. Each sector ΩL,N ;m1,m2
will remain invariant under our dynamics.
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Given q ∈ [0, 1) and a collection of real parameters a1, . . . , aN > 0, let π be the
probability measure on ΩL,N ;m1,m2

defined as

π(σ) := πL,N ;m1,m2(σ) :=
1

ZL,N ;m1,m2

∏
p

a
Cp

r(p)

(q; q)Ap

(q; q)Bp(q; q)Cp

1{σ∈ΩL,N;m1,m2
} (2.8)

where (q; q)n = (1− q)(1− q2) . . . (1− qn) and where r(p) denotes the label of the row in
which p sits.

Conditionally on the position of all particles except particle p, the law of the position
of p is proportional to

a
Cp

r(p)a
Fp

r(p6)

(q; q)Ap(q; q)Dp

(q; q)Bp
(q; q)Cp

(q; q)Ep
(q; q)Fp

. (2.9)

Note also that in (2.8) we could have for instance replaced (q; q)Bp(q; q)Cp by
(q; q)Ep(q; q)Fp and π would be unchanged. Likewise, because

∑
p:r(p)=k Cp+Bp = N−m1

we could have replaced a
Cp

r(p) by a
αCp−(1−α)Bp

r(p) for any α and not changed π either. When
q = 0 and all ak ≡ 1, π reduces to the uniform distribution on ΩL,N ;m1,m2

.

Remark 1. Note that we are viewing ΩL,N ;m1,m2 as a set of particle occupation functions
and not as a set of positions of labeled particles; i.e. two particle configurations with
the same particle occupation variable everywhere are considered to be the same. If
instead we looked at configurations of labeled particles, every configuration in ΩL,N ;m1,m2

would actually correspond to m1 different possible particle configurations, obtained by
cyclically changing particle labels, simultaneously on every row.

2.2 Description as a dimer model

Before we introduce the dynamics, let us give the alternative description of the model
in terms of perfect matchings (or dimer coverings) of the periodized hexagonal lattice
ΛL,N . Precisely, with reference to Figure 2, ΛL,N has period L in the e1 direction and
period N in the e2 direction, and vertices are alternately colored black/white.

e1

e2

v v′

v′′

v′′′

Figure 2: The graph ΛL,N with L = 5, N = 4. The graph is periodic in both e1 and e2

directions. Vertical dimers (in red) will be called “particles”. Here, v′ = v + 2e1, v
′′ =

v + e2 + e1 and v′′′ = v − e2 + e1.

The number of dimers (i.e. of edges in the perfect matchings) equals LN , which is
the number of white vertices. Given strictly positive integers n1, n2 with n1 + n2 < NL,

let ΩL,N ;n1,n2
be the set of dimer coverings X with n1 vertical dimers and n2 north-west

oriented dimers. It is well known that the number of vertical dimers is the same in
each horizontal row, so that k1 := n1/N ∈ N, and similarly there are k2 := n2/L ∈ N
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north-west oriented dimers in each e2-oriented column. To avoid trivialities we will
also assume that k1 ≥ 2 (recall that in the particle picture we required m1 ≥ 2 for the
same reason). Another well-known fact is that the knowledge of which vertical edges
are occupied uniquely determine the whole dimer configuration. A last observation is
that the horizontal (i.e. e1) coordinates of vertical dimers are interlaced: given two
vertical edges v and v′ = v + ke1, k > 0 such that there is a dimer at v, v′ and no dimer at
v+ je1, j = 1, . . . , k− 1, then there is exactly one value 0 ≤ r < k and one value 0 < s ≤ k
such that there is a dimer at v′′ = v + e2 + re1 and at v′′′ = v − e2 + se1. See Figure 2.

Remark 2. If vertical dimers are called “particles”, then the correspondence between
the particle picture of Section and the dimer picture should now be clear, see also Figure
3: for each particle configuration in ΩL,N ;m1,m2

there is a perfect matching of ΛL,N
with certain values (k1, k2), and vice-versa. It is obvious that m1 = k1. It remains to be
shown that also m2 = k2, thereby proving also (2.1), since Lk2 +Nk1 = n1 + n2 < NL

by assumption. Given a nearest-neighbor path Cf→f ′ from a face f to a face f ′ and a
perfect matching X, define

HX(Cf→f ′) =
∑

e∈Cf→f′

εe1e∈X (2.10)

where the sum runs over the edges crossed by the path, εe equals +1/− 1 if e is crossed
with the white vertex on the right/left and 1e∈X is the indicator function that e is occupied
by a dimer in X. It is well known [11] that if f ′ = f then, given X, HX(Cf→f ) depends
only on the horizontal and vertical winding numbers of Cf→f around the torus. Choose a

path C(1)
f→f that moves only in the +e1 direction. Then, we see that

HX(C
(1)
f→f ) = +k1. (2.11)

If instead C(2)
f→f it moves only in the +e2 direction, then

HX(C
(2)
f→f ) = −k2. (2.12)

On the other hand, choose C(Γ)
f→f as follows: it starts from a face f just to the right of

a vertical dimer p, it moves in direction +e2 if this involves crossing no dimer, and in
the direction +e1 otherwise; the paths stops when it gets back to f . Let us say that a
vertical dimer r “is visited by C(Γ)

f→f” if the path visits the hexagonal face just to the right
of r. Note that the first visited vertical dimer is p, the second one is its up-right neighbor
p6, then the up-right neighbor of p6, and so on. These are just the particles visited by the
path Γ built in Section 2.1. In particular, we have seen that Γ forms a simple loop, so
C

(Γ)
f→f does indeed come back to f . Also, C(Γ)

f→f has the same winding numbers Nh, Nv as

Γ. By construction, we see that HX(C
(Γ)
f→f ) = 0 since the path never crosses any dimer.

On the other hand, by (2.11)-(2.12) we have

0 = HX(C
(Γ)
f→f ) = Nhk1 −Nvk2, (2.13)

i.e. k2 = m2, see (2.7).

In analogy with Section 2.1, for each vertical dimer p, let p1, . . . p6 be the labels of its
six neighboring vertical dimers labeled in clockwise order starting from the one on the
right. The non-negative (possibly zero) integers Ap, Bp, Cp, Dp, Ep, Fp defined in (2.5)
are given in the coordinates of the hexagonal lattice as follows: if p is at vertical edge v,
then

p1 is at edge v + (Ap + 1)e1; p2 is at edge v − e2 + (Bp + 1)e1

p3 is at edge v − e2 − Cpe1; p4 is at edge v − (Dp + 1)e1

p5 is at edge v + e2 − (Ep + 1)e1; p6 is at edge v + e2 + Fpe1.
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e2

e1

Figure 3: The correspondence between (a portion of) perfect matching and interlacing
particle configuration. The mapping is made more evident by an affine deformation of
the hexagonal lattice such that the axes e1, e2 become orthogonal

3 Periodized q-Whittaker dynamics

We saw that the descriptions in terms of interlaced particles on the torus TL,N
or of perfect matchings of ΛL,N are equivalent, if we set (m1,m2) = (k1, k2). We will
interchangeably use the former or the latter representation.

Definition 1. Given a configuration η ∈ ΩL,N ;m1,m2
, draw a directed upward edge from

any particle r to its up-right neighbor r6 if Fr = 0 and a downward edge from r to r3 if
Cr = 0 (in both cases, we draw an edge between particles in neighboring lines, with the
same horizontal position). For each particle p let V +

p (resp. V −p ) be the set that includes
p plus the particles that can be reached from p by following upward (resp. downward)
oriented edges.

Remark 3. From the assumption n1, n2 > 0 it follows that |V ±p | ≤ N − 1 for every p. In
fact, if say |V +

p | ≥ N then the upward edges starting from p form a loop and actually
|V +
p | = N (in each row there is at most one particle p′ with the same horizontal position

xp′ as p). In this case, the path Γ defined just after (2.6) has zero horizontal winding
number, so from (2.7) we have m2 = n2 = 0. Therefore, the up/down arrows do not form
loops and we can identify r+

p , the highest particle in V +
p , and r−p , the lowest particle in V −p .

The dynamics we consider is a continuous-time Markov chain on ΩL,N ;m1,m2 . The
updates consist in shifting by +e1 all particles in one of the families V +

p . Such move
happens with rate

ar(p)
(1− qBp)(1− qDp+1)

(1− qCp+1)
, (3.1)

where q ∈ [0, 1) and a1, . . . , aN > 0 are the same real parameters as in the definition of
the Gibbs measure (2.8). Recall that r(p) is the row associated to particle p. Note that
the rate is zero if Bp = 0. This prevents particles from overlapping after the move, see
Figure 4 (b). Note also that after the move, the configuration is still in ΩL,N ;n1,n2

. Indeed,
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if |V +
p | = 1, shifting p by +e1 corresponds to rotating three dimers around a hexagonal

face (see Figure 4 (a)), so n1, n2 remain constant. In the general case, if Bp > 0 the shift
of V +

p by e1 can be obtained by shifting +e1 the particles of V +
p one by one, starting from

the top one, i.e. r+
p . Also in this case, n1, n2 are unchanged.

p

r+p

V +
p

v1

v2

v3

(a) (b)

p p

p′
v

v′

Figure 4: (a): If |Vp| = 1 then necessarily edge v is occupied and if Bp 6= 0 then v′ is also
occupied. The allowed shift of e1 then corresponds to the rotation of these three dimers.
(b): A particle p with the associated set V +

p , whose highest particle is r+
p . The shift of

V +
p by e1 should be forbidden, otherwise particles r+

p and p′ would overlap. Indeed, by
the particle interlacing condition note that edges v1, v2, v3 are necessarily occupied by
particles. In particular, Bp = 0 because v3 is occupied, so that the rate (3.1) is zero.

Remark 4. For q = 0 and ak ≡ 1, the dynamics was studied in [5, 6, 19] (in this
case, qBp should be interpreted as 1 when Bp = 0). As we already remarked, in this
case π = πL,N ;m1,m2 is the uniform measure over ΩL,N ;m1,m2 . In [19], “particles” were
associated to north-west oriented dimers, rather than to vertical ones as in the present
work. With the convention of [19], updates consist in a single particle jumping a distance
n ≥ 1 in the −e2 direction, instead of n ≥ 1 particles jumping a distance 1 in the +e1

direction.

A preliminary observation:

Lemma 1. The Markov chain is ergodic on ΩL,N ;n1,n2
. More precisely, one can go from

any η ∈ ΩL,N ;n1,n2
to any η′ ∈ ΩL,N ;n1,n2

via a chain of elementary moves where a single
particle jumps by +e1.

Proof of Lemma 1. First let us define the height function hη,η′ of η respective to η′ [11]:
this is defined on hexagonal faces f and its gradients are given by

hη,η′(f
′)− hη,η′(f) = Hη(Cf→f ′)−Hη′(Cf→f ′) (3.2)

=
∑

v∈Cf→f′

εv(1v∈η − 1v∈η′)

where Hη(Cf→f ′) was defined in (2.10).
The r.h.s. of (3.2) is independent of Cf→f ′ : this amounts to the statement that

hη,η′(f
′)−hη,η′(f) = 0 if f ′ = f , which follows from the second equality in (2.13) because

both η, η′ are in ΩL,N ;n1,n2 with the same values of n1 = Nk1, n2 = Lk2. The height
function is therefore well-defined modulo an additive constant: let us fix this constant by
establishing that hη,η′ ≥ 0 and that it vanishes at some face that we call f̄ . Given any
f such that hη,η′(f) > 0, construct a path f = f0, f1, f2, . . . with the rule that the edge
traversed from fi to fi+1 is not occupied in η and has the white vertex on the left. We
see then that hη,η′ is non-decreasing along this path. We have:

Lemma 2. The path f = f0, f1, f2, . . . cannot contain a closed loop.
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As a consequence, it must be the case that after a finite number k of steps the path
cannot be continued. In this case, this implies that at face fk it is possible to rotate the
three dimers (all three edges with white vertex on the left are occupied, as in Figure
4 (a)): the vertical one moves by e1 and the height at fk decreases by 1. Repeat the
procedure until hη,η′ is zero everywhere.

Proof of Lemma 2. Assume by contradiction that the path contains a loop Cg→g. We
know that for every X ∈ ΩL,N ;n1,n2

we have

HX(Cg→g) = Hη(Cg→g). (3.3)

Since all edges traversed by Cg→g have the white site on the left, HX(Cg→g) equals
minus the number of traversed dimers. For η, we know that no dimer is traversed, so
we conclude that none of the dimers traversed by Cg→g is occupied in any configuration
X ∈ ΩL,N ;n1,n2

. This leads to a contradiction with our assumption n1, n2, NL−n1−n2 > 0.
Suppose for instance that a vertical edge is contained in no X ∈ ΩL,N ;n1,n2

: by translation
invariance, this would imply n1 = 0. Similarly, the assumption n2 > 0 and LN−n1+n2 > 0

exclude the case where some given non-horizontal edge is contained in none of the
configurations X ∈ ΩL,N ;n1,n2

.

4 Invariance of Gibbs measures

Our main result is:

Theorem 1. The probability law π := πL,N ;m1,m2
is stationary in time.

Remark 5. In [19], stationarity of π for q = 0 and all ak ≡ 1 was proven, and actually
it was shown that the infinite volume Gibbs measures πρ1,ρ2 , obtained in the limit
L→∞, N →∞, m1/L→ ρ1,m2/N → ρ2, are stationary for the dynamics on the infinite
hexagonal lattice. The proof of invariance of π on ΛL,N in the case q > 0 is more involved
than for q = 0.

Proof of Theorem 1. Call L the Markov generator, then we have to check [πL](η) = 0 for
every configuration η ∈ ΩL,N ;n1,n2 . This can be rewritten as∑

σ 6=η
π(σ)L(σ, η) + π(η)L(η, η) = 0. (4.1)

Since the generator has sum zero on rows, this is equivalent to

π(η)

∑
σ 6=η

π(σ)

π(η)
L(σ, η)−

∑
σ 6=η
L(η, σ)

 = 0. (4.2)

Now it is obvious from the definition of the dynamics that∑
σ 6=η
L(η, σ) =

∑
p

ar(p)
(1− qBp)(1− qDp+1)

(1− qCp+1)
=: S1(η). (4.3)

On the other hand, we claim (see proof below) that∑
σ 6=η

π(σ)

π(η)
L(σ, η) =

∑
p

ar(p)+1
(1− qAp+1)(1− qEp)

(1− qFp+1)
=: S2(η), (4.4)

where r(p) + 1 equals 1 if r(p) = N . Finally, we claim that

S1(η) = S2(η) for every η ∈ ΩL,N ;m1,m2
. (4.5)
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Proof of (4.4). An update σ → η means that a family V +
p in σ has been shifted by e1. Call,

as in Definition 1, r+
p the highest particle in V +

p . The reverse move consists in shifting
V −
r+p

by −e1. Call ηp the configuration obtained by η by shifting V −p by −e1. We see then

that the configurations ηp, with p running over all particles, exhaust the configurations σ
contributing to (4.4). Next we claim that

π(ηp)

π(η)
L(ηp, η) = ar(p)+1

(1− qAp+1)(1− qEp)

(1− qFp+1)
. (4.6)

If this is true, then (4.4) is proven. Label p−`+1,≡ r−p , p−`+2, . . . , p0 ≡ p the ` = |V −p | ≤
N − 1 particles that are shifted left in the move η → ηp, starting from the lowest one. We
have from (3.1),

L(ηp, η) = ar(p−`+1)
(1− qBp−`+1

+1)(1− qDp−`+1 )

1− qCp−`+1

. (4.7)

As for the ratio of probabilities, one sees that

π(ηp)

π(η)
=

ar(p0)+1

ar(p−`+1)

(q; q)Fp0
(q; q)Cp−`+1

(q; q)Fp0
+1(q; q)Cp−`+1

−1
(4.8)

×
0∏

j=−`+1

(q; q)Apj
+1(q; q)Dpj

−1

(q; q)Apj
(q; q)Dpj

(q; q)Epj
(q; q)Bpj

(q; q)Epj
−1(q; q)Bpj

+1

=
ar(p0)+1

ar(p−`+1)

(1− qCp−`+1 )

(1− qFp0+1)

0∏
j=−`+1

(1− qApj
+1)(1− qEpj )

(1− qDpj )(1− qBpj
+1)

.

Note that the F ’s and C’s of intermediate particles do not appear because they are
exactly zero, both in η and in ηp. Also, note that Bp0 = Ap1 , . . . , Bp−`+2

= Ap−`+1
and

Ep−1 = Dp0 , . . . , Ep−`+1
= Dp−`+2

. Therefore, (4.8) simplifies into

ar(p0)+1

ar(p−`+1)

(1− qCp−`+1 )(1− qAp0
+1)(1− qEp0 )

(1− qBp−`+1
+1)(1− qDp−`+1 )(1− qFp0

+1)
. (4.9)

Once we multiply (4.7) by (4.9) and we recall that p0 = p, we obtain (4.6) and therefore
(4.4).

Proof of (4.5). It is sufficient to prove that S1 − S2 is independent of η. In this case,
it must be zero because

∑
η[πL](η) = 0 by conservation of the probability. Thanks to

Lemma 1 it is sufficient to show that S1 − S2 is unchanged when a single particle is
moved by e1. The sums in S1, S2 make sense also when horizontal particle positions are
real numbers; given a particle p that can be moved by e1, we let η(s) be the configuration
where p is moved by se1, s ∈ [0, 1] and we prove that ∂s(S1 − S2) = 0. Note that not only
the values of Ap, . . . , Fp depend on s, but also Dp1 , Ep2 , Fp3 , Ap4 , Bp5 , Cp6 do. We find by
direct computation

∂sS1

log q
= ar(p)S10 + ar(p)+1S11, and

∂sS2

log q
= ar(p)S20 + ar(p)+1S21, (4.10)

where

S10 = qBp
1− qDp+1

1− qCp+1
− qDp+1 1− qBp

1− qCp+1
(4.11)

+ qCp+1 (1− qBp)(1− qDp+1)

(1− qCp+1)2
+ qDp1+1 1− qBp1

1− qCp1+1
,
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S11 = −qCp6
+1 (1− qDp6

+1)(1− qBp6 )

(1− qCp6
+1)2

− qBp5
1− qDp5

+1

1− qCp5
+1
, (4.12)

S20 = qFp3
+1 (1− qAp3

+1)(1− qEp3 )

(1− qFp3
+1)2

+ qEp2
1− qAp2

+1

1− qFp2
+1
, (4.13)

S21 = qAp+1 1− qEp

1− qFp+1
− qEp

1− qAp+1

1− qFp+1
(4.14)

− qFp+1 (1− qAp+1)(1− qEp)

(1− qFp+1)2
− qAp4+1 1− qEp4

1− qFp4+1
.

Using Dp1 = Ap, Cp1 = Ap−Bb, Cp6 = Fp, Dp6 = Ep +Fp, Bp6 = Ap−Fp, Bp5 = Ep, Cp5 =

Dp − Ep we get

S10 = qBp
1− qDp+1

1− qCp+1
− qDp+1 1− qBp

1− qCp+1
(4.15)

+ qCp+1 (1− qBp)(1− qDp+1)

(1− qCp+1)2
+ qAp+1 1− qBp1

1− qAp−Bp+1

S11 = −qFp+1 (1− qFp+Ep+1)(1− qAp−Fp)

(1− qFp+1)2
− qEp

1− qDp5
+1

1− qDp−Ep+1
(4.16)

while using Ap4 = Dp, Ep4 = Ep+Dp5−Dp, Fp4 = Dp−Ep, Fp3 = Cp, Ap3 = Bp+Cp, Ep3 =

Dp − Cp, Ap2 = Ap +Bp1 −Bp, Ep2 = Bp, Fp2 = Ap −Bp,

S20 = qCp+1 (1− qBp+Cp+1)(1− qDp−Cp)

(1− qCp+1)2
+ qBp

1− qAp+Bp1−Bp+1

1− qAp−Bp+1
(4.17)

S21 = qAp+1 1− qEp

1− qFp+1
− qEp

1− qAp+1

1− qFp+1
(4.18)

− qFp+1 (1− qAp+1)(1− qEp)

(1− qFp+1)2
− qDp+1 1− qEp+Dp5−Dp

1− qDp−Ep+1

Note that, when taking the difference S10 − S20, the dependence on Bp1 cancels and
likewise for the difference S11 − S21 the dependence on Dp5 cancels. Finally, one
checks that each of these differences, which a priori depends on q, Ap, . . . , Fp, is actually
identically zero and (4.5) is proven. This concludes the proof of Theorem 1.
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