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Loop percolation on discrete half-plane

Titus Lupu®

Abstract

We consider the random walk loop soup on the discrete half-plane Z x IN* and study
the percolation problem, i.e. the existence of an infinite cluster of loops. We show that
the critical value of the intensity is equal to % The absence of percolation at intensity

% was shown in a previous work. We also show that in the supercritical regime, one
can keep only the loops up to some large enough upper bound on the diameter and
still have percolation.
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1 Introduction

We will consider discrete (rooted) loops on Z2, that is to say finite paths to the
nearest neighbours on Z?2 that return to the origin and visit at least two vertices. The
rooted random walk loop measure uy2 gives to each rooted loop of lengths 2n the
mass (2n)~*472". It was introduced in [5]. In [3] are considered loops parametrised by
continuous time rather than discrete time. uz2 has a continuous analogue, the measure
itc on the Brownian loops on C. Let ]P;Z/(-) be the standard Brownian bridge probability
measure from z to z’ of length ¢. u¢ is a measure on continuous time-parametrised loops

on C defined as
dt dz ANdz
pe) = [ [Pl T
cJt>0 mt 24

dz0dz g the standard volume form on C. The measure p¢ was introduced in [6].

2%

Given a > 0 we will denote by Efrz respectively £C the Poisson ensemble of intensity
az2 respectively aug, called random walk respectively Brownian loop soup. In [5] it
was shown that one can approximate LS by a rescaled version of /3%2. If Ais a subset
of Z? we will denote by £ the subset of E? made of loops contained in A. If U is an
open subset of C we will denote by LU the subset of £ made of loops contained in U.
For § > 0 we will denote by £229 respectively £U'Z? the subset of random walk loops
£g‘ respectively Brownian loops /:g made of loops of diameter greater or equal to 6.
Similarly we will use the notation ﬁé’g‘s for the loops of diameter smaller or equal to §.

We will consider clusters of loops. Two loops v and +' in a Poisson ensemble of
discrete or continuous loops belong to the same cluster if there is a chain of loops

where
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Y0571, - - - s Yn in this Poisson ensemble such that vy = v, v, = 7/ and 4; and ~;_; visit a
common point. For all o > 0, loops in /3%2 as well as in LS form a single cluster. Thus
we will consider loops on discrete half-plane H = Z x IN* and on continuous half-plane
H = {z € C|¥(z) > 0}, mainly from the angle of existence of an unbounded cluster.

The percolation problem for Brownian loops was studied in [10]. It was shown that
there is a critical 1nten51ty afl € (0,4+00) such that for a € (0, af!], £E has only bounded
clusters, and for a > o!! the loops in ﬁay form one single cluster. The critical intensity

was identified to be equal to 1. But actually o = % In [10] the outer boundaries of
outermost clusters in a sub-critical Brownian loop soup were identified to be a Conformal
Loop Ensemble C'LE,, with the following relation between « and k.

(3k — 8)(6 — li).

“= 2K

The critical value of x corresponds to C'LE,. Actually the right relation between « and «
is

13k —8)(6 — k)

2 2K ’

So the value of « that corresponds to k = 4 is % and not 1. The missing factor % appears
in the Lawler’s work [7] (Proposition 2.1). The error in [10] comes from an error in
the article [6] by Lawler and Werner. There the authors consider a Brownian loop
soup in the half-plane and a continuous path cutting the half-plane, parametrised by
the half-plane capacity. For such a path the half-plane capacity at time ¢ equals 2¢. It
discovers progressively new Brownian loops and the authors map these loops conformally
to the origin. In the Theorem 1 they identify the processes of these conformally mapped
Brownian loops to be a Poisson point process with intensity proportional to the Brownian
bubble measure. In the identification of intensity there is a factor 2 missing. Actually in
the article [6], the Theorem 1 is inconsistent with the Proposition 11.

The problem of percolation by random walk loops was studied in [4], [2], [9] and [1]
in more general setting than dimension 2. We will focus on the percolation by loops in £H.
The probability of existence of an infinite cluster of loops follows a 0 — 1 law and there
can be at most one infinite cluster ([9]). Moreover for a = % loops in EH do not percolate
([9]). This result was obtained through a coupling with the massless Gausman free field.
By considering just the loops that go back and forth between two neighbouring vertices
we get a lower bound on clusters of loops by clusters of an i.i.d. Bernoulli percolation.
In particular this implies that for « large enough loops in Lg percolate. Hence as the
parameter « increases there is a phase transition and a critical value of! € [%, +00) of
the parameter. Using the results on the clusters of Brownian loops from [10] and the
approximation result from [5] we will show in section 2 the following:

Theorem 1.1. For all « > % there is an infinite cluster of loops in L. In particular
H = 1. Moreover, given a > 3, there isn € IN* large enough, such that L™ percolates

*

too.

(%

That is to say the critical intensity parameter for the two-dimensional Brownian loop
soups and random walk loop soups is the same.

We will consider 1-dependent edge percolations on H, (w(e))c eage- By 1-dependent
percolation we mean that if two disjoint subsets of edges E; and FEs are at graph
distance at least 1 then (w(e))ecr, and (w(e))ecr, are independent. According the results
on locally dependent percolation by Liggett, Schonmann and Stacey in [8], for all 1-
dependent edge percolations on H with p the probability of an edge to be open, there is
an universal p(p) € [0,1) such that the 1-dependent edge percolation contains an i.i.d.
Bernoulli percolation with probability 5(p) of an edge to be open. Moreover the following
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constraint holds:

lim p(p) = 1.
p—1—

2 Critical intensity parameter

Let a,0 > 0. Given U an open subset of I, we will denote by £U:Z° respectively
L£UMH.29 the subset of L respectively £ made of loops contained in U and with diameter
greater or equal to §. We will use the notations £{ and £/™" when there is a condition
on the range but not on the diameter.

Let Q.+ and Q;,¢ be the following rectangles:

Qext == (0,6) x (0,3), Qint :=(1,5) x (1,2).

We consider the subset of Brownian loops £{<=*>%, which is a.s. finite. We introduce the
events O (LY==+29), Cy(LZe=+2%) and C3(LL»+>%) depending on the loops in LIe=t27,
The event C; (L%<+:=%) will be satisfied if there is a cluster K; of loops in £&:"+:=% such
that in £"*(1?:2% there is a loop that intersects K; and {1} x (1,2) and a loop that
intersects K; and {5} x (1,2). The two loops may be the same. Cy(L%Z=*2%) will be
satisfied if there is a cluster K5 in ES’Z)Q’Z‘S such that in £&1’2)X(0’3)’26 there is a loop that
intersects K3 and (1,2) x {1} and a loop that intersects K3 and (1,2) x {2}. The event
C3(LR=129) is similar to the event Cy(LY=*2%) where the square (1,2)? is replaced by
the square (4,5) x (1,2) and the rectangle (1,2) x (0,3) by the rectangle (4,5) x (0, 3).
Next figure illustrates the event (?_, C;(L£Qe+>7).

Qt_’.&:!

Figure 1: Illustration of the event (),_, C;(£%=*2%). One should imagine that the
smooth loops are actually Brownian. Only a set of loops that is sufficient for the event is
represented. Full line loops stay inside ;,:. Dashed loops cross the boundary of Q;;.

We will call the event ﬂf’zl C;(LQe=2%) special crossing event with exterior rectangle
Qe+ and interior rectangle Q;,;. We will also consider translations, rotations and
rescaling of Q.. and @Q;,; and deal with special crossing events corresponding to the
new rectangles. We are interested in the event ﬂle C;(LQ=+2%) because then the loops
in £Q¢=:2% achieve the three crossings drawn on the figure 2:

Next we show that if o > % and J is small enough then the probability of the event
N>_, Ci(£Q-+29) is close to 1.
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Figure 2: The three crossings we are interested in.

Lemma 2.1. Let Q be a rectangle of form () = (—a,a) x (0,b). Let & > 0. Let (B,);>0 be
the standard Brownian motion on C started from 0 and let LS be a Poisson ensemble
of loops independent from B. Then for all € > 0 there ist € (0,¢) such that B at time ¢
intersects a loop in LY.

Proof. First we consider a loops soup in H, £, independent of B. Let
T := inf{t > 0| B, is in the range of a loop in £!}.

T is a.s. finite. Indeed a loop in £ delimits a domain with non-empty interior. Since the
Brownian motion on C is recurrent, B will visit this domain and thus intersect the loop.
Let A > 0. The Poisson ensemble of loops LI is invariant in law under the Brownian
scaling

(v(t))o<i<t, — b (Y(A))o<t<r-1e, -

So does the Brownian motion B. Thus AT has the same law as 7. It follows that 7' =0
a.s.

The set of loops £\ £@ is at positive distance from 0 thus B cannot intersect it
immediately. It follows that B intersects immediately LS. O

g—a,a)2

Lemma 2.2. Let a,a > 0. There is a.s. a loop in L that intersects the real line R.

Proof. Let £{” be the subset of £ *®° made of loops v of duration ¢, comprised

between 27"~ and 27 ™". The family (,C((f))nzo is independent. By Brownian scaling, the

_ o on/2 n/2\2
probability that a loop in £ intersects R is the same as a loop in £§ %% 2" of

duration comprised between % and 1 intersects R. This is at least as big as the similar

probability for L((XO). Since the latter probability is non-zero, the intersection events
occurs a.s. for infinitely many of £{". O

(—a,a)?

Lemma 2.3. Leta, > 0. There is a.s. a loop in L, that intersects the real line R
and a loop in E((l—a,a)x(o,a)'

2
Proof. Consider the subset of LE]“’Q) made of loops intersecting R. It is non empty
according the lemma 2.2. Moreover it is independent of £i20x(0.9) - The Jaw of a
ECP 21 (2016), paper 30. http://www.imstat.org/ecp/
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Brownian loop that intersects R is locally, near the point of intersection, absolutely
continuous with respect to the law of a Brownian motion started from there. Applying
lemma 2.1, we get that it intersects a.s. a loop in £ x(0.a), O

Lemma 2.4. Let o > 5. Then

lim ]P( (3] Ci(,cgm»zé)) =1

+
6—0 =1

Proof. Tt is enough to show that the probability of each of the C;(L%<*+=?%) converges
to 1 as J tends to 0. Since the three cases are very similar, we will do the proof only
for Oy (L£==+2%). According to lemma 2.3 there is a loop 7 in £09*02) that intersects
{1} x (1,2) and a loop 4/ in £%»*. Similarly there is a loop 7 in L9912 that intersects
{5} x (1,2) and a loop 7' in L. Since o > 3, 7/ and 7’ belong to the same cluster
in £ ([10]). Thus there is a chain of loops (Y, ...,7,) in £Yit, with 79 = 4/ and
Yn = 7', joining 7’ and 4'. If § is the minimum of diameters of (vy,...,7,) and v and
7 then O} (£<=+2%) is satisfied. Let § be maximal value of § such that C;(£L%=+2%) is

satisfied. ¢ is a well defined random variable with values in (0, +0c0). Then

lim P(Cy(L£Z===%)) = lim P(6 <4) = 1.

6—0t 6—0t

O

Next we recall the result on approximation of Brownian loops by random walk loops
from [5]. Let N € IN*. We consider the discrete loops v on Z x IN*. We define on these
loops a map P to continuous loops on H. Given v a discrete loop and (zo, ..., 2n—1, 20)
the sequence of the vertices it visits, the continuous loop @ satisfies:

* the duration of v is #;

o forje{0,...,n—1}, Ony(zh) = 2
* OnY(5p=) = PN (0) = 3

* between the times 2# j€40,...,n}, ®yv interpolates linearly.

The number of jumps n of a discrete loop v will be denoted s,. The life-time of a
continuous loop 4 will be denoted by ¢5. Let 6 € (%, 2) and r > 1. There is a coupling
between L and £ such that except on an event of probability at most cste - (o +
1)r2N2~39 there is a one to one correspondence between the two sets

« {y€ E(';'|S,y > 2N, |v(0)] < Nr},
« {7 e Llts > N2 13(0)] < r},

such that given a discrete loop v and the continuous loop 4 corresponding to it,

Sy 5 nr—2 Sy 5 -1
N2 —t:y’ < gN , (]zligllq)]v’y(um) f’y(ut:y)‘ < cste- N~ " log(N).
Next we state without proof a lemma that follows immediately from this approximation.

Lemma 2.5. Let o > 0 and § > 0. As N tends to +oo the random set of interpolating
continuous loops

{Dnrly € LYQeaeNH.2NOY

converges in law to the set of Brownian loops L3¢=t:29,
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We need to show that the above convergence for the uniform norm also implies a
convergence of the intersection relations, that is to say that

{(y, )|,y € LNQeatNHZNS o intersects '}

converges in law to
{(3,3)17,7 € LZ=+=% 7 intersects 7'}.

Let j € IN. Let v be a continuous path on C (not necessarily a loop) of lifetime ¢,. For
r>0let

T () := inf{s > 0[|y(s)| > r} € (0, 4o0].

If T, (v) < 400 let
Wy - 7<TT(’7>)
=
Let I; be the real interval
7 .9
L= (7527, 55277):
12 12
For 0 < ry < 19 let A(ry,72) be the annulus

A(r1,r2) = {z € Clr; < |z| < ra}.
For r > 0 let HD(r) be the half-disc
HD(r) := B(0,r) N {z € C|R(=) > 0}.
We will say that the path v satisfies the condition C; if

* Tuy-i(7) < +oo,

+ after time T, (y) < +oo, 7 hits ¢'“>~=1+2)]; at a time ¢; before hitting the
circle S(0,277),

« on the time interval (T5-;-1(7), ;) v stays in the half-disc e*“2-i-1 HD(277),

« from time ¢; the path ~ stays in the annulus A(:5277, 3277) until surrounding the

disc B(0, 15277) once clockwise and hitting e*(“2=i-1+7) ;.

Figure 3 illustrates a path satisfying the condition C;. If this condition is satisfied
than v disconnects the disc B(0, 1—722‘j ) from infinity. Moreover if one perturbs v by
any continuous function f : [0,¢,] — C such that ||f[. < £27/ then the path (y(s) +
f(s))o<s<t, disconnects the disc B(0,277~!) from infinity. The disconnection is made
inside the annulus A(27771,277).

Lemma 2.6. Let (B;)o<i<r be a standard Brownian path on C starting from 0. Then
almost surely it satisfies the condition C; for infinitely many values of j € IN.

Proof. Let B be the Brownian path B continued for ¢ € (0,4+00). The events "B satisfies

the condition C;" are i.i.d. Indeed such an event is rotation invariant and depends only on

B on the time interval (T5-;-1(B), T, (B)). Moreover the probability of such an event is

non-zero. Thus B satisfies the condition C; for infinitely many values of j € IN. Since
lim Ty-;(B) =0,

j—+oo

so does B. O
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Figure 3: Representation of a path vy satisfying the condition C;.

Lemma 2.7. Let 21,22 € C and t1,t5 > 0. Let (bgl))ogsgtl and (b§2>)0§s§t2 be two
independent standard Brownian bridges from z; to z; and zo to z5 respectively. On the
event that bV intersects b? there is a.s. £ > 0 such that for all continuous functions
f1:]0,t1] = € and f3 : [0,t2] — C of infinity norm || f;||cc < €, (bg1)+f1(5))0§s§tl intersects

(b2 + fo())o<s<ts-

Proof. Let TQ(I) be the first time b(!) hits the range of b(®. If the two path do not

intersect each other Tg(l) = +o00. On the event Tz(l) < +oo the conditional law of

1) (1) : (1)
(bT§1)+s - bTél))Ogsgtlsz(l)fe (¢ > 0 a small constant) given the value T,

continuous with respect the law of a Brownian path starting from 0. From lemma 2.6

(1) (1) . " . .
follows that the path (bT2“>+s - bT2§1>)0§s§t1—T§” satisfies the condition C; for infinitely

many values of j € IN. Let

is absolutely

7:= max {j € ]N|(b(1) Y

- isfies the condition C;
T 44 T2<1>)ogsgt17T2“> satisfies the condition C;

13
and 3s € [0, to], [b® — b >f2ﬂ}.
0,620, 16 62, > 15

jis a r.v. defined on the event where b(") and b intersect. If f; and f, are such that
|fil < 5277 then the path b(!) + f; disconnects the disc B(bffl()l),Q—j—l) from infinity
2

inside the annulus b;}()l) + A(277-1,277) and the path b 4 f, crosses from the circle
2

S(b(Tl()l) ,27771) to the circle S(b(Tl<)1) ,277), so the two must intersect. O
2 2

Observe that two discrete loops v and 4’ intersect each other if and only if the
continuous loops ® v and ®x~' do. From lemmas 2.5 and 2.7 follows:
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Corollary 2.8. Let o« > 0 and § > 0. As N tends to +oo the random set of interpolating
continuous loops
{Bnrly € LNQernH2NoY

jointly with the intersection relations
{(v, )|y, € LNQeat"H2NS o intersects v'}

converges in law to the set of Brownian loops L3¢=*2% jointly with the intersection
relations
{(3,3)17,7 € LL=+= 4 intersects 7'}.

We consider the scaled up rectangle NQ.,: and NQ;,:. The next lemma deals with
the probability that the discrete loops £ Qe¢MH realise the special crossing event with
exterior rectangle NQ).,; and interior rectangle N (@Q;,;. See figures 1 and 2 and consider
that Q.. is replaced by NQeut, Qint by NQjns and LG e+:20 by LN @eatH,

Lemma 2.9. Let « > 3. As N tends to +oo, the probability that the loops LY @e=t"H
realise a special crossing event with exterior rectangle NQ.,: and interior rectangle

NQ;,: converges to 1.

Proof. Let § > 0. The probability that the loops LY==t realise the special crossing
event with exterior rectangle NQ.,; and interior rectangle NQ;,; is at least as large
as the probability that the loops £Y@e=:"H:2N3 realise the special crossing event with
the same interior and exterior rectangle. From the corollary 2.8 follows that the latter
probability converges as N — 400 to

3
P <ﬂ c,»(cgemvzé)> :
i=1

We conclude by applying the lemma 2.4. O

To conclude that for a > % ﬁg has an infinite cluster we will use a block percolation
construction that will combine special crossing events.

Proof of the Theorem 1.1. From [9] we know already that aﬁ < % We need to show
that for o > 3, £ has an infinite cluster.

Let o > % and N > 1. We consider a dependent edge percolation (w” (e)). edge of H
on the discrete half plane H. If e is an edge of form {(j,k),(j + 1,k)}, £k > 1, then
wlV(e) = 1 (open edge) if LNQine A 3NIFBNROH 3 chieves a special crossing event with
exterior rectangle NQ.,: + 3Nj 4+ i3Nk and interior rectangle NQ;,: + 3Nj + i3Nk. If
e is an edge of form {(j, k), (j,k + 1)}, k > 1, then w¥(e) = 1 if LGN Qi SNTHENE)OH
achieves a special crossing event with exterior rectangle iNQ..; + 3Nj + 13Nk and
interior rectangle iNQ;,: + 3N j + i3Nk, where the multiplication by ¢ means rotation by
+3. w! is a 1-dependent edge percolation: if two disjoint subsets of edges £, and F, are
such that no edge is adjacent to both E; and FE,, then (w" (€))cer, and (w" (e))cer, are
independent. This is due to the fact that the subsets of loops involved in the definition
of special crossing events for edges in F; and and edges in Fs are disjoint. To an open
path in w? corresponds a cluster of Lﬁg whose loops form crossings of related interior
rectangles. Thus if w” has an unbounded cluster, then so does L. See next picture.

The probability P(w” (e) = 1) is uniform and we will denote it py;. According to the
lemma 2.9

lim =1.
N—1>+oo PN
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Figure 4: Crossings achieved by subsets of loops in KCHW corresponding to five open

edges in w?.

Thus for N large enough p(py) > % % is the critical probability for the i.i.d. Bernoulli
edge percolation on H. So for N large enough w? contains a supercritical i.i.d. Bernoulli
edge percolation and percolates itself. Thus EE percolates too. Actually, since our
construction only uses loops of diameter less or equal to 6N, we have also percolation
for L6V O
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