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Abstract

In this paper we consider fractional higher-order stochastic differential equations of
the form

a \ B
(1+cofpe ) X0 =0, u>0,6>0 ac@HUN

where £(t) is a Gaussian white noise. We obtain explicitly the covariance functions
and the spectral densities of the stochastic processes satisfying the above equations.
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1 Introduction

In this paper we consider fractional stochastic ordinary differential equations of
different form where the stochastic component is represented by a Gaussian white noise.
Some of the fractional equations considered here are related to the higher-order heat
equations and thus are connected with pseudo-processes.

The first part of the paper considers the following stochastic differential equation

d B
<M+dta) X(t) = &(t), B>0,0<a<1l, u>0t>0 (1.1)

where ;T(; represents the Weyl fractional derivative. We obtain a representation of the
solution to (1.1) in the form
1 oo o0
X(t) = —/ E(t — z)/ sPlem M hy (2, 5) dsdz (1.2)
I'(8) Jo 0

where h,(z,s), z,s > 0, is the density function of a positively-skewed stable process
H,(s), s > 0 of order « € (0,1), that is with Laplace transform

/ e ha(z,8)dz=e"%", £>0.
0
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Spectral densities related to some fractional stochastic differential equations

For (1.2), we obtain the spectral density

0.2

flr) = 5 TeR (1.3)
(,uQ + 2|7|*pcos T + |7'\20‘)

and the related covariance function.
The second type of stochastic differential equations we consider has the form

d2n B
<u+ (1)”dt2n> X(t)=E&®t), B>0,u>0,n>1teR (1.4)

where £(t) is a Gaussian white noise. The representation of the solution to (1.4) is

1 —+o0 [e'e)
X(t) = NG / Elt+ w)/o w’ e My, (x, w)dwda (1.5)
— 00
where us, (z,w), x € R, w > 0 is the fundamental solution to 2n-th order heat equation
ou 0%y
8—w(a?,w) = (—1)"*! 5an (x,w) (1.6)

The covariance function of the process (1.5) can be written as

0_2 o] 0.2
EX()X(t+h) = 7/ dw w?P e ™My (h,w) = —=—= Buay, (h, W (1.7)
(X +h) = 55 | () = 5 B (b, W)
where Wy is a gamma r.v. with parameters p and 25. The spectral density f(7)
associated with (1.7) has the fine form

0.2

f(r) = iy 7€ R. (1.8)
For n =1, (1.6) is the classical heat equation, us(x,w) = ‘f/;“% and, from (1.7) we obtain

an explicit form of the covariance function in terms of the modified Bessel functions.
In connection with the equations of the form (1.6) the so-called pseudo-processes, first
introduced at the beginning of the Sixties ([7]), have been constructed. The solutions to
(1.6) are sign-varying and their structure has been explored by means of the steepest
descent method ([11, 1]) and their representation has been recently given in [14].

For the fractional odd-order stochastic differential equation

d2n+1 B
(“Jr”dt%ﬂ) X(t)=£E®1), n=1,2,..., k==l teR (1.9)

the solution has the structure

—+00 [e%s)
X(t) = ﬁ/ E(t+ x)/o dw wﬁ_le_”“’ugnﬂ(x,w)dwdx (1.10)

where ug,4+1(z,w), ¢ € R, w > 0 is the fundamental solution to

ou 92ty
(x, w) - “3x2n+1

90 (z,w), k==%l. (1.11)

The solutions us, 11 and uy, are substantially different in their behaviour and structure
as shown in [14] and [8].
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A special attention has been devoted to the case n = 1 (and x = —1) for which (1.10)
takes the interesting form

_ 1 e > B—1_—pw 1
Xg(t)—m/_oo E(t—i—w)/o wP et Voo

where Ai(-) is the first-type Airy function. The process X3 can also be represented as

Ai (w> dwdz (1.12)

v 3w

1
Xs(t) = ﬁEg(t-i-Yg(W,@)) (1.13)
where the mean E is defined in formula (1.19) below, Y3 is the pseudo-process related to

equation

ou u

- 1.14

ot ox3 ( )
and W is a Gamma-distributed r.v. independent from Y3 and possessing parameters j3, p.
Therefore, the covariance function of X3 has the following form

02 1 h
EX3(t)X3(t+h)= —E Ai 1.15
3(t) X3(t + h) 1128 [Q/m Z(%)l o

where Wy is the sum of two independent r.v.’s Wp.
For the solution to the general odd-order stochastic equation we obtain the covariance
function

2
EX(H)X(t+ h) = % E [usn i1 (h, Wag)] (1.16)

Of course, the Fourier transform of (1.16) becomes, for x = +1,

0.2

_ 2
f(r) = u2h /13, €™ B [ugn 1 (h, Wag)] dh =

g

ESTe=Td (1.17)

Stochastic fractional differential equations similar to those treated here have been
analysed in [2], [4] and [6]. In our paper we consider equations where different operators
are involved. Such operators are defined as fractional powers (5 > 0) of operators of
order «, for a € (0,1) UNN. The equations we deal with and involving the white noise £(t)
can be interpreted as integral equations. We define as usual (see [18, pag. 110])

X(f) = / E(s)f(s)ds

so that, for each f, g € L?(dx), we have that

EX(f)X(g) :Jz/f(:c)g(:v)dx. (1.18)

Thus, by considering integral equations, we do not care about assumptions such as
sample continuity and differentiability. Moreover, for the sake of clarity we introduce
the following conditional expectation

BIE(t+ Y (W))] = /S(t—i—y)]P(Y(W) € dy) (1.19)

where the expectation is performed w.r.t. the probability measure of Y (IW). Throughout
the paper we consider Y given by:

* the stable subordinator of order « € (0, 1], denoted by H,;
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 the pseudo-processes of order 2n and 2n + 1 with n € IN, denoted by Y5,, and Ys,,+1.

We also denote by W the Gamma r.v. Wz with parameters x and 8 such that W; + W; 4
ng.

Pseudo-processes have been developed in a series of papers dating back to the Sixties
([3, 9], [7] for the even-order case, [12] for pseudo-processes related to equations with
two space derivatives) and recently by Orsingher [13] for the third-order case, Lachal
[8] for the general case and also Smorodina and Faddeev [17].

2 Fractional powers of fractional operators
In this section we consider the following generalization of the Gay and Heyde equation

(see [4])

dte

where £(¢), t € R, is a Gaussian white noise for which (1.18) holds true. Then, we have
that EE(t)E(s) = 026(t — s) where § is the Dirac function. The fractional derivative
appearing in (2.1) must be meant, for 0 < a < 1, as

d- L d (" f(s) ft) w)
dtiaf(t) I(1—a)dt / (t—s) ds = 1 —a) / wo“"l dw.

For a = 1 we have that

de B
<u+) X(t) = &), B8>0,0<a<l, u>0t>0 (2.1)

do&

&r0 = S5

as usual. Consult, for example, [16, pag. 111] for information on fractional derivatives
of this form, called also Marchaud derivatives. For A > 0, we introduce the Laplace
transform

— | (\) = — f(t)dt = \* A 2.2
ﬁ[dta}m | e gm0 = 3Ll 2.2)
which can be immediately obtained by considering that
d*f o > —wA dw
— | (A) = =— A)—e ¥ A)) —— 2.3
c[dta]u e L € el S 23)
where we used the fact that
o e dw
« = - 1 - —wx 1 > *
. F(l—Oé)/o ( ¢ )wo“rl’ @€ (0,1), 220

Lemma 2.1. The following relationship holds in a generalized m.s. sense
I E) = E(t+ 2). (2.4)
Proof. In view of the Taylor expansion

_ - (k) (fc—%)k
fla) =Y f 0 (wo) (2.5)

k=0

with zg =t and x = t 4+ z we can write

> d*
e f() = %7 = J(t+2) 2.6)
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which holds for a bounded and continuous function f : [0,00) — [0,00). Since we can
find an orthonormal set, say {¢,};en, for which (2.6) holds true ¥ j and a sequence of
r.v.’s {a;};en such that

=0, (2.7)
2

N

i B =3 s
j=1

we can write (2.4). Since £ is a generalized white noise with second moment as in (1.18)

we get the claim. O

Theorem 2.2. Let us consider the equation (2.1), then a generalized m.s. solution is

X(t) :M%E[S(t CHL(Ws), B>0,0<a<1, >0 2.8)

1

=— 0odz Oodssﬁflefs“haz,s Elt—=z
F(ﬁ)/o 0 (=5 €( )

Proof. The solution to the equation (2.1) can be obtained as follows

do -B
<dta+u> g(t)

1 /OO Bo1 —spu—sd%
= — sPTre TS am E(t) ds
) Jo w

1 /°° B-1_—spu { el
_— sPT e M { e S um E(t)} ds. (2.9)
I'(8) Jo

The first step in (2.9) can be justified on the basis of the arguments in Renardy and
Rogers [15, pag. 417)] where the representation of fractional power operators is dealt
with.

Now, for the stable subordinator H,(t), ¢t > 0, we have that

X(t)

e

e Sa E(t) = Be Hal)dg(t)

/ dz he(z,8) e_Z%E(t)
0

= /Oodzha(z,s)f)(t—z) (2.10)
0

where h,(z, s) is the probability law of H,(s), s > 0. In the last step of (2.10) we used
the translation property (2.4). Therefore,

1 oo o0
X(t) = —/ E(t — z)/ s e b (2, 5)dsdz (2.11)
L'(B) Jo 0
is the representation of the solution to the fractional equation (2.1). O

Remark 2.3. With (2.7) and (1.18) in mind, notice that a representation of (2.8) is given
by
1
X(t) = M—ﬁZajE[qu(t—Ha(Wg))], t>0. (2.12)
JjEN
Remark 2.4. For the case a 1 1, h,(z,s) — d(z — s) where 0 is the Dirac delta function
and from (2.4) we infer that

— L > —us -1 _
X)) = F(B)/o eTHSPTHE([t —s)ds (2.13)
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is a generalized solution to

B

d
<u+ dt> X(t) = E). (2.14)
Consult on this point [6]. A direct proof is also possible because from (2.9) we have that

X(t) = L /00 sP=1 e_”se_sﬁé'(t) ds
') Jo
1 /Oo B—=1 ,—p
= —— s e ME(t — s)ds. (2.15)
T s (=)

In the last step we applied (2.4).

Remark 2.5. For « = 1 and § = 1, we observe that (2.1) coincides with the Langevin
equation and (2.15) can be reduced to the following form of the Ornstein-Uhlenbeck
process

with covariance function

BLX(+ WX (0] = T .

Our next step is the evaluation of the Fourier transform of the covariance function of
the solution to the differential equation (2.1). Let

f(r) = /+DQ e Covx (h)dh

—o0
where

Covx(h) = E[X(t+ h)X(t)]
with EX (¢) = 0.
Theorem 2.6. The spectral density of (2.8) is

0.2

T) = 5, TER, 0<a<l1, B>0. (2.16)
(u2 + 2|7|*pcos X + |T\2a)

Proof. The Fourier transform of the covariance function of (2.8) is given by
/ eT"EX (1) X (t + h) dh
0

1
= W/ 7Thdh/ dzl/ dsl/ d52/ clzgs1 82_

x e~ 1EsDIp (21 081) b (22, 82) BE(t — 20)E(t + h — 27)
where

EE(t — 21)E(t +h — 22) = 25((21 — 22) — h). (2.17)

/ eTMEX (1) X (t + h) Jdh =55 = / dzl/ dsl/ d32/ dzg s s
0

—(sitsa)np (21, 81) ha (22, 82) eiT(z1—22)

Thus,
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By considering the characteristic function of a positively-skewed stable process with law
ha, we have that

o0 i T sgn T
/ €T hy (21, 81) dzg = e (i) s — pmsalr[Ten R T (2.18)
0
and -
/ e*iTZQha (22,32) dZ2 — e*(iT)aSQ — e*SQlT‘aelisg"T. (219)
0
Thus, we obtain that
/ eT"EX (1) X (t + h) dh
0
O'2 > > B—1 B—1 PR - o
- o _ima . B o ire . B
(NJ+ ‘7_| e~ "2 égn'r) (H’+ |7_| e 2 b_L]TLT)
o2
= B. D
(,u2 +2|7]*pcos Tt + |T|2°‘)
Remark 2.7. In the special case a = 1 the result above simplifies and yields
2
ag
= 2.20
f(T) (,U/2 + 7_2),(3 ( )

We note that for g = 1, (2.20) becomes the spectral density of the Ornstein-Uhlenbeck
process. Processes with the spectral density f are dealt with, for example, in [2] where
also space-time random fields governed by stochastic equations are considered. The
covariance function is given by

1

Covx (h) :%/]Re*”hf(T)dT

2 [e’e)
a —iTh 1 / B—1 —zuz—zrz >
=— [ e — P e dz | dr
2m Jr (F(ﬂ) 0

2 [ee} 1 .
—— / LBle—zn® —/ e~ == 0 ) dz
F ) 0 27T R

2

o 02 > B—1 _2“2 e Zz
= V4 4

L'(B) Jo Az

where K, is the modified Bessel function with integral representation given by

v

/00 vt exp{fﬂxp — ax*p}dx = 2 <a>2p K
0 5

SN

(2\/@), p,a,B,v >0 (2.21)

p
(see for example [5], formula 3.478). We observe that K, = K_, and K% (r) = /57"
Moreover, )
2V
K, (z)~ ﬂ for =z —0" (2.22)
xl/
ECP 21 (2016), paper 18. http://www.imstat.org/ecp/
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([10, pag. 136]) and

K, (1)~ /| —e® for z— oco. (2.23)
2x
Thus, we get that
Covx(h)~p'=2%, for h— 0t (2.24)
and
M\’ 1
Covx(h) = () Ee‘“h, for h — oo. (2.25)
I

We now study the covariance of (1.2). Recall that, a symmetric stable process S of
order o with density g has the following characteristic function

G, 1) = Be$S) = ¢=*lEI"t o € (0,2).

Consider two independent stable processes Si(w), So(w), w > 0, with ¢ = 1 and
03 =2pcos 5. Let gy (2, w), 2 € R, w > 0 and g2(z, w), z € R, w > 0 be the corresponding
density laws. Then, the following result holds true.

Theorem 2.8. The covariance function of (1.2) is

2 00 2 +oo
Covx(h) = a—/ wl~le—wH / g1(h — z,w)g2(z, w)dz dw (2.26)
F(ﬁ) 0 —00
or
o2
C’ovx(h) = ﬁEgSH-S'z (h,Wg) (227)

and Wy is a gamma r.v. with parameters ;?, 3.

Proof. Notice that

_ 0 [T Bl w2l pos TP g
f(T)*Fi w- e w
0

where
T a . ~ |2 i ~
€—2ucos || w EeerQ(w) — gz(T,w) and e [T]*w _ Eez'rSl(w) _ 91(7_7 w)
Thus,

0.2

flr) = WE[QAl(ﬂ W) g2(7, Wp)]

from which, we immediately get that

02 +o0
CovX(h) :,UTﬁE [/ g1(h — 2z, Wg)g2(z, Wﬁ)dz}
0.2 o 51 u2 +o0o
=—— w’ e h—z,w)ga(z, w)dz dw O
| | at—zwmiew

3 Fractional powers of higher-order operators

We focus our attention on the following equation
d2 B
that is, on the equation (1.4) for n = 1.
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Theorem 3.1. A generalized m.s. solution to the equation (3.1) is

1

X (t) uﬁE[é’(tJrYz(Wﬁ))], B>0,u>0
1

i /.

Moreover, the spectral density of (3.2) reads

E(t+ x)/ whle H
0

o2

f(ﬂzm

and the corresponding covariance function has the form

(

2

—_h%
W3 2

e _ oz
2 7TW25 B ﬁr (2/6)

0.2

—5 I i
2P

2/

Covx(h) =

Proof. We can formally write

2
d
ew dt2 —

/ c
so that from (3.1) we have that

o0 o0
/ e MBS dw /
0 —

o 2v/Tw ¢
2

o0 o0
/ e‘““’wﬁ_ldw/
O —

o 2¢/Tw

_ =z
e 4w

1

I'(5)
1

I'(8)
By observing that, from (1.18),

X(#)

—z_
e 4w

_22
4w
w €

2p-1
) KV,

a
Tt

E(t+x)dx.

(3.2)

dwdzx.

4w

(3.3)

(3.4)

(3.5)

E(t)dx

(3.6)

EE(t + x1)E(t + h+x2) = 025(h + x5 — 21)

we can write

EX ()X (t+h) =r i

2

o o0 o0
(ﬁ)/o e*’“’“wffldwl/o e*"wwg*lde

o n?
e 4(Wi+Wy)

2 ’/T(Wl + WQ)
L )
T AW,

(=)

~ VAL (28) \ 2k

ECP 21 (2016), paper 18.
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e 1wy ¢
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We notice that

o2

Covx (h) = 75 P(B(Wa) € dh) /dh

where B(W2g) is a Brownian motion with random time Wsg. Thus, we obtain that

[e'e] 2 oo 2
iTh o —wr? 26—1_—pw a
T) = e""Covx(h)dh = e w e M = ———r——. O
= ercoxwin= s [ (4 + 725
An alternative representation of the process (3.2) can be also given in terms of the
Bessel function K. In particular, we observe that

+oo x B-%
X(t) = \/7?;(@/00 E(t+ ) (2{/&) Ky 1 (|2 yE) de

The covariance function of (3.2) can be alternatively written as

«f (1 -2
0_2 o] o] o] e*ﬁ 67 Twy
EX ()X (t+h) =—— “HwP g “Hwrph d
($)X(t+n) 2 (B) /0 € “1 wl/o € W2 a2 oo 2y/Twy 24/Tws o
o2 +oo |x1||a:1—h| B—%
o [ () e e K (ke - A
where, in the last step we applied formula (2.21).
We now pass to the general even-order fractional equation (1.4).
Theorem 3.2. A generalized m.s. solution to the equation (1.4) is
1
X(t) ZWEW + Y2, (Wg))], B>0, p>0 (3.7)
1 oo 51 +oo
= w*e*’“"/ Ugn (z, w)E(t + x) do dw.
7/ e w)E(t )
Moreover, the spectral density of (3.7) reads
2
g
R — 3.8
and the related covariance function becomes
0.2
Covx(h) = WIE [ugn (h, Wag)] . (3.9)
Proof. The solution ug,(z,t) to
o el o2n
—ug, = (—1 n 3.10
grtzn = CUT (3.10)
has Fourier transform ) )
U(B,1) = e B = =B (3.11)
We write
w22 il
e Yorrn = / e ot ugy, (z,w) de. (3.12)
Since N
U(—if,t) = e~ (ZD"8" (3.13)
ECP 21 (2016), paper 18. http://www.imstat.org/ecp/
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we also write

n 921 >
(1" 2 :/ "B gy (2, w) d. (3.14)

—0o0

In conclusion, we have that

aZn B
X(t) = (“* <_1)"at2n> E(t) (3.15)
o0 +(X) )
- ﬁ‘/o dwefﬂwwﬁfl (/_OO dxuzn(m,w) 69357755(15))
o0 +OO
_ r(lﬁ)/o dwe*uwwﬁfllw d usn (z,w) E(t+ z) (3.16)

and this confirms (3.7).
From (3.7), in view of (2.17), we obtain

2 00 0
EX(#)X(t+h) :F;i(ﬁ)/o dwy wh e /0 dwy wh e rw2

+oo +oo
/ dzq U2y (2131,101)/ dxo ugy (2, w2) 6(r2 — 21 + h)

—0 —00
0_2 [e’e] 51 (e%e] A1
= dwy wi e_“wl/ dwgws, e P2
F2(5)/0 0 ?
“+o0
/ dxy ugy (21, w1) uzy (1 — h,wo)
—00

o2 e _ e _
=737 / dw wf Le—pwn / dws wg Le—pw: Ugp (B, w1 + wo)
(B) Jo 0

0.2

By following the same arguments as in the previous proof, we get that

o2 o2 oo
EX ()X (t + h) =——=Eua, (h, W: =7/ dw w?P~Le M yo (h, w
(DX (t-+ 1) =75 Bt (0, W) = s | on(l, )
The spectral density of X (¢) is therefore
o? & 2n o?
— d 28—1 _ —pw—7"w — ) 0
) =gy e (s )

Theorem 3.2 extends the results of Theorem 3.1 when even-order heat-type equations
are involved.

We now pass to the study of the equation (1.9) for n =1 and x = F1,

3\ B
(/L—k/ﬁc(litg) X(@t)=£E®%), p>0, >0 teR. (3.17)

Theorem 3.3. A generalized solution to the equation (3.17) is

1
X(t) :M7E[5(t+Y3(WB))], B>0,u>0 (3.18)
L /00 E(t+ ) /°° wh—lemrw ! Ai (m) dwdx
F(ﬁ) —o0 0 \3/ Sw v 3w '
ECP 21 (2016), paper 18. http://www.imstat.org/ecp/
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Moreover, the covariance function

o2 o2 —kh
C h) = —E Ai 3.19
O’UX( ) /1/2'8 [VSWQB <\3/3W25>‘| ( )

where Ai(x) is the Airy function has Fourier transform

o2

1) = Gy (3.20)

Proof. By following the approach adopted above, after some calculation, we can write
that

1 > a3
X~ (t) = 7/ wl e MUY aE E(t) dw (3.21)
r'(B8) Jo
is the solution to
a3\’
—— | X&) =€&(t 3.22
(k- 55) xO=¢0 (3.22)
whereas )
o 3
XT(t) = —/ WP le P T EE £(t) dw (3.23)
L'(8) Jo
is the solution to
a3\’
— | X@t)=E&@1 3.24
(1t 5) XO=¢00) (3.24)
The third-order heat type equation
3
%u = H%u, u(z,0) = 0, (3.25)
has solution, for Kk = —1,
(@, 4) = — Ai(x) ER,t>0 (3.26)
u\r, = Y 9 X ) ) .
/3t /3t
with Fourier transform -
/ eiﬁiu(x,t) de = e~it8° (3.27)

Formula (3.27) leads to the integral

/ % u(x,t) de = eteg, feR

— 00

because of the asymptotic behaviour of the Airy function (see [1] and [11]). The solution
to (1.9) with n = 1 (that is k = —1) is therefore (3.21).
The equation (3.25) has solution, for x = +1, given by

1 —
u(z,t) = 5 A (3;) ., zeR,t>0. (3.28)

Thus, by following the same reasoning as before, we arrive at

/ P u(x,t)de = e heR

— 00

and we obtain that (3.23) solves (3.17) with k = +1 is (3.23).
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In light of (2.17) we get
2

E[X~ ()X (t+h)] 1"20(6)/0 e M dwy wlﬁfl/o e M2 duwgy w§71

i (o) vt () o

2

o oo o
0 0

. 1 N ( h )
/3(wy + wo) 3/3(wy + wo)

_ LQE 1 Ai h
#2/3 3/ 3W25 N 3W25 '

From the Fourier transform (3.27), we get that

— _0—72 iTh 1 : h
f (T)*Mgﬁ/me E[{’/3W2HAI<€/3W2B>] dh

02 —ir3W.
=2 o]

0.2

(/A +17'3)2ﬁ

3
B 0_26—125 arctan T—
GO

Also, we obtain that

o2 —
ELXH(0) X* (14 1) = F [y;wgﬁAi (3/31/};/26>] .

with Fourier transform

2 2 41428 arctan il
fry = —2 =Z° - (3.29)
(n—ir3)* (u? +7)8 -
Theorem 3.4. A generalized m.s. solution to the equation (1.9) is
1
X(t) ZEE[‘S’@ +Y2,11(W3))], >0, u>0
1 o0 51 +oo
=— w’~ e*”w/ Ugn+1(kx, w)E(t + z)dwdx.
7/ (e w)E(e+a)
Moreover, the covariance function
o2
C’on(h) = MTBEu2”+1 (th, Wgﬁ)
has Fourier transform
0_2 02@—1‘255 arctan "274
f(T) = (/.L T Z-KTQn—i-l)Qﬁ = (,UZ + 7.2(2n+1))ﬁ
Proof. The proof follows the same lines as in the previous theorem. O
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Figure 1: The spectral density (1.3) with different values for the parameters («, j3).
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