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Abstract

Let (Sn)n∈N be a Z-valued random walk with increments from the domain of at-
traction of some α-stable law and let (ξ(i))i∈Z be a sequence of iid random vari-
ables. We want to investigate U -statistics indexed by the random walk Sn, that is
Un :=

∑
1≤i<j≤n h(ξ(Si), ξ(Sj)) for some symmetric bivariate function h. We will

prove the weak convergence without assumption of finite variance. Additionally, under
the assumption of finite moments of order greater than two, we will establish a law of
the iterated logarithm for the U -statistic Un.

Keywords: random walk; random scenery; U -statistics; stable limits; law of the iterated loga-
rithm.
AMS MSC 2010: 60F05; 60F17; 60G50; 60K37.
Submitted to ECP on March 9, 2015, final version accepted on March 16, 2016.

1 Introduction

Random walks in random scenery were introduced by Kesten and Spitzer [14]. They
studied the partial sum process

∑n
k=1 ξ(Sk), where Sk :=

∑k
m=1Xm is a random walk

based on some sequence of Z-valued i.i.d. random variables (Xm)m∈N and (ξ(i))i∈Z is a
sequence of real valued i.i.d. random variables which are supposed to be independent of
the random walk (Sk)k∈N. The law of the random variable X1 is supposed to belong to
the normal domain of attraction of an α-stable law Fα with 0 < α ≤ 2, i.e.: one has

P
(
n−

1
αSn ≤ x

)
→ Fα(x).

It is then well known that the sequence of stochastic processes

S
(n)
t := n−

1
αS[nt]; t ≥ 0, n ∈ N

converges in distribution towards an α-stable Lévy process S?t (see Skorokhod [20],
Theorem 2.7). It is further assumed that the random walk (Sn)n∈N is irreducible and
strongly aperiodic. For the case α > 1, Kesten and Spitzer [14] showed that if the scenery
variable ξ(1) is in the normal domain of attraction of some β-stable law Fβ with 1 < β ≤ 2,
then the partial sum process converges after some suitable renormalization toward some
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U -statistic processes indexed by random walk

specific continuous self-similar process (∆t)t≥0 with stationary increments. Since the
random walk (Sk)k∈N can visit the same location several times, the sequence of random
variables (ξ(Sk))k∈N shows some long range dependence. For the limit process (∆t)t≥0

this imposes some non-classical scaling index and also some non-trivial dependence
of the stationnary increments. The construction of the process (∆t)t≥0 is given after
Theorem 2.1. The case α ≤ 1 was studied extensively in [2, 9, 4].

A natural and widely applicable generalization of partial sums are U -statistics. In this
paper we want to investigate the asymptotic behavior of U -statistics indexed by some
random walk (Sk)k∈N, which are defined as follows:

Un :=
∑

1≤i<j≤n

h(ξ(Si), ξ(Sj)).

In what follows we will assume that h is a bivariate, measurable and symmetric function
such that

E[|h(ξ(1), ξ(2))|] <∞ and E[|h(ξ(1), ξ(1))|] <∞.

We further assume that Eh(ξ(1), ξ(2)) = 0. The random walk (Sk)k∈N is supposed to
fulfill the same assumptions as in the paper of Kesten and Spitzer [14] described above.

A classic approach for U -statistics in the case of finite second moments is the Hoeff-
ding decomposition [13]. We can write

Un = (n− 1)

n∑
i=1

h1(ξ(Si)) +
∑

1≤i<j≤n

h2(ξ(Si), ξ(Sj))

with

h1(x) := E(h(x, ξ(1)))

h2(x, y) := h(x, y)− h1(x)− h1(y).

We call Ln :=
∑n
i=1 h1(ξ(Si)) the linear part of the U -statistic Un and Rn the remainder

term:
Rn =

∑
1≤i<j≤n

h2(ξ(Si), ξ(Sj)).

The idea of using the Hoeffding decomposition in the present context is based on the
following crucial argument. Under second moment assumptions, the family of random
variables (h2(ξx, ξy))x6=y is pairwise uncorrelated. This leads to the following expression
of the conditional variance of the remainder term, when the random walk is given

Var
[
Rn
∣∣(Sk)k∈N

]
=
∑
x,y∈Z

Var[h2(ξx, ξy)] (#{ (i, j)
∣∣i, j ≤ n, i 6= j, Si = x, Sj = y })2

.

By using moment bounds for the occupation times of the random walk (Sn)n, that is the
number of indices i ≤ n such that Si = x (for x ∈ Z), the asymptotic domination of the
linear part (n − 1)Ln will follow. In the particular case when Sk = k, our process Un
corresponds to the classical U -statistic with independent entries ξi. There under second
moment assumptions on ξ one has Var[Rn] = O(n2) while Var[(n− 1)Ln] is of order n3.
It turns out that for the random walk in random scenery, considered here, the Hoeffding
decomposition is helpful in spite of the dependence.

The U -statistic indexed by a random walk was examined by Cabus and Guillotin-
Plantard [3] and Guillotin-Plantard and Ladret [11], but only in the case of finite fourth
moments. We will extend their results to the case when h1(ξ1) is in the normal domain of
attraction of a stable distribution. However, we then have to overcome another obstacle
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U -statistic processes indexed by random walk

which results from the lack of second moments, which was crucial in the above argument.
To deal with this problem, we will adapt a truncation method Heinrich and Wolf [12]
introduced to study U -statistics with stable limits under independent random variables.

Note that for other models of long range dependence (e.g. Gaussian sequences
with slowly decaying covariances), both the linear part and the remainder term might
contribute to the limit distribution, see Beutner and Zähle [1]. Because of this, other
methods, like representing the U -statistics as a functional of the empirical distribution
function, are appropriate, see Dehling and Taqqu [8].

Another approach to study U -statistics with heavy tails was presented by Dabrowski,
Dehling, Mikosch, Sharipov [7]. They use a method based on functional convergence
of suitably defined point processes to handle the existence of second moments. This
alternative approach was used in Franke, Pène and Wendler [10] to prove distributional
convergence of U -statistics indexed by a random walk. There it is proved that under
some different assumptions on the scenery variables and also under some different
scaling the U -statistics process converges toward some stochastic integral with respect
to some Lévy sheet.

We complete our study with a law of the iterated logarithm for the U -statistic process
indexed by Sn, extending results from Lewis [17] and Zhang [21] for the partial sum
indexed by a random walk.

2 Main results

Our first theorem will establish the weak convergence of the U -statistic process
without assuming that the summands of the linear part have second (or even higher)
moments. More precisely, we will assume that the law L(h1(ξ(1))) is in the normal
domain of attraction of a β-stable law Fβ with 1 < β ≤ 2

For 1 < α ≤ 2 or β = 2, the random walk in random scenery converges to a continuous
limit (see [14, 2, 9]), even if the scenery contains jumps, so we define the continuous
version of the U -statistics process

Un(t) = Uk if nt = k ∈ N

and linear interpolated in between. We will prove weak convergence in the space of
continuous functions C[0, 1] equipped with the supremum norm. For α ≤ 1 and β < 2,
the limit process has a discontinuous limit (see Castell, Guillotin-Plantard, Pène [4]),
so we will consider the space of càdlàg-functions D[0, 1] endowed with the Skorohod
M1-topology (see Skorokhod [19]).

Theorem 2.1. Let (Sn)n∈Z be a two-sided random walk such that S0 = 0 and with
identically distributed increments Xn = Sn − Sn−1. Assume that

E[|h(ξ(1), ξ(2))|] <∞ and E[|h(ξ(1), ξ(1))|] <∞ ,

and that the law L(h1(ξ(1))) is in the normal domain of attraction of a β-stable law Fβ with
1 < β ≤ 2. Assume furthermore that there exists β′ > β such that E|h(ξ(1), ξ(2))|η <∞
with η = 2β′

1+β′ . Assume that the law L(X1) is in the normal domain of attraction of an
α-stable law Fα.

• If 1 < α ≤ 2, then we have the weak convergence in C[0, 1](
n−2+ 1

α−
1
αβUn(t)

)
t∈[0,1]

⇒ (∆t)t∈[0,1],

with ∆t as defined in Kesten and Spitzer [14].
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• If α = 1 and if 1
n

∑n
i=1Xi converges in distribution to aZ for a Cauchy-distributed

random variable Z, then we have the following weak convergence in the sense of
the finite dimensional distributions

(
n−1− 1

β (log n)
1−β
β Ubntc

)
t∈[0,1]

⇒

(
(Γ(β + 1))

1
β

(aπ)
β−1
β

Yt

)
t∈[0,1]

,

where Y is the β-stable Lévy-Process which is the limit of n−1/β
∑bntc
i=1 ξi. This weak

convergence also holds in (D[0, 1],M1) if 1 < β < 2 and in (D[0, 1], J1) if β = 2.

• If 0 < α < 1, then we have the weak convergence in the sense of the finite
dimensional distributions(

n−1− 1
βUbntc

)
t∈[0,1]

⇒ (bYt)t∈[0,1] ,

where Y is the β-stable Lévy-Process which is the limit of n−1/β
∑bntc
i=1 ξi and with

b =
(
E
∣∣∑

i∈Z 1{Si=0}
∣∣β−1

)1/β

. This weak convergence also holds in (D[0, 1],M1) if

1 < β < 2 and in (D[0, 1], J1) if β = 2.

Observe that we can choose β′ such that η < β, that means that the summands h of
the U -statistic might have less moments than h1, so without loss of generality, we can
assume that E|h1(ξ(1))|η <∞.

To give the definition of the process (∆t)t∈[0,1], we have to introduce some notation.
Let (Tt(x))t≥0 be the local time of the limit process (S?t )t≥0 of the rescaled partial sum

(n−
1
α

∑[nt]
i=1Xi)t≥0, that means

∫ t

0

1[a,b)(S
?
s )ds =

∫ b

a

Tt(x)dx

almost surely. Let (Z+(t))t≥0 and (Z−(t))t≥0 be two independent copies of the limit

process of the rescaled partial sum process
(
n−

1
β
∑[nt]
i=1 h1(ξ(i))

)
t≥0

. Then the limit

process of the random walk in random scenery is defined as

∆t =

∫ ∞
0

Tt(x)dZ+(x) +

∫ ∞
0

Tt(−x)dZ−(x).

For random walks in random scenery, Lewis [17] and Khoshnevisan and Lewis [15]
proved the law of the iterated logarithm. This was improved by Csáki, König, Shi [6] and
Zhang [21] using strong approximation methods. In our second theorem, we will extend
these results to U -statistics:

Theorem 2.2. Let the assumption of Theorem 1 hold with α = β = 2 and additional
E|h1(ξ(i))|p <∞ and E|Xi|p <∞ for some p > 2. Then

lim sup
n→∞

Un

n
7
4 (log log n)

3
4

=
2

1
4 Var(h1(ξ(1)))

1
2

3 Var(X)
1
4

lim inf
n→∞

Un

n
7
4 (log log n)

3
4

= −2
1
4 Var(h1(ξ(1)))

1
2

3 Var(X)
1
4

almost surely.
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3 Auxiliary results

We define the occupation timesNn(x) :=
∑n
i=1 1{Si=x}. Let us write Vn :=

∑
x∈ZN

2
n(x).

Observe that

Vn =
∑
x∈Z

(

n∑
k=1

1{Sk=x})
2 =

∑
x∈Z

n∑
k,l=1

1{Sk = Sl = x} =

n∑
k,l=1

1{Sk=Sl}

equals n plus the number of self intersections of the random walk.

Proposition 3.1. If 0 < α ≤ 2, then

E [Vn] = O(n2− 1
α′ log n),

E
[
V 2
n

]
= O(n4− 2

α′ log2 n),

with α′ := max(1, α).

For the case 1 < α ≤ 2, this follows from Lemma 2.1 of Guillotin-Plantard, Ladret [11].
For the case α = 1 and more precise results, we refer to Deligiannidis, Utev [9]. The
bound for the case 0 < α < 1 comes for example from the proof of Lemma 19 in Castell,
Guillotin-Plantard, Pène, Schapira [5] in which it is proven that there exists γ > 0 such
that supnE[exp(γVn/n)] <∞.

Proposition 3.2. Under the conditions of Theorem 1 for 0 < α ≤ 2, we have that

max
k≤n

Rk = o(n
2− 1

α′+
1
α′β )

almost surely with α′ := max(1, α).

Proof. We define al = 2
l 1+β

′
α′β′ and the truncated kernel

h0,l(x, y) :=

{
h(x, y) if |h(x, y)| ≤ al
0 else

.

We also need the Hoeffding decomposition for the truncated kernel:

h1,l(x) := E(h0,l(x, ξ(1)))

h2,l(x, y) := h0,l(x, y)− h1,l(x)− h1,l(y).

We introduce the following notation:

L̃l,n :=

n∑
i=1

h1,l(ξ(Si))

Ũl,n :=
∑

1≤i<j≤n

h0,l(ξ(Si), ξ(Sj))

R̃l,n :=
∑

1≤i<j≤n

h2,l(ξ(Si), ξ(Sj)).

Recall the Hoeffding decomposition

Un = (n− 1)Ln +Rn.

Similar, we have that
Ũl,n = (n− 1)L̃l,n + R̃l,n.

We now obtain the following representation for the remainder term:

Rn = Un − (n− 1)Ln = (Un − Ũl,n)− (n− 1)Ln + Ũl,n

= (Un − Ũl,n)− (n− 1)Ln + (n− 1)L̃l,n + R̃l,n = (Un − Ũl,n)− (n− 1)(Ln − L̃l,n) + R̃l,n

We will treat the three summands separately. To do this we have to show
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(1) max
n≤2l

|Un − Ũl,n| = o(2
l(2− 1

α′+
1
α′β )

) almost surely,

(2) max
n≤2l

2l|Ln − L̃l,n| = o(2
l(2− 1

α′+
1
α′β )

) almost surely,

(3) max
n≤2l

|R̃l,n| = o(2
l(2− 1

α′+
1
α′β )

) almost surely.

In the proof of (1), we have to deal with the problem that we might have Si = Sj for i 6= j.
For this reason we will treat separately the cases Si = Sj and Si 6= Sj:

|Un − Ũl,n| ≤

∣∣∣∣∣∣∣∣
∑

1≤i<j≤n
Si 6=Sj

(h(ξ(Si), ξ(Sj))− h0,l(ξ(Si), ξ(Sj)))

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣
∑

1≤i<j≤n
Si=Sj

(h(ξ(Si), ξ(Sj))− h0,l(ξ(Si), ξ(Sj)))

∣∣∣∣∣∣∣∣ = |Al,n|+ |Bl,n|.

In order to establish bounds for the maximum, we have to control the increments of Al,n.
Let n1, n2 ∈ N with n1 ≤ n2 ≤ 2l, then

Al,n2
−Al,n1

=
∑

1≤i<j≤n
n1<j≤n2
Si 6=Sj

(h(ξ(Si), ξ(Sj))− h0,l(ξ(Si), ξ(Sj))),

so we have at most 2l(n2 − n1) summands of Al,n2
−Al,n1

and for every summand

E |h(ξ(Si), ξ(Sj))− h0,l(ξ(Si), ξ(Sj))| = E|h(ξ(1), ξ(2))1{|h(ξ(1),ξ(2))|>al}|
≤ a1−η

l E|h(ξ(1), ξ(2))1{|h(ξ(1),ξ(2))|>al}|
η

≤ a1−η
l E|h(ξ(1), ξ(2))|η.

Consequently, we have by the triangular inequality that

E|Al,n2 −Al,n1 | ≤ 2l(n2 − n1)E|h(ξ(1), ξ(2))1{|h(ξ(1),ξ(2))|>al}|
≤ 2l(n2 − n1)a1−η

l E|h(ξ(1), ξ(2))|η

Fix some θ such that 1 < θ < 1 + 1
α′β −

1
α′β′ (such a θ exists since β′ > β). Observe that

E|Al,n2
−Al,n1

| ≤ C02l(n2 − n1)θa1−η
l

with the constant C0 = E|h(ξ(1), ξ(2))|η. We can write Al,n =
∑n
i=1(Al,i − Al,i−1) (with

Al,0 := 0) and in the same way Al,n2
− Al,n1

=
∑n2

i=n1+1(Al,i − Al,i−1), so due to the
maximal inequality given in Theorem 1 of Móricz [18] (applied with γ = 1, θ instead of α
and (g(Fb,n))θ = C02lnθa1−η

l ), we obtain

E

∣∣∣∣max
n≤2l

Al,n

∣∣∣∣ ≤ C02l(1+θ)a1−η
l .

Recall that al = 2
l 1+β

′
α′β′ and η = 2β′

1+β′ , so 1 − η = 1−β′
1+β′ . It follows from the Markov

inequality that

∞∑
l=1

P

(
1

2
l(2− 1

α′+
1
α′β )

max
n≤2l

Al,n ≥ ε
)
≤ C0

ε

∞∑
l=1

2l(1+θ)a1−η
l

2
l(2− 1

α′+
1
α′β )

=
C0

ε

∞∑
l=1

2
l 1+β

′
α′β′

1−β′
1+β′

2
l(1−θ− 1

α′+
1
α′β )

=
C0

ε

∞∑
l=1

2
l( 1
α′β′−

1
α′ )

2
l(1−θ− 1

α′+
1
α′β )

=
C0

ε

∞∑
l=1

2
l( 1
α′β′−

1
α′β+θ−1)

<∞,
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as 1
α′β′ −

1
α′β + θ − 1 < 0. With the Borel-Cantelli lemma, we can now conclude that

P

(
1

2
l(2− 1

α′+
1
α′β )

max
n≤2l

Al,n ≥ ε infinitely often

)
= 0

and thus maxn≤2l Al,n = o(2
l(2− 1

α′+
1
α′β )

) almost surely. For Bl,n, we use the fact that the
sequences (Sn)n∈N and (ξ(n))n∈N are independent and observe that

E|max
n≤2l

Bl,n| ≤ Emax
n≤2l

∑
1≤i<j≤n
Si=Sj

|(h(ξ(Si), ξ(Sj))− h0,l(ξ(Si), ξ(Sj)))|

≤ E
∑

1≤i<j≤2l

Si=Sj

|(h(ξ(Si), ξ(Sj))− h0,l(ξ(Si), ξ(Sj)))|

≤ E#
{

(i, j) : 1 ≤ i < j ≤ 2l|Si = Sj)
}
E|h(ξ(1), ξ(1))1{|h(ξ(1),ξ(1))|>al}|

≤ E

∣∣∣∣∣∑
x∈Z

N2
2l(x)

∣∣∣∣∣E |h(ξ(1), ξ(1))| ≤ C2l(2−
1
α′ )

for some constant C, where we used Proposition 3.1 for the occupation times Nn(x) :=∑n
i=1 1{Si=x}. Again using the Markov inequality, we arrive at

∞∑
l=1

P

(
1

2
l(2− 1

α′+
1
α′β )

max
n≤2l

Bl,n ≥ ε
)
≤ C

ε

∞∑
l=1

2l(2−
1
α′ )l

2
l(2− 1

α′+
1
α′β )

≤ C

ε

∞∑
l=1

2
− 1
α′β ll <∞

and, as above, the Borel-Cantelli lemma leads to maxn≤2l Bl,n = o(2
l(2− 1

α′+
1
α′β )

) almost
surely, which completes the proof of (1). To prove (2), note that

E|h1(ξ(1))− h1,l(ξ(1))| = E|E[h(ξ(1), ξ(2))|ξ(1)]− E[h(ξ(1), ξ(2))1{|h(ξ(1),ξ(2))|≤al}|ξ(1)]|
= E|E[h(ξ(1), ξ(2))1{|h(ξ(1),ξ(2))|>al}|ξ(1)]|
≤ E

[
E
[
|h(ξ(1), ξ(2))1{|h(ξ(1),ξ(2))|>al}|

∣∣ξ(1)
]]

= E
∣∣h(ξ(1), ξ(2))1{|h(ξ(1),ξ(2))|>al}

∣∣ ≤ 1

aη−1
l

E|h(ξ(1), ξ(2))|η.

With the triangular inequality and the assumption that E|h(ξ(1), ξ(2))|η <∞, it follows
that for some constant C and any n1, n2 ∈ N with n1 ≤ n2

E|
n2∑

i=n1+1

(h1(ξ(Si))− h1,l(ξ(Si)))| ≤ C(n2 − n1)a1−η
l .

Again, we apply the maximal inequality in Theorem 1 of Móricz [18] and obtain

Emax
n≤2l

2l|Ln − L̃l,n| ≤ C2l(1+θ)a1−η
l

for every θ > 1 and we can proceed in the same way as we proved almost sure conver-
gence for Al,n. So it remains to show the last part (3). We will prove that

max
n≤2l

|ER̃l,n| = o(2
l(2− 1

α′+
1
α′β )

)

max
n≤2l

|R̃l,n − ER̃l,n| = o(2
l(2− 1

α′+
1
α′β )

) almost surely.

We obtain with a short calculation that

R̃l,n = Ũl,n − (n− 1)L̃l,n = (Ũl,n − Un) + (n− 1)(Ln − L̃l,n) +Rn
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and consequently

max
n≤2l

|ER̃l,n| = max
n≤2l

∣∣∣E(Ũl,n − Un) + (n− 1)E(Ln − L̃l,n) + ERn

∣∣∣
≤ Emax

n≤2l
|Un − Ũl,n|+ (n− 1)Emax

n≤2l
|Ln − L̃l,n|+ max

n≤2l
|ERn|.

We have already shown in (1) and (2) that the first two summands are of order

o(2
l(2− 1

α′+
1
α′β )

). For the last summand, we use the fact that

Eh2(ξ(1), ξ(2)) = Eh(ξ(1), ξ(2))− Eh1(ξ(1))− Eh1(ξ(2)) = 0

to see that only the indices with Si = Sj contribute to the expectation

ERn = E

 ∑
1≤i<j≤n
Si=Sj

h2(ξ(Si), ξ(Sj))


and due to Proposition 3.1 we have

max
n≤2l

|ERn| ≤ max
n≤2l

E# {(i, j) : 1 ≤ i < j ≤ n|Si = Sj}E|h2(ξ(1), ξ(1))|

≤ E#
{

(i, j) : 1 ≤ i < j ≤ 2l|Si = Sj
}
E|h2(ξ(1), ξ(1))|

≤ C2l(2−
1
α′ )l = o(2

l(2− 1
α′+

1
α′β )

).

To show the convergence of the remaining part, we first decompose it as

R̃l,n − ER̃l,n =
∑

1≤i<j≤n
Si 6=Sj

(h2,l(ξ(Si), ξ(Sj))− Eh2,l(ξ(1), ξ(2)))

+
∑

1≤i<j≤n
Si=Sj

(h2,l(ξ(Si), ξ(Sj))− Eh2,l(ξ(1), ξ(1))) =: Cl,n +Dl,n.

For Dl,n, we have by the independence of (Sn)n∈N and (ξ(n))n∈N and the fact

E|h2,l(ξ(1), ξ(1))| ≤ E|h0,l(ξ(1), ξ(1))|+ 2E|h1,l(ξ(1))|
≤ E|h(ξ(1), ξ(1))|+ 2E|h(ξ(1), ξ(2))| < ∞,

that

Emax
n≤2l

|Dl,n| ≤ E#
{

(i, j) : 1 ≤ i < j ≤ 2l|Si = Sj
}

2E|h2,l(ξ(1), ξ(1))| ≤ C2l(2−
1
α′ )l.

In the same way as for Bl,n we now can conclude that maxn≤2l Dl,n = o(2
l(2− 1

α′+
1
α′β )

)

almost surely. Finally, we will deal with Cl,n. Recall that h0,l is bounded by al, so h2,l is
bounded by 3al. By the triangular inequality for the Lη-norm, we have that

E|h2,l(ξ(1), ξ(2))|η ≤
(
‖h0,l(ξ(1), ξ(2))‖η + 2 ||h1,l(ξ(1))‖η

)η
≤

(
3 ‖h(ξ(1), ξ(2))‖η

)η
,

and as a consequence for some constant C > 0

E (h2,l(ξ(1), ξ(2)))
2 ≤ (3al)

2−ηE|h2,l(ξ(1), ξ(2))|η ≤ C2
l 1+β

′
α′β′ (2− 2β′

1+β′ ) = C2
l 2
α′β′ .

Furthermore we have the property of the Hoeffding decomposition that the random
variables h2,l(ξ(1), ξ(2)) and h2,l(ξ(1), ξ(3)) are uncorrelated, see Lee [16], page 30. So
we can find bounds for the conditional variance of the increments of Cl,n. To simplify the
notation, we write

ECP 22 (2017), paper 9.
Page 8/12

http://www.imstat.org/ecp/

http://dx.doi.org/10.1214/16-ECP4173
http://www.imstat.org/ecp/


U -statistic processes indexed by random walk

Y (i, j) := h2,l(ξ(i), ξ(j))1{i 6=j} − (Eh2,l(ξ(i), ξ(j)))1{i 6=j}

and obtain for n1 ≤ n2 ≤ 2l

E
[
(Cl,n2

− Cl,n1
)
2 ∣∣(Xk)k∈N

]
= E


 ∑

1≤i<j≤n2
n1<j≤n2

Y (Si, Sj)


2 ∣∣(Xk)k∈N


=

∑
x,y∈Z
x<y

(
# {(i, j) : 1 ≤ i < j ≤ n2|n1 < j ≤ n2, Si = x, Sj = y}

+# {(i, j) : 1 ≤ i < j ≤ n2|n1 < j ≤ n2, Si = y, Sj = x}
)2

E(Y (x, y))2

≤ C2
l 2
α′β′ 2

∑
x,y∈Z

(Nn2
(x)(Nn2

(y)−Nn1
(y)))2.

Due to Theorem 3 of Móricz [18] apllied with γ = 2 and the (random) superadditive
function

g(Fb,n) = C2
` 2
α′β′+1

∑
x,y∈Z

N2`(x)2(Nb+n(y)−Nb(y))2.

It follows that

E

max
n≤2l

 ∑
1≤i<j≤n

Y (Si, Sj)

2 ∣∣(Xk)k∈N

 ≤ C2
l 2
α′β′

∑
x∈Z

N2
2l(x)

∑
y∈Z

N2
2l(y)l2.

Taking the expectation with respect to (Xk)k∈N, we get the following bound using
Proposition 3.1 at

E

(
max
n≤2l

Cl,n

)2

= E

E
max
n≤2l

 ∑
1≤i<j≤n

Y (Si, Sj)

2 ∣∣(Xk)k∈N




≤ C2
l 2
α′β′ l2E

(∑
x∈Z

N2
2l(x)

)2

≤ C2
l 2
α′β′ l42l(4−

2
α′ )

= C2
l2(2− 1

α′+
1

α′β′ )l4.

We can now use the Chebyshev inequality and arrive at

∞∑
l=1

P

(
1

2
l(2− 1

α′+
1
α′β )

max
n≤2l

Cl,n ≥ ε
)
≤ C

ε2

∞∑
l=1

2
l2(2− 1

α′+
1

α′β′ )l4

2
l2(2− 1

α′+
1
α′β )

≤ C

ε2

∞∑
l=1

2
l2( 1

α′β′−
1
α′β )

l4 < ∞

and the Borel-Cantelli lemma completes the proof.

4 Proofs of main results

Proof of Theorem 2.1. Recall the Hoeffding decomposition

n
−2+ 1

α′−
1
α′βU[nt] =

n− 1

n
n
−1+ 1

α′−
1
α′βL[nt] + n

−2+ 1
α′−

1
α′βR[nt].
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U -statistic processes indexed by random walk

For the linear part in the case 1 < α ≤ 2, we apply Theorem 1.1 of Kesten and Spitzer

[14] to the random variables h1(ξ(i)) and conclude that
(
n−1+ 1

α−
1
αβL[nt]

)
t∈[0,1]

converges

weakly to (∆t)t∈[0,1].

In the case α = 1 and β = 2, due to Theorem 2.3 in [2, 9],
(
L[nt]/

√
n log n

)
t∈[0,1]

converges in distribution to
( √

2√
aπ
Yt

)
t∈[0,1]

as n goes to infinity.

In the case α = 1 and 1 < β < 2, due to Theorem 1 of [4],
(
L[nt]/(n

1
β (log n)

β−1
β )
)
t∈[0,1]

converges in distribution (with respect to the M1-metric) to

(
(Γ(β+1))

1
β

(aπ)
β−1
β

Yt

)
t∈[0,1]

as n

goes to infinity.

In the case α < 1 and 1 < β ≤ 2, the convergence of
(
L[nt]/n

1
β

)
t∈[0,1]

is proved

namely in Remark 2 of [4].
For the tightness in (D([0, 1], J1) when α < 1 and β = 2, we follow the proof of

tightness Bolthausen in [2]. For completeness, we explain the adaptations to make.
Using the fact that Ln(0) ≡ 0 and that (Li)i≥0 is a sequence of partial sums of a
stationary sequence, it is enough to prove that, for every ε > 0, there exists λ > 0 such
that

∃n0 ≥ 1, ∀n ≥ n0, λ2P

(
max
j≤n
|Lj | > λ

√
n

)
≤ ε. (4.1)

Recall that (Vn/n)n converges almost surely to b2 (see for example [14, p. 10]) and write

P

(
max
j≤n
|Lj | > λ

√
n

)
≤ P

(
max
j≤n
|Lj | > λ

√
Vn/(2b)

)
+ P

(
Vn > 4b2n

)
.

Let ρ >
√

2. Following [2], we obtain that

P

(
max
j≤n
|Lj | ≥ σρ

√
Vn

)
≤ 2P

(
|Ln| > (ρ−

√
2)σ
√
Vn

)
,

with σ :=
√

Var(h1(ξ1)). But we know that (Ln/
√
Vn)n converges in distribution to Y , so

lim sup
n→+∞

P

(
max
j≤n
|Lj | ≥ ρσ

√
Vn

)
≤ 2P

(
|Y | > (ρ−

√
2)σ
)
.

Choose ρ >
√

2 such that 2(2bρσ)2P
(
|Y | > (ρ−

√
2)σ
)
< ε (this is possible since Y is

gaussian). The tightness criteria (4.1) is satisfied with λ = 2bρσ.
For the remainder term, we have proved in Proposition 3.2 that

sup
t∈[0,1]

∣∣∣n−2+ 1
α′−

1
α′βR[nt]

∣∣∣ −→ 0

in probability. The statement of the theorem follows by Slutzky’s theorem.
In the cases α ≤ 1, note that the uniform convergence of the remainder R[nt] implies

the convergence with respect to the M1-topology.

Proof of Theorem 2.2. We use again the Hoeffding decomposition

Un

n
7
4 (log log n)

3
4

=
n− 1

n

Ln

(n log log n)
3
4

+
Rn

n
7
4 (log log n)

3
4

.

For the remainder term we use Proposition 3.2 with α = β = 2:

Rn = o(n2− 1
2 + 1

4 ) = o(n
7
4 (log log n)

3
4 ) almost surely.
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U -statistic processes indexed by random walk

As Ln =
∑n
i=1 h1(ξ(Si)), we can apply Corollary 1 of Zhang [21] and we obtain

lim sup
n→∞

± Ln

(n log log n)
3
4

=
2

1
4 Var(ξ)

1
2

3 Var(X)
1
4

almost surely, which leads to the statement of the theorem.
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