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Abstract

Comparison and converse comparison theorems are important parts of the research
on backward stochastic differential equations. In this paper, we obtain comparison
results for one dimensional backward stochastic differential equations with Markov
chain noise, adapting previous results under simplified hypotheses. We introduce a
type of nonlinear expectation, the f -expectation, which is an interpretation of the
solution to a BSDE, and use it to establish a converse comparison theorem for the
same type of equations as those in the comparison results.
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1 Introduction

In 1990 Pardoux and Peng [19] considered general backward stochastic differential
equations (BSDEs for short) of the following form:

Yt = ξ +

∫ T

t

g(s, Ys, Zs)ds−
∫ T

t

ZsdBs, t ∈ [0, T ].

Here B is a Brownian Motion and g is the driver, or drift, of the above BSDE.
Since then, comparison theorems for BSDEs have attracted extensive attention. El

Karoui, Peng and Quenez [12] derived comparison theorems for BSDEs with Lipschitz
continuous coefficients. Liu and Ren [18] proved a comparison theorem for BSDEs with
linear growth and continuous coefficients. Situ [24] obtained a comparison theorem
for BSDEs with jumps. Zhang [27] deduced a comparison theorem for BSDEs with two
reflecting barriers. Hu and Peng [15] established a comparison theorem for multidimen-
sional BSDEs. Comparison theorems for BSDEs have received much attention because
of their importance in applications. For example, the penalization method for reflected
BSDEs is based on a comparison theorem, (see [9], [11], [17] and [22]). Moreover,
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Comparison and converse comparison theorems for BSDEs with Markov chain noise

research on properties of g-expectations, (see Peng [21]), and the proof of a monotonic
limit theorem for BSDEs, (see Peng [20]), both depend on comparison theorems. BSDEs
with jumps were also introduced by other authors. We mention [1] and [23]. Crepey
and Matoussi [8] considered BSDEs with jumps in a more general framework, where a
Brownian motion is incorporated in the model and a general random measure is used to
model the jumps, which in [1] is a Poisson random measure.

It is natural to ask whether the converse of the above results holds or not. That is, if
we can compare the solutions of two BSDEs with the same terminal conditions, can we
compare the driver? Coquet, Hu, Mémin and Peng [7], Briand, Coquet, Mémin and Peng
[2], and Jiang [16] derived converse comparison theorems for BSDEs, with no jumps. De
Schemaekere [10], derived a converse comparison theorem for a model with jumps.

In 2012, van der Hoek and Elliott [25] introduced a market model where uncertainties
are modeled by a finite state Markov chain, instead of Brownian motion or related jump
diffusions, which are often used when pricing financial derivatives. The Markov chain has
a semimartingale representation involving a vector martingale M = {Mt ∈ RN , t ≥ 0}.
BSDEs in this framework were introduced by Cohen and Elliott [4] as

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds−
∫ T

t

Z ′sdMs, t ∈ [0, T ].

Cohen and Elliott [5] and [6] gave some comparison results for multidimensional
BSDEs in the Markov Chain model under conditions involving not only the two drivers but
also the two solutions. If we consider two one-dimensional BSDEs driven by the Markov
chain, we extend the comparison result to a situation involving conditions only on the two
drivers. Consequently our comparison results are easier to use for the one-dimensional
case. Moreover, our result in the Markov chain framework needs less conditions on
the drivers compared to those in Crepey and Matoussi [8] which are suitable for more
general dynamics.

In 2010, Cohen and Elliott [6] also introduced a non-linear expectation, the f -
expectation, based on the comparison results in the same paper. Using our comparison
results, we shall define f -expectation for one-dimensional BSDEs with Markov chain
noise and show its properties as in [6]. Then, we shall provide a converse comparison
result for the same model with the use of the f -expectation. f -expectations with strict
comparison theorems allow us to describe a type of no-arbitrage as we shall show later
in this paper.

The paper is organized as follows. In Section 2, we introduce the model and give
some preliminary results. Section 3 shows our comparison result for one-dimensional
BSDEs with Markov chain noise. We introduce the f -expectation and give its properties
in Section 4. The last section establishes a converse comparison theorem.

2 The model and some preliminary results

Consider a finite state Markov chain. Following [25] and [26] of van der Hoek and
Elliott, we assume the finite state Markov chain X = {Xt, t ≥ 0} is defined on the
probability space (Ω,F , P ) and the state space of X is identified with the set of unit
vectors {e1, e2 · · · , eN} in RN , where ei = (0, · · · , 1 · · · , 0)′ with 1 in the i-th position. Take
Ft = σ{Xs; 0 ≤ s ≤ t} to be the σ-algebra generated by the Markov process X = {Xt}
and {Ft} to be its completed natural filtration. Since X is a right continuous with left
limits (written RCLL) jump-process, the filtration {Ft} is also right-continuous. The
Markov chain has the semimartingale representation:

Xt = X0 +

∫ t

0

AsXsds+Mt.
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Comparison and converse comparison theorems for BSDEs with Markov chain noise

Here, A = {At, t ≥ 0} is the rate matrix of the chain X and M is a vector martingale
(See Elliott, Aggoun and Moore [14]). We assume the elements Aij(t) of A = {At, t ≥ 0}
are bounded. Then the martingale M is square integrable.

Denote by [X,X] the optional quadratic variation of X, which is a N × N matrix
process and 〈X,X〉, the unique predictableN×N matrix process such that [X,X]−〈X,X〉
is a matrix valued martingale and write

Lt = [X,X]t − 〈X,X〉t , t ∈ [0, T ].

It is shown in [4] that:

〈X,X〉t =

∫ t

0

diag(AsXs)ds−
∫ t

0

diag(Xs)A
′
sds−

∫ t

0

Asdiag(Xs)ds. (2.1)

For n ∈ N, denote for φ ∈ Rn, the Euclidean norm |φ|n =
√
φ′φ and for ψ ∈ Rn×n, the

matrix norm ‖ψ‖n×n =
√
Tr(ψ′ψ).

Let Ψ be the matrix

Ψt = diag(AtXt−)− diag(Xt−)A′t −Atdiag(Xt−). (2.2)

Then d〈X,X〉t = Ψtdt. For any t > 0, Cohen and Elliott [4, 6], define the semi-norm ‖.‖Xt ,
for C,D ∈ RN×K as:

〈C,D〉Xt = Tr(C ′ΨtD),

‖C‖2Xt = 〈C,C〉Xt .

We only consider the case where C ∈ RN , hence we introduce the semi-norm ‖.‖Xt as:

〈C,D〉Xt = C ′ΨtD,

‖C‖2Xt = 〈C,C〉Xt . (2.3)

It follows from equation (2.1) that∫ T

t

‖C‖2Xsds =

∫ T

t

C ′d 〈X,X〉s C.

Denote by P, the σ-field generated by the predictable processes defined on (Ω, P,F)

and with respect to the filtration {Ft}t∈[0,∞). For t ∈ [0,∞), consider the following
spaces:

L2(Ft) := {ξ : ξ is an R-valued Ft-measurable random variable such that E[|ξ|2] < +∞};

L2
F (0, t;R) := {φ : [0, t]×Ω→ R; φ is an adapted and RCLL process with E[

∫ t
0
|φ(s)|2ds] <

+∞};

P 2
F (0, t;RN ) := {φ : [0, t]× Ω→ RN ; φ is a predictable process with E[

∫ t
0
‖φ(s)‖2Xsds] <

+∞}.

Consider a one-dimensional BSDE with Markov chain noise as follows:

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds−
∫ T

t

Z ′sdMs, t ∈ [0, T ]. (2.4)

Here the terminal condition ξ and the coefficient f are known.
Lemma 2.1 (Theorem 6.2 in Cohen and Elliott [4]) gives the existence and uniqueness

result of solutions for this kind of equation.
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Lemma 2.1. Assume ξ ∈ L2(FT ), the function f : Ω × [0, T ] × R × RN → R satisfies a
Lipschitz condition, in the sense that there exists two constants l1, l2 > 0 such that P -a.s.
for each y1, y2 ∈ R and z1, z2 ∈ RN , t ∈ [0, T ],

|f(t, y1, z1)− f(t, y2, z2)| ≤ l1|y1 − y2|+ l2‖z1 − z2‖Xt , (2.5)

and for each (y, z) ∈ R×RN , the process (f(t, y, z))t∈[0,T ] is predictable. We also assume
f satisfies

E[

∫ T

0

|f(t, 0, 0)|2dt] <∞. (2.6)

Then there exists a solution (Y,Z) ∈ L2
F (0, T ;R)×P 2

F (0, T ;RN ) to BSDE (2.4). Moreover,
this solution is unique among (Y,Z) ∈ L2

F (0, T ;R) × P 2
F (0, T ;RN ) and up to indistin-

guishability for Y and equality d〈X,X〉t ×P-a.s. for Z.

The following lemma is an extension to stopping times of Lemma 2.1 (see Cohen and
Elliott [6]).

Lemma 2.2. Suppose τ > 0 is a stopping time such that there exists a real value T with
P (τ > T ) = 0, ξ ∈ L2(Fτ ) and f satisfies (2.5) and (2.6), with integration from 0 to τ ,
then the BSDE

Yt = ξ +

∫ τ

t∧τ
f(s, Ys, Zs)ds−

∫ τ

t∧τ
Z ′sdMs, t ≥ 0

has a solution (Y,Z) ∈ L2
F (0, τ ;R)×P 2

F (0, τ ;RN ). Moreover, this solution is unique up to
indistinguishability for Y and equality d〈X,X〉t ×P-a.s. for Z.

See Campbell and Meyer [3] for the following definition:

Definition 2.3 (Moore-Penrose pseudoinverse). The Moore-Penrose pseudoinverse of a
square matrix Q is the matrix Q† satisfying the properties:

1) QQ†Q = Q

2) Q†QQ† = Q†

3) (QQ†)′ = QQ†

4) (Q†Q)′ = Q†Q.

Recall the matrix Ψ given by (2.2). We adapt Lemma 3.5 in Cohen and Elliott [6] to
our one-dimensional framework as follows:

Lemma 2.4. For any driver satisfying (2.5) and (2.6), for any Y and Z

P (f(t, Yt−, Zt) = f(t, Yt−,ΨtΨ
†
tZt), for all t ∈ [0,+∞]) = 1

and ∫ t

0

Z ′sdMs =

∫ t

0

(ΨsΨ
†
sZs)

′dMs.

Therefore, without any loss of generality, assume Z = ΨΨ†Z.

The following lemma which gives the duality between the solutions to linear BSDEs
and linear SDEs is Theorem 2 in [5], adapted for our one-dimensional case with Markov
chain noise:

Lemma 2.5. (Linear BSDEs) Let (η, µ) be a du × P − a.s. bounded (R1×N ,R) valued
predictable process, g ∈ P 2

F (0, T,R) and ξ ∈ L2(FT ). Then the linear BSDE given by

Yt = ξ +

∫ T

t

(µsYs + ηsZs + gs)ds−
∫ T

t

Z ′sdMs, t ∈ [0, T ]
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has a unique solution (Y,Z) ∈ L2
F (0, T ;R) × P 2

F (0, T ;RN ), (up to appropriate sets of
measure zero). Furthermore, if for all s ∈ [t, T ]

1 + ηsΨ
†
s(ej −Xs−) (2.7)

is non-zero (invertible for the multi-dimensional case) and non-negative for all j such
that e′jAsXs− > 0, except possibly on some evanescent set, then Y is given by the explicit
formula

Yt = E[ξUT +

∫ T

t

gsUsds|Ft] (2.8)

up to indistinguishability. Here U is the solution to the one-dimensional SDE:{
dUs = Usµsds+ Us−ηs(Ψ

†
s)
′dMs, s ∈ [t, T ];

Ut = 1.
(2.9)

3 A comparison theorem for one-dimensional BSDEs with Markov
chain noise

We need the following assumption for our comparison results below.

Assumption 3.1. Assume the Lipschitz constant l2 of the driver f given in (2.5) satisfies

l2‖Ψ†t‖N×N
√

6m < 1, for any t ∈ [0, T ],

where Ψ is given in (2.2) and m > 0 is the bound of ‖At‖N×N , for any t ∈ [0, T ].

For i = 1, 2, suppose (Y (i), Z(i)) is the solution of a one-dimensional BSDE with
Markov chain noise:

Y
(i)
t = ξi +

∫ T

t

fi(s, Y
(i)
s , Z(i)

s )ds−
∫ T

t

(Z(i)
s )′dMs, t ∈ [0, T ].

Theorem 3.2. Assume ξ1, ξ2 ∈ L2(FT ) and f1, f2 : Ω× [0, T ]×R×RN → R satisfy some
conditions such that the above two BSDEs have unique solutions. Moreover assume f1

satisfies (2.5) and Assumption 3.1. If ξ1 ≤ ξ2, a.s. and f1(t, Y
(2)
t , Z

(2)
t ) ≤ f2(t, Y

(2)
t , Z

(2)
t ),

a.e., a.s., then
P (Y

(1)
t ≤ Y (2)

t , for any t ∈ [0, T ]) = 1.

Moreover,

Y
(1)
0 = Y

(2)
0 ⇐⇒

{
f1(t, Y

(2)
t , Z

(2)
t ) = f2(t, Y

(2)
t , Z

(2)
t ), a.e., a.s.;

ξ1 = ξ2, a.s.

Proof. Set Yt = Y
(2)
t −Y (1)

t , Zt = Z
(2)
t −Z

(1)
t , ξ = ξ2− ξ1, fs = f2(s, Y

(2)
s , Z

(2)
s ) −f1(s, Y

(2)
s ,

Z
(2)
s ), and define

as =


f1(s, Y

(2)
s , Z

(2)
s )− f1(s, Y

(1)
s , Z

(2)
s )

Ys
, if Ys 6= 0;

0, if Ys = 0

and

bs =


f1(s, Y

(1)
s , Z

(2)
s )− f1(s, Y

(1)
s , Z

(1)
s )

|Zs|2N
Z ′s, if Zs 6= 0;

0, if Zs = 0.

Then, we have:

Yt = ξ +

∫ T

t

(asYs + bsZs + fs)ds−
∫ T

t

Z ′sdMs, t ∈ [0, T ]. (3.1)
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Lemma 3.3. For any C ∈ RN ,

‖C‖Xt ≤
√

3m|C|N , for any t ∈ [0, T ],

where m > 0 is the bound of ‖At‖N×N , for any t ∈ [0, T ].

Proof. Since the elements Aij(t) of A = {At, t ≥ 0} are bounded, there exists a constant
m > 0 such that ‖At‖N×N ≤ m, for any t ∈ [0, T ]. From the definition in (2.3), we have:

‖C‖2Xt ≤ |C|
2
N · ‖diag(AtXt)− diag(Xt)A

′
t −Atdiag(Xt)‖N×N

≤ |C|2N · (‖diag(AtXt)‖N×N + ‖diag(Xt)A
′
t‖N×N + ‖Atdiag(Xt)‖N×N )

≤ |C|2N · (|AtXt|N + |Xt|N · ‖At‖N×N + ‖At‖N×N · |Xt|N )

≤ |C|2N · (‖At‖N×N · |Xt|N + |Xt|N · ‖At‖N×N + ‖At‖N×N · |Xt|N )

≤ 3|C|2N · ‖At‖N×N ≤ 3m|C|2N .

We return to the proof of Theorem 3.2. Denote

dVs = asds+ bs−(Ψ†s)
′dMs, s ∈ [0, T ].

The solution to SDE (2.9) is given by the Doléan-Dade exponential (See [13]):

Us = exp(Vs −
1

2
〈V c, V c〉s)

∏
0≤u≤s

(1 + ∆Vu)e−∆Vu , s ∈ [0, T ],

where

∆Vu = bu−(Ψ†u)′∆Mu = bu−(Ψ†u)′∆Xu.

If f1 satisfies Assumption 3.1, we deduce

|∆Vu| ≤ |bu−|N · ‖(Ψ†u)′‖N×N · |∆Xu|N

< l2
‖Zu‖Xu
|Zu|N

1√
6ml2

√
2

<
√

3ml2
1√

6ml2

√
2

= 1.

Hence we have Us > 0 for any s ∈ [0, T ]. Moreover, condition (2.7) is satisfied. Hence, by
Lemma 2.5, we know for any t ∈ [0, T ],

Yt = E[ξUT +

∫ T

t

fsUsds|Ft], a.s.

As ξ ≥ 0, a.s., and fs ≥ 0, a.e., a.s., it follows that for any t ∈ [0, T ], Yt ≥ 0, a.s. Since Y·
and E[ξUT +

∫ T
· fsUsds|F·] are both RCLL, by Lemma 2.21 in [13],

P (Yt ≥ 0, for any t ∈ [0, T ]) = 1.

Moreover, for any s ∈ [0, T ],

Y0 = 0⇐⇒ ξ = 0, a.s., and ft = 0, a.e., a.s.
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4 f-expectation

Now we introduce the nonlinear expectation, the f -expectation. The f -expectation,
for a fixed driver f , is an interpretation of the solution to a BSDE as a type of nonlinear
expectation. Here, we give the one-dimensional case of the definitions and properties in
Cohen and Elliott [6], under the assumptions of our comparison theorems.

Assumption 4.1. Suppose f : Ω × [0, T ] × R × RN → R satisfies (2.5) and (2.6) such
that

(I) For all (t, y) ∈ R×R, f(t, y, 0) = 0, a.s.;

(II) For all (y, z) ∈ R×RN , t→ f(t, y, z) is continuous.

Before introducing the f -expectation, we shall give the following definition:

Definition 4.2. For a fixed driver f , given t ∈ [0, T ] and ξ ∈ L2(Ft), define for each
s ∈ [0, t],

Efs,t(ξ) = Ys,

where (Y, Z) is the solution of

Ys = ξ +

∫ t

s

f(u, Yu, Zu)du−
∫ t

s

Z ′udMu, s ∈ [0, t].

Proposition 4.3. Suppose the driver f satisfies Assumption 3.1 and Assumption 4.1.
Efs,t(·) defined above satisfies:

(a) For any ξ ∈ L2(Fs), Efs,t(ξ) = ξ, a.s.

(b) If for any ξ1, ξ2 ∈ L2(Ft), ξ1 ≥ ξ2, a.s., then Efs,t(ξ1) ≥ Efs,t(ξ2). Moreover,

Efs,t(ξ1) = Efs,t(ξ2)⇐⇒ ξ1 = ξ2, a.s.

(c) For any r ≤ s ≤ t, Efr,s(E
f
s,t(ξ)) = Efr,t(ξ), a.s.

(d) For any A ∈ Fs, IAEfs,t(ξ) = IAEfs,t(IAξ), a.s.

The proof of Proposition 4.3 is as in [6].

Definition 4.4. Define, for ξ ∈ L2(FT ) and a driver f ,

Ef (ξ) := Ef0,T (ξ), and Ef (ξ|Ft) := Eft,T (ξ).

Ef (ξ) is called f -expectation and Ef (ξ|Ft) is called conditional f -expectation.

The following properties follow directly from Definition 4.4, Proposition 4.3 and
Lemma 2.2.

Proposition 4.5. Suppose the driver f satisfies Assumption 3.1 and Assumption 4.1.
Let s, t ≤ T , be two stopping times.
(a′) For ξ ∈ L2(Ft), Ef (ξ|Ft) = ξ, a.s.
(b′) If for any ξ1, ξ2 ∈ L2(FT ), ξ1 ≥ ξ2, a.s., then Ef (ξ1|Ft) ≥ Ef (ξ2|Ft). Moreover,
Ef (ξ1) = Ef (ξ2)⇐⇒ ξ1 = ξ2, a.s.
(c′) For any s ≤ t, Ef (Ef (ξ|Ft)|Fs) = Ef (ξ|Fs), a.s. Moreover, Ef (Ef (ξ|Fs)) = Ef (ξ).
(d′) For any A ∈ Ft, IAEf (ξ|Ft) = IAEf (IAξ|Ft), a.s.

Remark 4.6. In finance, f -expectations define a non-linear pricing system where Ef
represents the initial price of an asset which is to be traded at time T . In Proposition
4.5, statement (b′) ensures No-arbitrage opportunity taking ξ2 to be zero. Hence, the
strict comparison theorem guarantees No-arbitrage pricing in a market where all agents
agree that the pricing system is non-linear.
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5 A converse comparison theorem, for one-dimensional BSDE
with Markov chain noise

Our converse comparison theorem uses the theory of an f -expectation in the previous
section. The arguments in this section are adapted from [7]. For i = 1, 2, consider two
BSDEs with the same terminal condition ξ:

Y
(i)
t = ξ +

∫ T

t

fi(s, Y
(i)
s , Z(i)

s )ds−
∫ T

t

(Z(i)
s )′dMs, t ∈ [0, T ].

Theorem 5.1. Suppose f1 satisfies Assumption 3.1, Assumption 4.1 and f2 satisfies
Assumption 4.1. Then the following are equivalent:
i) For any ξ ∈ L2(FT ), Ef1(ξ) ≤ Ef2(ξ);
ii) P (f1(t, y, z) ≤ f2(t, y, z), for any (t, y, z) ∈ [0, T ]×R×RN ) = 1.

Proof. ii)⇒ i) is given by Theorem 3.2.
Let us prove i)⇒ ii). For each δ > 0 and (y, z) ∈ R×RN , introduce the stopping time:

τδ = τδ(y, z) = inf{t ≥ 0; f2(t, y, z) ≤ f1(t, y, z)− δ} ∧ T.

Suppose ii) does not hold, then there exists δ > 0 and (y, z) ∈ R × RN such that
P (τδ(y, z) < T ) > 0. For (δ, y, z) such that P (τδ(y, z) < T ) > 0, consider for i = 1, 2, the
following SDE {

dY i(t) = −fi(t, Y i(t), z)dt+ zdMt, t ∈ [τδ, T ],

Y i(τδ) = y.

For i = 1, 2, the above equation admits a unique solution Y (i) (See Elliott[13], Chapter
14). Define:

τ ′δ = inf{t ≥ τδ; f2(t, Y (2)(t), z) ≥ f1(t, Y (1)(t), z)− δ

2
} ∧ T,

with τ ′δ = T if τδ = T . We know Ω = {τδ ≤ τ ′δ} = {τδ < τ ′δ} ∪ {τδ = τ ′δ}, which is a disjoint
union, and {τδ = τ ′δ} = {τδ = T}. Hence, {τδ < τ ′δ} = {τδ = T}c = {τδ < T}. It follows
that P (τδ < τ ′δ) > 0.

Set Ỹ = Y (1) − Y (2), then

dỸ (t) = (f2(t, Y (2)(t), z)− f1(t, Y (1)(t), z))dt.

Hence, by taking the integral of the above from τδ to τ ′δ and Ỹ (τδ) = 0, we have

Ỹ (τ ′δ) = Y (1)(τ ′δ)− Y (2)(τ ′δ) ≤ −
δ

2
(τ ′δ − τδ) ≤ 0. (5.1)

So we deduce
Ỹ (τ ′δ) ≤ 0, with strict inequality on {τδ < τ ′δ}. (5.2)

Note, (Y (i), z), i = 1, 2 are solutions of BSDEs with coefficients (fi, Y
(i)(T )). It follows

from Proposition 4.5 (c′), that

Ef1(Y (1)(τ ′δ)|Fτδ) = Ef1(Ef1(Y (1)(T )|Fτ ′
δ
)|Fτδ) = Ef1(Y (1)(T )|Fτδ) = y,

and similarly
Ef2(Y (2)(τ ′δ)|Fτδ) = Ef2(Y (2)(T )|Fτδ) = y.

Moreover, again from Proposition 4.5 (c′),

Ef1(Y (1)(τ ′δ)) = Ef2(Y (2)(τ ′δ)) = y.
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On the other hands, by (5.1) and (5.2), we know

Y (1)(τ ′δ) ≤ Y (2)(τ ′δ)

and
P (Y (1)(τ ′δ) < Y (2)(τ ′δ)) > 0.

It then follows from Definition 4.4 and Proposition 4.5 (b′) that

y = Ef1(Y (1)(τ ′δ)) < Ef1(Y (2)(τ ′δ)),

but from i), we have
Ef1(Y (2)(τ ′δ)) ≤ Ef2(Y (2)(τ ′δ)) = y,

which is a contradiction. So we conclude ii) holds.

The above results may be used for market models using Markov chain noise and
f -expectations. With the terminal condition fixed the converse theorem compares the
f -expectations, then the drivers and vice-versa. If different pricing systems, arising from
different drivers, can be chosen from the markets the converse theorem ensures the
existence of a minimal pricing system because as long as the drivers are comparable,
the f -expectations are.

6 Conclusion

We have considered BSDEs driven by Markov chain noise. A comparison theorem
has been established using more simple conditions only on the drivers. This simplifies
applications of the result. A non-linear f -expectation is defined for one dimensional
BSDEs with Markov chain noise and finally a converse comparison theorem is proved
using the f -expectation.
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