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Abstract

We show that matrix elements of functions of N ×N Wigner matrices fluctuate on a
scale of order N−1/2 and we identify the limiting fluctuation. Our result holds for any
function f of the matrix that has bounded variation thus considerably relaxing the
regularity requirement imposed in [7, 11].
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1 Introduction

The density of states of an N ×N Wigner random matrix H = H(N) converges to the
Wigner semicircular law [19]. More precisely, for any continuous function f : R→ C

lim
N→∞

1

N
Tr f(H) = lim

N→∞

1

N

N∑
k=1

f(λk) =

∫
f(x)µsc(dx) (1.1)

where λ1, . . . , λN are the (real) eigenvalues of H and µsc(dx) ..= 1
2π

√
(4− x2)+ dx.

It is well known that for regular functions f , the normalized linear eigenvalue
statistics 1

N Tr f(H) have an asymptotically Gaussian fluctuation on scale of order 1/N ,
see, for example, [17, 8, 1, 15, 14, 6, 2] for different results in this direction, also
for other random matrix ensembles. To our knowledge, this result under the weakest
regularity condition on f was proved in [17]; for general Wigner matrices f ∈ H1+ε

was required, while for Wigner matrices with substantial GUE component f ∈ H1/2+ε

was sufficient. Notice that the order of the fluctuation 1/N is much smaller than 1/
√
N

which would be predicted by the standard central limit theorem (CLT) if the eigenvalues
were weakly dependent. The failure of CLT on scale 1/

√
N is a signature of the strong

correlations among the eigenvalues.
In this paper we investigate the individual matrix elements of f(H). We will show

that the semicircle law (1.1) holds also for any diagonal matrix element f(H)ii and not
only for their average, 1

N Tr f(H); however, the corresponding fluctuation is much larger,

it is on scale 1/
√
N . Moreover, the limiting distribution of the rescaled fluctuation is
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Fluctuations of functions of Wigner matrices

not necessarily Gaussian; it also depends on the distribution of the matrix element hii.
Similar fluctuation results hold for the off diagonal matrix elements f(H)ij , i 6= j. For
regularity condition, we merely assume that f is of bounded variation, f ∈ BV . We also
prove an effective error bound of order N−2/3 that we can improve to N−1 if f ′ ∈ L∞,
i.e. we provide a two-term expansion for each matrix element of f(H).

Similar results (with less precise error bounds) were obtained previously in [9] for
Gaussian random matrices and in [10, 11, 12] for general Wigner matrices under the
much stronger regularity assumptions that∫

R

(1 + |ξ|)3
∣∣∣f̂(ξ)

∣∣∣dξ <∞ or

∫
R

(1 + |ξ|)2s
∣∣∣f̂(ξ)

∣∣∣2 dξ <∞ for some s > 3, (1.2)

where f̂(ξ) ..=
∫
R
e−iξxf(x) dx. The main novelty of the current work is thus to relax

these regularity conditions to f ∈ BV . In addition, [10, 11, 12] assumed that in the
case of complex Hermitian matrices, the real and imaginary part of the entries have
equal variance. Our approach does not require this technical assumption. We also
refer to [7] where similar questions have been studied for more general statistics of the
form Tr[f(H)A] for non-random matrices A under the fairly strong regularity condition∫

(1 + |ξ|)4|f̂(ξ)|dξ <∞.
A special case of these questions is when the test function f(x) is given by ϕz(x) =

(x− z)−1 for some complex parameter z in the upper half plane, η ..= =z > 0. In fact, for
f which are analytic in a complex neighborhood of [−2, 2], a simple contour integration
shows that for the linear statistics it is sufficient to understand the resolvent of H, i.e.,
ϕz(H) = (H − z)−1 for any fixed z in the upper half plane. If f is less regular, one may
still express f(H) as an integral of the resolvents over z, weighted by the ∂z̄-derivative
of an almost analytic extension of f to the upper half plane (Helffer-Sjöstrand formula).
In this case, the integration effectively involves the regime of z close to the real axis,
so the resolvent (H − z)−1 and its matrix elements need to be controlled even as η → 0

simultaneously with N →∞. These results are commonly called local semicircle laws.
They hold down to the optimal scale η � 1/N with an optimal error bound of order
1/
√
Nη for the individual matrix elements and a bound of order 1/Nη for the normalized

trace of the resolvent (see, e.g. [5]). With the help of the Helffer-Sjöstrand formula,
more accurate local laws can be transformed to weaker regularity assumptions on the
test function in the linear eigenvalue statistics, see [17]. In this paper we replace
the Helffer-Sjöstrand formula by Pleijel’s formula [13] that provides a more effective
functional calculus for functions with low regularity.

A similar relation between regularity and local laws holds for individual matrix
elements, f(H)ii. Using the Schur complement formula one can relate f(H)ii to the
difference of a linear statistics for H and for its minor Ĥ obtained by removing the
i-th row and column from H. In a recent paper [3] we investigated the fluctuations of
this difference without directly connecting it to f(H)ii. Applied to a special family of
test function f(x) = |x− a|, the difference of linear statistics is closely related to the
fluctuation of Kerov’s interlacing sequences of the eigenvalues of H and its minor.

Motivated by this application, Sasha Sodin pointed out that this fluctuation can be
related to the fluctuation of a single matrix element of the resolvent by the Markov
correspondence, see [16] for details. It is therefore natural to ask if one could use the
fluctuation result from [3] on the interlacing sequences to strengthen the existing results
on the fluctuations of the matrix elements of the resolvent and hence of f(H). In fact,
not the result itself, but the core of the analysis in [3] can be applied; this is the content
of the current paper. We thank Sasha for asking this question and calling our attention to
the problem of fluctuation of the matrix elements of f(H) and to the previous literature
[9, 10, 11, 12]. Furthermore, he pointed out to us that the contour integral formula
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Fluctuations of functions of Wigner matrices

from Pleijel’s paper [13] could potentially replace the Helffer-Sjöstrand formula in our
argument to the end of further reducing the regularity assumptions on f . We are very
grateful to him for this insightful idea that we believe will have further applications.

2 Main results

We consider complex Hermitian and real symmetric random N ×N matrices H =

(hij)
N
i,j=1 with the entries being independent (up to the symmetry constraint hij = hji)

random variables satisfying

Ehij = 0, E |hij |2 =
sij
N

and E |hij |p ≤
µp
Np/2

(2.1)

for all i, j, p and some absolute constants µp. We assume that the matrix of variances is
approximately stochastic, i.e. ∑

j

sij = N +O (1) (2.2)

to guarantee that the limiting density of states is the Wigner semicircular law.
To formulate the error bound concisely we introduce the following commonly used

(see, e.g., [4]) notion of high probability bound.

Definition 2.1 (Stochastic Domination). If

X =
(
X(N)(u) |N ∈ N, u ∈ U (N)

)
and Y =

(
Y (N)(u) |N ∈ N, u ∈ U (N)

)
are families of random variables indexed by N , and possibly some parameter u, then we
say that X is stochastically dominated by Y , if for all ε,D > 0 we have

sup
u∈U(N)

P
[
X(N)(u) > N εY (N)(u)

]
≤ N−D

for large enough N ≥ N0(ε,D). In this case we use the notation X ≺ Y . Moreover, if we
have |X| ≺ Y , we also write X = O≺ (Y ).

It can be checked (see [4, Lemma 4.4]) that ≺ satisfies the usual arithmetic properties,
e.g. if X1 ≺ Y1 and X2 ≺ Y2, then also X1 + X2 ≺ Y1 + Y2 and X1X2 ≺ Y1Y2. We
will say that a (sequence of) events A = A(N) holds with overwhelming probability if
P(A(N)) ≥ 1−N−D for any D > 0 and N ≥ N0(D). In particular, under the conditions
(2.1), we have hij ≺ N−1/2 and maxk |λk| ≤ 3 with overwhelming probability.

We further introduce a notion quantifying the rate of weak convergence of distribu-
tions. We say that a sequence of random variables XN converges in distribution at a rate
r(N) to X if for any t ∈ R it holds that

E eitXN = EitX +Ot (r(N)) ,

where we allow the coefficient of the rate to be t-dependent uniformly for |t| ≤ T for any
fixed T . If XN converges in distribution at a rate r(N), we write

XN
d= X +O (r(N)) .

In particular, this implies that

EΦ(XN ) = EΦ(X) +O (r(N))

for any analytic function Φ with compactly supported Fourier transform.
Our main result for the diagonal entries of f(H) is summarized in the following

theorem. By permutational symmetry there is no loss in generality in studying f(H)11.
By considering real and imaginary parts separately, from now on we always assume that
f is real valued.
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Theorem 2.2. Let the Wigner matrix H satisfy (2.1), sij = 1 for i 6= j and sii ≤ C for all
i, E |h1j |4 = σ4/N

2 for j = 2, . . . , N and Eh2
ij = σ2/N with some σ2, σ4 ∈ R. Moreover,

let f ∈ BV ([−3, 3]) be some real-valued function of bounded variation and assume that
h11

d= ξ11/
√
N where ξ11 is an N -independent random variable. Then

f(H)11
d=

∫
f(x)µsc(dx) +

∆̂f + ξ11

∫
f(x)xµsc(dx)√
N

+

{
O
(
N−1

)
if f ′ ∈ L∞,

O
(
N−2/3

)
else,

(2.3)

where ∆̂f is a centered Gaussian random variable of variance

E
(

∆̂f

)2

= Vf,1 + V
(σ2)
f,1 − 2Vf,2 − (1 + σ2)Vf,3 + (σ4 − 2− σ2

2)Vf,4, (2.4)

and the Vf,i and V (σ2)
f,1 are given by quadratic forms defined in (4.13).

More precisely, (2.3) means that, to leading order

f(H)11 =

∫
f(x)µsc(dx) +O≺

(
N−1/2

)
(2.5)

and, weakly

T
(N)
f

..=
√
N

[
f(H)11 −

∫
f(x)µsc(dx)

]
− ξ11

∫
f(x)xµsc(dx)⇒ ∆̂f (2.6)

at a speed

E
(
T

(N)
f

)k
= E ∆̂k

f +

O
(
Ck(k/2)!√

N

)
if f ′ ∈ L∞,

O
(
Ck(k/2)!
N1/6

)
else

for all k. The speed of convergence in the Lévy metric dL is given by

dL(T
(N)
f , ∆̂f ) ≤ C(f)

log logN√
logN

(2.7)

with some constant depending on f .

The corresponding result for the off diagonal terms is as follows.

Theorem 2.3. Under the assumptions of Theorem 2.2,

f(H)12
d=

1√
N

[
∆̃f + ξ12

∫
f(x)xµsc(dx)

]
+

{
O
(
N−1

)
if f ′ ∈ L∞,

O
(
N−2/3

)
else,

(2.8)

where ∆̃f is a centered complex Gaussian satisfying

E ∆̃2
f = V

(σ2)
f,1 − Vf,2 − σ2Vf,3, E

∣∣∣∆̃f

∣∣∣2 = Vf,1 − Vf,2 − Vf,3.

and the Vf,i and V (σ2)
f,1 are defined in (4.13).

More precisely, (2.8) means that

f(H)12 = O≺
(
N−1/2

)
(2.9)

and, introducing the notation

S
(N)
f

..=
√
Nf(H)12 − ξ12

∫
f(x)xµsc(dx),
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we have that

E
(
S

(N)
f

)k (
S

(N)
f

)l
= E ∆̃k

f ∆̃f

l

+

O
(

((k+l)/2)!√
N

)
if f ′ ∈ L∞,

O
(

((k+l)/2)!
N1/6

)
else

holds for all k, l ∈ N. The analogues of (2.6) and (2.7) also hold for T (N)
f replaced with

S
(N)
f .

The fluctuation results in Theorems 2.2 and 2.3 for test functions satisfying the
stronger regularity assumption (1.2) and without explicit error terms have been proven
in [10, 11].

We also remark that (2.6) implies the joint asymptotic normality of the fluctuations of
f(H(N))11 for several test functions. More precisely, for any f ∈ BV we define T (N)

f via
(2.6). Then for any given functions f1, f2, . . . , fk ∈ BV , the random k-vector(

T
(N)
f1

, T
(N)
f2

, . . . , T
(N)
fk

)
weakly converges to a Gaussian vector with covariance given via the variance (2.4)
using the parallelogram identity. Similar result holds for the joint distribution of the
off diagonal elements fk(H)12. One may specialize this result to the case when f is a
characteristic function, i.e. we may define

T (N)
x

..= T
(N)
1[−3,x]

, x ∈ [−3, 3],

where 1[a,b] is the characteristic function of the interval [a, b]. Clearly, the finite di-

mensional marginals of the sequence of stochastic processes {T (N)
x , x ∈ [−3, 3]} are

asymptotically Gaussian. The tightness remains an open question.

3 Pleijel’s inversion formula

Our main tool relating f(H)ij to the resolvent G = G(z) = (H−z)−1 is summarized in
the following proposition. We formulate it for general probability measures µ supported
on some [−K,K] and their Stieltjes transform

mµ(z) =

∫
1

λ− z
µ(dλ).

Later we will apply the proposition to µ = ρN and µ = ρ̃N with ρN , ρ̃N being the spectral
measures of typical diagonal and off-diagonal entries∫

f dρN = f(H)11,

∫
f dρ̃N = f(H)12.

Proposition 3.1. Let L > K > 0 and let µ denote a probability measure which is
supported on [−K,K] and let f ∈ BV ([−L,L]) be a function of bounded variation which
is compactly supported in [−L,L]. Then∫

f(λ)µ(dλ) =
1

2π

∫∫
IMη0

mµ(x+ iη) dη df(x) +
1

π

∫ L

−L
f(x)=mµ(x+Mi) dx (3.1)

+O
(
η0 ‖mµ(·+ iη0)‖L1(|df |)

)
=

1

2π

∫∫
IMη0

mµ(x+ iη) dη df(x) +O
(
η0 ‖mµ(·+ iη0)‖L1(|df |) +

1

M
‖f‖1

)
holds for any η0,M > 0 where IMη0

..= [−L,L]× ([−M,M ] \ [−η0, η0]), ‖·‖1 = ‖·‖L1(dx) and
df is understood as the (signed) Lebesgue–Stieltjes measure.
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Before going into the proof, we present a special case of Proposition 3.1. If f = 1[x,x′],
then (3.1) can be written as the path integral

µ([x, x′]) =
1

2πi

∫
γ(x,x′)

mµ(z) dz +O (η0[|mµ(x+ iη0)|+ |mµ(x′ + iη0)|]) , (3.2)

where γ(x, x′) is the chain indicated in Figure (1c). We also want to remark that for
our purposes (3.1) is favorable over the Helffer-Sjöstrand representation, as used in [3],
since it requires considerably less regularity on f .

Proof of Proposition 3.1. From [13, Eq. (5)] we know that

µ([−K,x)) =
1

2πi

∫
L(x)

mµ(z) dz +
η0

π
<mµ(z0) +O (η0=mµ(z0)) , (3.3)

where L(x) is a directed path as indicated in Figure 1a and z0 = x+ iη0, η0 > 0.

−K Kx−L L

−M

M

−η0

η0

(a) Path L(x)

−K Kx−L L

−M

M

−η0

η0

(b) Path R(x)

−K Kx−L L

−M

M

−η0

η0

x′

(c) Chain γ(x, x′)

Figure 1: Integration paths

By the definition of the Lebesgue–Stieltjes integral for functions of bounded variation
we have that∫

f(λ)µ(dλ) =

∫ L

−L

(∫
1(λ ≥ x)µ(dλ)

)
df(x) =

∫ L

−L
µ([x,K]) df(x).

By virtue of (3.3) we can write∫
f(λ)µ(dλ) =

1

π

∫ L

−L

(
1

2i

∫
R(x)

mµ(z) dz

)
df(x) +O

(
η0 ‖mµ(·+ iη0)‖L1(|df |)

)
,

where R(x) is the path indicated in Figure 1b and |df | indicates the total variation
measure of df . We then write out the inner integral as

1

2i

∫
R(x)

mµ(z) dz =

∫ M

η0

<mµ(x+ iη) dη +

∫ L

x

=mµ(y + iM) dy −
∫ M

0

<mµ(L+ iη) dη.

Since the last term is x-independent, it will vanish after integrating against df since we
assumed f to be compactly supported. For the second term we find∫

f(λ)µ(dλ) =
1

π

∫ L

−L

∫ M

η0

<mµ(x+ iη) dη df(x) +
1

π

∫ L

−L
f(x)=mµ(x+ iM) dx

+O
(
η0 ‖mµ(·+ iη0)‖L1(|df |)

)
.

Since |=mµ(x+ iM)| ≤ 1/M we thus have∫
f(λ)µ(dλ) =

1

π

∫ L

−L

∫ M

η0

<mµ(x+ iη) dη df(x) +O
(
η0 ‖mµ(·+ iη0)‖L1(|df |) +

1

M
‖f‖1

)
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for any η0,M > 0. For applications it turns out to be favorable to get rid of the real part
which we can by noting that 2<mµ(z) = mµ(z) +mµ(z) and therefore∫

f(λ)µ(dλ) =
1

2π

∫∫
IMη0

mµ(x+ iη) dη df(x) +O
(
η0 ‖mµ(·+ iη0)‖L1(|df |) +

1

M
‖f‖1

)
,

where we recall IMη0 = [−L,L]× ([−M,M ] \ [−η0, η0]).

We finally note that a variant of Proposition 3.1 could also be proven directly without
appealing to the contour integration from [13]. The key computation in that direction is
summarized in the following Lemma which we establish here for later convenience.

Lemma 3.2. Let f ∈ BV ([−L,L]) be compactly supported and let g be a function which
is analytic away from the real axis and satisfies g(z) = g(z). Then for any η0,M > 0 we
have that

1

2π

∫∫
IMη0

g(x+ iη) dη df(x) =
1

π

∫ L

−L
f(x)=g(x+ iη0) dx+O

(
‖f‖1 max

x∈[−L,L]
|g(x+ iM)|

)
.

Applying Lemma 3.2 to g = mµ yields, modulo an error term,

1

2π

∫∫
IMη0

mµ(x+ iη) dη df(x) ≈
∫ ∫ L

−L
f(x)

1

π

η0

(λ− x) + η2
0

dxµ(dλ)

and taking the limit η0 → 0 makes the inner integral tend to f(λ) in L1-sense. In this way
we can establish a variant of Proposition 3.1, albeit with a weaker error estimate.

Proof of Lemma 3.2. This follows from the computation∫∫
IMη0

g(x+ iη) dη df(x) = −i
∫
∂IMη0

f(x)g(z) dz = 2

∫ 3

−3

f(x)= [g(x+ iη0)− g(x+ iM)] dx

= 2

∫ 3

−3

f(x)=g(x+ iη0) dx+O
(
‖f‖1 max

x∈[−3,3]
|g(x+ iM)|

)
,

where the first step follows from Stokes’ or Green’s Theorem.

4 Diagonal entries

We first prove Theorem 2.2 about the diagonal entries of f(H). The spectral measure
corresponding to the (1, 1)-matrix element, ρN defined as∫

f dρN = f(H)11

is concentrated in [−2.5, 2.5] with overwhelming probability. We can without loss of
generality assume that f is compactly supported in [−3, 3] since smoothly cutting off f
outside the spectrum does not change the result. Applying Proposition 3.1 to µ = ρN
with K = 2.5, L = 3, we find that (using z = x+ iη, z0 = x+ iη0)

f(H)11 =
1

2π

∫∫
IMη0

G(z)11 dη df(x) +O≺
(
η0

∫
|G(z0)11|df(x) +

1

M
‖f‖1

)
. (4.1)

To analyse G(z)11 we recall the Schur complement formula

G(z)11 =
1

h11 − z −
〈
h, Ĝ(z)h

〉 , where H =

(
h11 h∗

h Ĥ

)
, Ĝ(z) ..= (Ĥ − z)−1.
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To study the asymptotic behavior of G(z)11 we rely on the local semicircle law in the
averaged form (see [5] or [4, Theorem 2.3]) applied to the resolvent of the minor

m̂N (z) =
1

N
Tr Ĝ(z) = m(z) +O≺

(
1

N |η|

)
, (4.2)

and its entry-wise form

G(z)ij − δijm(z) ≺ 1√
N |η|

(4.3)

which both hold true for all |η| = |=z| > η0 � N−1. Here m denotes the Stieltjes
transform of the semicircular distribution µsc, m(z) ..=

∫
(λ− z)−1 µsc(dλ).

Since by (4.3),∫
|G(x+ iη0)11|df(x) =

∫
|m(x+ iη0)|df(x) +O≺

(∫ ∣∣∣∣ 1√
Nη0

∣∣∣∣df(x)

)
≺ ‖df‖

for η0 � 1/N , where ‖df‖ is the total variation norm of the Lebesgue–Stieltjes measure
df , we can write (4.1) as

f(H)11 =
1

2π

∫∫
IMη0

G(x+ iη)11 dη df(x) +O≺
(
η0 ‖df‖+M−1 ‖f‖1

)
.

In order to separate the leading order contribution from the fluctuation, we set

ΦN (z) = G(z)11 =
1

h11 − z −
〈
h, Ĝ(z)h

〉 , Φ̂N (z) =
1

−z − m̂N (z)
,

where m̂N (z) = 1
N Tr Ĝ(z) and observe that

Φ̂N (z) =
1

−z −m(z)
+
O≺ (m(z)− m̂N (z))

−z −m(z)
= m(z) +O≺

(
1

N |η|

)
(4.4)

and by expanding both terms around [−z −m(z)]−1 = m(z),

ΦN (z)− Φ̂N (z) = m(z)2
[〈
h, Ĝ(z)h

〉
− m̂N (z)− h11

]
+O≺

(
1

N |η|

)
. (4.5)

Thus Φ̂N describes the leading order behavior, which is very close to a deterministic
quantity, and the leading fluctuation is solely described by ΦN − Φ̂N . We then can write

f(H)11 = Λ
(N)
f +

∆
(N)
f√
N

+O≺
(
η0 ‖df‖+

1

M
‖f‖1

)
,

where

Λ
(N)
f

..=
1

2π

∫∫
IMη0

Φ̂N (z) dη df(x) and ∆
(N)
f

..=
1

2π

∫∫
IMη0

√
N [ΦN − Φ̂N (z)] dη df(x).

The reason for the normalization will become apparent later since in this way ∆
(N)
f is an

object of order 1.
For the leading order term we use (4.4) and Proposition 3.1 to compute

Λ
(N)
f =

1

2π

∫
IMη0

m(z) dη df(x) +O≺

(
‖df‖

∫ M

η0

1

Nη
dη

)

=

∫
f(x)µsc(dx) +O≺

([
|logM |+ |log η0|

N
+ η0

]
‖df‖+

1

M
‖f‖1

)
.
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Fluctuations of functions of Wigner matrices

For the fluctuation we use (4.5) to compute

∆
(N)
f =

1

2π

∫
IMη0

m(z)2
√
N
[〈
h, Ĝ(z)h

〉
− m̂N (z)− h11

]
dη df(x)

+O≺
(
|logM |+ |log η|√

N
‖df‖

)
= ∆̂

(N)
f − ξ11

1

2π

∫
IMη0

m(z)2 dη df(x) +O≺
(
|logM |+ |log η|√

N
‖df‖

)
(4.6)

= ∆̂
(N)
f + ξ11

∫
f(x)xµsc(dx) +O≺

(
|logM |+ |log η|√

N
‖df‖+ η0 +

1

M2
‖f‖1

)
,

where the last step followed from Lemma 3.2 and

ξ11 =
√
Nh11, ∆̂

(N)
f

..=
1

2π

∫
IMη0

m(z)2X(z) dη df(x), X(z) =
√
N
[〈
h, Ĝ(z)h

〉
− m̂N (z)

]
.

We now concentrate on the computation of E
(

∆̂
(N)
f

)2

. We state the main estimate of

EX(z)X(z′) as a lemma.

Lemma 4.1. Under the assumptions of Theorem 2.2 it holds that

EX(z)X(z′) =
m(z)2m(z′)2

1−m(z)m(z′)
+

σ3
2m(z)2m(z′)2

1− σ2m(z)m(z′)
+ (σ4 − 1)m(z)m(z′) +O≺

(
Ψ√
NΦ

)
,

(4.7)

where

Ψ ..=
1√
|ηη′|

(
1√
|η|

+
1√
|η′|

+
1√

N |ηη′|

)
Φ ..= 1|x|,|x′|≤2

(
|η|+ |η′|+ |x− x′|2

)
+ [(|x| − 2)+ + (|x′| − 2)+]

and z = x+ iη, z′ = x′ + iη′.

We remark that in the |x− x′|2 term in Φ could be replaced by |x− x′| but we will not
need this stronger bound here.

Proof of Lemma 4.1. From (35) in [3] we know that

E
[
X(z)X(z′)|Ĥ

]
=

1

N

∑
i6=j

(
ĜijĜ

′
ji + σ2

2ĜijĜ
′
ji

)
+
σ4 − 1

N

∑
i

ĜiiĜ
′
ii (4.8)

where, Ĝij ..= Ĝ(z)ij , Ĝ′ij
..= Ĝ(z′)ij . The last term we directly estimate as

σ4 − 1

N

∑
i

ĜiiĜ
′
ii = (σ4 − 1)m(z)m(z′) +O≺

(
1√
N |η|

+
1√
N |η′|

+
1

N
√
|ηη′|

)
. (4.9)

Furthermore, in Lemma 9 of [3] self-consistent equations for the first two terms on the
rhs. of (4.8) were derived. We recall that

[1−m(z)m(z′)]
1

N

∑
i 6=j

ĜijĜ
′
ji = m(z)2m(z′)2 +O≺

(
Ψ√
N

)
,

[1− σ2m(z)m(z′)]
1

N

∑
i 6=j

ĜijĜ
′
ij = σ2m(z)2m(z′)2 +O≺

(
Ψ√
N

)
,
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Fluctuations of functions of Wigner matrices

Using the straightforward inequality |m(z)| ≤ 1− c |η|, which holds for some small c > 0

and z in the compact region [−10, 10]× [−i, i], we find

|1−m(z)m(z′)| ≥ c(|η|+ |η′|).

Since |m| decays outside the spectrum [−2, 2] we have that |m(z)| ≤ 1− c′(|x| − 2)+ for
|z| ≤ 10, and therefore

|1−m(z)m(z′)| ≥ c′(|x| − 2)+ + c′(|x′| − 2)+.

Moreover, in the remaining regime where both |η| , |η′| � 1 and |x| , |x′| ≤ 2, it holds that

|1−m(z)m(z′)| ≥ 1−<[m(z)m(z′)] = 1− (<m(z))(<m(z′)) + (=m(z))(=m(z′))

≥ c′′
(

1− xx′

4
±
√

4− x2
√

4− x′2
4

)
≥ c′′(x− x′)2,

where the ± depends on the signs of η, η′ and we allow for the constant c′′ to change
in the last inequality. This estimate follows from the explicit formula for m(z). Putting
these inequalities together, we therefore find a constant C > 0 such that in the compact
region [−3, 3]× [−iM, iM ] it holds that C |1−m(z)m(z′)| ≥ Φ , from which we obtain

1

N

∑
i 6=j

ĜijĜ
′
ji =

m(z)2m(z′)2

1−m(z)m(z′)
+O≺

(
Ψ√
NΦ

)
, (4.10)

1

N

∑
i 6=j

ĜijĜ
′
ij =

σ2m(z)2m(z′)2

1− σ2m(z)m(z′)
+O≺

(
Ψ√
NΦ

)
.

Now (4.7) follows from combining (4.8), (4.9) and (4.10).

Using Lemma 4.1 we then compute

E
(

∆̂
(N)
f

)2

=
1

(2π)2

∫∫∫∫
IMη0

m(z)2m(z′)2 EX(z)X(z′) dη df(x)

=
1

(2π)2

∫∫∫∫
IMη0

[ m(z)4m(z′)4

1−m(z)m(z′)
+

σ3
2m(z)4m(z′)4

1− σ2m(z)m(z′)

+ (σ4 − 1)m(z)3m(z′)3
]

dη df(x) +O

(∫∫∫∫
IMη0

Ψ√
NΦ

dη df(x)

)
,

where dη = dη dη′ and df(x) = df(x) df(x′). To estimate the error term we have to
compute ∫∫ 2

−2

∫∫ M

η0

1

η + η′ + |x− x′|2
1√
ηη′

(
1
√
η

+
1√
η′

+
1√
Nηη′

)
dη df(x)

and readily check that∫∫∫∫
IMη0

Ψ√
NΦ

dη df(x) ≺

{
(|logM |+ |log η0|)/

√
N if f ′ is bounded,

(|logM |+ |log η0|)/
√
Nη0 else.

By using Lemma 3.2 and organizing the contributions from the boundary terms at η0

and −η0, we find that the leading order of E(∆̂
(N)
f )2 becomes

1

2π2
<
∫∫ 3

−3

f(x)f(x′)

([
m(z0)4m(z′0)4

1−m(z0)m(z′0)
+

σ3
2m(z0)4m(z′0)4

1− σ2m(z0)m(z′0)
+ (σ4 − 1)m(z0)3m(z′0)3

]

−
[
m(z0)4m(z′0)4

1−m(z0)m(z′0)
+

σ3
2m(z0)4m(z′0)4

1− σ2m(z0)m(z′0)
+ (σ4 − 1)m(z0)3m(z′0)3

])
dx+O≺

(
‖f‖1
M3

)
,

(4.11)
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Fluctuations of functions of Wigner matrices

where z0 = x+ iη0 and z′0 = x′ + iη0. Since

a4

1− a
=

a

1− a
− a− a2 − a3

and for any fixed k ∈ N

1

2π2
<
∫∫ 3

−3

f(x)f(x′)
[
m(z0)km(z′0)k −m(z0)km(z′0)k

]
dx

=

(
1

π
=
∫ 2

−2

f(x)m(x)k dx

)2

+O≺ (η0)

we can conclude that (4.11) becomes

1

2π2
<
∫∫ 3

−3

f(x)f(x′)

(
m(z0)m(z′0)

1−m(z0)m(z′0)
− m(z0)m(z′0)

1−m(z0)m(z′0)

)
dx

+
1

2π2
<
∫∫ 3

−3

f(x)f(x′)

(
m(z0)m(z′0)

1− σ2m(z0)m(z′0)
− m(z0)m(z′0)

1− σ2m(z0)m(z′0)

)
dx

− 2

(
1

π
=
∫
R

f(x)m(x) dx

)2

− (1 + σ2)

(
1

π
=
∫
R

f(x)m(x)2 dx

)2

+ (σ4 − 2− σ2
2)

(
1

π
=
∫
R

f(x)m(x)3 dx

)2

+O
(
‖f‖L1

M3
+ η0

)
. (4.12)

The first term of (4.12) was already computed on page 17 of [3]. The computation of
the second term is very similar to the first one and the remaining terms are routine
calculations. We arrive at

E
(

∆̂
(N)
f

)2

= Vf,1 + V
(σ2)
f,1 − 2Vf,2 − (1 + σ2)Vf,3 + (σ4 − 2− σ2

2)Vf,4

+O
(
η0 +

‖f‖1
M3

+
|logM |+ |log η0|√

Nη0
‖df‖

)
in the general case and

E
(

∆̂
(N)
f

)2

= Vf,1 + V
(σ2)
f,1 − 2Vf,2 − (1 + σ2)Vf,3 + (σ4 − 2− σ2

2)Vf,4

+O
(
η0 +

‖f‖1
M3

+
|logM |+ |log η0|√

N
‖f ′‖L∞

)
in the case of f with bounded derivative f ′ ∈ L∞([−3, 3]), where

Vf,1 ..=

∫
f(x)2 µsc(dx),

V
(σ2)
f,1

..=

∫∫
f(x)f(y)(1− σ2

2)

1− xyσ2 + (x2 + y2 − 2)σ2
2 − xyσ3

2 + σ4
2

µsc(dx)µsc(dy)

Vf,2 ..=

(∫
f(x)µsc(dx)

)2

, Vf,3 ..=

(∫
f(x)xµsc(dx)

)2

,

Vf,4 ..=

(∫
f(x)(x2 − 1)µsc(dx)

)2

. (4.13)

We note that V (σ2)
f,1 simplifies to V (1)

f,1 = Vf,1 and V
(0)
f,1 = Vf,2 in the two important cases

σ2 = 0, 1.
We now choose M = N and η0 depending on the regularity of f . In the general

case of f ∈ BV ([−3, 3]) it turns out that η0 = N−2/3 minimizes the error of E
(

∆̂
(N)
f

)2

,
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Fluctuations of functions of Wigner matrices

whereas for f with bounded derivative, a choice of η0 = N−1+ε for any small ε > 0 is
optimal. Thus

E
(

∆̂
(N)
f

)2

= E
(

∆̂f

)2

+

{
O≺

(
N−1/2

)
if f ′ ∈ L∞([−3, 3]),

O≺
(
N−1/6

)
else.

(4.14)

where ∆̂f is a centered Gaussian of variance

E
(

∆̂f

)2

= Vf,1 + V
(σ2)
f,1 − 2Vf,2 − (1 + σ2)Vf,3 + (σ4 − 2− σ2

2)Vf,4.

For higher moments we recall the following Wick type factorization Lemma from [3].

Lemma 4.2. For k ≥ 2 and z1, . . . , zk ∈ C with zl = xl ± iηl and ηl > 0 we have that

E[X(z1) . . . X(zk)] =
∑

π∈P2([k])

∏
{a,b}∈π

E[X(za)X(zb)] +O≺

 1√
Nη

∑
a 6=b

1
√
ηaΦa,b

 , (4.15)

where [k] ..= {1, . . . , k}, η = η1 . . . ηk, P2(L) are the partitions of a set L into subsets of
size 2 and

Φa,b ..= 1|xa|,|xb|≤2

(
|ηa|+ |ηb|+ |xa − xb|2

)
+ [(|xa| − 2)+ + (|xb| − 2)+] .

The error term in (4.15) is slightly stronger than that in [3] since the Φa,b includes a
|xa − xb|2. This strengthening follows along the lines of the original proof by using the
more precise analysis of the self consistent equation outlined in Lemma 4.1. We check
that integrating the error term from (4.15) over (IMη0 )k, with η0 being chosen as above

according to the regularity of f , again gives asymptotically N−1/2 in the case of bounded
f ′ and N−1/6 in the general case. By integrating the Wick type product and using (4.14)
we therefore arrive at

E
(

∆̂
(N)
f

)k
= E

(
∆̂f

)k
+

{
O≺

(
N−1/2

)
if f ′ ∈ L∞([−3, 3]),

O≺
(
N−1/6

)
else.

(4.16)

We note that the error terms are implicitly k-dependent. By counting the number of
pair partitions we find that, to the leading order in N , the implicit coefficients scale like
Ck(k/2)! with a constant depending on f .

Recalling (4.6) and the definition of T (N)
f from (2.6), we conclude that the overall

fluctuations have moments

E
(
T

(N)
f

)k
= E

(
∆̂f

)k
+

{
O
(
Ck(k/2)!N−1/2

)
if f ′ ∈ L∞([−3, 3]),

O
(
Ck(k/2)!N−1/6

)
else.

(4.17)

Let φN (t) denote the characteristic function of T (N)
f and φ(t) the characteristic

function of the Gaussian variable ∆̂f . Then the moment bound (4.17) implies that

|φN (t)− φ(t)| ≤ CN−1/6teCt
2

with some constant C depending on f . Using the well-known bound (see, e.g., [18,
Theorem 1.4.13.] and the references therein)

dL(F,G) ≤ 1

π

∫ T

0

|φF (t)− φG(t)| dt
t

+
2e log T

T

for any two distributions F and G with characteristic functions φF and φG, we immedi-
ately obtain (2.7) by choosing T = c

√
logN . This completes the proof of Theorem 2.2.
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5 Off-diagonal entries

For the decomposition

H =

h11 h12 h∗1
h21 h22 h∗2
h1 h2 Ĥ


we find from the Schur complement formula that

G(z)12 = − g12

g11g22 − g12g21
= −m(z)2g12 +O≺

(
1

N |η|

)
,

where gij ..= hij − δijz − 〈hi, G(z)hj〉.
We now set Y (z) = Y (N)(z) ..=

√
N
〈
h1, Ĝ(z)h2

〉
and begin to compute (all summation

indices run from 3 to N )

E
[
Y (z)Y (z′)|Ĥ

]
= N

∑
a,b,c,d

E
[
h1aĜabhb2h1cĜ

′
cdhd2|Ĥ

]
(5.1)

=
σ2

2

N

∑
a,b

ĜabĜ
′
ab +O≺

(
Ψ

N

)
=

σ2
2m(z)m(z′)

1− σ2m(z)m(z′)
+O≺

(
Ψ√
NΦ

)
and

E
[
Y (z)Y (z′)|Ĥ

]
= N

∑
a,b,c,d

E
[
h1aĜabhb2h2cĜ

′
cdhd1|Ĥ

]
(5.2)

=
1

N

∑
a,b

ĜabĜ
′
ba +O≺

(
Ψ

N

)
=

m(z)m(z′)

1−m(z)m(z′)
+O≺

(
Ψ√
NΦ

)
.

For both estimates we made use of the fact the hab are centered and therefore have
to appear at least twice to have non-zero expectation. The main contribution comes
from the pairing a = d, b = c. Some exceptional pairings, such as the four-pairing
a = b = c = d, were incorporated in the error term by their reduced combinatorics. From
Proposition 3.1 we then find that

f(H)12 =
1

π

∫∫
IMη0

m(z)2
[〈
h1, Ĝ(z)h2

〉
− h12

]
dη df(x) +O≺

(
‖df‖
N

)
.

For the second term it follows, just as before, that

1

π

∫∫
IMη0

m(z)2h12 dη df(x) = h12

∫
f(x)xµsc(dx) +O≺ (η0) .

For the first term we set

∆̃
(N)
f

..=

∫∫
IMη0

m(z)2Y (z) dη df(x)

and by a computation analogous to (4.11) using (5.1) and an expansion of the form

a3

1− a
=

a

1− a
− a− a2

we arrive at

E
(

∆̃
(N)
f

)2

= V
(σ2)
f,1 − Vf,2 − σ2Vf,3 +

{
O≺

(
N−1/2

)
if f ′ ∈ L∞([−3, 3]),

O≺
(
N−1/6

)
else.
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Similarly, from (5.2) we find that

E
∣∣∣∆̃(N)

f

∣∣∣2 = Vf,1 − Vf,2 − Vf,3 +

{
O≺

(
N−1/2

)
if f ′ ∈ L∞([−3, 3]),

O≺
(
N−1/6

)
else.

.

Finally, due to a Wick type theorem for Y (z) which is proved along the lines of Lemma
4.2 we arrive at

E
(
S

(N)
f

)k (
S

(N)
f

)l
= E

(
∆̃f

)k (
∆̃f

)l
+

{
O≺

(
N−1/2

)
if f ′ ∈ L∞([−3, 3]),

O≺
(
N−1/6

)
else,

(5.3)

where ∆̃f is a centered complex Gaussian such that

E ∆̃2
f = V

(σ2)
f,1 − Vf,2 − σ2Vf,3, E

∣∣∣∆̃f

∣∣∣2 = Vf,1 − Vf,2 − Vf,3.

We have proven Theorem 2.3.
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