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1 Introduction

Mean field games (MFGs), introduced independently by [8] and [6], provide a useful
approximation for the finite player Nash equilibrium problems in which the players
are coupled through their empirical distribution. In particular, the mean field game
limit gives an approximate Nash equilibrium, in which the agents’ decision making is
decoupled. In this paper we will consider a particular game in which the interaction
of the players is through their ranks. Our main goal is to construct an approximate
Nash equilibrium for a finite player game when the agents’ dynamics are modulated by
common noise.

Rank-based mean field games, which have non-local mean field interactions, have
been suggested in [4] and analyzed more generally by the recent paper by Carmona
and Lacker [3] using the weak formulation, when there is no common noise. There are
currently no results on the rank-dependent mean field games with common noise. In
order to solve the problem with common noise, we will make use of the mechanism in
[7] by solving the strong formulation of the rank-dependent mean field game without
common noise and then by observing that purely rank-dependent reward functions are
translation invariant.

The rest of the paper is organized as follows: In Section 2 we introduce the N-player
game in which the players are coupled through the reward function which is rank-based.
In Section 3 we consider the case without common noise. We first find the mean field
limit, discuss the uniqueness of the Nash equilibrium, and construct an approximate
Nash equilibrium using the mean field limit. Using these results, in Section 4 we use the
mechanism in [7] and obtain respective results for the common noise.
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A rank-based mean field game

2 The N-player game

We consider N players each of whom controls her own state variable and is rewarded
based on her rank. We will denote by Xi the i-th player’s state variable, and assume that
it satisfies the following stochastic differential equation (SDE)

dXi,t = ai,tdt+ σdBi,t + σ0dWt, Xi,0 = 0,

where ai is the control by agent i, and (Bi)i=1,...,N and W are independent standard
Brownian motions defined on some filtered probability space (Ω,F , {Ft}t∈[0,T ],P), repre-
senting the idiosyncratic noises and common noise, respectively. The game ends at time
T > 0, when each player receives a rank-based reward minus the running cost of effort,
which we will assumed to be quadratic ca2 for some constant c > 0.

In order to precisely define the rank-based reward, let

µ̄N :=
1

N

N∑
i=1

δXi,T

denote the empirical measure of the terminal state of the N -player system. Then
µ̄N (−∞, Xi,T ] gives the fraction of players that finish the same or worse than player
i. Let R × [0, 1] 3 (x, r) 7→ R(x, r) ∈ R be a bounded continuous function that is non-
decreasing in both arguments. For any probability measure µ on R, write Rµ(x) =

R(x, µ(−∞, x]) = R(x, Fµ(x)) where Fµ denotes the cumulative distribution function of µ.
The reward player i receives is given by

Rµ̄N (Xi,T ) = R(Xi,T , µ̄
N (−∞, Xi,T ]) = R(Xi,T , Fµ̄N (Xi,T )).

When R(x, r) is independent of x, the compensation scheme is purely rank-based. In
general, we could have a mixture of absolute performance compensation and relative
performance compensation. The objective of each player is to observe the progress of all
players and choose her effort level to maximize the expected payoff, while anticipating
the other players’ strategies.

The players’ equilibrium expected payoffs, as functions of time and state variables,
satisfy a system of N coupled nonlinear partial differential equations subject to discon-
tinuous boundary conditions, which appears to be analytically intractable. Fortunately,
in a large-population game, the impact of any individual on the whole population is very
small. So it is often good enough for each player to ignore the private state of any other
individual and simply optimize against the aggregate distribution of the population. As a
consequence, the equilibrium strategies decentralize in the limiting game as N → ∞.
We shall use the mean field limit to construct approximate Nash equilibrium for the
N -player game, both in the case with and without common noise.

3 Mean field approximation when there is no common noise

In this section, we assume σ0 = 0. Solving the mean field game consists of two
sub-problems: a stochastic control problem and a fixed-point problem (also called the
consistency condition). For any Polish space X , denote by P(X ) the space of probability
measures on X , and P1(X ) := {µ ∈ P(X ) :

∫
X |x|dµ(x) <∞}.

We first fix a distribution µ ∈ P(R) of the terminal state of the population, and
consider a single player’s optimization problem:

v(t, x) := sup
a
Et,x

[
Rµ(XT )−

∫ T

t

ca2
sds

]
(3.1)
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A rank-based mean field game

where
dXs = asds+ σdBs, (3.2)

B is a Brownian motion, and a ranges over the set of progressively measurable processes
satisfying E

∫ T
0
|as|ds <∞. The associated dynamic programming equation is

vt + sup
a

{
avx +

1

2
σ2vxx − ca2

}
= 0

with terminal condition v(T, x) = Rµ(x). Using the first-order condition, we obtain that
the candidate optimizer is a∗ = vx

2c , and the Hamilton-Jacobi-Bellman (HJB) equation can
be written as

vt +
1

2
σ2vxx +

(vx)2

4c
= 0.

The above equation can be linearized using the Cole-Hopf transformation u(t, x) :=

e(2cσ2)−1v(t,x), giving

ut +
1

2
σ2uxx = 0.

Together with the boundary condition u(T, x) = e(2cσ2)−1Rµ(x), we can easily write down
the solution:

u(t, x) = E

[
exp

(
1

2cσ2
Rµ(x+ σ

√
T − tZ)

)]
(3.3)

where Z is a standard normal random variable. Let us further write u as an integral:

u(t, x) =

∫ ∞
−∞

exp

(
1

2cσ2
Rµ(x+ σ

√
T − tz)

)
1√
2π

exp

(
−z

2

2

)
dz

=

∫ ∞
−∞

exp

(
1

2cσ2
Rµ(y)

)
1√

2πσ2(T − t)
exp

(
− (y − x)2

2σ2(T − t)

)
dy.

Using the dominated convergence theorem, we can differentiate under the integral sign
and get

ux(t, x) =

∫ ∞
−∞

exp

(
1

2cσ2
Rµ(y)

)
1√

2πσ2(T − t)
exp

(
− (y − x)2

2σ2(T − t)

)
(y − x)

σ2(T − t)
dy

=

∫ ∞
−∞

exp

(
1

2cσ2
Rµ(x+ σ

√
T − tz)

)
1√
2π

exp

(
−z

2

2

)
z

σ
√
T − t

dz

= E

[
exp

(
1

2cσ2
Rµ(x+ σ

√
T − tZ)

)
Z

σ
√
T − t

]
. (3.4)

Similarly, we obtain

uxx = E

[
exp

(
1

2cσ2
Rµ(x+ σ

√
T − tZ)

)
Z2 − 1

σ2(T − t)

]
. (3.5)

Using (3.3)-(3.5), together with the boundedness and monotonicity of R, we easily get
the following estimates. Note that all bounds are independent of µ.

Lemma 3.1. The functions u and v satisfy

0 < K−1 ≤ u(t, x) ≤ K, − ‖R‖∞ ≤ v(t, x) ≤ ‖R‖∞,

0 ≤ ux(t, x) ≤ K

σ

√
2

π

1√
T − t

, 0 ≤ vx(t, x) ≤ 2cσK2

√
2

π

1√
T − t

,

|uxx(t, x)| ≤ 2K

σ2

1

T − t
, |vxx(t, x)| ≤ 4cK2(1 +K2π−1)

T − t
,

where K := exp((2cσ2)−1‖R‖∞).
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A rank-based mean field game

Since vxx is bounded, the drift coefficient a∗ = vx
2c is Lipschitz continuous in x. It

follows that the optimally controlled state process, denoted by X∗, has a strong solution
on [0, T ). Observe that

0 ≤
∫ T

t

a∗(s,X∗s )ds ≤
∫ T

t

σK2
√

2/π√
T − s

ds = 2σK2

√
2(T − t)

π
<∞.

So the optimal cumulative effort is bounded by some constant independent of µ. It also
implies that X∗u = x +

∫ u
t
a∗(s,X∗s )ds + σ(Bu − Bt) has a well-defined limit as u → T .

Standard verification theorem yields that the solution to the HJB equation is the value
function of the problem (3.1)-(3.2), and that a∗ is the optimal Markovian feedback control.
Finally, using the dominated convergence theorem again, we can show that for t < T ,

lim
x→±∞

ux(t, x) = 0.

The same limits also hold for a∗ since u is bounded away from zero. In other words,
the optimal effort level is small when the progress is very large in absolute value. This
agrees with many real life observations that when a player has a very big lead, it is easy
for her to show slackness; and when one is too far behind, she often gives up on the
game instead of trying to catch up.

3.1 Existence of a Nash equilibrium

For each fixed µ ∈ P(R), solving the stochastic control problem (3.1)-(3.2) yields
a value function v(t, x;µ) and a best response a∗(t, x) = (2c)−1vx(t, x;µ). Suppose the
game is started at time zero, with zero initial progress, the optimally controlled state
process Xµ of the generic player satisfies the SDE

dXt =
vx(t,Xt;µ)

2c
dt+ σdBt, X0 = 0. (3.6)

Finding a Nash equilibrium for the limiting game is equivalent to finding a fixed point
of the mapping Φ : µ 7→ L(Xµ

T ), where L(·) denotes the law of its argument. We shall
sometimes refer to such a fixed point as an equilibrium measure.

Theorem 3.2. The mapping Φ has a fixed point.

Proof. Similar to [1], we will use Schauder’s fixed point theorem. Observe that for any
µ ∈ P(R), we have

E
[
|Xµ

T |
2
]
≤ E

(2σK2

√
2T

π
+ σ|BT |

)2
 =: C0.

This implies the set of Φ(µ) = L(Xµ
T ) is tight in P(R), hence relatively compact for the

topology of weak convergence by Prokhorov theorem. Recall that P1(R) = {µ ∈ P(R) :∫
R
|x|dµ(x) <∞}. Equip P1(R) with the topology induced by the 1-Wasserstein metric:

W1(µ, µ′) := inf

{∫
R2

|x− y|dπ(x, y) : π ∈ P1(R2) with marginals µ and µ′
}

= sup

{∫
R

ψdµ−
∫
R

ψdµ′ : ψ ∈ Lip1(R)

}
.

Here Lip1(R) denotes the space of Lipschitz continuous functions on R whose Lipschitz
constant is bounded by one. It is known that (P1(R),W1) is a complete separable metric
space (see e.g. [9, Theorem 6.18]). We shall work with a subset of P1(R) defined by

E :=

{
µ ∈ P1(R) :

∫
R

|x|2dµ(x) ≤ C0

}
.
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A rank-based mean field game

It is easy to check that E is non-empty, convex and closed (for the topology induced by
the W1 metric). Moreover, one can show using [9, Definition 6.8(iii)] that any weakly
convergent sequence {µn} ⊆ E is also W1-convergent. Therefore, E is also relatively
compact for the topology induced by the W1 metric. So we have found a non-empty,
convex and compact set E such that Φ maps E into itself. It remains to show Φ is
continuous on E . In the rest of the proof, the constant C may change from line to line.

Let {µk} ⊆ E such that W1(µk, µ)→ 0 as k →∞. We wish to show W1(Φ(µk),Φ(µ))→
0. Note that

W1(Φ(µk),Φ(µ)) ≤ E [|Xµk
T −X

µ
T |] ≤

1

2c

∫ T

0

E [|vx(t,Xµk
t ;µk)− vx(t,Xµ

t ;µ)|] dt.

From Lemma 3.1, we know that |vx(t,Xµk
t ;µk)−vx(t,Xµ

t ;µ)| ≤ C√
T−t . Since

∫ T
0

C√
T−tdt <

∞, thanks to the dominated convergence theorem, it suffices to show for t ∈ [0, T ),

E [|vx(t,Xµk
t ;µk)− vx(t,Xµ

t ;µ)|]→ 0.

By Lemma 3.1 and the mean value theorem, we have that

|vx(t,Xµk
t ;µk)− vx(t,Xµ

t ;µ)|
≤ |vx(t,Xµk

t ;µk)− vx(t,Xµ
t ;µk)|+ |vx(t,Xµ

t ;µk)− vx(t,Xµ
t ;µ)|

≤ C

T − t
|Xµk

t −X
µ
t |+ |vx(t,Xµ

t ;µk)− vx(t,Xµ
t ;µ)|.

So to show W1(Φ(µk),Φ(µ))→ 0, it suffices to show that for each fixed t ∈ [0, T ),

E [|vx(t,Xµ
t ;µk)− vx(t,Xµ

t ;µ)|]→ 0, (3.7)

and
E [|Xµk

t −X
µ
t |]→ 0. (3.8)

We first show (3.7). Using the estimates in Lemma 3.1, we get

E [|vx(t,Xµ
t ;µk)− vx(t,Xµ

t ;µ)|]

= CE

[∣∣∣∣u(t,Xµ
t ;µ)[ux(t,Xµ

t ;µk)− ux(t,Xµ
t ;µ)] + ux(t,Xµ

t ;µ)[u(t,Xµ
t ;µ)− u(t,Xµ

t ;µk)]

u(t,Xµ
t ;µk)u(t,Xµ

t ;µ)

∣∣∣∣]
≤ CE [|ux(t,Xµ

t ;µk)− ux(t,Xµ
t ;µ)|] +

C√
T − t

E [|u(t,Xµ
t ;µ)− u(t,Xµ

t ;µk)|] .

Since all integrands are bounded, to show the expectations converge to zero, it suffices
to check that the integrands converge to zero a.s. Fix ω ∈ Ω, we know from (3.4) that

|ux(t,Xµ
t (ω);µk)− ux(t,Xµ

t (ω);µ)|

≤ CE
[
|Z|

σ
√
T − t

∣∣∣Rµk(x+ σ
√
T − tZ)−Rµ(x+ σ

√
T − tZ)

∣∣∣]
x=Xµt (ω)

.

Since W1(µk, µ) → 0, µk also converges to µ weakly, and the cumulative distribution
function Fµk(x) converges to Fµ(x) at every point x at which Fµ is continuous. It follows
from the continuity of R that Rµk(x) converges to Rµ(x) at every point x at which Fµ is
continuous. Since Fµ has at most countably many points of discontinuity, the random
variable inside the expectation converges to zero a.s. The dominated convergence
theorem then allows us to interchange the limit and the expectation, giving that

|ux(t,Xµ
t (ω);µk)− ux(t,Xµ

t (ω);µ)| → 0.
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A rank-based mean field game

Similarly, from (3.3) we obtain

|u(t,Xµ
t (ω), µk)− u(t,Xµ

t (ω), µ)|

≤ CE
[∣∣∣Rµk(x+ σ

√
T − tZ)−Rµ(x+ σ

√
T − tZ)

∣∣∣]
x=Xµt (ω)

.

Again, using that Fµ has countably many points of discontinuity, one can show that

|u(t,Xµ
t (ω), µk)− u(t,Xµ

t (ω), µ)| → 0.

Putting everything together, we have proved (3.7).

Next, we show (3.8) by Gronwall’s inequality. Let ε > 0 be given. For any r ∈ [0, t],

E [|Xµk
r −Xµ

r |] ≤
1

2c

∫ r

0

E [|vx(s,Xµk
s ;µk)− vx(s,Xµ

s ;µ)|] ds

≤
∫ r

0

E

[
C

T − s
|Xµk

s −Xµ
s |+

1

2c
|vx(s,Xµ

s ;µk)− vx(s,Xµ
s ;µ)|

]
ds.

By (3.7) and the bounded convergence theorem, we obtain∫ t

0

E [|vx(s,Xµ
s ;µk)− vx(s,Xµ

s ;µ)|] ds→ 0.

So for k large enough, we have

E [|Xµk
r −Xµ

r |] ≤
C

T − t

∫ r

0

E [|Xµk
s −Xµ

s |] ds+ εe−
Ct
T−t .

By Gronwall’s inequality,

E [|Xµk
t −X

µ
t |] ≤ εe−

Ct
T−t +

C

T − t

∫ t

0

εe−
Ct
T−t e

C(t−s)
T−t ds = ε.

This completes the proof of (3.8), and thus the continuity of Φ. By Schauder’s fixed point
theorem, there exists a fixed point of Φ in the set E .

3.2 Uniqueness of Nash equilibrium

Let C ⊆ P(R) be a class of measures in which uniqueness will be established. We
first state a monotonicity assumption which is in the spirit of [8].

Assumption 3.3. For any µ, µ′ ∈ C, we have∫
R

(Rµ −Rµ′)(x)d(µ− µ′)(x) ≤ 0.

Remark 3.4. Take C to be the set of all measures in P(R) that are absolutely continuous
with respect to the Lebesgue measure, then Assumption 3.3 is satisfied if the reward
function R is Lipschitz continuous and

h(x, r1, r2) :=
R(x, r1)−R(x, r2)

r1 − r2
, x ∈ R, (r1, r2) ∈ [0, 1]2\{r1 = r2}

is differentiable and has non-negative partial derivatives hx, hr1 , hr2 . This includes any
continuously differentiable function R which satisfies (i) r 7→ R(x, r) is convex, and
(ii) r 7→ Rx(x, r) is non-decreasing. To see why hx, hr1 , hr2 ≥ 0 is sufficient to verify
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A rank-based mean field game

Assumption 3.3, first note that for any µ, µ′ ∈ C, Rµ and Rµ′ are absolutely continuous.
Using integration by parts for absolutely continuous functions, we have∫

R

(Rµ −Rµ′)(x)d(µ− µ′)(x) =

∫
R

(Fµ − Fµ′)(x)h(x, Fµ(x), Fµ′(x))d(Fµ − Fµ′)(x)

= −
∫
R

(Fµ − Fµ′)(x)d [(Fµ − Fµ′)(x)h(x, Fµ(x), Fµ′(x))]

= −
∫
R

(Fµ − Fµ′)2(x)dh(x, Fµ(x), Fµ′(x))−
∫
R

(Rµ −Rµ′)(x)d(µ− µ′)(x)

Re-arranging terms and using that hx, hr1 , hr2 ≥ 0, we get

2

∫
R

(Rµ −Rµ′)(x)d(µ− µ′)(x)

= −
∫
R

(Fµ − Fµ′)2(x)∇h(x, Fµ(x), Fµ′(x)) · (dx, dFµ(x), dFµ′(x)) ≤ 0.

If one measures the rank of x with respect to a given distribution µ using the
“regular” cumulative distribution function F̃µ(x) := 1

2 (Fµ(x+) + Fµ(x−)), then for the
case R(x, r) = r, Assumption 3.3 is satisfied with C = P(R) (see [5, Theorem B]).

Proposition 3.5. Under Assumption 3.3, Φ has at most one fixed point in C.

Proof. Suppose µ and µ′ are two fixed points of Φ in C. To simplify notation, write
v(t, x) := v(t, x;µ) and v′(t, x) := v(t, x;µ′). Let Xµ and Xµ′ be the optimally controlled
state processes (starting at zero) in response to µ and µ′, respectively. Let t ∈ (0, T ).
Using Itô’s lemma and the PDE satisfied by v and v′, it is easy to show that

E [v(t,Xµ
t )] = v(0, 0) + E

[∫ t

0

1

4c
(vx)2(s,Xµ

s )ds

]
, (3.9)

and

E [v′(t,Xµ
t )] = v′(0, 0) + E

[∫ t

0

1

4c

[
2v′xvx − (v′x)2

]
(s,Xµ

s )ds

]
. (3.10)

Write ∆v := v − v′, we obtain by subtracting (3.10) from (3.9) that

E [∆v(t,Xµ
t )] = ∆v(0, 0) + E

[∫ t

0

1

4c
[(∆v)x(s,Xµ

s )]2ds

]
.

Letting t→ T and using the continuity of v and v′ at the terminal time, we get

E [(Rµ −Rµ′)(Xµ
T )] = E [∆v(T,Xµ

T )] = ∆v(0, 0) + E

[∫ T

0

1

4c
[(∆v)x(s,Xµ

s )]2ds

]
. (3.11)

Now, exchange the role of µ and µ′. We also have

E[(Rµ′ −Rµ)(Xµ′

T )] = −E[∆v(T,Xµ′

T )] = −∆v(0, 0) + E

[∫ T

0

1

4c
[(∆v)x(s,Xµ′

s )]2ds

]
.

(3.12)
Adding (3.11) and (3.12), and using that µ = L(Xµ

T ), µ′ = L(Xµ′

T ), we get

0 ≤ 1

4c
E

[∫ T

0

[(∆v)x(s,Xµ
s )]2 + [(∆v)x(s,Xµ′

s )]2ds

]

= E [(Rµ −Rµ′)(Xµ
T )] + E[(Rµ′ −Rµ)(Xµ′

T )] =

∫
R

(Rµ −Rµ′)(x)d(µ− µ′)(x) ≤ 0,

where the last inequality follows from Assumption 3.3. This implies

vx(s,Xµ′

s ) = v′x(s,Xµ′

s ) dP× dt-a.e.

ECP 21 (2016), paper 72.
Page 7/12

http://www.imstat.org/ecp/

http://dx.doi.org/10.1214/16-ECP24
http://www.imstat.org/ecp/


A rank-based mean field game

By the uniqueness of the solution of the SDE (3.6), we must have Xµ
T = Xµ′

T a.s. and
µ = µ′.

3.3 Approximate Nash equilibrium of the N-player game

The MFG solution allows us to construct, using decentralized strategies, an approxi-
mate Nash equilibrium of the N -player game when N is large. In the MFG literature,
this is typically done using results from the propagation of chaos. Here we have a
simpler problem since the mean-field interaction does not enter the dynamics of the state
process. And it is this special structure that allows us to handle rank-based terminal
payoff which fails to be Lipschitz continuous in general.

Definition 3.6. A progressively measurable vector a = (a1, . . . , aN ) is called an ε-Nash
equilibrium of the N -player game if

(i) E
[∫ T

0
|ai,t|dt

]
<∞ for any i ∈ {1, . . . , N}; and

(ii) for any i ∈ {1, . . . , N}, and any progressively measurable process β satisfying

E
[∫ T

0
|βt|dt

]
<∞, we have

E

[
Rµ̄N,a(Xai

i,T )−
∫ T

0

ca2
i,tdt

]
+ ε ≥ E

[
R
µ̄
N,ai

β
(Xβ

i,T )−
∫ T

0

cβ2
t dt

]
,

where Xβ
i,T =

∫ T
0
βtdt + σBi,T , aiβ = (a1, . . . , ai−1, β, ai+1, . . . , aN ) and µ̄N,a =

1
N

∑N
j=1 δXajj,T

.

We now state an additional Hölder condition on R which allows us to get the conver-
gence rate. It holds, for example, when R(x, r) = A(x)rp + B(x) where p ∈ (0,∞) and
A ∈ L∞(R).

Assumption 3.7. There exist constants L > 0 and α ∈ (0, 1] such that |R(x, r1) −
R(x, r2)| ≤ L|r1 − r2|α for any r1, r2 ∈ [0, 1] and x ∈ R.

Theorem 3.8. Let Assumption 3.7 hold. For any fixed point µ of Φ,

āi,t := (2c)−1vx(t,X āi
i,t;µ), i = 1, . . . , N

form an O(N−α/2)-Nash equilibrium of the N -player game as N →∞.

Proof. Let µ be a fixed point of Φ, and let āi,t be defined as in the theorem statement. To
keep the notation simple, we omit the superscript of any state process if it is controlled
by the optimal Markovian feedback strategy (2c)−1vx(t, x;µ). Let

V := v(0, 0;µ) = E

[
Rµ(XT )−

∫ T

0

1

4c
v2
x(s,Xs;µ)ds

]
be the value of the limiting game where X satisfies (3.6), and

JNi := E

[
Rµ̄N (Xi,T )−

∫ T

0

cā2
i,sds

]
be the net gain of player i in an N -player game, if everybody use the candidate approxi-
mate Nash equilibrium (ā1, . . . , āN ). Here µ̄N = 1

N

∑N
i=1 δXi,T . Since our state processes

do not depend on the empirical measure (the interaction is only through the terminal
payoff), each Xi is simply an independent, identical copy of X. Hence

V = E

[
Rµ(Xi,T )−

∫ T

0

cā2
i,sds

]
.

ECP 21 (2016), paper 72.
Page 8/12

http://www.imstat.org/ecp/

http://dx.doi.org/10.1214/16-ECP24
http://www.imstat.org/ecp/


A rank-based mean field game

Let us first show that JNi and V are close. We have

JNi − V = E[Rµ̄N (Xi,T )−Rµ(Xi,T )].

It follows from the α-Hölder continuity of R that

|JNi − V | ≤ LE[|Fµ̄N (Xi,T )− Fµ(Xi,T )|α] ≤ LE[‖F̂Nµ − Fµ‖α∞],

where for n ∈ N, F̂nµ denotes the empirical cumulative distribution function of n i.i.d. ran-
dom variables with cumulative distribution function Fµ. By Dvoretzky-Kiefer-Wolfowitz
inequality, we have

P
(
‖F̂Nµ − Fµ‖∞ > ε

)
≤ 2e−2Nε2 .

It follows that

|JNi − V | ≤ LE[‖F̂Nµ − Fµ‖α∞] = L

∫ ∞
0

P
(
‖F̂Nµ − Fµ‖α∞ > z

)
dz

≤ L
∫ ∞

0

2e−2Nz2/αdz =
2L

(4N)α/2

∫ ∞
0

e−
1
2y

2/α

dy

= O(N−α/2) as N →∞.

Next, consider the system where player i makes a unilateral deviation from the
candidate approximate Nash equilibrium (ā1, . . . , āN ); say, she chooses an admissible
control β. Denote her controlled state process by Xβ

i , and the state processes of all other
players by Xj as before for j 6= i. Let ν̄N := 1

N (δXβi,T
+
∑
j 6=i δXj,T ) be the corresponding

empirical measure of the terminal states, and

JN,βi := E

[
Rν̄N (Xβ

i,T )−
∫ T

0

cβ2
sds

]
be the corresponding net gain for player i. We have

JN,βi − V = E

[
Rν̄N (Xβ

i,T )−
∫ T

0

cβ2
sds

]
− E

[
Rµ(Xi,T )−

∫ T

0

cā2
i,sds

]
= E

[
Rν̄N (Xβ

i,T )−Rµ(Xβ
i,T )
]

+ E

[
Rµ(Xβ

i,T )−
∫ T

0

cβ2
sds

]
− E

[
Rµ(Xi,T )−

∫ T

0

cā2
i,sds

]
≤ E

[
Rν̄N (Xβ

i,T )−Rµ(Xβ
i,T )
]

where the inequality follows from the optimality of āi for the i-th player’s problem.
Similar to how we estimate |JNi − V |, we have

JN,βi − V ≤ LE[|Fν̄N (Xβ
i,T )− Fµ(Xβ

i,T )|α]

= LE

[∣∣∣∣ 1

N

(
1− Fµ(Xβ

i,T )
)

+
N − 1

N

(
F̂N−1
µ (Xβ

i,T )− Fµ(Xβ
i,T )
)∣∣∣∣α]

≤ LE
[(

1

N
+
N − 1

N
‖F̂N−1

µ − Fµ‖∞
)α]

≤ L
(

1

N
+
N − 1

N
E
[
‖F̂N−1

µ − Fµ‖∞
])α

= O(N−α/2) as N →∞,

where we used Jensen’s inequality in the fourth step. Combining the two estimates, we
obtain

JN,βi − JNi ≤ J
N,β
i − V + |V − JNi | = O(N−α/2) as N →∞.

This shows (ā1, . . . , āN ) is an O(N−α/2)-approximate Nash equilibrium.
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A rank-based mean field game

Remark 3.9. Without Assumption 3.7, one can still use the continuity and boundedness
of R to get convergence; that is, the MFG solution still provides an approximate Nash
equilibrium of the N -player game. However, the convergence rate is no longer valid.

4 Mean field approximation when there is common noise

In this section, we assume σ0 > 0 and R(x, r) is independent of x; the latter means the
reward is purely rank-dependent. Unlike the case with only idiosyncratic noises, since
the common noise does not average out as N →∞, the limiting environment becomes a
random measure instead of a deterministic one. So the MFG problem now reads:

(i) Fix a random measure µ of the terminal distribution of the population where the
randomness comes from the common noise W , and solve the stochastic control
problem faced by a representative player:

V (µ) = sup
a
E

[
Rµ(XT )−

∫ T

0

1

2
a2
sds

]
, (4.1)

where

dXs = asds+ σdBs + σ0dWs, X0 = 0. (4.2)

Denote the optimally controlled state process by Xµ.

(ii) Find a fixed point of the mapping Ψ : µ 7→ L(Xµ
T |W ).

For µ ∈ P(R), denote by µ(· + q) the probably measure obtained by shifting µ to
the left by q ∈ R. Observe that when R is independent of x, we have Rµ(x + q) =

R(Fµ(x + q)) = R(Fµ(·+q)(x)) = Rµ(·+q)(x). So we are precisely in the framework of
translation invariant MFGs. In fact, purely rank-based functions should be another
important example of translation invariant functions besides the convolution and local
interaction given in [7]. In the general case without translation invariance, results have
only been obtained in the weak formulation, see [3].

In the remaining discussion, let us refer to the problems (3.1)-(3.2) and (4.1)-(4.2)
together with their respective fixed point problems as MFG0 and MFGcn, respectively. A
direct application of [7, Theorem 2.5] yields the following existence result.

Proposition 4.1. Let µ̄ be a (deterministic) equilibrium measure of MFG0. Then

µ := µ̄(· − σ0WT )

is a (random) equilibrium measure of MFGcn. Moreover, the optimal control associated
with µ̄ for MFG0 is also an optimal open loop control associated with µ for MFGcn.

The intuition is that the whole population is affected in parallel by the common
noise. Thus, the effect of common noise is essentially cancelled out in the optimization
problem due to translation invariance. Such a random equilibrium measure is clearly
σ(W )-measurable, hence is a strong MFG solution in the language of [2].

Remark 4.2. In Proposition 4.1, the equilibrium control for both MFG0 and MFGcn is
a∗(t,X◦t ; µ̄) where a∗(t, x) = (2c)−1vx(t, x; µ̄) and X◦ is the solution to (3.2) controlled
by a∗. Such a control is a feedback control for MFG0, but only an open loop control
for MFGcn. Here it is reasonable to use open loop controls for MFGcn because for an
N -player game, the individual can observe all state processes. When N is large, the
individual noises average out. Thus, observing the entire system should give each player
some information about the common noise. Passing to the MFG limit, the individual
should be allowed more information than that generated by her own state process.
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Theorem 4.3. Let Assumption 3.7 hold. Let µ̄ be an equilibrium measure of MFG0, and
let āi,t = (2c)−1vx(t,X◦i,t; µ̄) where X◦i is the solution to (3.2) with a replaced by āi and

B replaced by Bi. Then (ā1, . . . , āN ) form an O(N−α/2)-Nash equilibrium of the N -player
game with common noise.

Proof. Let µ and X◦ be defined as in Proposition 4.1 and Remark 4.2. Also let X :=

X◦ + σ0W and Xi := X◦i + σ0W . By Proposition 4.1, we have

V := V (µ) = E

[
Rµ(XT )−

∫ T

0

1

4c
v2
x(s,X◦s ; µ̄)ds

]
.

Also let

JNi := E

[
Rµ̄N (Xi,T )−

∫ T

0

cā2
i,sds

]
be the net gain of player i in an N -player game, if everybody use the candidate approx-
imate Nash equilibrium (ā1, . . . , āN ). Here µ̄N := 1

N

∑N
i=1 δXi,T denotes the empirical

measure of the terminal state of the system. Translation invariance and the definition of
µ imply

Rµ(XT ) = Rµ(X◦T + σ0WT ) = Rµ(·+σ0WT )(X
◦
T ) = Rµ̄(X◦T ).

Similarly, since

µ̄N =
1

N

N∑
i=1

δX◦i,T+σ0WT
=

(
1

N

N∑
i=1

δX◦i,T

)
(· − σ0WT ) =: µ̄N◦ (· − σ0WT ),

we also have
Rµ̄N (Xi,T ) = Rµ̄N (X◦i,T + σ0WT ) = Rµ̄N◦ (X◦i,T ).

Hence we can rewrite V and JNi as

V = E

[
Rµ̄(X◦i,T )−

∫ T

0

cā2
i,sds

]
and JNi = E

[
Rµ̄N◦ (X◦i,T )−

∫ T

0

cā2
i,sds

]
,

where we also used that X◦i has the same distribution as X◦. From the proof of Theo-
rem 3.8, we know

|JNi − V | ≤
2L

(4N)α/2

∫ ∞
0

e−
1
2y

2/α

dy = O(N−α/2) as N →∞.

Next, suppose player i makes a unilateral deviation to some admissible control β.
Denote her controlled state process with and without common noise by Xβ

i and X◦,βi ,
respectively. We have Xβ

i = X◦,βi + σ0W . Let ν̄N := 1
N (δXβi,T

+
∑
j 6=i δXj,T ) and

JN,βi := E

[
Rν̄N (Xβ

i,T )−
∫ T

0

cβ2
sds

]
.

We have by the definition of V and the Hölder continuity of R that

JN,βi − V = E

[
Rν̄N (Xβ

i,T )−
∫ T

0

cβ2
sds

]
− V

= E
[
Rν̄N (Xβ

i,T )−Rµ(Xβ
i,T )
]

+ E

[
Rµ(Xβ

i,T )−
∫ T

0

cβ2
sds

]
− V

≤ E
[
Rν̄N (Xβ

i,T )−Rµ(Xβ
i,T )
]
≤ LE

[
|ν̄N (−∞, Xβ

i,T ]− µ(−∞, Xβ
i,T ]|α

]
.
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By translation invariance, ν̄N (−∞, Xβ
i,T ] = 1

N +
(

1
N

∑
j 6=i δX◦j,T

)
(−∞, X◦,βi,T ]. By definition

of µ, µ(−∞, Xβ
i,T ] = µ̄(−∞, X◦,βi,T ]. Also note that for j 6= i, L(X◦j,T ) = L(X◦T ) = µ̄ since µ̄

is an equilibrium measure for MFG0. Therefore, by expressing everything in terms of µ̄,
X◦ and X◦,β, we are again back in the framework without common noise. The proof of
Theorem 3.8 implies that

JN,βi − V ≤ LE

∣∣∣∣∣∣ 1

N
+

 1

N

∑
j 6=i

δX◦j,T

− µ̄
 (−∞, X◦,βi,T ]

∣∣∣∣∣∣
α

= LE

[∣∣∣∣ 1

N
(1− Fµ̄(X◦,βi,T )) +

N − 1

N

(
F̂N−1
µ̄ (X◦,βi,T )− Fµ̄(X◦,βi,T )

)∣∣∣∣α]
≤ L

(
1

N
+
N − 1

N
E
[
‖F̂N−1

µ̄ − Fµ̄‖∞
])α

= O(N−α/2) as N →∞,

where F̂nµ̄ denotes the empirical cumulative distribution function of n i.i.d. random

variables with cumulative distribution function Fµ̄. We conclude that JN,βi − JNi ≤
O(N−α/2) and that (ā1, . . . , āN ) is an O(N−α/2)-Nash equilibrium of the N -player game
with common noise.

Remark 4.4. The arbitrary control β in the above proof may depend on the common
noise. However, the additional information of the common noise gives each player very
little advantage when everyone else use their respective āi’s which are independent of
the common noise.
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