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On a large finite connected graph let edges e become “open” at independent random
Exponential times of arbitrary rates we. Under minimal assumptions, the time at
which a giant component starts to emerge is weakly concentrated around its mean.

Keywords: bond percolation; incipient giant component; concentration inequalities.
AMS MSC 2010: 60K35; 05C80.
Submitted to ECP on April 26, 2016, final version accepted on September 7, 2016.

1 Introduction

Take a finite connected graph (V,E) with edge-weights w = (we), where we > 0 ∀e ∈
E. To the edges e ∈ E attach independent Exponential(rate we) random variables ξe. In
the language of percolation theory, say that edge e becomes open at time ξe. The set of
open edges at time t determines a random partition of V into connected components;
write C(t) for the largest number of vertices in any such connected component. Now
consider a sequence (Vn,En) of such weighted graphs, where both the graph topologies
and the edge-weights are arbitrary subject only to the conditions that |Vn| → ∞ and
that for some 0 < t1 < t2 <∞

lim
n
ECn(t1)/|Vn| = 0; c̄ := lim inf

n
ECn(t2)/|Vn| > 0. (1.1)

In the language of random graph theory, this condition says that a giant component
emerges (with non-vanishing probability) sometime between t1 and t2. Proposition 1.1
asserts, informally, that the “incipient” time at which the giant component starts to
emerge is deterministic to first order.

Proposition 1.1. Given a sequence of graphs satisfying (1.1), there exists a determin-
istic sequence τn ∈ [t1, t2] and a deterministic sequence ω∗n ↑ ∞ such that, for every
sequence ωn ↑ ∞ with ωn ≤ ω∗n, the random times

Tn := inf{t : Cn(t) ≥ |Vn|/ωn}

satisfy

Tn − τn →p 0.
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General incipient giant component

In other words, this holds whenever ωn ↑ ∞ sufficiently slowly.

In the special cases of the complete graph and the 2-dimensional discrete torus (with
constant edge-weights) we are essentially dealing with component sizes in the classical
Erdős-Rényi and the bond percolation on Z2 processes, for which much stronger results
are known about the “scaling window” of time over which the giant component emerges
[10, 11]. Such stronger results have been generalized (again with constant edge-weights)
in several directions, for instance to random subgraphs of certain transitive finite graphs
[12, 13] or to random subgraphs of graphs under assumptions that force the critical
subgraphs to be “tree-like” as in the Erdős-Rényi case [14]. Proposition 1.1 gives a
comparatively weak concentration property which one would expect to hold in every
“natural” example, but it is perhaps remarkable that it holds in the generality stated. As a
comparison, in the classical cases one also has the same “weak concentration” property
for the random times

T ∗n(s) := inf{t : Cn(t) ≥ s|Vn|}

for fixed 0 < s < 1. One would expect this to extend to other “natural” examples, but
a simple example outlined in section 3.2 shows it does not hold in the generality of
Proposition 1.1, even if we assume the weighted graph to be vertex-transitive. Some
conjectures concerning the post-incipient regime are given in section 3.4.

The proof is based on a simple general variance bound described in section 2.1.
A technically more complicated application of that bound to first passage percolation
on general weighted graphs, plus other simple applications, can be found in [2]. “Big
picture” discussions of various random processes over general finite edge-weighted
graphs can be found in [1] and [3].

2 Proof of Proposition 1.1

We divide the proof into three steps.

2.1 Step 1: A general variance bound for increasing set-valued processes

Fix a weighted graph (V,E,w) and 1 < ω < |V|. The process of open edges in our
bond percolation process is a continuous-time Markov chain, Zt say, whose state space
is the set of subsets S ⊆ E and whose transition rates are

S → S ∪ {e} : rate we, (e 6∈ S).

We seek to study the distribution of the stopping time

T = inf{t : C(t) ≥ |V|/ω} (2.1)

when this chain starts in the empty state ∅. It makes sense to also consider this mean
hitting time started from an arbitrary subset S of open edges, that is

h(S) := EST (2.2)

which clearly has the property

h(S′) ≤ h(S) whenever S → S′ is a possible transition. (2.3)

There is a general concentration inequality, discussed in [2], for Markov chain stopping
times with this property: the next lemma describes its specialization to our bond
percolation process.
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General incipient giant component

Lemma 2.1 ([2] displays (9) and (10)). For T defined by (2.1) and h defined by (2.2), for
arbitrary δ > 0,

var∅ T

(E∅T )2
≤ δ +

E∅
∫ T

0
qδ(Zu)du

E∅T

where
qδ(S) :=

∑
S′: h(S)−h(S′)>δE∅T

q(S, S′)(h(S)− h(S′)) ≤ 1 (2.4)

and q(S, S′) are the transition rates.

We will need a consequence, derived as Corollary 2.3 below. Note that h(S) ≤ h(∅) =

E∅T for subsets S under consideration. Now consider the first time (if ever) Wδ that the
process makes some transition S → S′ with h(S)− h(S′) greater than δE∅T :

Wδ := inf{t : h(Zt−)− h(Zt) > δE∅T}. (2.5)

Here Zt− = lims↑t, s<t Zs, so the transition is from Zt− to Zt. Then∫ T

0

qδ(Zu)du =

∫ T∧Wδ

0

qδ(Zu)du+

∫ T

T∧Wδ

qδ(Zu)du

≤
∫ T∧Wδ

0

qδ(Zu)du+ T1{Wδ<T}.

Property (2.3) implies the distribution of T has the submultiplicativity property

P∅(T > t1 + t2) ≤ P∅(T > t1) P∅(T > t2), t1, t2 > 0. (2.6)

We state a “folklore” result for such distributions, proved below.

Lemma 2.2. There exists a function γ(u) ↓ 0 as u ↓ 0 such that, for any submultiplicative
T and any event A we have

E[T1A] ≤ γ(P(A)) ET. (2.7)

In particular this holds for γ(u) =
√

24u.

So in our setting
E∅[T1{Wδ<T}] ≤ γ(P∅(Wδ < T )) E∅T.

Then from Lemma 2.1

var∅ T

(E∅T )2
≤ δ + γ(P∅(Wδ < T )) +

E∅
∫ T∧Wδ

0
qδ(Zu)du

E∅T
. (2.8)

Now consider
q̃δ(S) :=

∑
S′: h(S)−h(S′)>δE∅T

q(S, S′)

so that
qδ(S) ≤ q̃δ(S) E∅T. (2.9)

But q̃δ(Zu) is the intensity rate of Wδ. Recall that this intensity rate is interpretable
intuitively via

P(u < Wδ < u+ du) = q̃δ(Zu)du on {u < Wδ}

and is defined rigorously by the property

1{Wδ≤t} −
∫ Wδ∧t

0

q̃δ(Zu)du is a martingale.
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General incipient giant component

Using the optional sampling theorem we deduce

E∅

∫ Wδ∧T

0

q̃δ(Zu)du = P∅(Wδ ≤ T ).

Combining this with the previous two inequalities (2.8, 2.9) gives

Corollary 2.3. For T defined by (2.1) and h defined by (2.2), for arbitrary δ > 0, for Wδ

defined by (2.5) and for γ(·) in Lemma 2.2,

var∅ T

(E∅T )2
≤ δ + γ(P∅(Wδ ≤ T )) + P∅(Wδ ≤ T ). (2.10)

Remark 2.4. In fact the general result in [2] is that Lemma 2.1 holds for any stopping
time in any continuous-time Markov process for which the strong monotonicity property
(2.3) holds. That result is an easy consequence of martingale identities for ET and var T ,
though apparently not well known. The proof of Corollary 2.3 extends unchanged to the
same context.

Proof of Lemma 2.2. First suppose ET = 1/2. By Markov’s inequality P(T ≥ 1) ≤ 1/2,
then by the submultiplicativity property

P(T ≥ j) ≤ 2−j , j = 1, 2, . . . .

This says that T is stochastically smaller than G with Geometric(1/2) distribution, so
ET 2 ≤ EG2 = 6. This assumed ET = 1/2, but by scaling we see that in general
ET 2 ≤ 24(ET )2. Now use the Cauchy-Schwarz inequality:

E[T1A] ≤
√

(ET 2) P(A) ≤
√

24P(A) ET.

2.2 Step 2: Bounding in terms of the growth rate of the incipient giant com-
ponent

We now use the structure of the bond percolation process by relating T defined at
(2.1) to

T (2) = inf{t : C(t) ≥ 2|V|/ω} ≥ T.

Consider a possible transition S′ → S′′ = S′ ∪ {e}. We will show

h(S′)− h(S′′) ≤ ES′′(T (2) − T ). (2.11)

There is a natural coupling (Z ′u, Z
′′
u , u ≥ 0) of the processes started from S′ and from S′′;

that is, Z ′′u = Z ′u ∪ {e} until the Exponential(we) time at which e ∈ Z ′u, after which time
Z ′′u = Z ′u. Write C ′(u), C ′′(u) for the largest component sizes, and T ′, T ′′ for the stopping
times (2.1), applied to these coupled processes. At time T (2)′′ = inf{t : C ′′(t) ≥ 2|V|/ω}
the process Z ′′ contains a component of size at least 2|V|/ω, and so after deleting edge e
there must remain a component of size at least |V|/ω of Z ′. That establishes the second
inequality in

T ′′ ≤ T ′ ≤ T (2)′′

and the first inequality is immediate. Now

h(S′)− h(S′′) = ET ′ − ET ′′ ≤ ET (2)′′ − ET ′′ = ES′′(T (2) − T )

establishing (2.11).
Now let V be the time (if any) that the bond percolation process started at ∅ makes a

specified transition S′ → S′ ∪ {e}. Then (2.11) says that

h(ZV−)− h(ZV ) ≤ E∅(T (2) − T |FV ) on {V ≤ T}. (2.12)
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Now fix δ > 0. Let Πδ be the set of pairs π = (S′, S′ ∪ {e}) for which h(S′)− h(S′ ∪ {e}) ≥
δE∅T . For each π ∈ Πδ there is a time Vπ as above. The random variable Wδ at (2.5) is
Wδ = minπ∈Πδ Vπ, and so (2.12) implies

δE∅T ≤ h(ZWδ−)− h(ZWδ
) ≤ E∅(T (2) − T |FWδ

) on {Wδ ≤ T}. (2.13)

This in turn implies

P∅(Wδ ≤ T ) ≤ E∅(T
(2) − T )

δE∅T
.

Applying (2.10), and setting

γ∗(u) = γ(u) + u ↓ 0 as u ↓ 0,

we find
var∅ T

(E∅T )2
≤ δ + γ∗

(
E∅(T

(2) − T )

δE∅T

)
.

Because δ is arbitrary, this implies

var∅ T

(E∅T )2
≤ Γ

(
E∅(T

(2) − T )

E∅T

)
(2.14)

where
Γ(x) := inf

δ>0
(δ + γ∗(x/δ)) ↓ 0 as x ↓ 0.

2.3 Step 3: A compactness reduction

The remainder of the proof uses only “soft” arguments. We are given a sequence of
weighted graphs satisfying (1.1). To emphasize dependence on ωn write

Tn(ωn) := inf{t : Cn(t) ≥ |Vn|/ωn}.

Take ωn ≥ 2 to avoid trivialities. By the second condition in (1.1) and submultiplicativity
(2.6) there is an integrable T ∗ such that

T ∗ stochastically dominates Tn(ωn), for all n, ωn. (2.15)

By the first condition in (1.1) we can take ωn ↑ 0 sufficiently slowly that P(Tn ≤ t1)→ 0.
Looking at (2.14), we see that the proof of Proposition 1.1 reduces to the proof of

(*) for all ωn ↑ ∞ sufficiently slowly, E(Tn( 1
2ωn)− Tn(ωn))→ 0.

Property (2.15) implies compactness with respect to weak convergence and conver-
gence of expectations. By a standard compactness principle, to prove (*) it will suffice to
prove that every subsequence has a further sub-subsequence in which (*) holds, and –
up to a change in notation – it is enough to show that the original sequence has some
subsequence in which (*) holds.

Consider the set of all possible subsequential weak limits of sequences Tmn(ωn).
This is compact, so has at least one element µ which is maximal with respect to the
“stochastic order” partial order. And a subsequence Tmn(ω∗n) converging to µ clearly has
property (*), because for any ωn ≤ ω∗n we have Tmn(ωn) ≥ Tmn(ω∗n) and so by maximality
Tmn(ωn) must also converge to µ, as must Tmn( 1

2ωn).

3 Discussion

3.1 Regarding assumption (1.1)

Consider the “path” graphs with Vn = {1, 2, . . . , n} and wi,i+1 = 2−i. Here it is
not possible to rescale time so that assumption (1.1) holds. Heuristically, failure of
assumption (1.1) relates to this kind of exponential slowdown of edge-weights at the
time of formation of the incipient giant component.
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3.2 An example

Let us replace the assumption (1.1) by the assumption

lim
t→0

lim sup
n

ECn(t)/|Vn| = 0; lim
t→∞

lim inf
n

ECn(t)/|Vn| = 1. (3.1)

This is essentially saying, via a compactness argument, that the processes (Cn(t)/|Vn|,
0 ≤ t < ∞) converge to a limit process (C̃∞(t), 0 ≤ t < ∞) for which limt→0 C̃∞(t) = 0

and limt→∞ C̃∞(t) = 1.
Consider, for fixed 0 < s < 1, the random times

T ∗n(s) := inf{t : Cn(t) ≥ s|Vn|}. (3.2)

Assumption (3.1) implies these times are O(1) as n→∞, but is not sufficient to show
the “weak concentration” property

var T ∗n(s)→ 0 as n→∞, (3.3)

as the following example shows.
For the complete graph on m vertices with edge-weights 1/m, our bond percolation

process is essentially just the Erdős-Rényi process G(m, t/m), for which the limit of the
process (Cm(t)/m, 0 ≤ t <∞) is a certain continuous function θ(·) with θ(t) = 0 for t ≤ 1

and θ(t) > 0 for t > 1 (explicitly, θ(t) is the solution of 1− θ = exp(−tθ) – see e.g. [5] sec.
10.4). Now take two copies of that complete graph on m vertices with edge-weights 1/m,
and add a single edge e∗ between them with weight m. This gives a graph on n = 2m

vertices. It is easy to see that the limit of the process (Cn(t)/n, 0 ≤ t <∞) is the random
process

C̃∞(t) = θ(t)/2, 0 ≤ t < ζ (3.4)

= θ(t), ζ ≤ t <∞

where P(ζ ≤ t) = θ2(t); here ζ represents the first time at which the giant component in
each half contains the end-vertex of e∗. So the “weak concentration” property (3.3) does
not hold.

Note that we can modify this construction to make the graph vertex-transitive, that is
there is a graph automorphism that maps any vertex to any other vertex. Instead of a
single edge between the two original copies, we assign weight 1/m2 to every such edge.
Now the limit is again of form (3.4) where now P(ζ ≤ t) = 1− exp(−tθ2(t)).

3.3 Analogies with bond percolation on infinite graphs

Rigorous mathematical treatment of bond percolation has focussed on infinite graphs,
with “general theory” developed under the assumption of transitivity, that is spatial
symmetry. As the 2006 survey [15] says,

. . . infinite graphs, where the issue of uniqueness of the giant component
translates naturally into the question of whether there is a unique infinite
cluster. This has the advantage of always having a clear-cut yes/no answer, in
contrast to the finite setting where it is not always totally obvious what one
really should mean by a giant component.

In our setting of a sequence of finite edge-weighted graphs, one can readily formalize
the idea of giant components being unique as the property

sup
t
C [2]
n (t)/|Vn| →p 0 as n→∞ (3.5)

ECP 21 (2016), paper 68.
Page 6/9

http://www.imstat.org/ecp/

http://dx.doi.org/10.1214/16-ECP21
http://www.imstat.org/ecp/


General incipient giant component

where C [2]
n (t) is the size of the second -largest component at time t. Note that this can be

restated in terms of the jumps of (Cn(·)), as

sup
0≤t<∞

|Cn(t)− Cn(t−)|/|Vn| →p 0 as n→∞. (3.6)

3.4 Two conjectures

Under the background assumption (3.1), what further assumptions might be sufficient
to imply either the “unique giant component” property (3.5) or the “weak concentration”
property (3.3)? The example at the end of section 3.2 shows that vertex-transitive is
not sufficient for either property. If instead we assume edge-transitive then all edge-
weights are equal and so we are in the more familiar setting of bond percolation on an
unweighted graph with symmetry. Here it seems likely that known methods used in the
infinite setting will be relevant. However this requires care: the infinite r-regular tree
does not have the “unique giant component” property but typical realizations of random
r-regular graphs, as n → ∞, do have this property [18], even though their local weak
limit is the infinite r-regular tree. Here is a bold conjecture.

Conjecture 3.1. Consider a sequence of edge-transitive graphs with |Vn| → ∞. Then
we can always rescale the edge-weight so that (3.1) holds. After such rescaling, the
“weak concentration” and the “unique giant component” properties hold.

A second bold conjecture is that, without any assumption of symmetry, one of these
properties implies the other.

Conjecture 3.2. Under assumption (3.1), the “unique giant component” property (3.5)
implies the “weak concentration” property (3.3).

Essentially, the conjecture is saying that the limit process C∞(·) indicated at the
start of section 3.2 might be deterministic and continuous (as in the classical settings)
or might be random and discontinuous (as in the examples in section 3.2), but cannot
be random and continuous. (Readers aware of the famous open problems involving
continuity of the percolation function on infinite graphs should note that the “weak
concentration” property relates to the inverse of that function).

Separate from the literature on scaling windows mentioned in section 1, there is a
line of work including [4, 7] on bond percolation for unweighted finite graphs under
isoperimetry assumptions, that is for expanders, which includes results on uniqueness
of giant component. Conjecture 1.1 of [4], not involving isoperimetry assumptions, is
somewhat similar to our Conjecture 3.1.

3.5 Are there analogous results for first passage percolation?

Our starting structure was a finite connected graph (V,E) with edge-weights w =

(we) and with independent Exponential(rate we) random variables ξe associated with the
edges. This structure can alternatively be used to construct first-passage times X(v, v′),
defined as the minimum of

∑
e∈π ξe over all paths π from v to v′. Regarding this as a

model for spread of infection from an initial site v, the set of infected sites at time t is

S(v, t) := {v′ : X(v, v′) ≤ t}.

Write
∆ := max

v,v′
EX(v, v′).

Given a sequence of such graphs with |Vn| → ∞ and a sequence vn ∈ Vn, consider the
times

Tn(vn, s) := inf{t : |Sn(vn, t)| ≥ s|Vn|}; 0 < s < 1 (3.7)
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and the “incipient pandemic” time

Tn(vn) := inf{t : |Sn(vn, t)| ≥ |Vn|/ωn} (3.8)

for some slowly decreasing ωn → 0. There is a simple analysis of such times, provided
we impose another assumption. Setting

w∗n := min{we : we > 0}

we have

Lemma 3.3. var X(v, v′) ≤ EX(v, v′)/w∗n.

Bounds of this type are classical on Zd [16] and are at least folklore in more general
settings: an explicit statement and martingale proof in our setting is given in [2]. But
inspecting the proof of Proposition 7 in [2] shows that the same bound

var Tn(vn, s) ≤ ETn(vn, s)/w
∗
n (3.9)

holds for Tn(vn, s) at (3.7), for arbitrary s.

Now assume that in a sequence of graphs

w∗n∆n →∞. (3.10)

Because ETn(vn, s) = O(∆n) for fixed s, (3.9) and (3.10) imply the “weak concentration”
property

Tn(vn, s)

∆n
− ETn(vn, s)

∆n
→p 0.

Compactness arguments as in section 2.3 then lead to a conclusion analogous to Propo-
sition 1.1 for the “incipient pandemic” time:

Corollary 3.4. Under assumption (3.10), there exists a deterministic sequence τn(vn) ∈
[0, 1] such that, for every sequence ωn ↑ ∞ sufficiently slowly, the random times Tn(vn)

at (3.8) satisfy

Tn(vn)/∆n − τn(vn)→p 0.

However, this result in the first-passage percolation setting differs in two respects
from the Proposition 1.1 result in the bond percolation setting. To make Corollary
3.4 interesting we want the sequence τn(vn) to be bounded away from zero, which
is tantamount to the assumption (analogous to the first part of (1.1)) that for some
0 < t1 <∞

lim
n
E|Sn(vn, t1∆)|/|Vn| = 0. (3.11)

But in classical settings such as nearest-neighbor first-passage percolation on Zdm [17, 6]
this does not hold, because by the shape theorem the scaling limit of |Sn(vn, t∆)|/|Vn|
is a deterministic function φ(t) with φ(t) > 0 for t > 0. The context where we do expect
(3.11) to hold is where the epidemic starts with faster than polynomial growth, for
instance on expander graphs or familiar models of random graphs [8, 9]. Second, while
assumption (3.10) is stronger than necessary, we do need some assumption to prevent
Tn(vn) have variability due to the influence of a single edge-traversal time ξe associated
with a very small weight we. For weak concentration of point-to-point percolation times
X(v, v′), precise conditions in terms of such influence are given in [2]. It seems plausible
that there are analogous precise conditions for weak concentration of the “incipient
pandemic” time Tn(vn), but we have not studied this issue.
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