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Abstract

We consider the smoothed multiplicative noise stochastic heat equation

duε,t =
1

2
∆uε,tdt+ βε

d−2
2 uε,t dBε,t, uε,0 = 1,

in dimension d ≥ 3, where Bε,t is a spatially smoothed (at scale ε) space-time white
noise, and β > 0 is a parameter. We show the existence of a β̄ ∈ (0,∞) so that the
solution exhibits weak disorder when β < β̄ and strong disorder when β > β̄. The
proof techniques use elements of the theory of the Gaussian multiplicative chaos.
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1 Motivation and introduction

We consider the stochastic heat equation (SHE) with multiplicative noise, written
formally as

∂tu(t, x) =
1

2
∆u(t, x) + u(t, x) η(t, x). (1.1)

Here η is the “space-time white noise”, which formally is the centered Gaussian process
with covariance function E(η(s, x)η(t, y)) = δ0(t − s)δ0(x − y) for s, t > 0 and x, y ∈ Rd.
We emphasize that (1.1) is a formal expression, and in attempting to give it a precise
meaning one is immediately faced with the problem of multiplication of distributions.

Besides the intrinsic interest in the SHE, we recall that the Cole-Hopf transformation
h := − log u formally transforms the SHE to the non-linear Kardar-Parisi-Zhang (KPZ)
equation, which can be written as

∂th(t, x) =
1

2
∆h(t, x)− 1

2
(∂xh(t, x))2 + η, (1.2)

and appears in dimension d = 1 as the limit of front propagation in certain exclusion
processes ([BG97], [ACQ11]). While a-priori the equation (1.2) is not well posed due to
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Weak and strong disorder for the SHE in d ≥ 3

the presence of products of distributions, much recent progress has been achieved in
giving an intrinsic precise interpretation to it in dimension d = 1 ([H13])

As discussed in [AKQ14] and [CSZ15], the equations (1.1) and (1.2) share close analo-
gies to the well-studied discrete directed polymer, which can be defined as the trans-
formed path measure

µn(dω) =
1

Zn
exp

{
β

n∑
i=1

η(i, ωi)

}
dP0. (1.3)

Here the white noise (the disorder) is replaced by i.i.d. random variables η =
{η(n, x) : n ∈ N, x ∈ Zd}, P0 denotes the law of a simple random walk starting at
the origin corresponding to a d-dimensional path ωn = (ωi)i≤n, while β > 0 stands for
the strength of the disorder. It is well-known that, when d ≥ 3 the normalized partition
function Zn/EZn converges almost surely to a random variable Z∞, which, when β is
small enough, is positive almost surely (i.e., weak disorder persists [IS88, B89]), while
for β large enough, Z∞ = 0 (i.e., strong disorder holds [CSY04]). Related results for a
continuous directed polymer in a field of random traps appear in [CY13].

We return to the study of the stochastic heat equation in the continuum Rd, written as
a stochastic differential equation

dut =
1

2
∆utdt+ β ut dBt, (1.4)

where Bt is a cylindrical Wiener process in L2(Rd). Since the solution to (1.4) is not well
defined, a standard approach to treat this equation is to introduce a regularization of the
process Bt, followed by a suitable rescaling of the coupling coefficients and subsequently
passing to a limit as the regularization is turned off. In one space dimension d = 1,
this task was carried out by Bertini-Cancrini ([BC95]) by expressing the regularized
process by a Feynman-Kac formula; after a simple renormalization (the Wick exponen-
tial), a meaningful expression was obtained when the mollification was removed. The
renormalized Feynman-Kac formula defines a process with continuous (in space and
time) trajectories and it solves the equation (1.4) (when the stochastic differential is
interpreted in the Ito sense). Extending this procedure to d = 2 (where small scale
singularities coming from the noise are stronger), Bertini-Cancrini ([BC98]) introduced
a rescaling of the coupling constant

β = β(ε) =

(
2π

log ε−1
+

C

(log ε−1)2

)1/2

C ∈ R

which vanishes as ε → 0. It turned out that the covariance E[Zε(t, x)Zε(t, y)] of the
regularized field Zε converges to a non-trivial limit as the mollification is removed,
but the limiting law of Zε was not identified in [BC98]. The latter identification was
recently carried out by Caravenna, Sun and Zygouras ([CSZ15]) (see also Feng [F15]),
who proved that, in d = 2, if βε is chosen to be β

√
2π [log(1/ε)]−1, then for β < 1, Zε

converges in law to a random variable with an explicit distribution, while for β ≥ 1, Zε
converges in law to 0.

The results of this article concern related statements for d ≥ 3 pertaining to the
smoothened and rescaled equation

duε,t =
1

2
∆uε,t + β ε

d−2
2 uε,t dBε,t

uε,0 = 1

Write uε(x) := uε,1(x). Our main result shows that for every x ∈ Rd, for any β
small enough uε(x) converges in distribution to a non-degenerate random variable
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Weak and strong disorder for the SHE in d ≥ 3

Z∞ = Z∞(β), i.e., weak disorder prevails, while for β large enough, uε(x) converges
in probability to 0, i.e., strong disorder takes place. We also show that for β small
enough and any suitable test function f , uε(f) =

∫
f(x)uε(x)dx converges in probability

to
∫
f(x) dx. We remark that our results, unlike [CSZ15], do not charaterize the limiting

non-degenerate random variable Z∞(β), nor do they identify the exact critical threshold
for the value of β (which happens to be 1 in d = 2), where the departure from weak
disorder to strong disorder takes place.

2 Main results

2.1 Preliminaries We consider a complete probability space (Ω,F ,P) and a cylindrical
Wiener process B = (Bt)t≥0 on L2(Rd). The latter is defined as the centered Gaussian
process with covariance

E

(
Bs(f)Bt(g)

)
=
(
s ∧ t

) ∫
Rd
f(x)g(x)dx f, g ∈ S(Rd).

Here S = S(Rd) is the Schwartz space of rapidly decreasing functions in Rd. To define
B pointwise in Rd, we need the regularization

Bε,t(x) = Bt
(
φε(x− ·)

)
,

with respect to some mollifier
φε = ε−dφ(x/ε).

Here φ is some smooth, non-negative, compactly supported and even function such that∫
Rd
φ(x)dx = 1. Then

∫
Rd
φε(x)dx = 1, and φε ⇒ δ0 weakly as probability measures.

Furthermore, for any ε > 0, Bε = (Bε,t)t≥0 is also a centered Gaussian process with
covariance

E
(
Bs,ε(x)Bt,ε(y)

)
=
(
s ∧ t

)
Vε(x− y)

where we introduced
V = φ ? φ, Vε,δ = φε ? φδ, Vε = Vε,ε. (2.1)

Note that Vε(x) = ε−dV (x/ε).

For any β > 0 and ε > 0, we consider the stochastic differential equation

duε,t =
1

2
∆uε,tdt+ βε

d−2
2 uε,t dBε,t

uε,0 = 1,
(2.2)

where the stochastic differential is interpreted in the classical Ito sense (since our
smoothing of B was done in space only, the well-defined solution uε,t is adapted to the
natural filtration Gt = σ({Bε,s(x), x ∈ Rd, s ≤ t}). See e.g. [N97] for details. Our goal is
to study the behavior of uε,1(x) as the mollification parameter ε is turned off. For this,
we will use a convenient Feynman-Kac representation of uε,t(x), which we introduce in
Section 2.3 after stating our main results.

2.2 Main results: weak and strong disorder Henceforth we fix d ≥ 3 and set
uε(x) := uε,1(x) and, for any f ∈ S(Rd), we write uε(f) =

∫
Rd
uε(x)f(x)dx. Here is the

statement of our first main result.

Theorem 2.1 (Convergence to the heat equation in the weak disorder phase). There
exists β? ∈ (0,∞) such that for all β < β? and any f ∈ S(Rd), uε(f) converges in
probability to

∫
Rd
f(x)dx as ε → 0. Furthermore, for any β < β? and any x ∈ Rd, uε(x)

converges in distribution to a nondegenerate random variable Z∞ which is positive
almost surely.
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Weak and strong disorder for the SHE in d ≥ 3

Remark 2.2. The first statement in Theorem 2.1 implies that uε converges in the sense
of distributions to the solution of the heat equation. Although for simplicity we content
ourselves with the initial condition Zε(0, x) = 1 in (2.2), the same statement continues to
hold for reasonably nice initial condition uε(0, x) = u0(x).

Remark 2.3. While we do not discuss it in detail, the Feynman-Kac representation
of uε(x) that we introduce in the next subsection shows that uε(x) and uε(y) become
asymptotically independent as ε→ 0; this explains the fact that smoothing with f makes
uε(f) deterministic.

The proof of Theorem 2.1 is based on an L2 computation and is presented in Section 3.

Theorem 2.4 (The strong disorder phase). There is β∗ > 0 such that for all β > β∗ and
any fixed x ∈ Rd, uε(x)→ 0 in probability.

The proof of Theorem 2.4 is presented in Section 4. This proof avoids the use of the
well-known fractional moment method which pervades the proofs of strong disorder
assertions in realm of the aforementioned literature on the discrete directed polymer
models, and instead uses the theory of Gaussian multiplicative chaos (GMC).

As a by-product of our arguments, we have the following corollary.

Corollary 2.5. There is a β̄ ∈ (0,∞) such that, as ε → 0, uε(0) converges to 0 in
probability for all β > β̄ while uε(0) converges in distribution to a non-degenerate,
strictly positive random variable Z∞ = Z∞(β) when β < β̄.

The constant β̄ is given as the threshold for the uniform integrability of a certain family
of martingales Zε,β; we refer to the proof of Corollary 2.5 for details, which can also
be found at the end of Section 4. We leave unresolved the question of what happens at
β = β̄.

Remark 2.6. Clearly β̄ depends on the dimension d ≥ 3 and on the mollifier φ since
scaling the latter amounts to modifying β. As mentioned in Section 1, it remains an open
problem to determine the exact value of β ∈ (0,∞) and to identify the exact distribution
of the positive random variable Z∞ appearing in Corollary 2.5.

2.3 A Feynman-Kac representation For any x ∈ Rd, let Px denote the Wiener
measure corresponding to a d-dimensional Brownian motion (Wt)t≥0 starting at x and
independent of the cylindrical Wiener process B. Ex will denote the corresponding
expectation. For fixed W , set

Mε,t(W ) =

∫ t

0

∫
Rd
φε(Ws − x) Ḃ(t− s,dx)ds (2.3)

as a Wiener integral. For two fixed W and W ′, the covariance is given by

E (Mε,t(W ) ·Mδ,t(W
′)) =

∫ t

0

Vε,δ(Ws −W ′s)ds (2.4)

(recall (2.1). Here and later, we write E for integration over B only, keeping W fixed).
We also note that, for any fixed W ,

E
(
M2
ε,t(W )

)
= tVε(0) = t(φε ? φε)(0),

which diverges like ε−d as ε→ 0.

We now turn to (2.2) and write its renormalized Feynman-Kac solution, see [BC95], as

uε,t(x) = Ex

[
exp

{
βε(d−2)/2Mε,t(W ) − β2εd−2

2
E(Mε,t(W )2)

}]
= Ex

[
exp

{
βε(d−2)/2

∫ t

0

∫
Rd
φε(Ws − x) Ḃ(t− s,dx)ds− β2εd−2

2
tVε(0)

}]
.

(2.5)
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Weak and strong disorder for the SHE in d ≥ 3

Note that E[uε,t(x)] = 1.

For our purposes, it is convenient to introduce another representation of uε,t. Note
that by rescaling of time and space, ε−1Ws has the same distribution as Wsε−2 , while
Ḃ(s,dx)ds has the same distribution as

εd/2+1Ḃ
(
sε−2,dε−1x

)
d(ε−2s).

Then, by (2.3), for a fixed W ,

Mε,t(W )
(d)
=

1

ε(d−2)/2

∫ tε−2

0

∫
Rd
φ
(
y − ε−1Wsε2

)
Ḃ(t/ε2 − s,dy)ds

Hence (2.5) implies that

uε,t(x)
(d)
= E x

ε

[
exp

{
β

∫ tε−2

0

∫
Rd
φ
(
y −Ws

)
Ḃ(t/ε2 − s,dy)ds− β2

2ε2
tV (0)

}]
. (2.6)

Recall that uε(x) = uε,1(x). Using the invariance of the distribution of Ḃ under time
reversal, we obtain that for any fixed ε, the spatially-indexed process {uε(x)} possesses
the same distribution as the process {Zε(x/ε)}, where

Zε(x) = Ex

[
exp

{
β

∫ ε−2

0

∫
Rd
φ
(
y −Ws

)
Ḃ(s,dy)ds− β2

2ε2
V (0)

}]
(2.7)

3 Proof of Theorem 2.1: the second moment method

We start with an elementary computation.

Lemma 3.1. Fix d ≥ 3. If β > 0 is chosen small enough, for any x ∈ Rd, the family
{uε(x)}ε>0 remains bounded in L2(P).

Proof. Let W and W ′ be two independent standard Brownian motions with P0 ⊗ P0

denoting their joint law. Then, writing ηε = ε(d−2)/2 and Mε(W ) = Mε,1(W ),

E
[
uε(0)2

]
= E

[{
E0 exp

(
βηεMε(W ) − β2η2ε

2
Vε(0)

)}2]
=
(
E0 ⊗ E0

) [
E

{
exp

(
βηεMε(W ) − β2η2ε

2
Vε(0)

)
exp

(
βηεMε(W

′) − β2η2ε
2

Vε(0)

)}]
=
(
E0 ⊗ E0

)[
exp

{
β2η2ε

∫ 1

0

Vε(Ws −W ′s)ds
}]

= E0

[
exp

{
β2η2ε

∫ 1

0

Vε(
√

2Ws)ds

}]
where the third identity follows by (2.4). Hence, by (2.1), Brownian scaling and change
of variables, we infer that

E
[
u2ε(0)

]
= E0

[
exp

{
β2

∫ 1/ε2

0

V (
√

2Ws)ds

}]
≤ E0

[
exp

{
β2

∫ ∞
0

V (
√

2Ws)ds

}]
.

Since V is a bounded function of compact support, it is easy to check (using that d ≥ 3,
see e.g. (3.5) below) that for β small enough,

sup
x∈Rd

Ex

{
β2

∫ ∞
0

V (Ws)ds

}
≤ η < 1. (3.1)

Hence, by Portenko’s lemma ([P76]),

sup
x∈Rd

Ex

[
exp

{
β2

∫ ∞
0

V (Ws)ds

}]
≤ 1

1− η
<∞. (3.2)

This proves the lemma.
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Weak and strong disorder for the SHE in d ≥ 3

Remark 3.2. Let us remark that uε(0) is not a Cauchy sequence in L2(P). Indeed, a
simple computation using (2.4) shows that

E
[
(uε − uδ)2

]
= E0 ⊗ E0

[
exp

{
β2η2ε

∫ t

0

Vε
(
Ws −W ′s

)
ds

}
− exp

{
β2ηεηδ

∫ t

0

Vε,δ
(
Ws −W ′s

)
ds

}]
+ E0 ⊗ E0

[
exp

{
β2η2δ

∫ t

0

Vδ
(
Ws −W ′s

)
ds

}
− exp

{
β2ηεηδ

∫ t

0

Vε,δ
(
Ws −W ′s

)
ds

}]
The difference of the two terms in the first line (and likewise, the second line) does not
go to zero. For instance, if φε is a centered Gaussian mollifier with variance ε2, then in
the first line, again by Brownian scaling, the second term (with the expectation) becomes
(recall (2.1))

(E0 ⊗ E0)

[
exp

{
β2 ηεηδ

η2√
ε2+δ2

∫ t/(ε2+δ2)

0

V
(
Ws −W ′s

)
ds

}]
while the first term becomes

(E0 ⊗ E0)

[
exp

{
β2

∫ t/ε2

0

V
(
Ws −W ′s

)
ds

}]
.

From these expressions one can see that E
[
(uε − uδ)2

]
does not vanish, e.g., in the

iterated limit limε→0 limδ→0.

Remark 3.3. The discussion in Remark 3.2 shows that uε(0) does not converge in L2(P)
as ε→ 0. In fact, it does not converge in probability either. Indeed, uε(0) has, for fixed
ε, the same distribution as Zε(0) of (2.7). Noting that ε 7→ Zε(0) is a martingale with
supεE(Zε(0)2) <∞, it follows that Zε(0) converges in L2(P) and in particular Zε(0)2 is
uniformly integrable. Therefore, the sequence uε(0)2 is uniformly integrable, and in
particular cannot converge in probability since it does not converge in L2(P).

We turn to the proof of Theorem 2.1.

Proof of Theorem 2.1. Let us denote by ûε(x) = uε(x) − E(uε(x)) = uε(x) − 1 and
ûε(f) =

∫
Rd
f(x)ûε(x) dx. Then E

(
ûε(f)

)
= 0. Note that, for the proof of the first part of

Theorem 2.1, it suffices to show that

E
[
ûε(f)2

]
→ 0 (3.3)

as ε→ 0. Let us prove this fact. Exactly similar computations as in the proof of Lemma
3.1 imply that

E
[
ûε(f)2

]
=

∫ ∫
Rd×Rd

f(x)f(y)E
[
uε(x)uε(y)

]
dxdy −

(∫
Rd
f(x)dx

)2

=

∫ ∫
Rd×Rd

f(x)f(y)E x−y
ε

[
e

1
2β

2
∫ 2/ε2

0 V (Ws)ds

]
dxdy −

(∫
Rd
f(x)dx

)2
(3.4)

If z = (x− y)/ε, then,

Ez

[ ∫ ∞
0

V (Ws) ds

]
= Cd

∫
dy

V (y)

|y − z|d−2
→ 0 as |z| → ∞. (3.5)

By applying Portenko’s lemma again ([P76]), we see that for β small enough

sup
x
Ex

[
e
β2

2

∫∞
0
V (Ws)ds

]
= sup

x
E0

[
e
β2

2

∫∞
0
V (Ws+x)ds

]
<∞, (3.6)
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Weak and strong disorder for the SHE in d ≥ 3

which implies the uniform integrability of e
β2

2

∫∞
0
V (Ws+x)ds. Together with (3.5), we get

for any even smaller β that

Ez

[
e
β2

2

∫∞
0
V (Ws)ds

]
→ 1 (3.7)

as |z| → ∞. Combining (3.4), (3.6) and (3.7), we use the bounded convergence theorem
to conclude (3.3). This proves the first part of Theorem 2.1.

For the second part, note that (2.6) implies that for fixed ε, uε,1(0) is equal in dis-
tribution to Zε. Since the process {Zε}ε is a positive martingale (with respect to a
filtration indexed by 1/ε2), it converges almost surely to a limit Z∞. By Lemma 3.1, Zε is
(uniformly in ε) L2(P) bounded for β small enough, and therefore Z∞ does not vanish
identically. By the 0-1 law as in the proof of Theorem 2.4 (see (4.1)), we conclude that

P (Z∞ = 0) = 0. Thus uε(0) converges in distribution to Z∞. Further, since uε(x)
d
= uε(0)

by translation invariance, the same applies to uε(x). Finally, since Z∞ is the L2(P) limit
of the sequence Zε, and the variance of the latter remains bounded away from 0 as ε→ 0,
we conclude that Z∞ is non-degenerate.

4 Proof of Theorem 2.4 and Corollary 2.5: Gaussian multiplica-
tive chaos

The starting point is the representation (2.7) for Zε = Zε(0). For d ≥ 3, which we
assume throughout, we will show that there is a β∗ > 0 such that for all β > β∗, Zε → 0
in probability.

In order to prove this result, we represent Zε as a Gaussian Multiplicative Chaos
(GMC), see [K85, S14] for background. Let E = C0([0,∞);Rd) and recall that P0 denotes
the standard Wiener measure on E corresponding to the d-dimensional Brownian motion
W = (Wt)t≥0. Set

Λε = exp

{
β

∫ ε−2

0

∫
Rd
φ
(
y −Ws

)
Ḃ(s,dy)ds− β2

2ε2
V (0)

}

and recall that Zε
(d)
= E0Λε. Introduce the random measure Mε with dMε = Λε dP0 on E

and note that Zε =
∫
EMε(dW ).

Introduce the event V := {Zε 6→ε→0 0}. Since V is a tail event for the process t→ B(t, ·),
one has

P(V) ∈ {0, 1}. (4.1)

(To see the claim concerning the tail event, define the space-time shift θy,s formally by
θy,sB(dx, dt) = B(y+dx, s+dt)−B(y, s) and note that Zε(B)→ε→0 0 iff Zε(θy,sB)→ε→0 0
for Lebesgue almost every y and every s > 0.)

Note that ε−1 7→ Zε is a strictly positive martingale of mean 1. Introduce on Ω× E the
measure

dQε := Λε d(P⊗ P0).

Let the measure Qε be its marginal on Ω, i.e. dQε = ZεdP.

Lemma 4.1. If the sequence (Zε)ε is uniformly integrable under P, then under Qε, (Zε)ε
is uniformly bounded in probability. In other words,

lim
m→∞

sup
ε
Qε(Zε > m) = 0.

Proof. Assume that Zε is uniformly integrable. Then, by the la Vallée-Poussin theorem,
there exists a convex increasing function h : R+ → R+, such that h(x)/x→∞, x→∞

ECP 21 (2016), paper 61.
Page 7/12

http://www.imstat.org/ecp/

http://dx.doi.org/10.1214/16-ECP18
http://www.imstat.org/ecp/


Weak and strong disorder for the SHE in d ≥ 3

and supεEh(Zε) = C <∞. Then,

C ≥ Eh(Zε) =

∫
h(Zε)

Zε
dQε .

The conclusion follows.

Remark 4.2. The implication in Lemma 4.1 is an “if and only if” statement; we only
stated the direction that we need.

Another preparatory step that we need is the following proposition, whose statement
and proof closely follow [CY06, Prop. 3.1].

Proposition 4.3. The sequence {Zε} is uniformly integrable under P if and only if
P(V) = 1.

Proof. If {Zε} is uniformly integrable under P then its limit is necessarily non degenerate,
i.e. P(V) > 0. Then, P(V) = 1 by (4.1).

To prove the reverse implication, recall the random variables Zε(x) (with x ∈ Rd),
see (2.7). With t = 1/ε2, we write Z̄t(x) = Zε(x). It is enough to prove the uniform
integrability for the sequence Z̄n(0). Following [CY06], Let Z̄∞(B) denote the limit of
Z̄n(0) (which exists a.s.) and, for z ∈ Rd, let Xn,z = Z̄∞(θn,zB)/EZ̄∞, where θn,z denote
the temporal (by n) and spatial (by z) shift of B. Set, for x, z ∈ Rd,

en,x,z(B) = Ex

(
exp

{
β

∫ 1

0

∫
Rd
φ(y −Ws)Ḃ(s+ n− 1,dy)ds− β2V (0)

2

} ∣∣W1 = z

)
.

We have that EXn,z = 1 and Xn,x ≥ Ex(en+1,x,W1
·Xn+1,W1

) by Fatou. Denote by Gt the
natural filtration induced by t→ B(t, ·). By construction, Xn,· is independent of Gn, and
E(Xn,z|Gn) = EXn,z = 1 . Now, iterating, we get by the Markov property

X0,0 ≥ E0(e1,0,W1
e2,W1,W2

· · · en,Wn−1,Wn
Xn,Wn

) .

Thus,
E(X0,0|Gn) ≥ E0(e1,0,W1e2,W1,W2 · · · en,Wn−1,Wn) = Z̄n .

It follows that the sequence Z̄n is uniformly integrable under P.

Remark 4.4. An alternative proof of Proposition 4.3 can be obtained by using [K87,
Thm. 2] and an appropriate 0-1 law with respect to the Brownian path W .

The following proposition is the heart of the proof of Theorem 2.4.

Proposition 4.5. There exists β∗ such that for β > β∗ and any m > 0,

Qε(Zε > m)→ε→0 1.

We first complete the proof of Theorem 2.4, and then provide the proof of Proposition
4.5.

Proof of Theorem 2.4 (assuming Proposition 4.5): Assume that Zε does not con-
verge to 0 almost surely. Then, by Proposition 4.3, it is uniformly integrable and, by
Lemma 4.1, it is uniformly bounded in probability under Qε. In particular, there exists
K > 0 such that Qε(Zε > K) < 1/2. This contradicts Proposition 4.5.

Before providing the proof of Proposition 4.5, we need to introduce some notation and
prove some preparatory lemmas. Introduce the stopping times τδ(W,W ′) = inf{t > 0 :
|Wt −W ′t | ≥ δ}. We need an estimate on the tail of τ := τδ conditionally on W , presented
in the next lemma; in its statement and in its proof, P⊗20 denotes the measure P0 ⊗ P0 on
(W,W ′)
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Lemma 4.6. There exists a random variable χ = χ(W ) and a constant κ > 0, such that

P⊗20

(
τ ≥ t|W

)
≥ χ(W )e−κt .

Proof. Define

κ1 = lim inf
t→∞

1

t
logP⊗20

(
τ ≥ t|W

)
. (4.2)

Note that since κ1 is measurable with respect to the tail σ-field of W , it is deterministic,
possibly equal to −∞. We will show that κ1 > −∞. Taking then κ = −2κ1 then proves
the lemma.

With | · | denoting the Euclidean norm in Rd, let

W 1,2
t =

{
ϕ : ϕ(0) = 0,

∫ t

0

|ϕ̇(s)|2ds <∞
}
,

where ϕ̇ denotes the time-derivative of ϕ. We also use the notation ‖ϕ‖∞,t =

sups∈[0,t] |ϕ(s)|. Fix a (possibly random, but independent of W ′) function ϕ ∈ W 1,2
t .

Then, by an application of the Cameron-Martin theorem in classical Wiener space,

P0(‖W ′ − ϕ‖∞,t ≤ δ/2)

=

∫
e
∫ t
0
ϕ̇(s)dW ′(s)− 1

2

∫ t
0
|ϕ̇(s)|2ds1l{‖W ′‖∞,t≤δ/2}dP0(W ′)

= e−
1
2

∫ t
0
|ϕ̇(s)|2ds

∫
e
∫ t
0
ϕ̇(s)dW ′(s)1l{‖W ′‖∞,t≤δ/2}dP0(W ′)

= e−
1
2

∫ t
0
|ϕ̇(s)|2ds P0

(
‖W ′‖∞,t ≤ δ/2

)
E0

[
e
∫ t
0
ϕ̇(s) dW ′(s)

∣∣{‖W ′‖∞,t ≤ δ/2}]
≥ e−

1
2

∫ t
0
|ϕ̇(s)|2dsP0

(
‖W ′‖∞,t ≤ δ/2

)
, (4.3)

where the last inequality used Jensen’s inequality and invariance of the set ‖W ′‖∞,t ≤ δ/2
with respect to the map W ′ 7→ −W ′.

Introduce the random field

Ys,t(W ) = inf

{∫ t

s

|ϕ̇(u)|2 du : ϕ(s) = Ws, ϕ(t) = Wt, sup
u∈[s,t]

|W (u)− ϕ(u)| ≤ δ/2
}
.

Since Y is subadditive in the sense that Ys,t ≤ Ys,u + Yu,t for u ∈ (s, t), Kingman’s
subadditive ergodic theorem implies that

t−1Y0,t →t→∞ κ2, a.s. (4.4)

for a deterministic κ2. We claim that κ2 is finite. To see that, note that κ2 ≤ EY0,1. Set
X :=

√
Y0,1 : E → Rd and note that X <∞, P0-a.s, and that

|X(W + ϕ)−X(W )| ≤
(∫ 1

0

|ϕ̇(t)|2dt
)1/2

for P0-almost all W and all ϕ in the Cameron-Martin space W 1,2
1 . Thus, denoting

by med(X) the median of X we have by isoperimetry for the Gaussian measure, see
e.g. [Bo98, Theorem 4.5.6] that X −med(X) possesses Gaussian tails, and therefore
EX2 = EY0,1 <∞.

We can now conclude. Let ϕ(t) = ϕ(t)(W ) be such that ϕ(t)(0) = 0, ϕ(t)(t) = W (t) and

Y0,t =
∫ t
0
|ϕ̇(s)|2ds. (Such ϕ(t) exists by lower-semicontinuity of the L2 norm, although
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this is not essential to our argument and we could just assume that the last integral is
smaller than 2Y0,t.) We have, by (4.3),

P⊗20

(
τ ≥ t|W

)
= P⊗20

(
‖W ′ −W‖∞,t ≤ δ|W

)
≥ P⊗20

(
‖W ′ − ϕ(t)‖∞,t ≤ δ/2|W

)
≥ e−

1
2Y0,tP0(‖W ′‖∞,t ≤ δ/2

)
.

Thus, by (4.2) and (4.4),

κ1 = lim inf
t→∞

1

t
logP⊗2(τ ≥ t|W ) ≥ −κ2

2
+ lim
t→∞

1

t
logP0(‖W ′‖∞,t ≤ δ/2).

The last probability on the right hand side is P0(σ > t), where σ denotes the first exit
time of the standard Brownian motion W ′ from the ball of radius δ/2 around the origin. It
is well-known (for example, by the spectral theorem for − 1

2∆) that limt→∞
1
t logP0{σ >

t} = −λ1, where λ1 > 0 is the principal eigenvalue of − 1
2∆ with Dirichlet boundary

conditions on the same ball. It follows that κ1 > −∞ and Lemma 4.6 is proved.

Henceforth, we set t = ε−2. Next, on E × E , introduce the kernels

Kε(W,W
′) =

∫ 1/ε2

0

∫
Rd
φ(x−Ws)φ(x−W ′s)dx ds.

Note that, by Cauchy-Schwarz, Kε(W,W
′) ≤ V (0)t.

Lemma 4.7. There exists δ > 0 such that on the event {τδ(W,W ′) ≥ t}, one has
Kε(W,W

′) ≥ 2V (0)t/3.

Proof. Recall that V (0) =
∫
Rd
φ2(y)dy. On the other hand, for θ small enough,

inf
f : ∀s, |f(s)|≤θ

∫ t

0

∫
Rd
φ(y)φ

(
y + f(s)

)
dyds ≥ t

(
V (0)−O(θ)

)
.

This completes the proof.

Finally we turn to the proof of Proposition 4.5.

Proof of Proposition 4.5: Since we will use two independent copies W,W ′ of Brownian
motions, we write throughout Λε = Λε(W ), Λε(W

′) to emphasize which Brownian motion
participates in the definition of Λε.

The starting point of the proof is the remark that by the Cameron-Martin change of
measure [Bo98], the law of Ḃ(x, s) under Qε is the same as the law of Ḃ(x, s)+βφ(x−Ws)
under P⊗ P0 when restricted to the σ-algebra generated by Ḃ �Rd×[0,t].

Let f : R+ → R+ be an increasing concave function. Then, by the above remark,∫
f(Zε)dQε =

∫
f(Zε)dQε =

∫
f

(∫
Λε(W

′)dP0(W ′)

)
dQε

=

∫
f

(∫
Λε(W

′)eβ
2Kε(W,W

′)dP0(W ′)

)
d(P⊗ P0)

≥
∫
f

(∫
Λε(W

′)eβ
2Kε(W,W

′)1l{τ(W,W ′)≥t}dP0(W ′)

)
d(P⊗ P0)

≥
∫
f

(∫
Λε(W

′)e2β
2V (0)t/31l{τ(W,W ′)≥t}dP0(W ′)

)
d(P⊗ P0)

=

∫
f

(
e2β

2V (0)t/3

∫
Λε(W

′)1l{τ(W,W ′)≥t}dP0(W ′)

)
d(P⊗ P0), (4.5)
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where in the first inequality we used that f is increasing, and in the last inequality we
used the same together with Lemma 4.7 (recall t = ε−2). On the other hand, f is concave
and on the set {τ ≥ t} the covariance kernel Kε is bounded from above by the constant

kernel K̂ε(W,W
′) := V (0)t. Using Kahane’s comparison inequality with kernels Kε and

K̂ε (see [K85] – it is stated there for convex functions, with the opposite sign; see also
[S14, Theorem 28]), we get:∫

f(Zε)dQε ≥ EG,W
[
f

(
e2β

2V (0)t/3
(
P0⊗P0

)(
τ(W,W ′) ≥ t|W

)
eβ(V (0)t)1/2G−β2V (0)t/2

)]
,

(4.6)
where G is a standard centered Gaussian random variable which is independent of W ,
and the expectation EG,W is taken over both G and W . In particular,∫

f(Zε)dQε ≥ EG,W
[
f

(
eβ

2V (0)t/6
(
P0 ⊗ P0

)(
τ(W,W ′) > t|W

)
eβ(V (0)t)1/2G

)]

≥ EG,W
[
f

(
χ(W )e−κteβ

2V (0)t/6eβ
√
V (0)tG

)]
.

(4.7)

Note that the argument of f goes to infinity as t → ∞ for almost every (G,W ), if
β >

√
6κ/V (0). Using

f(x) = fα(x) =

{
α−1x, x ≤ α
1, x ≥ α,

we conclude that

lim
α→∞

lim inf
ε→0

∫
fα(Zε)dQε = 1.

This completes the proof.

Proof of Corollary 2.5. Recall the random variable

Zε = Zε,β(B) = E0

[
exp

{
β

∫ ε−2

0

∫
Rd
φ
(
y −Ws

)
Ḃ(s,dy)ds− β2

2ε2
V (0)

}]
.

Let

β = sup

{
β > 0 :

{
Zε,β

}
ε>0

is uniformly integrable

}
.

In view of Theorem 2.1 and Theorem 2.4, we have β ∈ (0,∞). Thus, the corollary will
follow from the following fact.

If Zε,β is uniformly integrable for some β > 0, then so is Zε,β′ for β′ < β. (4.8)

To see (4.8), let B,B′ be independent copies of B and let β′ = ρβ with ρ < 1. To
emphasize the dependence of Zε,β on B, we write Zε,β = Zε,β(B). Note that

Zε,β′(B) = Zε,ρβ(B) = E
[
Zε,β(ρB +

√
1− ρ2B′) |B

]
Since

{
Zε,β(B)}ε>0 is uniformly integrable, there exists a positive increasing convex

function f with f(x)/x →x→∞ ∞ so that supεEf(Zε,β(B)) < ∞. However, by Jensen’s
inequality and the last display,

E[f(Zε,β′(B))] = E

[
f
(
E
(
Zε,β(ρB +

√
1− ρ2B′) | B

))]
≤ E

[
f(Zε,β(ρB +

√
1− ρ2B′))

]
= E[f(Zε,β(B))] .
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It follows that supε>0E[f(Zε,β′(B))] <∞, which in turn implies the uniform integrability
of
{
Zε,β′

}
ε>0

. This completes the proof.
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