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Abstract

Using graphical methods based on a ‘lookdown’ and pruned version of the ancestral
selection graph, we obtain a representation of the type distribution of the ancestor in
a two-type Wright-Fisher population with mutation and selection, conditional on the
overall type frequency in the old population. This extends results from [17] to the case
of heavy-tailed offspring, directed by a reproduction measure Λ. The representation is
in terms of the equilibrium tail probabilities of the line-counting process L of the graph.
We identify a strong pathwise Siegmund dual of L, and characterise the equilibrium
tail probabilities of L in terms of hitting probabilities of the dual process.

Keywords: common ancestor type distribution; ancestral selection graph; lookdown graph;
pruning; Λ-Wright-Fisher diffusion; selection; mutation; strong pathwise Siegmund duality;
flights.
AMS MSC 2010: 60J75; 92D15; 60C05; 05C80.
Submitted to ECP on March 11, 2016, final version accepted on August 8, 2016.
Supersedes arXiv:1603.03605v3.

1 Introduction

We consider a Wright-Fisher process with two-way mutation and selection. This is
a classical model of mathematical population genetics, which describes the evolution,
forward in time, of the type composition of a population with two types. Individuals
reproduce and change type, and the reproduction rate depends on the type (the beneficial
type reproduces faster than the less favourable one).

In a previous paper [17], we have presented a graphical construction, termed the
pruned lookdown ancestral selection graph (p-LD-ASG), which allows us to identify
the common ancestor of a population in the distant past, and to represent its type
distribution. This construction keeps track of the collection of all potential ancestral
lines of an individual. As the name suggests, the p-LD-ASG combines elements of
the ancestral selection graph (ASG) of Krone and Neuhauser [16] and the lookdown
construction of Donnelly and Kurtz [6], which here leads to a hierarchy that encodes
who is the true ancestor once the types have been assigned to the lines. In addition, a
pruning procedure is applied to reduce the graph.
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The common ancestor type distribution

A key quantity is the process L, which counts the number of potential ancestors at
any given time. The ancestral type distribution is expressed in terms of the stationary
distribution of L together with the overall type distribution in the past population. The
two distributions may be substantially different. This mirrors the fact that the true
ancestor is an individual that is successful in the long run; thus, its type distribution
is biased towards the favourable type. Explicitly, the ancestral type distribution is
represented as a series in terms of the frequency of the beneficial type in the past, where
the coefficients are the tail probabilities of the stationary distribution of L and are known
in terms of a recursion.

The results obtained so far referred to Wright-Fisher processes. These arise as
scaling limits of processes in which an individual that reproduces has a single offspring
that replaces a randomly chosen individual (thus keeping population size constant); in
the ancestral process, this corresponds to a coalescence event of a pair of individuals.
Here we will consider a natural generalisation, the so-called Λ-Wright-Fisher processes.
These include reproduction events where a fraction z > 0 of the population is replaced by
the offspring of a single individual; this leads to multiple merger events in the ancestral
process.

The Λ-Wright-Fisher processes belong to the larger class of Λ-Fleming-Viot processes
(which also include multi-(and infinite-)type generalisations). These, together with
their ancestral processes, the so-called Λ-coalescents, have become objects of intensive
research in the past two decades. Although less is known for the case with selection,
progress has been made in this direction as well (see for example [1, 5, 6, 7, 10]).

Besides deriving our main result on the common ancestor type distribution of a
Λ-Wright-Fisher process (stated in Sec. 2), the purpose of our paper is twofold: First,
we will extend the p-LD-ASG to include multiple-merger events; this will lead to the
p-LD-Λ-ASG. Second, in the footsteps of Clifford and Sudbury [3], we will construct a
Siegmund dual of the line-counting process L of the p-LD-Λ-ASG. In line with a classical
relation between entrance laws of a monotone process and exit laws of its Siegmund dual
(discovered by Cox and Rösler [4]), the tail probabilities of L at equilibrium correspond
to hitting probabilities of the Siegmund dual. This Siegmund dual is a new element of
the analysis: In [17], the recursions for the tail probabilities were obtained from the
generator of L, in a somewhat technical manner. The duality provides a more conceptual
approach, which is interesting in its own right, and yields the recursion in an elegant
way, even in the more involved case including multiple mergers. It will also turn out that
the Siegmund dual of L is a natural generalisation (to the case with selection) of the
so-called fixation line (or fixation curve), introduced by Pfaffelhuber and Wakolbinger
[19] for Kingman coalescents and investigated by Hénard [13] for Λ-coalescents.

The paper is organised as follows. In Section 2, we recapitulate the Λ-Wright-Fisher
model with mutation and selection, and the corresponding ancestral process, the Λ-ASG;
we also provide a preview of our main results. In Section 3, we extend the p-LD-ASG
to the case with multiple mergers. Section 4 is devoted to the Siegmund dual. The
dynamics of this dual process is identified via a pathwise construction and thus yields a
strong duality. Once the dual is identified, it leads to the tail probabilities of L with little
effort.

2 Model and main result

We will consider a population consisting of individuals each of which is either of
deleterious type (denoted by 1) or of beneficial type (denoted by 0). The population
evolves according to random reproduction, two-way mutation, and fertility selection
(that is, the beneficial type reproduces at a higher rate), with constant population size
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The common ancestor type distribution

over the generations. The parameters of the model are

• the reproduction measure Λ, which is a probability measure on [0, 1], and whose
meaning will be explained along with that of the generator GX below Eq. (2.1),

• the selective advantage σ (a non-negative constant that quantifies the reproductive
advantage of the beneficial type and is scaled with population size),

• the mutation rates θν0 and θν1, where θ, ν0, and ν1 are non-negative constants with
ν0 + ν1 = 1. Thus, νi, i ∈ {0, 1}, is the probability that the type is i after a mutation
event; note that this includes silent events, where the type remains unchanged.

We will work in a scaling limit in which the population size is infinite and time is scaled
such that the rate at which a fixed pair of individuals takes part in a reproduction event
is 1. The process X := (Xt)t∈R describing the type-0 frequency in the population then
has the generator (cf. [7, 10])

GXg(x) =

∫
(0,1]

[
x(g(x+ z(1− x))− g(x)) + (1− x)(g(x− zx)− g(x))

]Λ(dz)

z2

+ Λ({0}) · 1

2
x(1− x)g′′(x) +

[
σx(1− x)− θν1x+ θν0(1− x)

]
g′(x).

(2.1)

The first and second terms of this generator describe the neutral part of the reproduc-
tion. In the case Λ = δ0 (to which we refer as the Kingman case), the first term vanishes
and X is a Wright-Fisher diffusion with selection and mutation. Concerning the part of Λ

concentrated on (0, 1], the measure dtΛ(dz)/z2 figures as intensity measure of a Poisson
process, where a point (t, z), t ∈ R, z ∈ (0, 1], means that at time t a fraction z of the total
population is replaced by the offspring of a randomly chosen individual. Consequently, if
the fraction of type-0 individuals is x at time t−, then at time t the frequency of type-0
individuals in the population is x+z(1−x) with probability x and x(1−z) with probability
1− x. The third term of generator (2.1) describes the systematic (logistic) increase of
the frequency x due to selection, and the type flow due to mutation.

In the absence of both selection and mutation (i.e. when σ = θ = 0), the moment dual
of the Λ-Wright-Fisher process is the line-(or block-)counting process of the Λ-coalescent.
The latter was introduced independently by Pitman [20], Sagitov [21], and Donnelly and
Kurtz [18], see [2] for an introductory review.

The rate at which any given tuple of j out of b blocks merges into one is

λb,j :=

∫ 1

0

zj(1− z)b−jz−2Λ(dz), j ≤ b. (2.2)

Thus the transition rate of the line-counting process from state b to state c < b is given by(
b

b−c+1

)
λb,b−c+1. Note that Λ = δ0 corresponds to Kingman’s coalescent; here, λb,j = δ2,j

for all b ≥ 2. The measure Λ is said to have the property CDI if the Λ-coalescent comes
down from infinity, i.e. ∞ is an entrance boundary for its line-counting process.

When selection is present (i.e. σ > 0), an additional component of the dynamics of
the genealogy must be taken into account. In this case, in addition to the (multiple)
coalescences just described, the lines (or blocks) may also undergo a binary branching at
rate σ per line. The resulting branching-coalescing system of lines is a straightforward
generalisation of the ancestral selection graph (ASG) of Krone and Neuhauser [16] to
the multiple-merger case; we will call it the Λ-ASG. The Λ-ASG belonging to a sample of
n individuals taken from the population at time t = 0 describes all potential ancestors
of this sample at times t < 0. Throughout we use the variables t and r for forward and
backward time, respectively.
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The common ancestor type distribution

We denote the line-counting process of the Λ-ASG by K = (Kr)r≥0. It takes values in
N and its generator is

GKg(b) =

b−1∑
c=1

(
b

b− c+ 1

)
λb,b−c+1 [g(c)− g(b)] + bσ [g(b+ 1)− g(b)] . (2.3)

The process K is the moment dual of the Λ-Wright-Fisher process with selection coeffi-
cient σ and mutation rate θ = 0, in the sense that

E[(1−Xt)
n |X0 = x] = E[(1− x)Kt |K0 = n], (2.4)

see e.g. [7, Thm. 4.1].
Throughout we will work under the

Assumption 2.1. 0 ≤ σ < σ∗ := −
∫ 1

0
log(1− x)Λ(dx)

x2 .

Combining results of [9] and [10], one infers that Assumption 2.1 is equivalent to
the positive recurrence of the process K on N. Indeed, it is proved in [10, Theorem 3]
(for the case σ∗ <∞) and [9, Theorem 1.1] (for the case σ∗ =∞) that Assumption 2.1
is equivalent to P[X∞ = 1 | X0 = x] < 1 for all x < 1, where X∞ denotes the a.s. limit
of Xt as t → ∞. Combined with the moment duality (2.4), this readily implies that
Assumption 2.1 is equivalent to the positive recurrence of K on N if σ > 0.

A direct proof that Assumption 2.1 implies the positive recurrence of K on N in
the case σ > 0 is provided by [9, Lemma 2.4]. (Note in this context that K is clearly
non-explosive because it is dominated by a pure birth process with birth rate bσ, b ∈ N;
this makes the first assumption in [9, Lemma 2.4] superfluous).

For σ = 0, the process K, when started in b ∈ N, is eventually absorbed in 1. This
complements the previous argument in showing that under Assumption 2.1 the process
K has a unique equilibrium distribution and a corresponding time-stationary version
indexed by r ∈ R. Similarly, there exists a time-stationary version of the Λ-ASG, which
we call the equilibrium Λ-ASG, and which will be a principal object in our analysis.

Remark 2.2. It is proved in [12] that σ∗ = limk→∞
log k

Ek[T1] , where T1 is the first time at
which the line-counting process of the Λ-coalescent hits 1. In particular, if the measure
Λ has the property CDI, then σ∗ =∞ and hence Assumption 2.1 is satisfied for all σ ≥ 0.

Mutations can be superimposed as independent point processes on the lines of
the Λ-ASG: On each line, independent Poisson point processes of mutations to type
0 (‘beneficial mutation events’) come at rate θν0 and to type 1 (‘deleterious mutation
events’) at rate θν1.

For t < t and for a given frequency x of type-0 individuals in the population at time t,
the Λ-ASG may be used to determine the types in a sample S taken at time t, together
with its ancestry between times t and t, by the following generalisation of the procedure
in [16]. Each line of the Λ-ASG at time t is assigned type 0 with probability x and type
1 with probability 1 − x, in an iid fashion. Let the types then evolve forward in time
along the lines: after each beneficial or deleterious mutation, the line takes type 0 or 1,
respectively. At each neutral reproduction event (which is a coalescence event backward
in time), the descendant lines inherit the type of the parent. This is also true for the
(potential) selective reproduction events (the branching events backward in time), but
here one first has to decide which of the two lines is parental. The rule is that the
incoming branch (the line that issues the potential reproduction event) is parental if it
is of type 0; otherwise, the continuing branch (the target line on which the potential
offspring is placed) is parental. When all selective events have been resolved this way,
the lines that are not parental are removed, and one is left with the true genealogy of
the sample S.
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The common ancestor type distribution

Because of the positive recurrence (and the assumed time-stationarity) of the line-
counting process (Kr)−∞<r<∞, there exists a.s. a sequence of positive (random) times
t1 < t2 < . . . such that tn → ∞ and Ktn = 1 for all n. Thus, for a given assignment of
types to the lines of the stationary Λ-ASG A at time 0, and for all n ∈ N, removing the
non-parental lines leaves exactly one true ancestral line, between the times t = 0 and
t = tn, of the single individual in A at time tn. The resulting line between times t = 0

and t =∞ is called the immortal line or line of the common ancestor in the stationary
Λ-ASG.

Our main result is a characterisation of its type distribution at time 0, conditional on
the type frequency in the population at that time. For the following definition, let It be
the type of the immortal line in the stationary Λ-ASG at time t.

Definition 2.3 (Common ancestor type distribution). In the regime of Assumption 2.1,
and for x ∈ [0, 1], let h(x) := P(I0 = 0 | X0 = x) be the probability that the immortal line
in a stationary Λ-ASG with two-way mutations carries type 0 at time 0, given the type-0
frequency in the population at time 0 is x.

By shifting the time interval [0, t] back to [−t, 0], it becomes clear that h(x) is also the
limiting probability (as t→∞) that the ancestor at the past time −t of the population at
time 0 is of the beneficial type, given that the frequency of the beneficial type at time −t
was x.

Theorem 2.4. The probability h(x) has the series representation

h(x) =
∑
n≥0

x(1− x)nan, (2.5)

where the coefficients an in (2.5) are monotone decreasing, and the unique solution to
the system of equations∑

n+1<c≤∞

[
1

n

(
c− 1

c− n

)
λc,c−n

]
(an − ac−1) + (σ + θ)an = σan−1 + θν1an+1, n ≥ 1,

a0 = 1, a∞ := lim
n→∞

an = 0, (2.6)

with the convention(
∞− 1

∞− d+ 1

)
:=

{
0 if d = 1

1 if d ≥ 2
, and λ∞,∞ := Λ({1}). (2.7)

Let us discuss some special cases. In the neutral case, we clearly have a0 = 1 and
an = 0 for n > 0, so h(x) = x, which is the neutral fixation probability. For σ > 0, we
have an > 0 for all n, so h(x) > x due to the higher-order terms in the series (2.5). In the
Kingman case, the system of equations (2.6) simplifies to[

1

n

(
n+ 1

2

)
+ σ + θ

]
an =

1

n

(
n+ 1

2

)
an+1 + σan−1 + θν1an+1, n ≥ 1, (2.8)

and we immediately obtain

Corollary 2.5 (Fearnhead’s recursion). In the Kingman case, the coefficients in (2.5)
satisfy the recursion[

1

2
(n+ 1) + σ + θ

]
an =

[
1

2
(n+ 1) + θν1

]
an+1 + σan−1, n ≥ 1, (2.9)

with a0 = 1 and limn→∞ an = 0.
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The common ancestor type distribution

The case Λ(dz) = dz, 0 ≤ z ≤ 1, leads to the so called Bolthausen-Sznitman coalescent.
Although the latter does not have the property CDI, we still have σ∗ =∞. In this case
one has the identity 1

n

(
c−1
c−n
)
λc,c−n = 1

(c−n−1)(c−n) (cf. [2] Sec. 6.1), and the system (2.6)
simplifies to

[1 + σ + θ] an = σan−1 + θν1an+1 +

∞∑
j=1

1

j(j + 1)
an+j , n ≥ 1, (2.10)

with a0 = 1 and limn→∞ an = 0.
Recursion (2.9) appears in [8] in connection with a time-stationary Wright-Fisher

diffusion (with selection and mutation).1 In [23], the representation (2.5) together
with (2.9) was derived by analytic methods. In [17], again for the Kingman case, we
gave a new, more probabilistic proof, interpreting the coefficients an as equilibrium
tail probabilities of the line-counting process of the pruned lookdown ASG (see Sec. 3).
In the present paper we give a twofold extension: (i) we include the case of multiple
mergers, and (ii) we use a strong Siegmund duality (and thus a fully probabilistic method)
in order to derive the recursion (2.6).

An analogue of the quantity h(x) can also be defined for a Moran model with finite
population size N : for k ∈ {0, 1, . . . , N}, let hNk be the probability that the individual
whose offspring will take over the whole population at some later time is of type 0 at
time 0, given the number of type-0 individuals in the population at time 0 is k. In [15] it is
shown (for the Kingman case) that hNk converges to h(x) as N →∞ and k/N → x. Here,
we work in the infinite-population limit right away, in order to carve out some important
features of the underlying mathematical structure.

3 The pruned lookdown-Λ-ancestral selection graph

In the previous section, we have outlined the construction of the equilibrium Λ-ASG
and layed out how the immortal line within it may be identified: Types are assigned
at time 0, and the evolution is then followed forward in time. In practice, however,
this procedure is entangled due to the nested case distinctions required to identify
the parental branch (incoming or continuing, depending on the type). In the Kingman
case, we have solved this problem by ordering the lines, and by pruning certain lines
upon mutation [17]. The ordering is achieved by arranging the coalescence events in a
lookdown manner, and by inserting the incoming branch below the continuing branch
at every selection event. The pruning takes care of the fact that the mutations convey
information on the types of lines; this entails that some lines in the ASG can never be
ancestral, no matter which types are assigned at time 0, and can thus be deleted from
the set of potential ancestors. By construction, this removal does not affect the immortal
line.

More precisely, consider a realisation A of the ordered equilibrium ASG, decorated
with the mutation events. The corresponding lookdown version is obtained by placing
the lines on consecutive levels, starting at level 1. We now proceed from r = 0 in the
direction of increasing r. When a beneficial mutation event is encountered, we delete
all lines above it. When a deleterious mutation event occurs, we erase the line that
carries it; the lines above the affected line slide down to fill the space. One of the lines,
called the immune line, is distinguished in that it is not killed by mutations; rather, it
is relocated to the top. Let us anticipate that this is the line that is immortal if all lines

1Note that there is a difference of a factor 1/2 in the scaling of (2.9) in comparison to [8, 17, 23]. This is
because these papers use the diffusion part of the Wright-Fisher generator (see (2.1)) without the factor 1/2.
This corresponds to a pair coalescence rate of 2 in the Kingman case, while in the present paper we assume
pair coalescence rate 1 throughout.
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The common ancestor type distribution

at time 0 are assigned type 1. For illustrations and more details about the pruning
procedure, see [17].

The resulting pruned lookdown ASG can also be generated in one step, backward in
time, in a Markovian manner. In what follows, we review this construction and extend it
to the pruned lookdown Λ-ASG.

At each time r, the pruned lookdown Λ-ASG G consists of a finite number Lr of lines,
i.e. the process (Lr)r∈R takes values in the positive integers and Lr is the number of
lines in G at time r. The lines are numbered by the integers 1, . . . , Lr, to which we refer
as levels. The evolution of the lines as r increases is determined by a point configuration
on R ×

(
P(N) ∪ (N × {∗,×, ◦})

)
, where P(N) is the set of subsets of N and P(N) is

equipped with the σ-algebra generated by η 7→ 1η(i), i ∈ N, η ∈ P(N). Each of the
points (r, τ) stands for a transition element τ occurring at time r, that is, a merger, a
selective branching, a deleterious mutation, or a beneficial mutation at time r. The level
of the immune line at time r is denoted by Mr; its precise meaning will emerge from
Proposition 3.1.

Let us now detail the transition elements and their effects on G (see Figs. 1 and 2):

• A merger at time r is a pair (r, η), where η is a subset ofN. If |{1, . . . , Lr−}∩ η| ≤ 1,
then G is not affected. If, however, {1, . . . , Lr−}∩ η = {j1, . . . , jκ} with j1 < · · · < jκ
and κ ≥ 2, then the lines at levels j2, . . . , jκ merge into the line at level j1. The
remaining lines in G are relocated to ‘fill the gaps’ while retaining their original
order; this renders Lr = Lr− − κ+ 1. The immune line simply follows the line on
level Mr−.

• A selective branching at time r is a triple (r, i, ∗), with i ∈ N. If Lr− < i, then G is
not affected. If Lr− ≥ i, then a new line, namely the incoming branch, is inserted
at level i and all lines at levels k ≥ i (including the immune line if Mr− ≥ i) are
pushed one level upward to k + 1, resulting in Lr = Lr− + 1. In particular, the
continuing branch is shifted from level i to i+ 1.

• A deleterious mutation at time r is a triple (r, i,×), with i ∈ N. If Lr− < i, then G
is not affected. If Lr− ≥ i and i 6= Mr−, then the line at level i is killed, and the
remaining lines in G (including the immune line) are relocated to ‘fill the gaps’
(again in an order-preserving way), rendering Lr = Lr− − 1. If, however, i = Mr−,
then the line affected by the mutation is not killed but relocated to the currently
highest level, i.e. Mr = Lr−. All lines above i are shifted one level down, so that
the gaps are filled, and in this case Lr = Lr−.

• A beneficial mutation at time r is a triple (r, i, ◦), with i ∈ N. If Lr− < i, then G is
not affected. If Lr− ≥ i, then all the lines at levels > i are killed, rendering Lr = i,
and the immune line is relocated to Mr = i.

Proposition 3.1. Assume that for some r0 < 0 we have Lr0 = 1, and assume there are
finitely many transition elements that affect G between times r0 and 0. Consider an
arbitrary assignment of types to the L0 lines at time r = 0. Then the level of the immortal
line at time 0 is either the lowest type-0 level at time 0 or, if all lines at time 0 are of type
1, it is the level M0 of the immune line at time 0. In particular, the immortal line is of
type 1 at time 0 if and only if all lines in G at time 0 are assigned type 1.

Proof. In the absence of multiple mergers (i.e. if all mergers have exactly two elements),
this is Theorem 4 in [17]. In its proof, the induction step for binary mergers directly
carries over to multiple mergers.

Taking together the above description of G and the rates defining the Λ-ASG (Sec. 2),
we can now summarise and formalise the law of G as follows. The transition elements
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Figure 1: Transitions of the pruned lookdown Λ-ASG. Since the graph evolves ‘into the
past’, time r runs from right to left in the figure. The value of L is 6 before the jump; the
immune line is marked in bold. From left to right: A ‘merger’ of the lines on levels 1, 3,
and 5 (indicated by bullets); a ‘star’ at level 3; a ‘cross’ at level 3, outside the immune
line; a ‘cross’ on the immune line at level 3; a ‘circle’ at level 3.
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Figure 2: A cut-out of a realisation of the pruned lookdown Λ-ASG. The immune line is
marked in bold.

arrive via independent Poisson processes: For each i ∈ N, the ‘stars’, ‘crosses’, and ‘cir-
cles’ at level i come as Poisson processes with intensities σ, θν1 and θν0, respectively. For
each 2-element subset η of N, the ‘η-mergers’ come as a Poisson process with intensity
Λ({0}). In addition, we have a Poisson process with intensity measure 1{z>0}

1
z2 Λ(dz) dr,

where each z generates a random subset H(z) := {i : Vi = 1} ⊂ N, with (Vi)i∈N being a
Bernoulli(z)-sequence, and the point (r, z) gives rise to the merger (r,H(z)). All these
Poisson processes are independent. The points (r, τ) constitute a Poisson configuration
Ψ, whose intensity measure we denote by µ ⊗ ρ, where µ is Lebesgue measure on R.
With the transition rules described above, this induces Markovian jump rates upon Lr
and (Lr,Mr). With the help of (2.2), it is easily checked that the generator GL of L is
given by

GLg(`) =

`−1∑
c=1

(
`

`− c+ 1

)
λ`,`−c+1 [g(c)− g(`)] + `σ [g(`+ 1)− g(`)]

+ (`− 1)θν1 [g(`− 1)− g(`)] +

`−1∑
k=1

θν0 [g(`− k)− g(`)] .

(3.1)

Due to Assumption 2.1 and Remark 2.2b), and because L is stochastically dominated
by K, the process L obeys

E`[T1] <∞, ` ∈ N. (3.2)

Thus L has a time-stationary version L̃ (which is L̃ ≡ 1 if σ = 0), and likewise the pruned
lookdown Λ-ASG has an equilibrium version as well. We now set Leq := L̃0 and denote
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the tail probabilities of Leq by

αn := P(Leq > n), n ∈ N0. (3.3)

Because of (3.2), for almost all realisations of L̃, there exists an r0 < 0 such that L̃r0 = 1.
Hence, arguing as in [17, proof of Theorem 5], we conclude from Proposition 3.1 the
following

Corollary 3.2. Given the frequency of the beneficial type at time 0 is x, the probability
that the immortal line in the equilibrium p-LD-Λ-ASG at time 0 is of beneficial type is

h(x) =
∑
n≥0

x(1− x)nαn. (3.4)

In order to further evaluate the representation (3.4), we need information about the
equilibrium tail probabilities αn. This is achieved in the following sections via a process
D which is a Siegmund dual for L.

4 An application of Siegmund duality

A central point in our proof of Theorem 2.4 will be that the equilibrium tail proba-
bilities of L can be expressed as certain hitting probabilities of a process D which is a
so-called Siegmund dual of L. The relationship between the transition semigroups of L
and D is given by formula (4.1) below. Intuitively, the process D may be seen as going
into the opposite time direction as L. In a suitable representation via stochastic flows,
which turns out to be available for monotone processes, (4.1) means that the paths of D
remain ‘just above’ those of L, see Sec. 4.2 below.

4.1 Tail probabilities and hitting probabilities

It is clear that L is stochastically monotone, that is, Pn(Lr ≥ i) ≥ Pm(Lr ≥ i) for
n ≥ m and for all i ∈ S (where the subscript refers to the initial value of the process).
It is well known [22] that such a process has a Siegmund dual, that is, there exists a
process D such that

P`(Lu ≥ d) = Pd(Du ≤ `) (4.1)

for all u ≥ 0, `, d ∈ N.

Lemma 4.1. The tail probabilities of the stationary distribution of L are hitting proba-
bilities of the dual process D. To be specific,

αn = Pn+1(∃t ≥ 0 : Dt = 1) ∀n ≥ 0. (4.2)

Proof. This is a special case of [4, Thm. 1] for entrance and exit laws. In our case the
entrance law is the equilibrium distribution of L, the exit law is a harmonic function
(in terms of hitting probabilities), and the proof reduces to the following elementary
argument. Namely, evaluating the duality condition (4.1) for ` = 1 and d = n+ 1, n ≥ 0,
gives

P1(Lu ≥ n+ 1) = Pn+1(Du = 1) for all u ≥ 0, n ≥ 0. (4.3)

Taking the limit u → ∞, the left-hand side converges to P(Leq > n) = αn by positive
recurrence and irreducibility. Setting ` = d = 1 in (4.1), we see that 1 is an absorbing
state for D. Hence we have for the right-hand side of (4.3)

lim
u→∞

Pn+1(Du = 1) = Pn+1(∃t ≥ 0 : Dt = 1) ∀n ≥ 0,

and the lemma is proven.

Next we want to show that the (shifted) hitting probabilities

αn = Pn+1(∃t ≥ 0 : Dt = 1), n ≥ 0, (4.4)
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satisfy the system of equations (2.6). More precisely, (2.6) will emerge as a first-step
decomposition of the hitting probabilities. For this purpose, we first have to identify
the jump rates of D. This can be done via a generator approach that translates the
jump rates of the process L (which appear in (3.1)) into their dual jump rates, see, for
instance, formula (12) in [3] or in [22]. For the jump rates coming from the mergers this
is somewhat technical, see the calculations in the appendix in [13].

Inspired by [3] we will therefore take a ‘strong pathwise approach’ that consists in
decomposing the dynamics of L into so-called flights, which can be ‘dualised’ one by
one. While Clifford and Sudbury, starting from the generator of a monotone process, in
[3, Thm 1] construct a special Poisson process of flights for which they form the duals
([3, Thm 2]), in our situation the Poisson process of flights is naturally given (being
induced by the transition elements for G defined in Sec. 3, see Sec. 4.3 below). Conse-
quently, we will show in Proposition 4.3 that the approach of [3, Thm 2] works also when
starting from a more general Poisson process of flights.

4.2 Flights and their duals

In [3], Clifford and Sudbury introduced a graphical representation that allows us
to construct a monotone homogeneous Markov process L together with its Siegmund
dual D on one and the same probability space. The method requires that the state
space S of the processes L and D is (totally) ordered. We restrict ourselves to the case
S := N ∪ {∞}, which is the relevant one in our context (and which is prominent in [3] as
well).

The basic building blocks of Clifford and Sudbury’s construction are so-called flights.
A flight f is a mapping from S into itself that is order-preserving, so f(k) ≤ f(`) for all
k < ` with k, ` ∈ S; let us add that each flight leaves state ∞ invariant, so f(∞) = ∞.
By the construction described below, a flight f that appears at time r will induce the
transition to Lr = f(`), given Lr− = `. This way, transitions from different initial states
will be coupled on the same probability space. A flight f is graphically represented as
a set of simultaneous arrows pointing from ` to f(`), for all ` ∈ S, so that the process
simply follows the arrows. Examples are shown in Fig. 3.

We denote the set of all flights by F , and consider a Poisson process Φ on R × F
whose intensity measure is of the form µ⊗ γ, where µ is again Lebesgue measure on R,
and the measure γ has the property

γ({f ∈ F : f(`) 6= `}) <∞, ` ∈ N. (4.5)

Property (4.5) implies that with probability 1, for all ` ∈ N and r ∈ R, among all the
points (s, f) in Φ with s > r and f(`) 6= `, there is one whose s is minimal. We denote this
time by v(r, `). For r ∈ R and ` ∈ N, we define inductively a sequence (s0, `0), (s1, `1), . . .

with r =: s0 < s1 < · · · , ` =: `0, `1, `2, . . . ∈ S, by setting si := v(si−1, `i−1), `i := f(`i−1),
with (si, f) ∈ Φ. (Note this procedure will terminate if `i =∞ for some i ∈ N.)

With the notation just introduced, Φ induces a semi-group (a flow) of mappings,
indexed by r < s ∈ R, and defined by

Fr,s(`) :=

{
`i if si ≤ s < si+1,

∞ if limi→∞ si ≤ s
(4.6)

for ` ∈ N, with Fr,s(∞) :=∞.
Assuming property (4.5), we say that Φ represents the process L if for all s > 0 the

distribution of F0,s(`) is a version of the conditional distribution of Ls given {L0 = `},
` ∈ N. Equivalently, for all r ∈ R and u > 0,

P`(Lu ∈ (.)) = P(Fr,r+u(`) ∈ (.)). (4.7)
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We now describe, in the footsteps of Clifford and Sudbury [3], the construction of a
strong pathwise Siegmund dual D, based on the same realisation of the flights as for the
original process L. Def. 4.2 a) formalises the statement at the beginning of Sec. 4 that
the paths of D remain ‘just above’ those of L, see also Fig. 3 for an illustration.

Definition 4.2 (Dual flights). a) For a flight f : S → S, its dual flight f̂ is defined by

f̂(d) = min(f−1({d, d+ 1, . . .})), d ∈ S, (4.8)

with the convention min(∅) =∞.
b) For a Poisson process Φ on R×F , we define Φ̂ as the result of Φ under the mapping

(r, f) 7→ (−r, f̂) =: (t, f̂). Moreover, under the assumption

γ({f ∈ F : f̂(d) 6= d}) <∞, d ∈ N, (4.9)

we define F̂ in terms of Φ̂ in the same way as F was defined in terms of Φ by (4.6).

It is clear that f̂ is order preserving. Since f is monotone increasing by assumption,
we have max(f−1({1, . . . , d − 1})) ≤ min(f−1({d, d + 1, . . .})). As f−1({1, . . . , d − 1}) ∩
f−1({d, d+ 1, . . .}) = ∅ and f−1({1, . . . , d− 1})∪ f−1({d, d+ 1, . . .}) = S, we see that (4.8)
is equivalent to

f̂(d) = max(f−1({1, . . . , d− 1})) + 1, d ∈ S, (4.10)

with the convention max(∅) = 0. Note further that (4.9) is implied by (4.5) together with

γ({f ∈ F : ∃k > ` s.t. f(k) ≤ `}) <∞, ` ∈ N. (4.11)

The following proposition is an adaptation of [3, Theorem 2] to our setting. Compare
also [14, Section 4.1].

Proposition 4.3. Assume (4.5) and (4.11), and assume that∞ is unattainable for the
process L represented by the Poisson process Φ with intensity measure µ⊗ γ. Then the
following strong pathwise duality relation is valid: For all s > 0; `, d ∈ N,

1{F−s,0(`)≥d} = 1{F̂0,s(d)≤`}, almost surely. (4.12)

Proof. Let Y := (Yr)r∈[−s,0] := (F−s,r(`))r∈[−s,0], and Ŷ := (Ŷt)t∈[0,s] := (F̂0,t(d))t∈[0,s], for
given `, d, and s. Due to (4.5) and the assumption that ∞ is unattainable, Y has a.s
only finitely many jumps; let us denote the jump times by −r1, . . . ,−rn. We write Ĵ

for the union of {r1, . . . , rn} and the set of jump times of Ŷ . Because of (4.9), Ĵ has a
smallest element, a second-smallest element, and so on. We denote these elements by
u1 < u2 < . . ., and show that

Y0 ≥ Ŷ0 if and only if Y(−ui)− ≥ Ŷui
, i = 1, 2, . . . (4.13)

Proceeding by induction, for (4.13) it is sufficient to show

1{f(j)≥k} = 1{f̂(k)≤j} (4.14)

for all flights f , and j, k ∈ N. Let f ∈ F . On the one hand, f(j) ≥ k yields

f̂(k) ≤ f̂
(
f(j)

)
= min

(
f−1({f(j), f(j) + 1, . . .})

)
= min

(
f−1(f(j))

)
≤ j,

where we have used order preservation of f̂ and f as well as (4.8). On the other hand,
f(j) < k is equivalent to f(j) + 1 ≤ k. By order preservation and (4.10), this entails

f̂(k) ≥ f̂
(
f(j + 1)

)
= max

(
f−1({1, . . . , f(j)})

)
+ 1 = max

(
f−1(f(j))

)
+ 1 ≥ j + 1 > j.
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We have thus shown (4.14), and hence also (4.13).

If (ui) has no accumulation point, then it has a maximal element, say um. Choosing
i = m in the r.h.s. of (4.13) yields (4.12) (since um 6= s with probability 1). If (ui) has
an accumulation point, say τ , then, because of (4.9), we have limt↑τ Ŷt = limi→∞ Ŷui

= ∞. Because Y remains bounded by assumption, this together with (4.13) enforces
that Y0 < Ŷ0. This means that the l.h.s. of (4.12) takes the value 0. However, this is the
case also for the r.h.s of (4.12), since∞ = Ŷτ = Ŷs > `.

In view of (4.7) we immediately obtain the following

Corollary 4.4. In the situation of Proposition 4.3, let D be a process represented by Φ̂.
Then L and D satisfy the duality relation (4.1), with L and D replaced by L and D.

4.3 A Siegmund dual for the process L

Let us now turn to our case where L = L. With each of the transition elements η, (i, ∗),
(i,×), (i, ◦) introduced in Sec. 3 we associate a flight defined as follows (` ∈ S, i ∈ N):

fη(`) = `− |{1, ...., `} ∩ η̃|, where η̃ := η \ {min(η)},

fi,∗(`) =

{
`, ` < i,

`+ 1, ` ≥ i,
fi,×(`) =

{
`, ` ≤ i,
`− 1, ` > i,

fi,◦(`) =

{
`, ` ≤ i,
i, ` > i,

(4.15)

compare also Fig. 3. The flights are indeed order preserving. The structure of fη, fi,∗,
and fi,◦ is clearly inherited from that of the corresponding transition elements. The
flights fi,×(`) forget about the position (but not about the existence) of the immune
line within the p-LD-Λ-ASG. Indeed, recall that the downward jump rate of L due to
deleterious mutations is (`− 1)θν1; this reflects the fact that crosses arrive at rate θν1

per line, but are ignored on the immune line, no matter where it is located. This is taken
into account in the definition of the flight fi,× by setting f`,×(`) = `.

Let us now start from the Poisson configuration Ψ (of points (r, τ) with intensity
measure µ⊗ ρ), as described in Sec. 3. Let γ be the image of the measure ρ under the
mapping τ 7→ fτ , where fτ is the flight belonging to the transition element τ as defined
in (4.15). The measure γ has property (4.5). To see this we write γ = γm + γ∗ + γ× + γ◦,
where the 4 summands describe the intensity measures of the flights stemming from
the mergers, the selective branchings, the deleterious mutations and the beneficial
mutations. It is straightforward that γ∗, γ× and γ◦ obey (4.5). To see that also γm obeys
(4.5), note that for ` ∈ N

γm({f ∈ F : f(`) 6= `}) = ρ({η : |η ∩ {1, . . . , `}| ≥ 2}) ≤
(
`

2

)
, (4.16)

since {η : |η ∩ {1, . . . , `}| ≥ 2} ⊂
⋃

1≤i<j≤`{η : {i, j} ⊂ η} and because for all i < j ∈ N

ρ({η : {i, j} ⊂ η}) =

∫
(0,1]

z2 1

z2
Λ(dz) + Λ({0}) = 1. (4.17)

Writing Φ for the Poisson point process with intensity measure µ⊗ γ, it is now clear
that Φ represents the process L in the sense of (4.6) and (4.7), because the jump rates
match those appearing in the generator (3.1).

Let us now check that γ also satisfies assumption (4.11). It is straightforward
that γ∗, γ× and γ◦ obey (4.11). To see that also γm obeys (4.11), we note that for
k ≥ 2` + 2 and η ⊂ N the inequality fη(k) ≤ ` implies that |η ∩ {1, . . . , ` + 1}| ≥ 1 and
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Figure 3: Graphical representation of the four types of flights defined in (4.15) (light
brown arrows) and their dual flights as defined in (4.20) (dark green arrows), together
with the resulting paths of L (light brown) and D (dark green). The flights displayed are
fη (with η ∩ {1, . . . , 6} = {1, 3, 5}), f3,∗, f3,×, f3,◦; and f̂η, f̂3,∗, f̂3,×, f̂3,◦. The flight f̂3,◦
maps all states d > 3 to the absorbing state∞. The paths of L and D follow the arrows
in the direction of backward and forward time, respectively.

|η ∩ {` + 2, . . . , 2` + 2}| ≥ 1. Let H` denote the set of all η ∈ P(N) having the latter
property. Then we have for all ` ∈ N the estimate

γm({f ∈ F : ∃k > ` s.t. f(k) ≤ `})

≤
2`+1∑
k=`+1

γm({f ∈ F : f(k) 6= k}) + γm({f ∈ F : ∃k ≥ 2`+ 2 s.t. f(k) ≤ `})

≤
2`+1∑
k=`+1

(
k

2

)
+ ρ(H`) <∞,

because of (4.16) and (4.17), since H` ⊂
⋃

1≤i≤`+1<j≤2`+2{η : {i, j} ⊂ η}.
Following Definition 4.2, we can now consider a process D represented by Φ̂. Accord-

ing to Corollary 4.4, L and D then obey the duality relation (4.1). It remains to read off
the jump rates of D from the intensities of the (dual) flights.

Lemma 4.5. The generator GD of the process D is given by

GDg(d) =
∑

d<c≤∞

(
c− 1

c− d+ 1

)
λc,c−d+1 [g(c)− g(d)] + (d− 1)σ [g(d− 1)− g(d)]

+ (d− 1)θν1 [g(d+ 1)− g(d)] + (d− 1)θν0 [g(∞)− g(d)] , d ∈ N, g : S → R,

(4.18)

where we again use the convention (2.7).

Proof. We claim that the flights that are dual to those in (4.15) are of the form

f̂η(d) = min{` : |{1, . . . , `} ∩ (N \ η̃)| = d}, again with η̃ = η \ {min(η)}, (4.19)

f̂i,∗(d) =

{
d, d ≤ i,
d− 1, d > i

f̂i,×(d) =

{
d, d ≤ i,
d+ 1, d > i

f̂i,◦(d) =

{
d, d ≤ i,
∞, d > i,

(4.20)

d ∈ S, i ∈ N (see Fig. 3).
The expressions in (4.20) are obvious consequences of (4.8) and (4.15). To verify

(4.19), we first note that, due to Definition 4.2, we have f̂η(d) = min
(
f−1
η (d)), since fη

is surjective and monotone increasing. Consequently, in the case |{1, . . . , d} ∩ η| ≤ 1 we
have f̂η(d) = d, whereas otherwise we have f̂η(d) = min{` : |{1, ...., `} ∩ η̃| = `− d} > d,
both in accordance with (4.19).

Let us now consider the contribution of the various types of flights to GD. For
c 6= d ∈ N we have to compute γ({f : f̂(d) = c}). It is clear that the contributions from
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γ∗, γ× and γ◦ yield the last 3 summands in (4.18). For the contribution coming from γm,
we have for d < c <∞

γm({f : f̂(d) = c}) = ρ({η : c /∈ η, |{1, . . . , c− 1} ∩ η| = c− d+ 1}). (4.21)

The contribution from the Kingman mergers to the right-hand side of (4.21) is Λ({0})
(
c−1

2

)
if c = d+ 1, and 0 otherwise. For z > 0, the probability that a z-merger does not affect
level c but does affect c − d + 1 out of the levels 1, . . . , c − 1 is

(
c−1
c−d+1

)
zc−d+1(1 − z)d−1.

Integrating this with respect to 1
z2 Λ(dz) and adding the Kingman component shows that

the right-hand side of (4.21) equals
(
c−1
c−d+1

)
λc,c−d+1. These are the jump rates from d

to c < ∞ that appear in the first sum on the r.h.s. of (4.18). It remains to take into
account the jump rate of D from d to∞. For this we note that fN(`) = 1, ` = 1, 2, . . ., and
consequently f̂(d) = 1 if d = 1 and f̂(d) =∞ if d ≥ 2. These flights appear at rate Λ({1}),
and thus for d ≥ 2 add the term (g(∞)− g(d))Λ({1}) to the generator.

Remark 4.6. In the case without selection and mutation (that is, σ = θ = 0), our process
D shifted by one, that is, D − 1, is equal to the so-called fixation line in [13]. In this
case one has no pruning, and the line-counting process K has generator (2.3) (with
σ = 0). The (Siegmund) duality between K and D is stated in [13, Lemma 2.4]. For a
corresponding statement on the still more general class of exchangeable coalescents see
[11, Thm 2.3].

We now come to the

Proof of Theorem 2.4. Consider the tail probabilities αn = P(Leq > n), n ∈ N0, as
defined in (4.1). Lemma 4.1 allows us to write them as hitting probabilities of D.
Specifically, with

ω(n) := Pn(∃t ≥ 0 : Dt = 1),

we have ω(n) = αn−1. The hitting probabilities ω(n), 2 ≤ n < ∞, constitute a GD-
harmonic function, that is,

GDω(n) = 0, n ≥ 2. (4.22)

It is this relation that is equivalent to the system (2.6). Indeed, (4.22) translates into the
system  ∑

n+1<c≤∞

(
c− 1

c− n

)
λc,c−n + nσ + nθν1 + nθν0

αn
=

∑
n+1<c≤∞

(
c− 1

c− n

)
λc,c−nαc−1 + nσαn−1 + nθν1αn+1, n ≥ 1,

(4.23)

again using the convention (2.7). Being tail probabilities, the αn, n ≥ 0, are monotone,
with α0 = 1, and α∞ := limj→∞ αj = 0. Together with these boundary conditions,
Eq. (4.23) divided by n gives the system (2.6) with an replaced by αn.

To prove uniqueness, let (αn) be as above, (an) be a solution of (2.6), and put
bn := an−1 − αn−1. Then we have the boundary conditions b1 = 0 and bn → 0 for n→∞.
In addition, since both (αn−1)2≤n<∞ and (an−1)2≤n<∞ are GD-harmonic, (bn)2≤n<∞ is
GD-harmonic as well. Let T (k) := min{t ≥ 0 : Dt ∈ {1, k, k + 1, . . .}}. Note that T (k) is
finite a.s. for every k > 1. Since, given D0 = `, (bDt)t≥0 is a bounded martingale, due
to the optional stopping theorem we have b` = E[bDT (k)

| D0 = `] for all k > 1. Because
bDT (k)

→ 0 as k →∞, by dominated convergence this implies b` = 0 for all `, and hence
the desired uniqueness.
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