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Abstract. We study some mathematical properties of a new generator of con-
tinuous distributions with three additional parameters, called the exponenti-
ated logarithmic generated family, to extend the normal, Weibull, gamma and
Gumbel distributions, among other well-known models. Some special models
are discussed. Many properties of this family are studied, some inference pro-
cedures developed and a simulation study performed to verify the adequacy of
the estimators of the model parameters. We prove empirically the potentiality
of the new family by means of two real data sets. The simulation study for
different samples sizes assesses the performance of the maximum likelihood
estimates obtained by the Swarm Optimization method. We also evaluate the
performance of single and dual bootstrap methods in constructing interval
estimates for the parameters. Because of the intensive simulations, we use
parallel computing on a supercomputer.

1 Introduction

The modeling and analysis of lifetime distributions play an important role in a wide
variety of practical fields such as biological and engineering sciences. However, in
many practical situations, well-known continuous distributions do not provide an
adequate fit. For example, if the data are asymmetric, the normal distribution will
not be a good choice. So, several methods of introducing extra shape parameters
to expand distributions have been studied.

The use of new generators of continuous distributions from classic ones has be-
come very common in recent years. The beta-generated family was proposed by
Eugene, Lee and Famoye (2002) and further discussed in Zografos and Balakrish-
nan (2009), who pioneered the gamma-generated family. More recently, Cordeiro
and de Castro (2011) defined the Kumaraswamy-G family.
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The chief motivation of the generalized distributions for modeling failure time
data lies in its flexibility to model both monotonic and non-monotonic failure rates
even though the baseline failure rate may be monotonic. The additional shape
parameters aim to introduce skewness and to vary tail weights. Further, various
distributions have been constructed by mixing some useful life distributions and
analyzed them with respect to different characteristics.

In this paper, we propose a new method to add three parameters to a parent dis-
tribution with the hope that it yields a “better” fit in certain practical situations.
Several properties are also investigated. Some inferential aspects of this family are
studied in details, and four special cases are discussed. The new family of distri-
butions shares an attractive interpretation (see Section 2). Further, two successful
empirical applications show its flexibility and also motivate its applications.

This paper is unfolded as follows. In Section 2, we define the new family of dis-
tributions. Section 3 provides some special models. In Section 4, some of its basic
mathematical properties are discussed. The formulas derived are manageable by
using modern computer resources with analytic and numerical capabilities. In Sec-
tion 5, the estimation of the model parameters is performed by the method of max-
imum likelihood. Section 6 deals with bootstrap percentile intervals. In Section 7,
we apply a particle swarm optimization (PSO) method to estimate the parame-
ters and present a Monte Carlo simulation experiment to evaluate the maximum
likelihood estimates (MLEs). We also perform simulations to assess the use of
bootstrap percentile (simple and double) for construction of confidence intervals
for the model parameters. In Section 8, two applications based on real data sets are
explored. Finally, concluding remarks are presented in Section 9.

2 New generator

The generator of continuous distributions presented is called the Exponentiated
Logarithmic Generated (ELG) family with cumulative distribution function (cdf)
given by

F(x) =
{

log[1 − aG(x, ξ)b]
log(1 − a)

}c

, (1)

where a ∈ (0,1) (scale parameter), b > 0 (shape parameter) and c > 0 (shape pa-
rameter). The probability density function (pdf) obtained by differentiating F(x)

is given by

f (x) = abc[log(1 − a)]−cg(x, ξ)G(x, ξ)b−1{log[1 − aG(x, ξ)b]}c−1

aG(x, ξ)b − 1
. (2)

For a given cdf G(x; ξ), denote by f (x) the pdf of the Exponentiated Logarithmic
Generated-G (ELG-G) distribution.
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Lemma 2.1. f (x) given in (2) is a well-defined density function.

Proof. We observe that f (x) is nonnegative. We prove that the integration over
the support of the random variable is one. Consider the case when the support of
f (x) is (−∞,∞). In this case, we have∫ ∞

−∞
f (x) dx

=
∫ ∞
−∞

−abc[log(1 − a)]−cg(x, ξ)G(x, ξ)b−1{log[1 − aG(x, ξ)b]}c−1

1 − aG(x)b
dx

= −c

[log(1 − a)]c
∫ a

0

[log(1 − u)]c−1

1 − u
du = 1. �

Henceforth, we denote by X a random variable having pdf (2). For simulat-
ing data from the ELG-G distribution, let u ∼ U(0,1). The solution of non-linear
equation

xu = QG

{[
1

a

(
1 − [1 − a]u

1
c )] 1

b
}

(3)

has cdf (1), where QG = G−1(·) is the quantile function (qf) of G.
For an interpretation of this family, we consider a parallel system with N inde-

pendent components, where N is a random variable with probability mass function
(pmf)

P(N = n) = −1

log(1 − a)

an

n
, 0 < a < 1, n ∈ N.

Suppose that Z1, . . . ,ZN are independent identically distributed (i.i.d.) random
variables with common cdf G(x)b. Then, MN = max(X1, . . . ,XN) represents the
lifetime of the system and

�MN
(x) =

∞∑
n=1

P(MN ≤ x|N = n)P (N = n)

=
∞∑

n=1

−1

log(1 − a)

an

n

[
G(x)b

]n = log[1 − aG(x)b]
log(1 − a)

.

For c positive integer, we consider a system formed by independent components
having the cdf above. Suppose the system fails if all c components fail. Then, the
cdf of X is given by (1).

Remark 2.1. The following properties use Stirling polynomials. We consider the
basic formula for the Stirling polynomial proposed by Ward (1934, pp. 87–95).
The notation for the Stirling polynomial adopted is ψn−1(x) in accordance with
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the notation presented by Ward (1934, p. 87). The Stirling polynomial is defined
by

ψn−1(x) = (−1)n−1

(n + 1)!
[
Hn−1

n − x + 2

n + 2
Hn−2

n + (x + 2)(x + 3)

(n + 2)(n + 3)
Hn−3

n

− · · · + (−1)n−1 (x + 2)(x + 3) · · · (x + n)

(n + 2)(n + 3) · · · (2n)
H 0

n

]
,

(4)

where the Hm
n ’s are positive integers defined recursively by Hm

n+1 = (2n + 1 −
m)Hm

n + (n − m + 1)Hm−1
n , and H 0

0 = 1, H 0
n+1 = 1 × 3 × 5 × · · · × (2n + 1) and

Hn
n+1 = 1.
To avoid recursion in equation (4), the quantities Hm

n+1 can follow the Stirling
polynomial given in http://mathworld.wolfram.com/StirlingPolynomial.html. Let

Sn(m) = (−1)n(m
n

) s(m + 1,m − n + 1), (5)

where m ≥ n, and s(n,m) is the Stirling number of the first kind defined by Roman
(1984, p. 129). We can obtain s(n,m) from the Stirling numbers of the second kind
defined by

S(n,m) = 1

m!
m∑

i=0

(−1)i

(
m

i

)
(n − i)n. (6)

Based on (6), we have

s(n,m) =
n−m∑
k=0

(−1)k

(
k + n − 1

k + n − m

)(
2n − m

n − k − m

)
S(k − m + n, k). (7)

More details about equation (7) and the relationship between first order Stirling
numbers and second order Stirling numbers can be obtained in http://mathworld.
wolfram.com/StirlingNumberoftheFirstKind.html.

Thus, according with Castellares and Lemonte (2015, p. 2), we have ψn−1(x) =
Sn(x)/[n!(x + 1)]. So, we can determine ψn−1(x) without explicitly the values of
Hm

n . Castellares and Lemonte (2015, p. 5) developed scripts in the R language to
evaluate the quantities Hn

m and ψn(·). We give in the Appendix an implemented
function in the Julia programming language (Bezanson et al., 2012) to evaluate
the Stirling polynomial at the point x defined by (4) and functions of the Stirling
numbers of first and second order given by equations (5) and (6), respectively.

Proposition 2.2. Let [− log(1−z)
z

]δ = 1 + δz
∑∞

n=0 ψn(n + δ)zn, where δ ∈ R and
|z| < 1. This expansion is absolutely convergent.

Proof. The proof is given by Flajonet and Odlyzko (1990) and Flajonet and
Sedgewick (2009) (see Theorem VI.2, p. 385). �

http://mathworld.wolfram.com/StirlingPolynomial.html
http://mathworld.wolfram.com/StirlingNumberoftheFirstKind.html
http://mathworld.wolfram.com/StirlingNumberoftheFirstKind.html
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If we know an expansion for [− log(1−z)
z

]δ for δ > 0 and |z| < 1, and that
this expansion converges absolutely, it is easy to obtain another expansion for
[− log(1 − z)]δ that is also absolutely convergent. Thus, it follows that

[− log(1 − z)
]δ = zδ + δ

∞∑
n=0

ψn(n + δ)zδ+n+1. (8)

Proposition 2.3. Based on the assumptions below, it is possible to obtain equation
(8). Let

[− log(1 − z)
]δ = zδ

∞∑
m=0

ρm(δ)zm, (9)

where δ ∈ R, |z| < 1, ρ0(δ) = 1, ρm(δ) = δψm−1(m + δ − 1) for m ≥ 1 and ψm(·)
is a Stirling polynomial.

Proof. Note that

[− log(1 − z)
]δ = zδ

∞∑
m=0

ρm(δ)zm = zδ

[
ρ0(δ)z

0 +
∞∑

m=1

ρm(δ)zm

]

= zδ +
∞∑

m=1

ρm(δ)zm+δ = zδ + δ

∞∑
m=0

ψm(m + δ)zδ+m+1.
�

Thus, it follows that the cdf F(x) can be expressed as a mixture of exponen-
tiated-G (exp-G) cdfs with power parameters (m + c)b, say exp-G([m + c]b). We
have

F(x) =
∞∑

m=0

bmH(m+c)b(x), (10)

where H(m+c)b(x) is the cdf of the exp-G([m+c]b) distribution and bm (for m ≥ 0)
are constants defined by

bm = ρm(c)am+c

[− log(1 − a)]c .

By differentiating (10), we obtain

f (x) =
∞∑

m=0

bmh(m+c)b, (11)

where h(m+c)b(x) is the exp-G density with power parameter (m + c)b. We
have

∑∞
m=0 bm = 1. Figure 1 displays the convergence of

∑n
m=0 bm with n =

1,2, . . . ,15, a = 0.5 and c = 1.2.
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Figure 1 Sums of the constants of the linear combination in equation (10).

3 Special distributions

Four of the many distributions obtained as special models of the ELG-G family
are given in this section. We consider the baseline distributions: normal, Weibull,
gamma and log-logistic. The last three distributions are largely used in survival
analysis. In the following, we shall provide the pdf and some plots of the hazard
rate function (hrf) for each of these four cases. Clearly, a, b and c are the generator-
G parameters.

3.1 ELG-normal

In applied statistics, the normal distribution is the most popular model of the sam-
ple size is large, it can serve as an approximate distribution to other models. The
ELG-normal distribution is defined from (1) by taking G(x) and g(x) to be the cdf
and pdf of the normal N(μ,σ 2) distribution. Its density function is given by

fGN(x) = −abc[log(1 − a)]−c�(
x−μ

σ
)b−1φ(

x−μ
σ

)[log(1 − a�(
x−μ

σ
)b)]c−1

σ {1 − a�(
x−μ

σ
)b} ,

where x ∈ R, μ ∈ R is a location parameter, σ > 0 and a ∈ (0,1) are the scale
parameters, b, c are the shape parameters, and φ(·) and �(·) are the pdf and cdf of
the standard normal distribution, respectively.

Plots of the ELG-normal density for some parameter values are displayed in
Figure 2. It is evident that this distribution is much more flexible than the normal
distribution.
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Figure 2 The ELG-normal pdf for μ = 1, σ = 1 and some values of a, b and c.

Figure 3 The ELG-Weibull pdf for α = 0.5, β = 2.0 and some values of a, b and c.

3.2 ELG-Weibull

The Weibull distribution is a very popular model due to its large applicability
in survival analysis. Let G(x) be the Weibull cdf with scale parameter β > 0
and shape parameter α > 0, say G(x) = 1 − exp{−(βx)α}, for x > 0. The ELG-
Weibull density function is obtained from (2) as

fELG-W(x)

= −abc[1 − e−(xβ)α ]b−1αβαxα−1e−(xβ)α {log{1 − a[1 − e−(xβ)α ]b}}c−1

[log(1 − a)]c{1 − a[1 − e−(xβ)α ]b} .
(12)

Plots of this density function for selected parameter values are given in Figure 3.
Figure 4 provides some plots of the ELG-Weibull hrf for selected parameter

values.

3.3 ELG-gamma

Another distribution that is frequently used in survival analysis is the gamma dis-
tribution. Taking G(x) to be gamma cdf with shape α > 0 and scale β > 0, say
G(x) = γ (α, x/β)/(α), where (α) = ∫ ∞

0 tα−1 e−t dt denotes the gamma func-
tion, and γ (α, z) = ∫ z

0 tα−1e−t dt denotes the incomplete gamma function, the
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Figure 4 The ELG-Weibull hrf for α = 0.5, β = 2.0 and some values of a, b and c.

Figure 5 The ELG-gamma pdf for α = 1.0, β = 2.0 and some values of a, b and c.

Figure 6 The ELG-gamma hrf for α = 1.0, β = 2.0 and some values of a, b and c.

ELG-gamma density (for x > 0) becomes

fELG-Ga(x) = −abcxα−1e−x/β [γ (α,x/β)
(α)

]b−1{log{1 − a[γ (α,x/β)
(α)

]b}}c−1

βα(α)[log(1 − a)]c{1 − a[γ (α,x/β)
(α)

]b} . (13)

Figure 5 displays some plots of the ELG-gamma density. They reveal that this
distribution has great flexibility.

Plots of the ELG-gamma hrf for selected parameter values are displayed in Fig-
ure 6. The monotonically increasing and bathtub shapes are evident.
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3.4 ELG-log-logistic

Consider the log-logistic distribution with scale parameter α > 0 and shape param-
eter β > 0, where the pdf and cdf (for x > 0) are

g(x) = β

αβ
xβ−1

[
1 +

(
x

α

)]−2
and G(x) = 1 −

[
1 +

(
x

α

)β]−1
.

Inserting these expressions into (2) gives the ELG-log-logistic pdf

fELG-LL(x)

=
−abcβxβ−1[1 − 1

1+(x/α)β
]b−1{log{1 − a[1 − 1

1+(x/α)β
]b}}c−1

αβ[log(1 − a)]c(1 + x
α
)2{1 − a[1 − 1

1+(x/α)β
]b} .

(14)

Figure 7 provides plots shapes of the ELG-log-logistic pdf for selected parameters
values.

A random variable with density (14) is denoted by X ∼ ELGLL(a, b, c,α,β).
For α = 2 and β = 2, possible shapes for the hrf of X are displayed in Figure 8.

Figure 7 The ELG-log-logistic pdf for α = 2.0, β = 2.0 and some values of a, b and c.

Figure 8 The ELG-log-logistic hrf for α = 2.0, β = 2.0 and some values of a, b and c.
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4 Mathematical properties

4.1 Moments and generating function

We assume that Y is a random variable having the baseline cdf G(x). The moments
of X can be obtained from the (r, k)th probability weighted moment (PWM) of Y

defined by

ωr,k = E
[
Y rG(Y )k

] =
∫ ∞
−∞

xrG(x)kg(x) dx,

which can be evaluated at least numerically for any baseline qf. We can write from
equation (10)

μ′
r = E

(
Xr) =

∞∑
m=0

[
(m + c)b

]
bmωr,(m+c)b−1.

The nth incomplete moment of X is defined as mn(y) = ∫ y
−∞ xnf (x) dx. Then,

it can be expressed as

mn(y) =
∞∑

m=0

bm

∫ G(y;ξ)

0
QG(u)nu(m+c)b du. (15)

The integral in (15) can be evaluated at least numerically for most baseline
distributions.

We provide two formulae for the moment generating function (mgf) M(s) =
E(esX) of X. The first formula for M(s) comes from equation (10) as

M(s) =
∞∑

m=0

bmM(m+c)b(s), (16)

where M(m+c)b(s) is the exp-G generating function with power parameter (m +
c)b.

Equation (16) can also be expressed as

M(s) =
∞∑

m=0

[
(m + c)b

]
bmρ(m+c)b(s), (17)

where the quantity ρk(s) = ∫ 1
0 exp[sQG(u)]u(m+c)b du can be evaluated numeri-

cally.

4.2 Order statistics

Suppose X1, . . . ,Xn is a random sample from any ELG-G distribution. Let Xi:n
denote the ith order statistic. The pdf of Xi:n can be expressed as

fi:n(x) = Kf (x)F i−1(x)
{
1 − F(x)

}n−i
,

where K = n!/[(i − 1)!(n − i)!].
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The density function of the ith order statistic of any ELG-G distribution can be
expressed as

fi:n(x) = K

n−i∑
j=0

(−1)j

(
n − i

j

)
f (x)F (x)j+i−1

= Kabc

[− log(1 − a)]c
n−i∑
j=0

(−1)j

(
n − i

j

)

× g(x)G(x)b−1{− log[1 − aG(x)b]}c(i+j)−1

1 − aG(x)b

= Kabc

[− log(1 − a)]c
n−i∑
j=0

∞∑
k=0

(−1)j ak

(
n − i

j

)

× g(x)G(x)b(k+1)−1{− log[1 − aG(x)b]}c(i+j)−1

1 − aG(x)b
.

(18)

Using equation (9), we can write{− log
[
1 − aG(x)b

]}c(i+j)−1

= [
aG(x)b

]c(i+j−1)
∞∑

m=0

ρm

(
c(i + j) − 1

)[
aG(x)b

]m
and then

fi:n(x) =
∞∑

k,m=0

v
(i)
k,mhb(k+m+ci+cj)(x), (19)

where

v
(i)
k,m = Kbc

[− log(1 − a)]c
n−i∑
j=0

(−1)j
(n−i

j

)
ak+m+c(i+j)ρm(c(i + j) − 1)

[b(k + m + ci + cj + 1)]
and hb(k+m+ci+cj)(x) denotes the exp-G density function with parameter b(k +
m + ci + cj).

We can obtain the ordinary and incomplete moments, generating function and
mean deviations of the ELG-G order statistics from equation (19) and those prop-
erties of the exp-G model.

5 Maximum likelihood estimation

In this section, we determine the maximum likelihood estimates (MLEs) of the pa-
rameters of the new family of distributions. Let x1, . . . , xn be the observed values
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from the ELG-G distribution with the p × 1 parameter vector θ = (a, b, c, ξ)�.
We determine the MLEs of the parameters in θ from complete samples only. The
total log-likelihood function for θ is given by

�(θ) = n log(abc) − nc log
[− log(1 − a)

]
+

n∑
i=1

log
[
g(xi; ξ)

] + (b − 1)

n∑
i=1

G(xi; ξ)

+ (c − 1)

n∑
i=1

log
{− log

[
1 − aG(xi; ξ)b

]}

−
n∑

i=1

log
[
1 − aG(xi; ξ)b

]
.

(20)

The components of the score function U(θ) = (Ua,Ub,Uc,Uξ )
� are

Ua = n

a
+ nc

(1 − a) log(1 − a)
+

n∑
i=1

t
(a)
i + (c − 1)

n∑
i=1

t
(a)
i

ti
,

Ub = n

b
+

n∑
i=1

log
[
G(xi; ξ)

] +
n∑

i=1

t
(b)
i + (c − 1)

n∑
i=1

t
(b)
i

ti
,

Uc = n

c
− n log

[− log(1 − a)
] +

n∑
i=1

log(ti)

and

Uξ k
=

n∑
i=1

g(xi; ξ)(ξ)

g(xi; ξ)
+ (b − 1)

n∑
i=1

g(xi; ξ)(ξ)

g(xi; ξ)
+

n∑
i=1

t
(ξ)
i + (c − 1)

n∑
i=1

t
(ξ)
i

ti
,

where

ti = − log
[
1 − aG(xi; ξ)b

]
, t

(a)
i = G(xi; ξ)b

1 − aG(xi; ξ)b
,

t
(b)
i = aG(xi; ξ)b log[G(xi; ξ)]

1 − aG(xi; ξ)b
,

g(xi; ξ)(ξ) = ∂g(xi; ξ)

∂ξ
, G(xi; ξ)(ξ) = ∂G(xi; ξ)

∂ξ
,

t
(ξ)
i = abG(xi; ξ)(ξ)G(xi; ξ)b−1

1 − aG(xi; ξ)b
.

Setting Ua , Ub, Uc and Uξ equal to zero and solving the equations simulta-

neously yields the MLE θ̂ = (â, b̂, ĉ, ξ̂)� of θ = (a, b, c, ξ)�. These equations
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cannot be solved analytically and statistical software can be used to solve them
numerically using iterative methods such as the Newton-Raphson type algorithms.

Since Fisher’s information matrix is not available, the standard errors can be
obtained as the square roots of the elements in the diagonal of the inverse of the
negative of the observed information matrix of the log-likelihood calculated at the
MLEs. The observed information matrix is given by

J (θ) = −

⎛⎜⎜⎜⎜⎜⎜⎝

Uaa Uab Uac | U�
aξ

Uba Ubb Ubc | U�
bξ

Uca Ucb Ucc | U�
cξ

−− −− −− −− −−
Uaξ Ubξ Ucξ | Uξξ

⎞⎟⎟⎟⎟⎟⎟⎠ ,

whose elements are

Uaa = − n

a2 + nc

(1 − a)2 log(1 − a)
+ nc

(1 − a) log(1 − a)2

+
n∑

i=1

t
(aa)
i + (c − 1)

n∑
i=1

t
(aa)
i ti − [t (a)

i ]2

t2
i

,

Uab =
n∑

i=1

t
(ab)
i + (c − 1)

n∑
i=1

t
(ab)
i ti − t

(a)
i t

(b)
i

t2
i

,

Uac = n

(1 − a) log(1 − a)
+

n∑
i=1

t
(a)
i

ti
,

Uaξ k
=

n∑
i=1

t
(aξ)
i + (c − 1)

n∑
i=1

t
(aξ)
i ti − t

(a)
i t

(ξ)
i

t2
i

,

Ubb = n

b2 +
n∑

i=1

t
(bb)
i + (c − 1)

n∑
i=1

t
(bb)
i ti − [t (b)

i ]2

t2
i

,

Ubc =
n∑

i=1

t
(b)
i

ti
,

Ubξ k
=

n∑
i=1

G(xi; ξ)(ξ)

G(xi; ξ)
+

n∑
i=1

t
(bξ)
i + (c − 1)

n∑
i=1

t
(bξ)
i ti − t

(b)
i t

(ξ)
i

t2
i

,

Ucc = − n

c2 ,

Uξkξl
=

n∑
i=1

g(xi; ξ)(ξξ) − [g(xi; ξ)(ξ)]2

g(xi; ξ)2
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+ (b − 1)

n∑
i=1

G(xi; ξ)(ξξ) − [G(xi; ξ)(ξ)]2

G(xi; ξ)2

+
n∑

i=1

t
(ξξ)
i + (c − 1)

n∑
i=1

t
(ξξ)
i ti − [t (ξ)

i ]2

t2
i

,

Ucξ k
=

n∑
i=1

t
(ξ)
i

ti
,

where

t
(aa)
i =

{
G(xi; ξ)b

1 − aG(xi; ξ)b

}2
, t

(ab)
i = G(xi; ξ)b log[G(xi; ξ)]

[1 − aG(xi; ξ)b]2 ,

t
(bb)
i =

{
G(xi; ξ)b log[G(xi; ξ)]

1 − aG(xi; ξ)b

}2
, t

(aξ)
i = bG(xi; ξ)(ξ)G(xi; ξ)b−1

[1 − aG(xi; ξ)b]2 ,

t
(bξ)
i = aG(xi; ξ)(ξ)

{[
G(xi; ξ)b

1 − aG(xi; ξ)b

]2
+ G(xi; ξ)b−1

1 − aG(xi; ξ)b

}
,

g(xi; ξ)(ξξ) = ∂2g(xi; ξ)

∂ξ2 , G(xi; ξ)(ξξ) = ∂2G(xi; ξ)

∂ξ2 ,

t
(ξξ)
i = abG(xi; ξ)(ξξ)G(xi; ξ)b−1

1 − aG(xi; ξ)b
+ ab(b − 1)[G(xi; ξ)(ξ)]2G(xi; ξ)b−2

1 − aG(xi; ξ)b

+
{
abG(xi; ξ)(ξ)G(xi; ξ)b−1

1 − aG(xi; ξ)b

}2
.

Besides estimation of the model parameters, hypotheses tests can be taken into
account. We can compute the maximum values of the unrestricted and restricted
log-likelihoods to obtain the likelihood ratio (LR) statistics for testing some sub-
models of the ELG-G distribution. Let θ = (θ�

1 , θ�
2 )�, where θ1 and θ2 are disjoint

subsets of θ . The LR statistic for testing the null hypothesis H0: θ1 = θ
(0)
1 versus

the alternative hypothesis H1: θ1 	= θ
(0)
1 is given by w = 2{�(θ̂) − �(θ̃)}, where θ̂

and θ̃ are the MLEs under the alternative and null hypotheses, respectively. The
statistic w is asymptotically distributed as χ2

k , where k is the dimension of the
subset θ1 of interest.

6 Bootstrap confidence intervals

The bootstrap method was pioneered in 1979 by Efron (1979), who revitalized the
jackknife resampling methodology and established a new area of research. The
bootstrap methods present two approaches: the parametric bootstrap and nonpara-
metric bootstrap. Parametric bootstrap refers to the case where the resampling is
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performed based on a distribution F(θ̂) known or established, where θ̂ is an esti-
mator of θ . On the other hand, in the nonparametric bootstrap, there is the lack of
the distribution F . The resampling technique is based on the empirical distribution
function F̂n. Resample of F̂n is equivalent to resample data with replacement.

6.1 Bootstrap percentile interval

Let Tn be an estimator of the scale θ based on n observations and t its estimate.
Let T ∗

n be the same estimator based on n observations resampling from the orig-
inal sample with replacement and t∗ its estimate. For simplicity, suppose Tn is a
continuous random variable. Denoting the pth quantile of the distribution of the
random variable Tn − θ by ap , we obtain

Pr{Tn − θ ≤ aα1
2
} = Pr{Tn − θ ≥ a1− α2

2
} = α

2
.

As the amount Q = Tn − θ is invertible and Tn depends only on the sample,
we can build the confidence interval for θ rewriting the events above, i.e., we
can rewrite the events Tn − θ ≤ aα1

2
and Tn − θ ≥ a1− α2

2
with θ > Tn − aα1

2
and

θ < Tn − a1− α2
2

, respectively. Thus, the confidence interval of level γ is given by
the limits

�α/2 = t − a1− α2
2
, �1−α/2 = t − aα1

2
.

In many situations, we do not know the distribution of Tn−θ . In such cases, sup-
pose that there is some transformation Tn, U = h(Tn), such that U has a symmetric
distribution. Suppose also that we can obtain the confidence interval of level 1 −α

to φ = h(θ). According to Davison and Hinkley (1997), we may use bootstrapping
to obtain an approximation to the distribution of Tn − θ using the distribution of
T ∗

n − t . Thus, we estimate the pth quantile of Tn − θ by the (J + 1)pth ordered
value of t∗ − t , that is, the pth quantile of Tn −θ is estimated by t∗((J+1)p) − t . Sim-
ilarly, the p quantile of h(Tn) − h(θ) = U − φ can be estimated by the (J + 1)pth
ordered value of h(T ∗

n ) − h(t) = u∗ − u. Let bp be the pth quantile of U − φ.
Since U has a symmetrical distribution, then U − φ also has a symmetrical dis-
tribution, as soon as it is true that bα

2
= −b1− α

2
. Using the symmetry of U − φ,

we have h(�α/2) = u + bα/2 and h(�1−α/2) = u + b1−α/2. As bα/2 and b1−α/2 are
quantiles of U − φ and we know how to obtain these quantiles, the lower and
upper limits of the confidence intervals are given by u + (u∗

((J+1)α/2) − u) and
u + (u∗

((J+1)(1−α/2)) − u), respectively, which lead to the limits

u∗
((J+1)α/2), u∗

((J+1)(1−α/2)),

whose transformation to θ is

t∗(J+1)α/2, t∗(J+1)(1−α/2). (21)
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Note that we do not know the transformation h. The confidence interval of level
1 − α for the parameter θ does not involve h and it can be evaluated without
knowledge of this transformation. The interval (21) is known as the bootstrap in-
terval percentile. According to Davison and Hinkley (1997, p. 203), the percentile
method can be applied to any statistic.

7 Optimization algorithm

7.1 Swarm intelligence and particle swarm optimization

A package developed for R language very used in the area of continuous dis-
tributions is the AdequacyModel package, version 1.0.8, available for down-
load in https://cran.r-project.org/web/packages/AdequacyModel/index.html under
the terms of the GPL license (≥2).

This package focuses on construction of goodness-of-fit statistics for fitted mod-
els and these statistics depend on the MLEs also provided by the package. How-
ever, it is noted that several users of the package are having difficulties to obtain
these estimates using optimization methods very popular as is the case of Nelder–
Mead method (Nelder and Mead, 1965), L-BFGS-B (Nelder and Mead, 1965) and
simulated annealing (Belisle, 1992). In general, these users are working with new
distributions that have a large number of parameters. The main problem is summed
up by the difficulty to obtain initial parameter values for these methods and non-
convergence of the algorithm for global maximization of the log-likelihood func-
tion of these models. In this sense, the swarm intelligence proved to be a good
strategy for the optimization of these functions and, in general, produce better re-
sults and with the advantage of not having to provide initial values. The Swarm
Intelligence (SI) is the term used to designate systems of artificial intelligence,
where the collective behavior of individuals in a population provides simple solu-
tions or consistent patterns emerge.

The SI was employed using the Particle Swarm Optimization (PSO) method
developed by Eberhart and Kennedy (1995) to obtain the MLEs of the model pa-
rameters and in the study of simulation about the interval estimates for bootstrap
percentile as presented in Section 7.3, as well as to obtain the MLEs for different
models considered in applying the ELG-G model (see Section 8). The implemen-
tation of the PSO method built in this work will be improved and adapted to later
versions of the AdequacyModel package.

Eberhart and Kennedy (1995) developed the PSO method using as a basis the
studies of Reynolds (1987) and Heppner and Grenander (1990) that provided mod-
els of simulations of flock of birds. The PSO method optimizes a problem by hav-
ing a population of candidate solutions and moving these particles around in the
search-space according to simple mathematical formulae over the particle’s posi-
tion and velocity. The movement of the particles in the search space is randomized.

https://cran.r-project.org/web/packages/AdequacyModel/index.html
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The PSO algorithm is presented below, where f : Rn �→ R is the objective func-
tion to be minimized, S is the number of particles in the swarm (set of feasible
points, i.e., search region), each particle having a vector position xi ∈ R

n in the
search-space and a vector velocity defined by vi ∈ R

n. Let pi be the best known
position of particle i and g the best position of all particles.

1. For each particle i = 1, . . . , S do:

• Initialize the particle’s position with a uniformly distributed random vector:
xi ∼ U(blo, bup), where blo and bup are the lower and upper boundaries of
the search-space.

• Initialize the particle’s best known position to its initial position: pi ←� xi .
• If f (pi) < f (g) update the swarm’s best known position: g ←� pi .
• Initialize the particle’s velocity: vi ∼ U(−|bup − blo|, |bup − blo|).

2. Until a termination criterion is met (e.g. number of iterations performed, or a
solution with adequate objective function value is found), repeat:

• For each particle i = 1, . . . , S do:
– Pick random numbers: rp, rg ∼ U(0,1).
– For each dimension d = 1, . . . , n do:

∗ Update the particle’s velocity: vi,d ←� ωvi,d + ϕprp(pi,d − xi,d) +
ϕgrg(gd − xi,d).

– Update the particle’s position: xi ←� xi + vi .
– If f (xi) < f (pi) do:

∗ Update the particle’s best known position: pi ←� xi .
∗ If f (pi) < f (g) update the swarm’s best known position: g ←� pi .

3. Now g holds the best found solution.

The parameter ω is called inertia coefficient and as the name implies controls
the inertia of each particle arranged in the search region. The quantities ωp and
ωg control the acceleration of each particle and are called accelerated coefficients.
The variance of the best candidates can be used as a stopping criterion, that is, the
algorithm will stop if the variance is less than some real ε > 0.

7.2 Hardware used

The law that established the II PLANIN (Plan Informatics and Automation), ap-
proved by the Brazilian National Congress in October 1991, proposed the instal-
lation of a National Center for Supercomputing (CESUP) to provide advanced
computing services to brazilian researchers. This center was set up at the Federal
University of Rio Grande do Sul (UFRGS). The Brazil has some High Performance
Processing National Centers (CENAPAD).

We use the hardware available in the National Supercomputing Center—
CESUP (CENAPAD UFRGS). The CESUP has two clusters: Cluster Sun Fire,
dubbed of Newton, and the Altix cluster SGI, also known as Gauss. The cluster
settings are described below.
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Cluster Sun Fire (Newton):

• 45 processing nodes and 3 nodes of management; 8 GPUs nVIDIA Tesla; 1 GPU
AMD FireStream; 1 switch Voltaire InfiniBand; total of 1296 GB of RAM mem-
ory; total of 188 TB of storage capacity, wherein 158 TB are shared with the
cluster SGI Altix Gauss; theoretical performance peak of 12.94 Tflops.

Cluster SGI Altix (Gauss):

• 64 blades of the processing and 3 nodes of service; total of 4 TB of RAM mem-
ory; total of 174 TB of storage capacity, wherein 158 TB are shared with the
cluster Sun Fire (Newton); theoretical performance peak of 15.97 Tflops.

We use the cluster SGI Altix (Gauss). Each of the 64 units processing of the
SGI Altix cluster has 2 dodeca-core processors (24 cores) AMD Opteron working
at a frequency of 2.3 GHz, 128 KB of cache L1 per core (data + instructions),
512 KB of cache L2 per core and 12 MB of cache L3 per socket. Cluster Gauss
has integrated DDR3 memory controller that supports frequencies of 1333 MHz
and bandwidth of 42.7 GB/s per CPU, totaling 64 GB of RAM per unit. More
information about the hardware available by CESUP can be found in http://www.
cesup.ufrgs.br/.

These hardwares provide greater speed in Monte Carlo simulations to be pre-
sented later. We use the R programming language and the Rmpi, doSNOW and
foreach packages to create the parallel processes. The Rmpi package provides
an interface (wrapper) to MPI APIs. It also provides interactive R slave environ-
ment. The doSNOW package provides a parallel backend for the % dopar% func-
tion (function available in the foreach package for parallelization of loops) us-
ing the Rmpi package.

7.3 Simulation study

We present some Monte Carlo simulations to evaluate the performance of interval
estimates by bootstrap percentile. We simulate 20,000 trails of the ELG-Weibull
true model with fixed parameters a = 0.5, b = 1.5 and c = 1.5, with the baseline
Weibull distribution having parameters α = 1.5 and β = 1.5. We take the nominal
level of 95% and sample sizes: 20, 60, 100 and 500. We consider 500 bootstrap
resampling in each Monte Carlo iteration.

The evaluation of the random intervals obtained by bootstrap percentile is taken
by the level of coverage of these intervals, that is, we determine the percentage of
confidence intervals containing the true parameter within the interval. Taking ad-
vantage of the bootstrap used for construction the percentile intervals, we evaluate
the standard errors of the MLEs obtained by the PSO method.

Table 1 gives the average of the standard errors obtained using non-parametric
bootstrap. This table also provides the averages of the amplitudes of interval es-
timates, the coverage of the intervals for different sample sizes and the times (in

http://www.cesup.ufrgs.br/
http://www.cesup.ufrgs.br/
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Table 1 Percentage of coverage and average amplitude of interval estimates for the parameters
added by the generator by bootstrap percentile at a nominal level of 95%

n Parameter Coverage (%) Amplitude Error Time (in hours)

n = 20
a 86.7854 1.3456 2.3325

100.4356b 87.4416 1.7376 4.1464
c 89.7584 2.1222 1.4353

n = 60
a 91.5443 2.1210 1.2756

170.1102b 90.5432 1.5436 3.2542
c 92.3453 2.0787 2.4252

n = 100
a 93.4545 1.5345 2.3431

213.4464b 92.4539 2.4536 2.3014
c 94.4235 3.3445 3.3945

n = 500
a 93.9716 1.5646 2.1455

432.5643b 94.2325 2.5345 2.5514
c 95.1215 3.2148 3.8789

hours) spent in the of the simulations. For small samples, in particular, for n = 20,
we note that the interval estimates by bootstrap percentiles coverage far below the
fixed nominal level. The coverage becomes reasonably close to the 95% nominal
level in large samples (100 and 500).

The amplitudes of interval estimates are small for all scenarios of the simula-
tions. We also compute the bootstrap errors for each iteration of Monte Carlo. We
note small errors for all estimates of the ELG-Weibull model. We evaluate the er-
rors by bootstrap because there is no exact way to obtain the errors of the MLEs
using the PSO method. Figure 9 displays boxplots of the errors for the parameters
added in the ELG-Weibull distribution.

8 Applications

In this section, the usefulness of the ELG-Weibull distribution is proved empiri-
cally by means of two real data sets. In the applications, we use the Adequacy-
Model package version 1.0.8 available in the R programming language. First, we
consider a data set from Smith and Naylor (1987). The data are the strengths
of 1.5 cm glass fibres, measured at the National Physical Laboratory, England.
Unfortunately, the units of measurement are not given in the paper. The data set
is also available for download at http://www.stat.ncsu.edu/research/sas/sicl/data/.
The second application takes into account the data related to the percentages of
body fat determined by underwater weighting and various body circumference
measurements for 250 men. For details about the data set, see http://lib.stat.cmu.
edu/datasets/. Table 2 gives some descriptive statistics for the two data sets. They
are obtained in the AdequacyModel package (version 1.0.8).

http://www.stat.ncsu.edu/research/sas/sicl/data/
http://lib.stat.cmu.edu/datasets/
http://lib.stat.cmu.edu/datasets/
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Figure 9 Errors evaluated by bootstrap and the MLEs obtained by the PSO method with 500 boot-
strap replicates.

Table 2 Descriptive statistics

Real data sets

Statistics Glass fibres Body fat (%)

Mean 1.5068 19.3012
Median 1.5900 19.2500
Mode 1.7000 22.5000
Variance 0.1051 67.7355
Skewness −0.8999 0.1953
Kurtosis 0.9238 −0.3815
Maximum 2.2400 47.5000
Minimum 0.5500 3.0000
n 63 250
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Figure 10 The TTT plots for the: (a) glass fibres and (b) percentage of body fat.

Figure 11 The Gaussian kernel density estimation for: (a) the glass fibres and (b) percentage of
body fat.

One of the important devices, which can help selecting a particular model, is
the total time on test (TTT) plot (Aarset, 1987). The TTT plots for the fibres data
and for the number of successive failure data are displayed in Figure 10. Both TTT
plots in Figure 10 yield a concave curve and then an increasing hrf. Then, these
plots indicate the appropriateness of the ELG-Weibull distribution to fit these data.
Figure 11 displays the Gaussian kernel density estimation for the glass fibres data
and percentage of body fat data.

For these data sets, we fit the ELG-Weibull (ELG-W) distribution defined by
(12) and compare it with the Kumaraswamy Weibull Poisson (KW-WP) (Ramos
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et al., 2015), Kumaraswamy Weibull (KW) (Cordeiro, Ortega and Nadarajah,
2010), exponentiated Weibull (EW) (Mudholkar and Srivastava, 1993), New-type
Nadarajah–Haghighi (NTNH) (Lemonte, 2013), modified Weibull (MW) (Xie,
Tang and Goh, 2002), Chen (Chen, 2000), gamma and Nadarajah-Haghighi (NH)
(Nadarajah and Haghighi, 2011) distributions. The MLEs of the model parameters
(with standard errors in parentheses) for the ELG-W, Kw-WP, EW, NTNH and
other models are listed in Table 3 for the two data sets. The R language is also
used to obtain the MLEs by the heuristic method of global optimization (PSO)
discussed in the previous section.

We can also perform formal goodness-of-fit tests in order to verify which dis-
tribution fits better to these data. We consider the Cramér-von Mises (W) and
Anderson-Darling (A), described in details by Chen and Balakrishnan (1995), and
Kolmogorov-Smirnov (KS) statistics. In general, the smaller the values of these
statistics, the better the fit is. Table 4 gives the values of the Akaike information
criterion (AIC), Bayesian information criterion (BIC), consistent Akaike infor-
mation criterion (CAIC) and Hannan-Quinn information criterion (HQIC), and
the A, W and KS statistics for the both models fitted to both data sets. Thus,
according to these formal tests, the ELG-W model fits the data sets better than
the other distributions. Since the values of the AIC, CAIC and HQIC statistics
are smaller for the ELG-W distribution compared to those values of the other
fitted models, the new distribution is a very competitive model to explain these
data.

Plots of the estimated pdfs, cdfs and survival functions of the ELG-W distribu-
tion and other models fitted to both data sets are displayed in Figures 12, 13 and
14, respectively. They reveal that the ELG-W distribution is superior to the other
distributions in terms of model fitting.

9 Conclusions

We define a new class of distributions called the exponentiated logarithmic gen-
erated (“ELG”) family. The proposed family can be motivated by compounding
the exponentiated generated construction and the logarithmic distribution. It can
provide better fits than some well-known lifetime distributions, which represents
an interesting property for application. We derive some of its structural proper-
ties including moments, quantile and generating functions and order statistics. We
use the maximum likelihood method to estimate the model parameters. We pro-
vide a simulation study to show the accuracy of the estimates. Further, we adopt
the bootstrap percentile technique to obtain confidence intervals for the model pa-
rameters. We give two applications to real data to illustrate the potentiality of the
proposed family. We hope this generalization may attract wider applications in
statistics.
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Table 3 MLEs for the glass fibres data denoted by (I) and percentage of body fat data denoted
by (II)

Data set Distribution Estimates and standard errors in parenthesis

I

ELG-W (α, β, a, b, c) 3.5684 1.1824 0.9944 0.1650 2.7926
(1.1281) (0.1495) (2.9934) (3.0763) (2.0636)

Kw-WP (a, b, c, λ, β) 0.9377 3.2395 6.4021 17.2578 0.3163
(4.3973) (3.7067) (4.0625) (0.7777) (0.2853)

Kw-W (a, b, c, β) 7.7418 2.6226 0.7262 14.1218
(5.7793) (5.2691) (6.3079) (3.3187)

EW (α, β, a) 7.2846 1.7181 0.6712
(4.0527) (3.7499) (8.2724)

NTNH (α, λ, β) 14.2416 0.0648 9.9259
(0.7176) (3.0746) (2.2890)

MW (α, β, λ) 3.1640 5.6882 13.6191
(0.3546) (5.1581) (2.9185)

Chen (λ, β) 0.0720 1.9604
(0.3563) (0.2213)

Gamma (α, β) 0.0864 17.4396
(0.6844) (0.4654)

NH (α, λ) 24.884 0.0212
(0.1102) (0.2334)

II

ELG-W (α, β, a, b, c) 1.8303 12.8023 0.9733 2.5701 0.6136
(0.2172) (0.0332) (0.1634) (5.1669) (3.7660)

Kw-WP (a, b, c, λ, β) 22.1310 24.9999 0.2568 13.9977 0.2074
(4.6427) (3.4670) (0.0530) (5.0103) (6.9024)

Kw-W (a, b, c, β) 0.5013 14.8283 8.9928 24.9999
(3.7177) (6.5498) (1.6592) (1.5868)

EW (α, β, a) 3.0043 23.8105 0.7558
(0.2875) (1.1316) (3.3796)

NTNH (α, λ, β) 1.8273 0.0419 3.7999
(4.9998) (4.0430) (6.2450)

MW (α, β, λ) 21.6646 1.5020 0.0241
(3.3369) (3.4177) (6.5183)

Chen (λ, β) 0.0065 0.5192
(2.1056) (0.6374)

Gamma (α, β) 4.1876 4.6091
(1.2548) (1.0493)

NH (α, λ) 17.3791 0.0022
(0.7384) (1.5522)

It is used rounding to the fourth decimal place.
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Table 4 Goodness-of-fit statistics for the glass fibre data denoted by (I) and percentages of body fat data denoted by (II)

Data set Distribution A W KS AIC CAIC BIC HQIC

I

ELG-W (α, β, a, b, c) 0.5513 0.0959 0.1105 34.4784 35.5311 45.1941 38.6930
Kw-WP (a, b, c, λ, β) 1.7612 0.3216 0.1689 44.3267 45.3794 55.0424 48.5413

Kw-W (a, b, c, β) 1.2689 0.2304 0.1516 38.2397 38.9293 46.8122 41.6113
EW (α, β, a) 1.1118 0.2000 0.1462 35.3510 35.7578 41.7804 37.8798

NTNH (α, λ, β) 2.7480 0.5006 0.2105 50.0737 50.4805 56.5031 52.6024
MW (α, β, λ) 1.2901 0.2345 0.1514 36.3860 36.7927 42.8154 38.9147
Chen (λ, β) 0.9623 0.1615 0.1373 36.9227 37.1227 41.2090 38.6085

Gamma (α, β) 3.1174 0.5684 0.2164 51.9031 52.1031 56.1893 53.5889
NH (α, λ) 2.3541 0.4294 0.4513 143.1259 143.3259 147.4121 144.8117

II

ELG-W (α, β, a, b, c) 0.1246 0.0164 0.0242 1758.6590 1758.9050 1776.2660 1765.7460
Kw-WP (a, b, c, λ, β) 1.3448 0.2200 0.0627 1772.8220 1773.0680 1790.4290 1779.9080

Kw-W (a, b, c, β) 1.3420 0.2204 0.0667 1770.3700 1770.5330 1784.4560 1776.0390
EW (α, β, a) 0.2549 0.0347 0.0327 1757.7540 1757.8510 1768.3180 1762.0050

NTNH (α, λ, β) 1.6362 0.2702 0.0743 1771.6980 1771.7950 1782.2620 1775.9490
MW (α, β, λ) 0.4229 0.0525 0.0399 1771.6800 1771.7770 1782.2440 1775.9310
Chen (λ, β) 0.5479 0.0688 0.0360 1768.4090 1768.4580 1775.4520 1771.2440

Gamma (α, β) 1.9585 0.3240 0.0764 1773.3760 1773.4240 1780.4180 1776.2100
NH (α, λ) 0.4922 0.0772 0.2186 1872.0240 1872.0730 1879.0670 1874.8590

1 - The statistics are obtained in the AdequacyModel package, version 1.0.8.
2 - It is used rounding to the fourth decimal place.
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Figure 12 Estimates of the density functions for the: (a) glass fibres (b) percentages of body fat.

Figure 13 Estimates of the distribution functions and empirical distribution for the: (a) glass fibre
and (b) percentages of body fat.

Appendix: Script in Julia language

# Binomial coefficient to be generalized to noninteger
# arguments (including complex x and y) as
function binomialG(x,y)
return gamma(BigFloat(x)+1)/(gamma(BigFloat(y)+1)*
gamma(BigFloat(x)-BigFloat(y)+1))
end
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Figure 14 Kaplan-Meier (K-M) estimates compared with the ELG-W survival estimates for the:
(a) glass fibres and (b) percentages of body fat.

# Stirling numbers of the second kind.
function S(n,m)
a = 1/gamma(m+1)
v = zeros(Float64,int(trunc(m))+1,1)
for i = 0:(length(v)-1)
v[i+1] = (-1)^i*binomialG(m,i)*(m-i)^n
end
return a*sum(v)
end

# Stirling numbers of the first kind.
function s(n,m)
if n<m
return 0
else
v = zeros(Float64,int(trunc(n-m))+1,1)
for k = 0:(length(v)-1)
v[k+1]=(-1)^k*binomialG(k+n-1,k+n-m)*
binomialG(2*n-m,n-k-m)*S(k-m+n,k)
end
return sum(v)
end
end

# Stirling polynomial defined in
# http://mathworld.wolfram.com/StirlingPolynomial.html
function poly(n,m)
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return (-1)^n/binomialG(m,n)*s(m+1,m-n+1)
end

# Fundamental formula for the Stirling polynomial defined by
# MORGAN WARD (1934, p. 2).
function psi(n,m)
if n>m
error("Sorry. With this algorithm is only
possible to calculate for n <= m.")
end
return poly(n,m)/(factorial(BigInt(n))*(m+1))
end
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