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Abstract. The paper focuses on a new stationary integer-valued autoregres-
sive model of first order with Poisson–Lindley marginal distribution. Sev-
eral statistical properties of the model are established, like spectral density
function, multi-step ahead conditional measures, stationarity, ergodicity and
irreducibility. We consider several methods for estimating the unknown pa-
rameters of the model and investigate properties of the estimators. The per-
formances of these estimators are compared via simulation. The model is
motivated by some applications to two real count time series data.

1 Introduction

In the recent years, there has been a growing interest in modeling stationary time
series model with discrete marginal distributions, because various kinds of discrete
valued time series models are often encountered in practice. If time series with
discrete variate do not have a range that is big enough to justify approximation by
standard continuous model, then in order to fit and forecast the series it is necessary
to use integer valued model. The most widely known models are based on the
binomial thinning operator, that was introduced by Steutel and van Harn (1979).
In many real life situations, there is a need to model and mathematically describe
time series of correlated count observations, so integer valued models have to be
used.

Integer-valued time series arise as the number of births at a hospital in suc-
cessive months, count of accidents, count of patients, count of chromosome in-
terchanges in cells, number of transmitted messages and so on. The first order
non-negative integer valued autoregressive (INAR(1)) processes were introduced
by McKenzie (1985), Al-Osh and Alzaid (1987).

A significant number of INAR models are either based on the binomial thinning
operator or its generalizations. The binomial thinning operator is generated by
counting series of independent Bernoulli distributed random variables and it is
defined as

α ◦ X =
X∑

i=1

Wi, α ∈ (0,1), (1.1)
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where X is a non negative integer-valued random variable and {Wi} is a sequence
of independent identically distributed random variables with Bernoulli (α) distri-
bution and is independent of X.

Among the INAR(1) models based on equation (1.1), we cite the Poisson model
(Al-Osh and Alzaid (1987), Alzaid and Al-Osh (1988), McKenzie (1988)), the
geometric and negative binomial models (Alzaid and Al-Osh (1988), McKenzie
(1986)), the generalized Poisson model (Alzaid and Al-Osh (1993)), and the zero-
truncated Poisson distribution (Bakouch and Ristic (2010)). Among models based
on generalizations of the binomial thinning operator, we cite the negative bino-
mial model (Al-Osh and Aly (1992), Aly and Bouzar (1994b), Ristić, Bakouch
and Nastić (2009), Ristić, Nastić and Bakouch (2012)) and the Poisson geometric
model of Aly and Bouzar (1994a). Other extensions of the INAR(1) model are sur-
veyed by McKenzie (2003). A significant development of the previous Bernoulli
counting series was made by the Ristić, Nastic and Miletic Ilic (2013), where the
INAR(1) model with dependent Bernoulli counting series is introduced, as not all
counting series random variables are independent. Recently, Schweer and Weiß
(2014) introduced a general family of INAR(1) models with compound Poisson
innovations.

Count time series data are of main interest in various applied fields, such as
medicine, insurance, communications, social sciences, meteorology and ecology.
All the above integer valued autoregressive models with different discrete marginal
distributions and modified thinning operators have been proposed to improve the
quality of fitting and analyzing such data. Sometimes, those models give less ac-
curate analysis because of the nature and properties of the count data that exhibit
over-dispersion, skewness and kurtosis. Therefore, there is a need to introduce
other integer valued time series models with marginals rather than traditional ones
to treat some of their limitations represented in their marginal distributions, for
example, Poisson marginal has equidispersion (variance equals to the mean, a sit-
uation that may not be consistent with data), zero truncated Poisson marginal is
underdispersed (underdispersion occur less frequently than overdispersion), geo-
metric marginal has a constant failure rate (unrealistic feature).

In this paper, the Poisson–Lindley (PL) marginal distribution is used for the
first time to model the INAR time series models using the binomial thinning op-
erator with independent Bernoulli counting series random variables. Hereafter, the
introduced first-order integer valued autoregressive model with Poisson–Lindley
marginal shall be denoted by PLINAR(1).

The discrete Poisson–Lindley distribution of a random variable X has the prob-
ability mass function (p.m.f.)

f (x, θ) = θ2(x + θ + 2)

(1 + θ)x+3 , x = 0,1, . . . ; θ > 0,

was introduced by Sankaran (1970) to model count data. The PL(θ ) distribution
belongs to compound Poisson family and has other common properties like uni-
modality, overdispersion, and infinite divisibility (Ghitany and Al-Mutairi (2009)),
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Table 1 Mean, variance, skewness and kurtosis of the Poisson–
Lindley distribution

Mean θ+2
θ(θ+1)

Variance θ3+4θ2+6θ+2
θ2(θ+1)2

Skewness 2(θ+1)4(θ+2)−θ3(θ+2)(θ+3)

(2(θ+1)3−θ2(θ+2))
3
2

Kurtosis 3 + 2(θ+1)5((θ+3)2−3)−θ4(θ+2)((θ+4)2−3)

(2(θ+1)3−θ2(θ+2))2

such as the negative binomial distribution. PL(θ ) distribution has an increasing
hazard rate which is realistic for most of the data. Also, PL(θ ) distribution can be
viewed as mixture of geometric with parameter 1

1+θ
and negative binomial with

parameters 2 and 1
1+θ

with mixing proportions θ
1+θ

and 1
1+θ

, respectively. More-
over, Ghitany and Al-Mutairi (2009) demonstrated that the skewness and kurtosis
of the Poisson–Lindley distribution are smaller than the negative binomial distribu-
tion, we will further elaborate on this point in Section 5 for real data. Advantages
of the PL(θ ) distribution than the mentioned counted distributions were the moti-
vation to use the PL(θ ) distribution for modeling the integer valued autoregressive
model. Further, two real data examples show that the PLINAR(1) model provides
a very satisfactory fit and that it is highly competitive with other known and recent
INAR models such as Poisson INAR(1), geometric INAR(1), generalized Pois-
son INAR(1), new geometric INAR(1) and many versions of negative binomial
INAR(1).

The corresponding formulas for mean, variance, skewness and kurtosis of the
Poisson–Lindley distribution are given in Table 1.

Also, recall that the probability generating function (p.g.f.) of PL distribution is
given by

�X(s) = θ2

1 + θ

2 + θ − s

(1 + θ − s)2 .

The paper is organized as follows. In Section 2, we construct the Poisson–
Lindley first-order integer-valued autoregressive (PLINAR(1)) model and obtain
the p.m.f. of the innovation term of the model. In Section 3, we investigate many
properties of this model, such as autocorrelation function, spectral density func-
tion, multi-step ahead conditional expectation, variance and partial autocorrelation
function. Section 4, deals with estimation of the unknown parameters of the model
by using conditional least square estimator, Yule–Walker estimator and maximum
likelihood estimator. Also, the asymptotic properties and asymptotic distribution
of the estimators are investigated. Some applications of the process for two real
data sets are given in Section 5. Some concluding remarks with future issues of
the model are given in Section 6.
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2 The PLINAR(1) model and its properties

Let us consider the INAR(1) process

Xt = α ◦ Xt−1 + εt , t ≥ 1, (2.1)

where the binomial thinning operator α◦ defined above, {εt } is a sequence of i.i.d.
random variables and εt is independent of Bernoulli counting process {W(t)

i } and
Xm for all m ≤ t . Assume that {Xt } is a stationary process with PL(θ ) distribution,
then the innovation process {εt } has the p.g.f.

�ε(s) = 2 + θ − s

(1 + θ − s)2

[θ + α(1 − s)]2

1 + θ + α(1 − s)
. (2.2)

Definition 2.1. Let F(x) be a distribution function. We say the distribution func-
tion F(x) is a generalized mixture of the distribution functions F( ;1), F( ;2), . . .

if

F(x) = ∑
i≥1

wiF (x; i),

for all x, where the real numbers w1,w2, . . . are such that
∑

i≥1 wi = 1,∑
i≥1 |wi | < ∞ and for some indices i, wi < 0.

Lemma 2.1. If 0 < α < 1, θ ≥ 1, then the generalized mixture

g(x) = θ2(1 − α)2 + θ(1 − α2) + 2α

(θ(1 − α) + 1)2

θ

1 + θ

(
1 − θ

1 + θ

)x

+ (1 − α)

θ(1 − α) + 1
(x + 1)

(
θ

1 + θ

)2(
1 − θ

1 + θ

)x

(2.3)

− α

(θ(1 − α) + 1)2

θ + 1

θ + 1 + α

(
1 − θ + 1

θ + 1 + α

)x

, x = 0,1, . . . ,

is a probability mass function.

Proof. The proof is given in the Appendix. �

Theorem 2.1. Consider the PLINAR(1) process defined by equation (2.1). The
innovation sequence {εt } possesses the distribution

fε(x) = αh(x) + (1 − α)g(x),

where h(x) is the degenerate distribution function at zero and g(x) is a probability
mass function defined by equation (2.3).

Proof. See the Appendix. �
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Corollary 2.1. Based on Lemma 2.1 and Theorem 2.1, the Poisson–Lindley dis-
tribution is discrete self-decomposable (see e.g. Steutel and van Harn (1979)) for
θ ≥ 1.

Applying the result of the Theorem 2.1, the process defined by equation (2.1)
can be rewritten as

Xt =
{
α ◦ Xt−1, w.p. α,

α ◦ Xt−1 + εt , w.p. 1 − α,

where w.p. stands for “with probability”. Therefore, we can write the process {Xt }
as

Xt = α ◦ Xt−1 + ItHt , (2.4)

where P {It = 0} = 1 − P {It = 1} = α, Ht has the probability mass function g in
equation (2.3) and Xt−k is independent of ItHt for k ≥ 1.

Based on properties of the binomial thinning operator, the marginal distribution
of the model (2.4) can be expressed in terms of the innovation sequence {ItHt } as

Xt
d=

∞∑
j=0

αj ◦ (It−jHt−j ).

Remark 2.1. For θ ≥ 1, if X0 is PL(θ), then the process {Xt } is Poisson–Lindley
for every t ≥ 1 and strict stationarity ensues by the Markovian property.

Obviously, the autocovariance function of the PLINAR(1) process obtained as

γk = Cov(Xt ,Xt−k)

= Cov(α ◦ Xt−1 + ItHt ,Xt−k)

= α Cov(Xt−1,Xt−k) = · · · = αkγ0, k ≥ 0.

Then, the autocorrelation function is ρk = αk , α ∈ (0,1), k ≥ 0. That is, the auto-
correlation function decays exponentially as k → ∞.

By applying the autocovariance function, the spectral density function of the
PLINAR(1) process is as follows

fxx(ω) = 1

2π

∞∑
k=−∞

Cov(Xt ,Xt−k)e
−iωk

= (θ3 + 4θ2 + 6θ + 2)(1 − α2)

2πθ2(θ + 1)2(1 + α2 − 2α cos(ω))
,

where ω ∈ (−π,π ].
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Also, the joint probability generating function of the random variables Xt and
Xt−1 is obtained as follows

�xt ,xt−1(s1, s2) = α�α◦xt−1,xt−1(s1, s2) + (1 − α)�α◦xt−1+εt ,xt−1(s1, s2)

= α�xt

(
s2(1 − α + αs1)

)
+ (1 − α)

[
�εt (s1)�xt

(
s2(1 − α + αs1)

)]
= α

θ2

1 + θ

(
2 + θ − (s2(1 − α + αs1))

(1 + θ − (s2(1 − α + αs1)))2

)

+ (1 − α)

[
2 + θ − s1

(1 + θ − s1)2

(θ + α(1 − s1))
2

1 + θ + α(1 − s1)

× θ2

1 + θ

2 + θ − (s2(1 − α + αs1))

(1 + θ − (s2(1 − α + αs1)))2

]
.

It is obvious that the PLINAR(1) process is not time reversible as �xt ,xt−1 is not
symmetric in (s1, s2).

3 Conditional properties

Let us provide the (k +1)-step ahead conditional mean and conditional variance of
the PLINAR(1) process. Note that unconditional mean and variance of the model
(2.4) are

E(Xt) = E(Ht) = θ + 2

θ(θ + 1)
, Var(Xt) = θ3 + 4θ2 + 6θ + 2

θ2(θ + 1)2 ,

respectively.
Using the definition of the PLINAR(1) process and induction method, the (k +

1)-step ahead conditional mean obtained as

E(Xt+k | Xt−1 = x) = αk+1x + (
1 − αk+1) θ + 2

θ(θ + 1)
, (3.1)

and if k −→ ∞ then E(Xt+k | Xt−1 = x) −→ θ+2
θ(θ+1)

, which is the unconditional
mean of the process.

Using the model definition and its variance, we get

E
(
H 2

t

) = θ3 + 5θ2 + 10θ − 2α + 6

θ2(θ + 1)2 ,

and noting that

Var(ItHt ) = (1 − α)E
(
H 2

t

) − (1 − α)2(
E(Ht)

)2
,
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implies

Var(ItHt ) = (1 − α)

θ2(θ + 1)2

(
θ3 + 4θ2 + 6θ + 2 + α

(
θ2 + 4θ + 2

))
.

All the above implies that the (k + 1)-step ahead conditional variance, Var(Xt+k |
Xt−1 = x), is

αk+1(
1 − αk+1)

x + 1 − α2(k+1)

1 − α2 Var(ItHt ) + (1 − αk)(α − αk+2)

1 − α2 E(ItHt ).

When k −→ ∞, we find that

Var(Xt+k | Xt−1 = x) → Var(ItHt )

1 − α2 + αE(ItHt )

1 − α2

= θ3 + 4θ2 + 6θ + 2

θ2(θ + 1)2 ,

which is the unconditional variance of the process.
The partial autocorrelation function at lag h > 1 by using equation (3.1) is

β(h) = Corr
(
Xh+1 − E(Xh+1 | X2, . . . ,Xh),X1

)
= Corr

(
Xh+1 − αXh + (1 − α)

θ + 2

θ(θ + 1)
,X1

)
= αh − α

(
αh−1) = 0,

where Corr(·) stands for correlation. From this and noting that β(1) = 1, we con-
clude that for PLINAR(1) the partial autocorrelation cuts off at lag 1 and the
PLINAR(1) model possesses an autoregressive nature.

Now, let us turn to transition probabilities. As the PLINAR(1) process is Marko-
vian, transition probabilities play a major role in determining some characteristics
of the process. Based on equation (2.4), the transition probabilities of the process
are

pij = p(Xt = j | Xt−1 = i)
(3.2)

=
min(i,j)∑

k=0

(
i

k

)
αk(1 − α)i−kp(ItHt = j − k),

where the process ItHt is defined in equation (2.4). Equation (3.2) and the as-
sumption fε > 0 (Theorem 2.1) imply that the transition probabilities pij > 0 and
hence the process {Xt } is irreducible and aperiodic Markov chain. Thus, it is either
positive recurrent (and hence ergodic) or limn→∞ pn

ij = 0.

4 Estimation and inference

Many features of the model depend on its parameters, so estimation of the model
parameters is an important issue. For this purpose, we consider several methods
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for estimation the unknown parameters from the realization X1, . . . ,Xn of the
PLINAR(1) process defined by equation (2.4). These estimators are compared via
Monte Carlo simulations in terms of their mean and standard deviations.

4.1 Conditional least square estimation

The conditional least squares estimators of the parameters α and μ are obtained
by minimizing the function

Qn =
n∑

t=2

(
Xt − αXt−1 − μ(1 − α)

)2
,

where μ = E(Xt) = θ+2
θ(θ+1)

. The estimators are given by

α̂CLS = (n − 1)
∑n

t=2(Xt−1Xt) − ∑n
t=2 Xt

∑n
t=2 Xt−1

(n − 1)
∑n

t=2 X2
t−1 − (

∑n
t=2 Xt−1)2

,

θ̂CLS + 2

θ̂CLS(θ̂CLS + 1)
= μ̂CLS =

∑n
t=2 Xt − α̂CLS

∑n
t=2 Xt−1

(n − 1)(1 − α̂CLS)
,

and hence estimator of the parameter θ is

θ̂CLS = −(μ̂CLS − 1) +
√

(μ̂CLS − 1)2 + 8μ̂CLS

2μ̂CLS
.

Now we derive the asymptotic properties of the estimators α̂CLS and μ̂CLS.
Since the process {Xt } is strictly stationary and ergodic, by Theorems 3.1 and
3.2 in Tjøstheim (1986) it follows that the estimators α̂CLS and μ̂CLS are strongly
consistent estimators for the parameters α and μ and

√
n(α̂CLS − α, μ̂CLS − μ)′

converges in distribution to the bivariate normal distribution with mean zero vector
and covariance matrix given by

G =
⎡
⎣ γ σ 2+α(1−α)(μ3−μ3−2μσ 2)

σ 4 α

α
α(1−α)μ+γ

(1−α)2

⎤
⎦ ,

where σ 2 = Var(Xt), γ = Var(ItHt ) and

μ3 = E
(
X3

t

) = (θ5 + 10θ4 + 41θ3 + 80θ2 + 72θ + 24)

θ3(θ + 1)3 .

4.2 Yule–Walker estimation

Let γ̂ (k) = 1
n

∑n−k
t=1 (Xt −X)(Xt+k −X),0 ≤ k < n, be the sample auto covariance

function of X, where X = 1
n

∑n
t=1 Xt is the sample mean. Since α = γ1

γ0
and μ =
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E(Xt), the Yule–Walker estimators of α and μ are

α̂YW = γ̂1

γ̂0
=

∑n
t=2(Xt − X)(Xt−1 − X)∑n

t=1(Xt − X)2
,

μ̂YW = X = θ̂ + 2

θ̂ (θ̂ + 1)
.

So the explicit estimator for parameter θ is

θ̂YW = −(X − 1) +
√

(X − 1)2 + 8X

2X
.

Asymptotic properties of Yule–Walker estimators is given by the following theo-
rem.

Theorem 4.1. Conditional least squares and Yule–Walker estimators of the
PLINAR(1) process are asymptotically equivalent.

Proof. The proof follows by showing the two conditions.

(i)

μ̂CLS − μ̂YW = o
(
n− 1

2
)
,

(ii)

α̂CLS − α̂YW = o
(
n− 1

2
)
.

From the definitions of μ̂CLS and μ̂YW, we find that

lim
n→∞

√
n − 1(μ̂CLS − μ̂YW) = lim

n→∞
α

(1 − α)
√

n − 1
(Xn − X1) = 0,

which gives condition (i).
Definitions of α̂CLS and α̂YW imply

√
n(α̂CLS − α̂YW) = A

[(n − 1)
∑n

t=2 X2
t−1 − (

∑n
t=2 Xt−1)2][∑n

t=1(Xt − X)2] ,

where A is equal to[
(n − 1)

n∑
t=2

XtXt−1 −
n∑

t=2

Xt

n∑
t=1

Xt−1

][
n∑

t=1

(
X2

t − 2XXt + X
2)]

−
[

n∑
t=2

XtXt−1 − X

n∑
t=2

(Xt + Xt−1) + (n − 1)X
2
]

×
[
(n − 1)

n∑
t=2

X2
t−1 −

(
n∑

t=2

Xt−1

)2]
.
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Dividing nominator and denominator by (n − 1)2 and using n ≈ (n − 1), for
large n, we obtain

√
n(α̂CLS − α̂YW)

= Xn − X√
n

1
n−1

∑n
t=2 XtXt−1 − ( 1

n−1
∑n

t=2 Xt)(
1

n−1
∑n

t=1 Xt−1)

[ 1
n−1

∑n
t=2 X2

t−1 − ( 1
n−1

∑n
t=2 Xt−1)2][ 1

n

∑n
t=1 X2

t − X
2]

.

Due to stationarity and ergodicity of the sequence {Xt }, it holds

lim
n→∞

√
n(α̂CLS − α̂YW) = 0,

then we get condition (ii). �

4.3 Maximum likelihood estimation

Finally, we derive the maximum likelihood estimators (MLEs) of the unknown
parameters α and θ . The MLEs of the parameters are obtained by maximization of
the log-likelihood function

lnL(X1, . . . ,Xn; θ,α) = 2 ln θ − (X1 + 3) ln(1 + θ)

+ ln(2 + θ + X1) +
n∑

l=1

lnp(Xl | Xl−1; θ,α),

where p(Xl | Xl−1; θ,α) is given by equation (3.2).
The MLEs can be easily computed by using the function nlm from statistical

package R, taking the conditional least squares estimators as initial values of the
function nlm. A numerical investigation of the MLE estimates is assessed and
compared to CLS and YW estimates via a Monte Carlo simulation in the next
subsection.

4.4 Some simulation results

To examine the performance of the CLS, YW and ML estimators, a Monte Carlo
simulation was conducted for different sample sizes (n = 50, 100, 500, 1000, 5000,
10,000). We simulated 10,000 samples from the PLINAR(1) process for true pa-
rameter values α = 0.1, θ = 1; α = 0.3, θ = 2 and α = 0.5, θ = 3. Table 2 provides
the mean and standard deviation (in brackets) of the estimates for different values
of the parameters α and θ with different sample sizes.

From Table 2, we observe that the estimates obtained from the three estimation
methods are convergent in their values. The CLS and YW estimates have similar
numerical values. Also, increasing the sample size implies smaller standard devia-
tion and MLEs converge faster to the true parameter values. Further, we conclude
that the MLEs have the smallest standard deviations than the others, hence the
MLEs give the best performance than the CLS and YW estimates.



272 M. Mohammadpour, H. S. Bakouch and M. Shirozhan

Table 2 Mean and standard deviation (in brackets) of the estimators for different values of the
parameters α and θ

n α̂CLS θ̂CLS α̂YW θ̂YW α̂ML θ̂ML

(α, θ) = (0.1,1)

50 0.0994102 1.149081 0.0983538 1.150767 0.0993817 1.142961
(0.0113089) (0.0134960) (0.0112335) (0.0143792) (0.0107299) (0.0132052)

100 0.1006051 1.145384 0.1001877 1.148386 0.0997218 1.138520
(0.0108718) (0.0132487) (0.0110591) (0.0138757) (0.0105309) (0.0131841)

500 0.0998751 1.138529 0.0994009 1.145684 0.0997259 1.106318
(0.0105092) (0.0129523) (0.0107118) (0.0134780) (0.0104294) (0.0117204)

1000 0.0998039 1.135861 0.0995280 1.140273 0.0999521 1.083892
(0.0100442) (0.0123955) (0.0104629) (0.0129511) (0.0082953) (0.0093295)

5000 0.0999793 1.076428 0.0998529 1.106299 0.0999962 1.028725
(0.0095922) (0.0082024) (0.0088207) (0.0108362) (0.0038261) (0.0058263)

10,000 0.0999974 1.014721 0.999693 1.084037 0.1000007 1.000481
(0.0038574) (0.0052983) (0.0049302) (0.0087206) (0.0006294) (0.0009173)

(α, θ) = (0.3,2)

50 0.3186633 2.495004 0.3254938 2.503447 0.299762 2.439466
(0.012787) (0.056107) (0.014497) (0.059660) (0.012173) (0.0527319)

100 0.3092002 2.493216 0.3147419 2.497559 0.3032524 2.327441
(0.012187) (0.052288) (0.0130745) (0.0549282) (0.0104201) (0.0450027)

500 0.30814 2.378716 0.3102891 2.384481 0.301836 2.185692
(0.011622) (0.0497849) (0.0123052) (0.0506455) (0.0083709) (0.0272195)

1000 0.302746 2.157266 0.306215 2.261185 0.301052 2.106573
(0.0098937) (0.010586) (0.010067) (0.031839) (0.0058401) (0.006834)

5000 0.300639 2.061905 0.303988 2.138359 0.300088 2.00396
(0.0047439) (0.005722) (0.007628) (0.0076394) (0.0007219) (0.002849)

10,000 0.300096 2.010522 0.300692 2.025630 2.999999 2.000594
(0.0008375) (0.0017544) (0.0011784) (0.004204) (0.000063) (0.0002893)

(α, θ) = (0.5,3)

50 0.486303 4.182591 0.512058 4.202716 0.491703 4.011847
(0.013681) (0.145623) (0.015136) (0.158446) (0.012834) (0.114824)

100 0.5076018 4.116091 0.509162 4.152312 0.497109 3.963158
(0.013418) (0.134507) (0.014995) (0.138476) (0.0086253) (0.107127)

500 0.4979793 4.026146 0.500327 4.056057 0.499162 3.571908
(0.0084954) (0.107728) (0.011643) (0.110977) (0.0061081) (0.068135)

1000 0.499527 3.832826 0.496101 3.940611 0.499425 3.28083
(0.008289) (0.087229) (0.010832) (0.088392) (0.0024507) (0.019230)

5000 0.499863 3.298065 0.499362 3.480159 0.500206 3.072011
(0.001840) (0.007284) (0.002372) (0.030719) (0.0006827) (0.0056093)

10,000 0.499911 3.061087 0.500485 3.170842 0.5000082 3.006235
(0.000635) (0.004972) (0.000904) (0.008865) (0.000192) (0.000274)
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5 Real data analysis

In this section, we discuss some possible applications of the PLINAR(1) model
for two real count time series data.

The data give numbers of submissions to animal health laboratories, monthly
from January 2003 to December 2009, from a region in New Zealand
(Aghababaei Jazi, Jones and Lai (2012)). The submissions contain many cate-
gories for presenting symptoms. The first data set is skin lesions, given in Table 3,
and the second data set is anorexia, given in Table 4. The two data series are

empirically overdispersed with dispersion indices Îx = S2
x

X
= 2.34 and Îx = 3.53,

respectively. We apply the overdispersion test described in Schweer and Weiß
(2014) with significance level α = 0.05. The critical values for the two data series
are 1.26 and 1.32, respectively. The observed value of the index of dispersion, Îx ,
exceeds the critical value completely, hence the data series do not stem from an
equidispersed Poisson INAR(1) process. Therefore, the Poisson–Lindley or nega-
tive binomial could appear to be more appropriate than the Poisson model for the
two series. Further, using the MLE θ̂ of “i.i.d. Poisson Lindley” and MLEs n̂ and
p̂ of “i.i.d. Negative Binomial” at Tables 5 and 6, we get the skewness and kurtosis

Table 3 First time series: Skin-lesions (Mean = 1.43, Variance = 3.36 and 1st order sample
autocorrelation = 0.24)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2003 2 5 0 0 1 0 1 3 0 3 0 1
2004 3 3 6 3 1 0 0 0 0 0 0 1
2005 0 0 1 3 0 1 0 0 0 0 2 1
2006 3 1 1 2 3 1 0 2 2 1 6 0
2007 1 0 0 1 0 2 0 0 0 2 3 0
2008 2 4 1 1 0 0 1 1 1 8 1 3
2009 2 4 9 3 4 2 0 1 0 0 0 0

Table 4 Second time series: Anorexia (Mean = 0.82, Variance = 2.90 and 1st order sample
autocorrelation = 0.49)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2003 0 1 3 1 4 1 1 4 11 2 1 1
2004 2 2 0 0 0 0 0 0 0 0 0 0
2005 0 0 0 0 0 0 0 0 0 0 0 1
2006 0 0 0 0 0 0 3 5 6 3 2 1
2007 0 0 0 0 0 0 1 0 2 0 0 0
2008 0 0 0 0 0 0 0 2 4 0 1 0
2009 1 0 0 0 2 1 0 0 0 0 0 0
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Table 5 Estimated parameters, AIC and RMS for the first time series

Model MLE AIC LL BIC CAIC RMS

i.i.d. Poisson λ̂ = 1.43 311.44 −154.72 316.30 311.58
i.i.d. Geometric μ̂ = 1.43 278.4 −138.2 283.26 278.54

i.i.d. Negative Binomial n̂ = 1.063
p̂ = 0.43 280.4 −138.2 285.26 280.54

i.i.d. Poisson–Lindley θ̂ = 1.04 278.6 −138.3 283.46 278.74
PINAR(1) λ̂ = 1.18

α̂ = 0.17 306.22 −151.11 311.08 306.36 1.78

GINAR(1) p̂ = 0.58
α̂ = 0.12 277.72 −136.86 282.58 277.86 1.79

NGINAR(1) p̂ = 1.41
α̂ = 0.17 277.12 −136.56 281.98 277.26 1.78

NBRCINAR(1) n̂ = 1.2
p̂ = 0.45
ρ̂ = 0.17 279.93 −136.96 284.79 280.07 1.78

NBIINAR(1) n̂ = 1.01
p̂ = 1.03
ρ̂ = 0.31 276.14 −135.07 281.00 276.28 1.78

GPQINAR(1) λ̂ = 0.81
θ̂ = 0.33
ρ̂ = 0.16 280.43 −137.21 285.29 280.57 1.79

PLINAR(1) θ̂ = 1.05
α̂ = 0.25 223.81 −109.9 228.67 223.95 1.42

for both negative binomial and Poisson Lindley of the two data series. As we can
see from Table 7, the skewness and kurtosis of the Poisson–Lindley distribution are
smaller than those of the negative binomial distribution for both data series. Also,
the sample skewness and sample kurtosis of the two data series, written in paren-
theses, are (1.87,7.06) and (3.38,17.7), respectively. Hence, we conclude that the
Poisson–Lindley distribution offers more flexibility for modeling the data series
than the negative binomial. The sample paths and partial autocorrelation functions
(PACFs) of the two series are shown in Figures 1 and 2, respectively. The figures
suggest that first order autoregression models are appropriate for both data series.
Also, we expect some positive correlation in the data series because symptoms
of the disease changing gradually over time. This expectation was confirmed by
getting the sample autocorrelations of the two data series.

For comparison purposes, we use the two data series and compare the
PLINAR(1) model to the following INAR models: PINAR(1) (Al-Osh and
Alzaid (1987)), NBRCINAR(1) (Weiß (2008)), NBIINAR(1) (Al-Osh and Aly
(1992)), GPQINAR(1) (Alzaid and Al-Osh (1993)), GINAR(1) (Alzaid and Al-
Osh (1988)), NGINAR(1) (Ristić, Bakouch and Nastić (2009)). For each INAR
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Table 6 Estimated parameters, AIC and RMS for the Second time series

Model MLE AIC LL BIC CAIC RMS

i.i.d. Poisson λ̂ = 0.82 264.4 −131.2 269.26 264.54
i.i.d. Geometric μ̂ = 0.82 212.62 −105.31 217.48 212.76

i.i.d. Negative Binomial n̂ = 0.32
p̂ = 0.28 203.9 −99.95 208.76 204.04

i.i.d. Poisson–Lindley θ̂ = 1.67 215.42 −106.71 220.28 215.56
PINAR(1) λ̂ = 0.5

α̂ = 0.38 229.05 −112.52 233.91 229.19 1.51

GINAR(1) p̂ = 0.48
α̂ = 0.38 189.38 −92.67 194.24 189.52 1.49

NGINAR(1) p̂ = 0.76
α̂ = 0.66 183.97 −89.98 188.83 184.11 1.5

NBRCINAR(1) n̂ = 0.58
p̂ = 0.4
ρ̂ = 0.34 193.77 −93.88 198.63 193.91 1.49

NBIINAR(1) n̂ = 0.26
p̂ = 0.95
ρ̂ = 0.65 178.6 −86.3 183.46 178.74 1.5

GPQINAR(1) λ̂ = 0.34
θ̂ = 0.38
ρ̂ = 0.35 195.44 −94.72 200.30 195.58 1.51

PLINAR(1) θ̂ = 1.71
α̂ = 0.49 174.19 −85.45 179.05 174.33 1.48

Table 7 Skewness and kurtosis for both Negative Binomial and Poisson Lindley of the three data
series

Skin lessions Negative Binomial Poisson Lindley

skewness 2.59 1.8
kurtosis 8.98 7.59

Anorexia Negative Binomial Poisson Lindley

skewness 3.62 1.99
kurtosis 22.3 8.51

model, we obtain the maximum likelihood estimates, log-likelihood function (LL),
Akaike information criterion (AIC), Bayesian information criterion (BIC), consis-
tent Akaike information criterion (CAIC), and the root mean squares of differences
of observations and predicted values RMS. The obtained results, for both data se-
ries, are presented in Tables 5 and 6. As we can see from Tables 5 and 6, the
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Figure 1 The sample path and sample partial autocorrelation function of the first time series.

Figure 2 The sample path and sample partial autocorrelation function of the third time series.

smallest values of the AIC, BIC, CAIC and RMS and the largest value of LL are
obtained for the PLINAR(1) model. Thus, we can conclude that the PLINAR(1)

model provides the best fit among the other INAR models. Also, it is worth to
find that the PLINAR(1) model works well than other models with more two pa-
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Table 8 Prediction k months of out-sample time series

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10

First data 1.062718 1.328397 1.394817 1.411422 1.415573 1.416611 1.416871 1.416935 1.416952 1.416956
Second data 0.408299 0.608366 0.706398 0.754434 0.777972 0.789505 0.795157 0.797926 0.799283 0.799948

rameters based on the value of LL that, in most, becomes larger for models with
extra parameters. Table 8 displays the kth month ahead forecasting from January
to October of the year 2010 for the two data sets via equation (3.1), where α̂, θ̂ of
the data series are given in Tables 5, 6. From Table 8, we observe that:

• The conditional forecasts converge to the unconditional mean of the PLINAR(1)

process for both data sets at k = 10, where unconditional mean for first and
second data are E(Xt) = 1.416957, E(Xt) = 0.800587, respectively.

• The forecasted values of the data provide real values in general and thus they are
reasonable to integer-valued nature of the data, so taking their greatest integers
gives the forecasted values of the two data sets from January to October of the
year 2010 which correspond k = 1 to k = 10. Therefore, the forecasted values
for skin lesions data will be 1 and for Anorexia data will be 0 for January and 1
for other months in the mentioned period.

6 Conclusions

A new stationary first-order integer-valued autoregressive model with Poisson–
Lindley marginal is introduced. We get the probability mass function of the inno-
vation term of the process as a generalized mixture of geometric, negative binomial
and degenerate distributions. Many properties of the model are obtained such as
autocorrelation function, spectral density function, multi-step ahead conditional
expectation, variance and partial autocorrelation function. The unknown param-
eters of the model are estimated using the methods of conditional least squares,
Yule–Walker and maximum likelihood, and performance of the estimates of all
methods is investigated via simulation. The model is fitted to two data sets taken
from the New Zealand animal health laboratories and a small analysis of such data
is justified under this model. It is shown that, the model is the best fit among the
compared INAR(1) models based on some goodness-of-fit statistics among them
log-likelihood function, Akaike information criterion (AIC), Bayesian information
criterion (BIC), consistent Akaike information criterion (CAIC). Predictive capac-
ity of the model for ten months of out-sample data are checked via the k-step
ahead conditional mean. Finally, we hope that this model will be able to attract
wider applicability in count time series data.

Some issues of future research may be represented in extending the results to
bivariate case, censored time series data and Bayesian estimation.
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Appendix section

In this appendix, we give the following proofs.

Proof of Lemma 2.1. The function g(x) is a generalized mixture of Geo( θ
1+θ

),

NB(2, θ
1+θ

) and Geo( θ+1
θ+1+α

), where Geo and NB denote the Geometric and Neg-

ative Binomial distributions, respectively. Since θ2(1−α)2+θ(1−α2)+2α

(θ(1−α)+1)2 + (1−α)
θ(1−α)+1 +

−α
(θ(1−α)+1)2 = 1, it follows that

∑∞
x=0 g(x) = 1.

It remains to show that g(x) ≥ 0 for x = 0,1, . . . . The function g(x) in equation
(2.3) can be written as

g(x) =
(

1

1 + θ

)x

r(x),

where

r(x) =
[
A

θ

1 + θ
+ B

(
θ

1 + θ

)2
(x + 1) + C

θ + 1

θ + 1 + α

(
α(1 + θ)

θ + 1 + α

)x]

and

A = θ2(1 − α)2 + θ(1 − α2) + 2α

(θ(1 − α) + 1)2 ,

B = (1 − α)

θ(1 − α) + 1
, C = −α

(θ(1 − α) + 1)2 .

It is easy to verify (r(x))′ > 0, for x = 0,1, . . . and limx→∞ r(x) = +∞. So the
positivity of the function g(x) follows by proving that r(0) ≥ 0,

r(0) =
[
A

θ

1 + θ
+ B

(
θ

1 + θ

)2
+ C

θ + 1

θ + 1 + α

]
.

It suffices to notice that

r(0) ≥ A

2
+ B

4
+ C,

and

A

2
+ B

4
+ C = θ2(1 − α)2 + θ(1 − α2) + 2α

2(θ(1 − α) + 1)2

+ 1 − α

4(θ(1 − α) + 1)
− α

(θ(1 − α) + 1)2

= (1 − α)
2θ2(1 − α) + θ(3 + α) + 1

4(θ(1 − α) + 1)2 ≥ 0

which completes the proof. �
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Proof of Theorem 2.1. By applying equation (2.2), the p.g.f. of ε can be written
as

�ε(s) = α + (1 − α)

× [(
s2(θα − α) + s

(−θ2(1 + α) − 2θα + 2α
)

+ θ3 + θ2(α + 2) + θα − α
)
/
(
(1 + θ − s)2(

1 + θ + α(1 − s)
))]

.

Now using partial fraction decomposition, the last equation becomes

α + (1 − α)

[
A

θ

1 + θ − s
+ B

θ2

(1 + θ − s)2 + C
(θ + 1)

1 + θ + α(1 − s)

]
,

where A,B and C defined in Lemma 2.1. So the random variable ε is a mix-
ture of discrete component 0 with probability α and a generalized mixture of
Geo( θ

1+θ
),NB(2, θ

1+θ
),Geo( θ+1

θ+1+α
) with probability 1 − α. �
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