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Boosting, downsizing and optimality of test functions
of Markov chains
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Department of Mathematics, Texas A&M University-Commerce

Abstract. Test functions play an important role in Markov chain theory. Sta-
bility of a Markov chain can be demonstrated by constructing a test function
of the chain that satisfies a stochastic drift criterion. The test function defines
a class of functions of the process for which limit laws hold, yields bounds on
the convergence of the Markov chain transition probabilities to the stationary
distribution, and provides information concerning the mixing properties of
the chain. Under certain conditions, these results can be improved by using a
new test function derived from a known test function of a Markov chain.

1 Introduction

Let {Xt } be a ψ-irreducible, aperiodic Markov chain on a general state space X .
Assume X is sufficiently tractable, such as a Polish space. Denote the Borel sets
on X by B(X ), the transition kernel of {Xt } by Px and the n-step transition kernel
of {Xt } by P n

x . Where the argument x is not relevant it will be suppressed, that is,
P and P n. For a measure μ on B(X ), kernel Q on X × B(X ), and function f on
X denote μf := ∫

X f (x)μ(dx) and Qxf := ∫
X f (y)Q(x, dy). Expectations con-

ditioned upon an initial X0 = x or with respect to an initial probability distribution
π will be denoted Ex[·] and Eπ [·], respectively.

A Markov chain is called ergodic if a stationary distribution π exists and P n

converges to π in the total variation norm ‖ · ‖TV for each initial x. If the conver-
gence is uniform in x, the chain is called uniformly ergodic. If the convergence is
O(ρn) for 0 < ρ < 1, then the chain is said to be geometrically ergodic. Among
the various generalizations of uniform ergodicity is V -uniform (or V -geometric)
ergodicity (see (16.2) in Meyn and Tweedie (1993)), which is equivalent to there
existing a test function V :X → [1,+∞) so that P n converges to π in the V -norm
||| · |||V at a uniform geometric rate ρ; i.e., for all n

∣∣∣∣∣∣P n − π
∣∣∣∣∣∣

V := sup
x∈X

sup
|g|≤V

|P n
x g − πg|
V (x)

≤ Rρn, R < ∞, ρ < 1. (1)

In this paper, we will also suppose the test functions V are norm-like meaning that
V (x) → ∞ as ‖x‖ → ∞. This condition focuses on the behavior of the Markov
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chain when the process is large in magnitude, which is often of interest in applica-
tions.

Stochastic drift criteria involving test functions and petite sets are often used to
demonstrate the various forms of ergodicity of Markov chains.

Definition 1. A set A ∈ B(X ) is called petite if
∑

n≥0 a(n)P n
x (C) ≥ ν(C) holds

for all x ∈ A, C ∈ B(X ), with ν a non-trivial measure on B(X ) which may depend
upon {a(n)}, a probability distribution on the nonnegative integers.

The following lemma gives a sufficient condition for V -uniform ergodicity
which will be used repeatedly in this paper.

Lemma 1. Assume {Xt } is a ψ-irreducible, aperiodic general state Markov chain.
Suppose V ≥ 1 is bounded on petite sets. If for some integer k ≥ 1 and petite set A

sup
x∈AC

P kV

V
< 1, sup

x∈A

P kV < ∞, sup
x

PV/V < ∞,

then {Xt } is V -uniformly ergodic.

Proof. Let IA be the indicator function of the set A. It follows from the assump-
tions that there exists K < ∞ and 0 < β < 1 with P kV − V ≤ −βV + KIA.
Thus (V4) in Meyn and Tweedie (1993) holds for V and the petite set A,
and {Xtk} is V -uniformly ergodic by Theorem 16.0.1 in Meyn and Tweedie
(1993). If k > 1 then supx PV/V < ∞ implies |||P |||V := supx sup|g|≤V |Pg|/V <

∞ and, by Lemma 1 in Boucher and Cline (2007), {Xt } is V -uniformly er-
godic. �

Example 1. Petruccelli and Woolford (1984) investigated the stability of the
threshold autoregressive process of order 1 (TAR(1))

Xt = φ1Xt−1IXt−1<0 + φ2Xt−1IXt−1≥0 + εt ,

where φ1, φ2 are real values and the εt are a sequence of i.i.d. random vari-
ables with mean 0. Assume their conditions φ1 < 1, φ2 < 1, and φ1φ2 < 1.
Suppose the εt have a continuous density λ that is positive everywhere with
E|εt | < ∞; then the process is ψ-irreducible and aperiodic, with ψ being
Lebesgue measure (Petruccelli and Woolford (1984)). Let V (x) = 1 + |x|.
Since lim sup|x|→∞ P 2V/V = max(φ2

1, φ2
2, φ1φ2) < 1 and supx PV/V < 1 +

E|εt |/(1 + |x|) < ∞ there exists M < ∞ so that the assumptions of Lemma 1
are satisfied with k = 2, the petite set A = {x : |x| ≤ M}, and V (x) = 1 + |x|,
implying that {Xt } is V -uniformly ergodic.

The test function V plays an important role in applications for V -uniformly
ergodic Markov chains. It follows from (1) that the test function plays a role in
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bounding the distance between the transition probabilities and the stationary dis-
tribution. In particular, V ≡ 1 is equivalent to uniform ergodicity, while for chains
that are not uniformly ergodic the bound on the distance from P n to π depends
upon the initial x through V (x). If X0 ∼ μ then the upper bound on the distance
depends upon μV . This latter point is pertinent, for example, in checking the con-
vergence of Markov chain Monte Carlo algorithms.

Meyn and Tweedie have shown (Meyn and Tweedie (1993, Theorem 17.0.1))
that central limit theorems hold for functions g with g2 ≤ V and that laws of large
numbers hold for functions g with |g| ≤ V . Thus, the test function V bounds the
collection of functions of the chain for which limit laws can easily be proven to
hold.

V -uniformly ergodic chains satisfy a generalized form of α-mixing termed V -
geometric mixing (Meyn and Tweedie (1993, Theorem 16.1.5)), where for all pos-
itive integers n

sup
k∈Z

g2,h2≤V

∣∣Ex

[
g(Xk)h(Xn+k)

] − Ex

[
g(Xk)

]
Ex

[
h(Xn+k)

]∣∣ ≤ RV (x)ρn,

with R < ∞, ρ < 1. The test function V therefore bounds the class of functions
for which the mixing occurs and helps determine the distance in the mixing. Note
V ≡ 1 gives ordinary α-mixing. When πV < ∞, then if the chain is initialized at
its stationary distribution, the mixing occurs at a uniform geometric rate

sup
k∈Z

g2,h2≤V

∣∣Eπ

[
g(Xk)h(Xn+k)

] − Eπ

[
g(Xk)

]
Eπ

[
h(Xn+k)

]∣∣ ≤ R[πV ]ρn,

in which the test function continues to play a role in bounding the distance.
Despite the important role played by the test function V in applications, the

choice of a test function V is often made as a matter of convenience, the objective
being to demonstrate stability of the chain by showing V satisfies a drift condi-
tion for ergodicity such as that in Lemma 1. This paper explores the construction
of new test functions from known test functions, with the purpose of improving
performance in applications to bounding the rate of convergence to the stationary
distribution, or bounding the class of functions for which asymptotic results hold.

In each of these applications the test function V is involved in a trade-off be-
tween bounds on convergence or mixing and the size of the functions which con-
verge or mix. Thus, “improved performance” of a test function can mean, alterna-
tively, limit laws or mixing applying to the largest possible collection of functions
without regard to speed of convergence, or the mixing and convergence rates are
the fastest possible through limiting the collection of functions to which these rates
apply. Thus, we may be interested in the “largest” test function in the former case
or the “smallest” in the latter case. We will call procedures that take us in these
directions boosting and downsizing, respectively.
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While a lower bound on downsizing always exists since V ≡ 1 corresponds to
uniform ergodicity, a bound on boosting is not always guaranteed to exist. Two
simple examples will serve to illustrate this. Consider an irreducible, aperiodic
finite state chain and any function V with 1 ≤ V ≤ N , N < ∞, which is bounded
on the states. Then PxV < ∞. The chain is uniformly (and geometrically) ergodic,
thus there exist R < ∞ and 0 < ρ < 1 so that

sup
x

|P n
x V − πV |

V
≤ N sup

x

∥∥P n
x − π

∥∥
TV ≤ RNρn ≤ R′ρn,

implying (1) is satisfied and the chain is V -uniformly ergodic. Thus, there is no
boosting limit. Now consider the Markov chain {Xt } where the Xt are i.i.d. from
a probability distribution with E|Xt |r = ∞ for some r > 0. Clearly, (1) is mean-
ingless for V (x) = 1 + |x|r and any V ′ ≥ V , and can hold only for V ′ ≤ V which
would be the bound on boosting.

The paper is organized as follows. Section 2 defines optimal test functions. In
Sections 3 and 4, boosting and downsizing of test functions in the direction of op-
timality are discussed. In Section 5, the paper ends with a brief discussion. Simple
examples are interspersed throughout in order to illustrate the points made.

2 Optimal test functions

Define optimal test functions to be those which provide optimal results uniformly
over X in the applications mentioned in Section 1. In each of these applications,
the test function V was involved in a trade-off between bounds on convergence or
mixing and the size of the functions which converge or mix. Thus, when discussing
optimal test functions, optimality of a test function is taken to mean, alternatively,
limit laws applying to the largest possible collection of functions, or the mixing
and convergence implied by the test function are the fastest possible.

The choice of a test function is often made as a matter of convenience. Rather
than out of a concern for optimality, the objective is to demonstrate stability of the
chain by showing V satisfies a drift condition for ergodicity such as that in (1).
For a V -uniformly ergodic chain, there is always a nonempty collection of test
functions V := {V : {Xt } is V -uniformly ergodic}. The chosen V may be but one
of many elements of this collection and not necessarily optimal in a specific ap-
plication. For two functions V1 and V2, write V1 ≤ V2 if V1(x) ≤ V2(x) for all x

in X . Call a test function V∗ ∈ V a minimal element of V if V∗ is such that for any
V ∈ V with V ≤ V∗ it holds that V = V∗. A test function V ∗ ∈ V will be named a
maximal element of V if V ∗ is such that for any V ∈ V with V ≥ V ∗ it holds that
V = V ∗.

Proposition 1. Suppose {Xt } is V -uniformly ergodic. Then there exists a minimal
element V∗ ∈ V .
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Proof. By assumption V is not empty. Recall V1 ≤ V2 if V1(x) ≤ V2(x) for all x

in X . The relation ≤ is transitive and antisymmetric. Thus, ≤ is a partial order and
(V,≤) is a nonempty partially ordered set. The existence of a maximal linearly
ordered subset is guaranteed by the Hausdorff Maximal Principle. Since V ≥ 1,
this provides a lower bound on the maximal linearly ordered subset and thus all
linearly ordered subsets. By Zorn’s lemma V has a minimal element V∗. �

Since V∗ ∈ V it follows that {Xt } is V∗-uniformly ergodic. Notice that V∗ need
not equal the lower bound of V ≡ 1, otherwise this would imply all V -uniformly
ergodic chains are uniformly ergodic, which is not the case. Also, V∗ is minimal in
the sense of uniform bounds in x; for specific x there may be better choices of V .
With these limitations, and while Proposition 1 is not a constructive proof for V∗,
it does suggest there is value in exploring conditions where a known test function
can be improved upon in the direction of this minimal test function.

The existence of the mimimal test function V∗ follows from the weak conditions
of Proposition 1 since the bound of V ≡ 1 exists trivially. With stronger conditions,
a statement can be made about a maximal element V ∗; of course, any V with
PV = ∞ would not work as a test function.

Proposition 2. Suppose {Xt } is a V -uniformly ergodic Markov chain on a com-
pact state space X . Assume V⊥(x) := infV ∈V V (x) and V 
(x) := supV ∈V V (x)

are measurable and PV 
 < ∞. Then given ε > 0, there exist sets A⊥, A
 each
with probability greater than 1 − 2ε so that

(i) there is a V ∈ V such that 0 ≤ V − V⊥ < ε on A⊥,
(ii) there is a V ∈ V such that 0 ≤ V 
 − V < ε on A
.

Proof. Assume V⊥,V 
 are not in V , else the conclusion is trivial with V = V⊥,
A⊥ = X , and V = V
, A
 = X , respectively. Choose V1 ∈ V , V2 ∈ V . Then by
Meyn and Tweedie (1993, Theorem 16.0.1 and Lemma 15.2.8) there exist 0 <

λ1 < 1, 0 < λ2 < 1, b1 < ∞, b2 < ∞ so that PVi ≤ λiVi + bi for i = 1,2. Let
(V1 ∧ V2)(x) = min[V1(x),V2(x)] and (V1 ∨ V2)(x) = max[V1(x),V2(x)]. Then
V is a lattice since P(V1 ∧V2) ≤ (λ1 ∨λ2)(V1 ∧V2)+ (b1 ∨b2) and P(V1 ∨V2) ≤
(λ1 ∨ λ2)(V1 ∨ V2) + (b1 ∨ b2) implies both V1 ∧ V2 and V1 ∨ V2 are in V .

By definition of V⊥, given ε > 0 for each x ∈ X there exists Vx ∈ V with
Vx(x) ≤ V⊥(x) + ε/9. Since V⊥ and each Vx are measurable and X compact,
there exist a continuous function h⊥, for each x a continuous function hx , and
measurable sets A, and for each x a measurable set Bx , all being of probability
greater than 1 − ε/3, with |V⊥IA − h⊥IA| < ε/3 and |VxIBx − hxIBx | < ε/3.

Since each hx and h⊥ are continuous, for each x ∈ X there exists an open
set Ox with |hx(x) − hx(y)| < ε/9 and |h⊥(x) − h⊥(y)| < ε/9 for all y ∈ Ox .
Thus |hx(y) − h⊥(y)| < ε/3 for all y ∈ Ox . Since X is compact a finite collection
Ox1, . . . ,Oxn of these cover X . Define V := Vx1 ∧ · · · ∧ Vxn and Bi := Bxi

, for
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i = 1, . . . , n. Then V ∈ V since V is a lattice, and for any x ∈ [⋃n
i=1 Bi] ∩ A there

is a xi so that x ∈ Oxi
, implying

0 ≤ V − V⊥
≤ [Vxi

− Vxi
IBi

] + [Vxi
IBi

− hxi
IBi

] + [hxi
IBi

− hxi
]

+ [hxi
− h⊥] + [h⊥ − h⊥IA] + [h⊥IA − V⊥IA] + [V⊥IA − V⊥] < ε.

Since ([⋃n
i=1 Bi]∩A) ⊇ (B1 ∩A) and the measure of B1 ∩A is greater than 1−2ε,

the conclusion (i) follows with A⊥ = [⋃n
i=1 Bi] ∩ A. The conclusion (ii) follows

by the dual argument applied to the collection −V . �

Notice that V⊥, V
 are not guaranteed to be in V while V∗, V ∗ are by definition.
Thus, when X is compact and V consists of appropriately smooth functions, we
can come arbitrarily close to V⊥ and thus V∗, and likewise V
 and V ∗, except on
a set of arbitrarily small, though still positive, measure.

Through analogy with continuous functions, one might expect V⊥ = V∗ ≡ 1
and to attain the lower bound uniformly over all of compact X under suitable
continuity assumptions on the chain. The simplest cases occur where P has certain
continuity properties and the state space is a “manageable size” relative to P .

Definition 2. A process {Xt } is said to be a T-chain if there exists a substochastic
transition kernel T and a probability distribution {a(n)} on the nonnegative inte-
gers satisfying

∑
n≥0 a(n)P n(x, ·) ≥ T (x, ·) for x ∈ X , where T (x, ·) > 0 for all

x and T (·,A) is a lower semicontinuous function for any A ∈ B(X ).

The importance of petite sets in establishing V -uniform ergodicity of a Markov
chain is given in Lemma 1, for instance, and is discussed thoroughly in Meyn
and Tweedie (1993). The continuity properties of T -chains ensure that petite sets
contain “reasonable” sets such as compact sets, sublevel sets of V , sets mapped in
a finite time to a compact set or sublevel set of V , and sets mapped in a finite time
to a compact set or sublevel set of V with a probability arbitrarily close to one.

A common minorisation condition for uniform ergodicity is due to Doeblin,
which can be stated as there exists an integer n, ε > 0, and a probability measure
μ on X so that P n(x,A) ≥ εμ(A), for all x ∈ X and A ∈ B(X ) (see for example,
pg. 397ff. in Meyn and Tweedie (1993)). This is equivalent to petiteness of X for
ψ-irreducible, aperiodic T -chains (Meyn and Tweedie (1993, Theorem 5.5.7)).
Thus, for these chains the downsizing limit V ≡ 1 is attained.

Example 2. Roberts and Rosenthal (2004) analyze the behavior of the Metropolis-
Hastings algorithm on R. Supposing the stationary distribution π has density πu

which is finite everywhere and the proposal density q(x, y) is positive and con-
tinuous, they show that the chain is π -irreducible and aperiodic. Further, if πu is
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continuous and X is a compact subset of R then these assumptions imply the exis-
tence of ε > 0 with q(x, ·) ≥ ε and 0 < k < ∞ with q(y, x)/[πu(x)q(x, y)] ≥ 1/k

so

P(x,A) =
∫
A

P (x, dy) ≥
∫
A

ε min
{

1,
πu(dy)

k

}
> 0,

for any set A in B(X ), satisfying the minorisation condition for uniform ergod-
icity. In fact, the chain is a π -irreducible and aperiodic T -chain in a strong sense
since P(·,A) has a constant and therefore uniformly continuous component. The
state-space X is petite; thus, the lower bound V ≡ 1 is attained and the chain is uni-
formly ergodic. On the other hand, if f is such that Qxf := ∫

X f (y)q(x, y) dy =
∞ then Pxf = ∞ since we can bound πu(y)/[πu(x)q(x, y)] ≥ δ > 0 and so
Pxf ≥ δQxf , and there is a maximal element. For example, if X =R and q(x, y)

is the Cauchy density centered at x, then Qxf = ∞ for f (x) = x.

3 Boosting test functions

For chains which are V -uniformly ergodic, to demonstrate limit laws or mixing
for a larger collection of functions it is necessary to prove V -uniform ergodicity
using a test function V nearer to V ∗. One way to accomplish this is through the
technique of exponential boosting (cf. Borovkov and Hordijk (2004), Cline and
Pu (2001), Meyn and Tweedie (1993)) where, under appropriate conditions, the
test function V is boosted to an exponential V ′ := eV s

or V ′ := esV , s > 0. As an
example.

Proposition 3. Assume {Xt } satisfies the assumptions of Lemma 1 for a func-
tion V . If there exists q > 0 so that supx P k

x eqV /eqV < ∞ for some k ≥ 1 and
supx∈A P k

x eqV < ∞ for the petite set A of Lemma 1, then there exists 0 < s < q so
that {Xt } is V ′-uniformly ergodic with V ′(x) = esV (x).

Proof. Note from the assumptions that there exists β > 0 with

sup
x∈AC

P k
x V − V ≤ −β.

Since (ys −1)/s → ln(y) as s → 0, then given ε > 0 it holds that esV (Xk)/esV (x) ≤
1 + (1 + ε)s[V (Xk) − V (x)] for small s, in particular s < q . Taking expectations
on both sides yields

sup
x∈AC

P k
x V ′

V ′ ≤ 1 + (1 + ε)s(−β) < 1.

By assumption V ′ is bounded on A and the conclusion follows from
Lemma 1. �
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The drift conditions for V -uniform ergodicity in Lemma 1 and Proposition 3
reflect the fact that it can be more profitable to work with the k-step chain {Xtk}
rather than the one-step chain {Xt }. It would be helpful to combine the advantages
of the continuity properties of T -chains with the advantages of working with the
k-step chain. This motivates results for cases where it is known the one-step chain
{Xt } is a T -chain, yet it is easier to analyze stability of the k-step chain {Xtk}, or
vice versa. The following result shows that “T -chain-ness” of the two are almost
equivalent. The difference is that more is required of {Xt } to imply {Xtk} is a T -
chain; it is required that {Xt } be weak Feller, which is stronger than a T -chain,
requiring that the chain maps bounded continuous functions to bounded continu-
ous functions and that the support of the irreducibility measure has a non-empty
interior, in addition to being irreducible and aperiodic.

Proposition 4. Consider a Markov chain {Xt }.
(i) If {Xtk} is a T -chain for some integer k, then {Xt } is a T -chain.

(ii) If {Xt } is weak Feller, aperiodic, and ψ-irreducible for some measure ψ whose
support has a non-empty interior, then {Xtk} is a ψ-irreducible, aperiodic T -
chain for all integers k ≥ 1.

Proof. To prove (i), since {Xtk} is a T -chain, there exist a probability distribution
{a(n)} and a continuous component T with

∑
n≥0 P nk(x,A)a(n) ≥ T (x,A) for all

x ∈ X and A ∈ B(X ). Define a′(j) = a(n), j = nk, n = 1,2,3, . . . , and a′(j) = 0,
else. Then

∑
n≥0 P n(x,A)a′(n) ≥ T (x,A) for all x ∈ X and A ∈ B(X ), implying

that {Xt } is a T -chain.
As for (ii), pick an integer k. Since P maps bounded continuous functions to

bounded continuous functions, then by induction so does P k , implying that {Xtk}
is a weak Feller chain. Since {Xt } is ψ-irreducible and aperiodic, so is {Xtk}, and
since the support of ψ has non-empty interior, we have by Meyn and Tweedie
(1993, Theorem 6.2.9) that {Xtk} is a T -chain. �

Example 1 (cont.). Suppose f is a bounded continuous function and the εt have
probability density λ, then

Pxf =
∫

f (y)λ
(
y − [

φ1xI (x < 0) + φ2xI (x ≥ 0)
])

dy.

Since φ1xI (x < 0)+φ2xI (x ≥ 0) and λ are continuous functions, it follows from
this and the assumptions that the integrand is continuous and integrable. By dom-
inated convergence then, Pxf is continuous. Clearly Pxf is bounded, implying
{Xt } is weak Feller and it follows from Proposition 4(ii) that {Xtk} is a T -chain.

Example 2 (cont.). It was shown that {Xt } is a π -irreducible and aperiodic T -
chain. The probability of a movement from x to y is

α(x, y) = min
(
1, πu(y)q(y, x)/πu(x)q(x, y)

)
.
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Also, for a bounded continuous function f ,

Pxf =
∫
X

f (y)
[
q(x, y)α(x, y)I (x �= y) + q(x, y)

[
1 − α(x, y)

]
I (x = y)

]
dy,

since q(x, ·) is continuous. Clearly Pxf is bounded. The integrand is continuous
in y apart from y = x. Dominated convergence allows us to interchange a limit
operation and integration; thus, Pxf is continuous and {Xt } is weak Feller. Since
{Xt } is π -irreducible and aperiodic (recall the irreducibility measure was Lebesgue
measure), then {Xtk} is a T -chain by Proposition 4(ii).

The following is a consequence of results due to Cline and Pu (2001, Theo-
rems 3 and 4), combined with Proposition 4. The key is to find a bound W(x) on
V (Xk) that satisfies a uniform integrability condition with respect to V (x), where
{Xtk} is a T -chain. With this in place, exponential boosting is possible. A similar
result can be found in Theorem 3 of Borovkov and Hordijk (2004).

Proposition 5. Assume {Xt } is weak Feller, aperiodic and ψ-irreducible for some
measure ψ whose support has a non-empty interior. Assume V ≥ 1 is norm-like.
Assume there exists a random variable W(x) and k < ∞ so that V (Xk) ≤ W(x)

whenever X0 = x and there exists r > 0 so that er[V (X1)−V (x)] is uniformly inte-
grable.

(i) If {|W(x) − V (x)| + er[W(x)−V (x)]} is uniformly integrable and

lim sup
‖x‖→∞

E
[
W(x) − V (x)

]
< 0,

then there exist s > 0 and V ′(x) = esV (x) so that {Xt } is V -uniformly ergodic.
(ii) If {| log[W(x)/V (x)]| + e[W(x)]r−[V (x)]r } is uniformly integrable and

lim sup
‖x‖→∞

E
(
log

[
W(x)/V (x)

])
< 0,

then there exist s > 0 and V ′(x) = e[V (x)]s so that {Xt } is V -uniformly er-
godic.

Proof. That {Xtk} is a ψ-irreducible, aperiodic T -chain follows from Proposi-
tion 4. The assumptions in (i) imply {Xtk} satisfies Theorem 3 in Cline and Pu
(2001). The assumptions in (ii) imply {Xtk} satisfies Theorem 4 in Cline and Pu
(2001). The conclusions follow from Lemma 1. �

Example 1 (cont.). If the εt also have Eeq|εt | < ∞ for some q > 0, then the
assumptions of Proposition 5(i) are satisfied for k = 2, V (x) = 1 + |x| and

W(x) = 1 + max
(
φ2

1, φ2
2, φ1φ2

)|x| + |ε1| + |ε2|.
The TAR(1) process is V ′-uniformly ergodic with V ′(x) = es[1+|x|] for some 0 <

s < q . In fact, V ′′(x) = es|x| would be adequate.
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If the εt have Ee|εt |q < ∞ for some q > 0, then the assumptions of Propo-
sition 5(ii) are satisfied for the same k and W(x). The TAR(1) process is V ′-
uniformly ergodic with V ′(x) = e[1+|x|]s , for some 0 < s < q .

Remark. The condition max(φ1, φ2, φ1φ2) < 1 in Example 1 implies the skeleton

xt := φ1xt−1I (xt−1 < 0) + φ2xt−1I (xt−1 ≥ 0)

of {Xtk} converges to zero at an exponential rate. Combining this with the expo-
nential condition Ee|εt |q < ∞, and considering known results on the equivalence
of the stability of {Xt } and {Xtk}, it is not surprising that it is possible to exponen-
tially boost the test function V .

The uniform integrability conditions used in Proposition 5 are implied in Exam-
ple 1 by the exponential stability conditions on the skeleton and exponential ex-
pectation conditions on the errors. When using this “skeleton + noise” approach,
exponential stability conditions on both the skeleton and the error distribution are
often sufficient, though not always necessary, in order for boosting to be possible.

Example 1 (cont.). To see the lack of necessity, consider the following. Cline and
Pu (2001, Example 12) analyze a TAR(1) with additive constants,

Xt = (α1 + φ1Xt−1)I (Xt−1 < 0) + (α2 + φ2Xt−1)I (Xt−1 ≥ 0) + εt ,

introduced in Chan et al. (1985), where φ1φ2 = 1, φ1 < 0. Chan et al. proved {Xt }
is ergodic if and only if φ2α1 +α2 > 0. Cline and Pu showed that if φ2α1 +α2 > 0
and Eeq|εt | < ∞ then exponential boosting is possible, though the skeleton is only
additively and not exponentially stable.

If max(φ1, φ2, φ1φ2) > 1 then the skeleton is not even additively stable, {Xt }
is transient and boosting is not possible, so that some stability of the skeleton is
required. If max(φ1, φ2, φ1φ2) < 1, the skeleton is exponentially stable but if the
εt follow a heavy-tailed distribution such as a t-distribution then the errors are
not exponentially stable and exponential boosting is not possible. For this process,
exponential stability of the errors is required while exponential stability of the
skeleton is not.

4 Downsizing test functions

To gain optimal results concerning convergence rates of probabilities or mixing
rates, it is necessary to prove V -uniform ergodicity using a “smaller” test function
V as near as possible to V∗. This provides the impetus for the investigation into
conditions under which a test function V of a V -uniformly ergodic Markov chain
can be downsized, in particular logarithmically downsized.

Meyn and Tweedie (1993, Proposition 15.2.9) consider V ′ = √
V and show a

V -uniformly ergodic Markov chain is also V ′-uniformly ergodic. By induction
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this implies a V -uniformly ergodic chain is also V ′-uniformly ergodic for V ′ =
V 1/2k , for integers k ≥ 1. This can be generalized further. A different perspective
considers functions V ′ ≥ 1 increasing as V does, which are dominated by V , and
whose drift is dominated by the drift of V . Lastly, we could take V 1/n to its limit
and consider test functions V ′ which are logarithmic functions of V . This also
provides a nice symmetry with exponential boosting.

Proposition 6. Suppose {Xt } and V satisfy the assumptions of Lemma 1 for an
integer k.

(i) For a positive integer n let V ′ = V 1/n. Then {Xt } is V ′-uniformly ergodic.
(ii) For any other V ′ ≥ 1 with V ′ → ∞ as V → ∞, V ′ < V and PV ′ − V ′ ≤

PV − V , then {Xt } is V ′-uniformly ergodic.
(iii) Assume supx P ln(V )/ ln(V ) < ∞. Let V ′ = 1 + s ln(V ) for s > 0. Then {Xt }

is V ′-uniformly ergodic.

Proof. To prove (i), note that (Meyn and Tweedie (1993, Lemma 15.2.8)) implies
{Xt } is V -uniformly ergodic if and only if V ≥ 1 is unbounded off petite sets
and PV ≤ λV + L for some 0 < λ < 1 and L < ∞. For a fixed integer n and a
real number L, there exists L∗ < ∞ with L ≤ ∑n−1

k=1

( n
k

)
λk/nLn−k∗ . This implies

that (λV + L)1/n ≤ λ1/nV 1/n + L∗. Also, V ′ is a strictly concave function of V

and so by Jensen’s Inequality, PV ′ < λ1/nV ′ + L∗. Clearly V ′ ≥ 1 is unbounded
off petite sets. Thus, we have {Xt } is V ′-uniformly ergodic. As for (ii), the as-
sumptions imply there exists 0 < λ < 1 with λ(V − V ′) + P(V ′ − V ) < 0, from
which it follows that PV ′ < λV ′ +L. It also follows from the assumptions that V ′
is unbounded off petite sets; thus, {Xt } is V ′-uniformly ergodic. Finally, (iii) as-
sumes that there exists a petite set A with supx∈AC P kV/V ≤ 1 − β , for some
0 < β < 1. Then supx∈AC P kV ′/V ′ < 1 follows from supx∈AC P k ln(V )− ln(V ) ≤
ln(supx∈AC P kV/V ) < 0. Also, since supx∈A P kV < ∞ and V ≥ 1, this implies
supx∈A P kV ′ < ∞. Finally, supx P ln(V )/ ln(V ) < ∞ implies supx PV ′/V ′ < ∞
when k > 1 and {Xt } is V ′-uniformly ergodic by Lemma 1. �

As an application and final example, consider the following.

Example 3. Mengersen and Tweedie (1996) consider the Metropolis algorithm
with geometric target distribution π for a parameter p

π(j) = (1 − p)pj , j = 0,1,2, . . . ,

and symmetric candidate distribution

q(i, i − 1) = q(i, i + 1) = 1/2, i > 0; q(0,1) = q(0,0) = 1/2.

They use their Theorem 4.1(ii) to find the drift constant λ = 1 −β in Proposition 1
for the test function V (j) = αj and with A := {0}, yielding

λ = min
α>0

λα = √
p + (1 − p)/2, at α = 1√

p
> 1.
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Since A is an atom, and therefore small and petite, applying Proposition 6(iii)
here yields that the Markov chain created by the algorithm is V ′-uniformly ergodic
with V ′(j) = 1 + s log(V (j)) = 1 + s log(αj ) = 1 − sj log(p)/2, a linear rather
than an exponential test function. This can be verified by direct calculation of the
drift for this test function

λ = ∑
j≥0

p(i, j)V ′(j)/V ′(i) = 1 + (1 − p)
s log(p)/4

1 − si log(p)/2
< 1,

since s > 0, i ≥ 0, 0 < p < 1. Now, while logarithmic-downsizing as in Propo-
sition 6(iii) gives the best qualitative bound, it may not be the most useful in
calculating quantitative bounds, as is the case in this example. For the test func-
tion V (j) = αj , the converse results in Mengersen and Tweedie (1996) show that
λ = √

p + (1 − p)/2 is the exact rate of convergence. To improve upon this re-
sult, a different test function can be chosen. Using Proposition 6(i), then the al-
gorithm is V ′′-uniformly ergodic with V ′′(j) = [V (j)]1/n = αj/n. This yields a
drift λn = √

p/n + (1 − p)/2 which converges to (1 − p)/2 as n → ∞; the drift
of the downsized test function beating the drift rate of the original test function
V (j) = αj by

√
p.

Also note that Proposition 6(iii) implies the chain is likewise V ′′′-uniformly er-
godic with V ′′′(x) = 1+s2 ln[1+s1 ln(1+|x|)]. Thus by iteration we can approach
V ≡ 1 as closely as we like on any compact set, but without actually reaching it
unless there are additional continuity assumptions on the chain. The barrier sep-
arating uniformly ergodic and non-uniformly ergodic Markov chains cannot be
breached.

5 Discussion

This paper concentrates on conditions whereby the test function V can be altered,
but the geometric rate of convergence/mixing is retained. It is not always the case
that V can be altered and the rate of convergence retained. Meyn and Tweedie
(1993) give an example of a uniformly ergodic Markov chain which converges at
a geometric rate in the total variation norm and a simple unbounded function f

of this chain which converges but loses the geometric rate of convergence. Thus,
when boosting is not possible limit laws may still be demonstrated for a larger
class of functions in exchange for sacrifice on the rate of convergence. Conversely,
if ergodicity were originally demonstrated using this function f as a test function,
by downsizing to f ′ ≡ 1, the geometric rate of convergence would be gained. It is
also not always possible to either boost or downsize a test function. Proposition 15
in Roberts and Rosenthal (2004) has an example where the test function V cannot
be changed.

The emphasis in this paper has been on qualitative rates of convergence. Roberts
and Rosenthal (2004) discuss computable rates of convergence, and show the con-
stant bounding the computed rate of convergence is related to the test function V .
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Rosenthal also (Rosenthal (2003, Proposition 3)) derives a computable exponential
boosting result for uniformly ergodic reversible Markov chains.

References

Borovkov, A. A. and Hordijk, A. (2004). Characterization and sufficient conditions for normed er-
godicity of Markov chains. Adv. in Appl. Probab. 36, 227–242. MR2035781

Boucher, T. R. and Cline, D. B. H. (2007). Stability of cyclic threshold autoregressive time series
models. Statist. Sinica 17, 43–62. MR2352503

Chan, K. S., Petruccelli, J. D., Tong, H. and Woolford, S. W. (1985). A multiple-threshold AR(1)

model. J. Appl. Probab. 22, 267–279. MR0789351
Cline, D. B. H. and Pu, H. (2001). Stability of nonlinear time series: What does noise have to do

with it? In Selected Proceedings of the Symposium on Inference for Stochastic Processes, Vol. 37,
151–170. MR2002508

Mengersen, K. L. and Tweedie, R. L. (1996). Rates of convergence of the Hastings and Metropolis
algorithms. Ann. Statist. 24, 101–121. MR1389882

Meyn, S. P. and Tweedie, R. L. (1993). Markov Chains and Stochastic Stability. London: Springer.
MR1287609

Petruccelli, J. D. and Woolford, S. W. (1984). A threshold AR(1) model. J. Appl. Probab. 21, 270–
286. MR0741130

Roberts, G. O. and Rosenthal, J. S. (2004). General state space Markov chains and MCMC algo-
rithms. Probab. Surv. 1, 20–71. MR2095565

Rosenthal, J. S. (2003). Asymptotic variance and convergence rates of nearly-periodic MCMC algo-
rithms. J. Amer. Statist. Assoc. 98, 169–177. MR1965683

Department of Mathematics
Texas A&M University-Commerce
Commerce, Texas 75428
USA
E-mail: thomas.boucher@tamuc.edu

http://www.ams.org/mathscinet-getitem?mr=2035781
http://www.ams.org/mathscinet-getitem?mr=2352503
http://www.ams.org/mathscinet-getitem?mr=0789351
http://www.ams.org/mathscinet-getitem?mr=2002508
http://www.ams.org/mathscinet-getitem?mr=1389882
http://www.ams.org/mathscinet-getitem?mr=1287609
http://www.ams.org/mathscinet-getitem?mr=0741130
http://www.ams.org/mathscinet-getitem?mr=2095565
http://www.ams.org/mathscinet-getitem?mr=1965683
mailto:thomas.boucher@tamuc.edu

	Introduction
	Optimal test functions
	Boosting test functions
	Downsizing test functions
	Discussion
	References
	Author's Addresses

