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Abstract. This paper proposes the Bayesian inference for flexible measure-
ment error models, in which their systematic components include explanatory
variable vectors with and without measurement errors, as well as nonlinear
effects that are approximated by using B-splines. The model investigated is
the structural version, as the error-prone variables follow scale mixtures of
normal distributions such as Student-t , slash, contaminated normal, Laplace
and symmetric hyperbolic distributions. To draw samples of the posterior dis-
tribution of the model parameters, an MCMC algorithm is proposed. The per-
formance of this algorithm is assessed through simulations. In addition, the
function fmem() of the R package BayesGESM is presented, which pro-
vides an easy way to apply the methodology presented in this paper. The pro-
posed methodology is applied to a real data set, which shows that ignoring
measurement errors (i.e., analyze the data by using the traditional methodol-
ogy) can lead to wrong conclusions.

1 Introduction

Regression models under the assumption of independent and normally distributed
errors are very useful statistical tools for data analysis. However, in practice, there
are data sets in which the presence of explanatory variables measured with er-
ror can substantially affect the good performance of the parameter estimators by
introducing asymptotic bias and by producing low coverage rates for confidence
intervals (see Fuller, 1987; Cheng and Van Ness, 1999). Therefore, the regression
models where the measurement errors are taken into account, termed measure-
ment error models or error-in-variables models, have been studied by many au-
thors as, for example, Arellano-Valle, Bolfarine and Labra (1996), Carroll, Roeder
and Wasserman (1999), Kulathinal, Kuulasmaa and Gasbarra (2002), Li, Palta and
Shao (2004), Patriota, Bolfarine and de Castro (2009) and Cao, Lin and Zhu (2012)
under the frequentist approach; and Kelly (2007), Carroll et al. (2006), Chapter 9
and de Castro, Bolfarine and Galea (2013) under the Bayesian approach. How-
ever, most of the proposals presented in these papers are based on the assumption
of a random term that exhibits a normal distribution, which is known to be vul-
nerable in the presence of extreme or outlying observations (see Maronna, Martin
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and Yohai, 2006). Nonetheless, most of these papers do not allow the simultane-
ous presence of vectors of explanatory variables with and without measurement
error as well as the presence of nonlinear effects whose functional form is un-
known.

Thus, in this paper, a measurement error model which admits vectors of ex-
planatory variables with and without measurement error as well as the presence of
nonlinear effects approximated by using B-splines is introduced. The model inves-
tigated is the structural version, as the error-prone variables follow scale mixtures
of normal distributions such as Student-t , slash, contaminated normal, Laplace and
symmetric hyperbolic distributions. In addition, the model considered assumes an
error term whose distribution also belongs to the class of scale mixtures of nor-
mal distributions. Some of these distributions present heavier tails than the normal
ones. Accordingly, the regression models based on them seem to be reasonable
choice for robust inference. Lemonte and Patriota (2011) present a general for-
mulation of models based on elliptical distributions. In the parametric case (that
is, when there are not nonparametric effects), the models presented by those au-
thors are more general than the model addressed in this paper. An ultrastructural
measurement error model with an error term distributed according to the Student-t
distribution has been studied by using the frequentist approach (see, for instance,
Arellano-Valle, Bolfarine and Labra, 1996). Similarly, Cao, Lin and Zhu (2012)
proposed a structural heteroscedastic measurement error model where the random
terms follow scale mixtures of normal distributions. However, given the complex-
ity of the model investigated in this paper, the Bayesian approach is considered,
which has to be based on the Markov chain Monte Carlo (MCMC) methodology
for parameter estimation (see Gamerman and Lopes, 2006).

The rest of this paper is organized as follows: Section 2 describes the random
component of model investigated, that is, the class of multivariate scale mixtures
of normal distributions. Section 3 formulates the flexible measurement error mod-
els that allow explanatory variables with and without measurement error, as well
as the presence of a nonlinear effects which are approximated by using B-splines.
Section 4 is dedicated to the specification of the prior distributions and the Gibbs
sampler to draw samples from the posterior distribution of the interest parame-
ters. Model selection is also discussed in that section. Section 5 presents a simula-
tion study where the performance of the proposed MCMC algorithm is illustrated.
That section also presents the function fmem() of the R package BayesGESM,
which has been developed to provide a easy way to apply the statistical method-
ology presented in this paper. In Section 6, the proposed methodology is applied
to a real data set. It reveals that the onset of measurement errors in one of the
covariates is a better model than the model which does not take into account
measurement errors (i.e., naive approach). Section 7 presents some concluding
remarks.



620 L. M. Rondon and H. Bolfarine

2 The multivariate scale mixture of normal distributions

The class of multivariate scale mixture of normal distributions provides a rich set
of multivariate symmetric distributions, some of which have heavier/lighter tails
than the normal ones as well as distributions with different levels of kurtosis. In
fact, the distributions with heavier tails than the normal ones can be used to obtain
robust inferences in datasets with outlying observations where statistical inference
based on the normal distribution is known to be vulnerable. In the univariate case,
this class of distributions includes Student-t , slash (see Rogers and Tukey, 1972),
contaminated normal, Laplace (see Box and Tiao, 1973) and symmetric hyper-
bolic (see Barndorff-Nielsen, 1977) distributions. Moreover, following Andrews
and Mallows (1974), a continuous random vector Y = (Y1, . . . , Yr)

T follows a
multivariate scale mixtures of normal distribution, which is denoted by SMN r , if
it can be written as

Y = μ + κ
1
2 (U)Z,

where μ ∈ R
r is the location parameter, Z ∼ Nr (0,�) with � as an (r × r) posi-

tive definite matrix, κ(·) is a positive function and U is a positive random variable
independent of Z and having cumulative distribution function (c.d.f.) denoted by
H(u;η), in which η is a parameter or parameter vector indexing the distribution
of U . Thus, the probability density function (p.d.f.) of Y has an SMN r represen-
tation if it can be expressed as

f (y|μ,�,η) =
∫ ∞

0
φr

(
y|μ, κ(u)�

)
dH(u;η), (1)

where φr(y|μ,�) = exp{−1
2δ2}×(2π)−r/2|�|−r/2 and δ2 = (y−μ)T�−1(y−μ).

If Y has a p.d.f. as described in (1), then it is denoted by Y ∼ SMN r (μ,�;H,κ).
In hierarchical form, the distribution of Y can be specified as Y|U = u ∼
Nr (μ, κ(u)�) and U ∼ H(u;η). Below are examples of distributions that belong
to the SMN r family:

• Multivariate Student-t . In this case, U ∼ Gamma(η/2, η/2), η > 0, and κ(u) =
1/u. Thus, according to (1) the density of the random vector Y is given by

f (y|μ,�, η) = �(
η+r

2 )

�(
η
2 )|�|1/2(πη)r/2

[
1 + δ2

η

]−(
η+r

2 )

.

Then, Y ∼ tr (μ,�, η).
• Multivariate slash. Let κ(u) = 1/u and U ∼ Beta(η,1), η > 0. Then, the p.d.f.

of Y becomes

f (y|μ,�, η) = η

(2π)r/2|�|1/2

∫ 1

0
uη+ r

2 −1 exp
[−uδ2/2

]
du.

Hence, Y ∼ Slr (μ,�, η).
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• Multivariate contaminated normal. In this case, κ(u) = 1/u and U is a dis-
crete random variable which takes value η2 with probability η1 and value 1 with
probability (1 − η1). Thus, the p.d.f. of U is given by h(u|η = (η1, η2)

T) =
η1I(u=η2) + (1 − η1)I(u=1). According to (1), the density of the random vector
Y is given by

f (y|μ,�,η) = η1φr

(
y|μ, η−1

2 �
)+ (1 − η1)φr(y|μ,�),

where 0 < η1 < 1 and 0 < η2 < 1. So, Y ∼ CN r (μ,�,η).
• Multivariate Laplace. Here U ∼ Exp(1/8) and κ(u) = u, thus

f (y|μ,�) = Ka(

√
δ2/4)(δ2)− r+2

4

2r+1πr/2|�|1/2 ,

where a = − r
2 + 1 and Ka(η) = 1

2

∫∞
0 xa−1 exp(−1

2η(x + x−1))∂x is the mod-
ified Bessel function type three of order a. Therefore, Y ∼ Laplacer (μ,�).

• Multivariate symmetric hyperbolic. In this case, κ(u) = u and U follows
an generalized inverse Gaussian distribution, that is, U ∼ GIG(1,1, η2) (see
Jörgensen, 1982). The p.d.f. of a random variable U ∼ GIG(a, b, c) is given by

h(u|a, b, c) = (c/b)
a
2

2Ka(
√

bc)
ua−1 exp

[
−1

2

(
bu−1 + cu

)]
.

Therefore, according to (1) the p.d.f. of Y reduces to

f (y|μ,�, η) = Ka(η
√

δ2 + 1)ηr/2(δ2 + 1)− r
4 + 1

2

2r/2πr/2|�|1/2K1(η)
,

where a = − r
2 + 1. Hence, Y ∼ SHr (μ,�, η), η > 0.

Figure 1 presents the probability density functions of some standard (i.e., μ = 0
and � = I) SMN 2 distributions.

Figure 1 The probability density functions of some standard SMN 2 distributions: Slash (η = 2)

(a), Contaminated normal (η = (0.6,0.2)T) (b) and Symmetric hyperbolic (η = 1) (c) when com-
pared with standard bivariate normal distribution.



622 L. M. Rondon and H. Bolfarine

3 Flexible measurement error models

Initially, the semi-parametric measurement error model is defined to connect the
response variable to the explanatory variables, where the s unspecified nonlinear
effects are also included and which are approximated by using B-splines. More
specifically, the following stochastic mechanism is assumed to have generated the
data set with n observations:

yi = xT
i β + mT

i ρ +
s∑

j=1

fj (vij ) + εi, i = 1, . . . , n, (2)

where (xT
i ,mT

i , vi1, . . . , vis)
T represents the explanatory variables associated with

sample individual i; β = (β1, β2, . . . , βp)T and ρ = (ρ1, ρ2, . . . , ρq)
T are vectors

of unknown parameters to be estimated; fj (·) (j = 1, . . . , s) are unknown, smooth
and continuous functions approximated by using B-splines and εi is the model ran-
dom error. Furthermore, the explanatory variable vector mi is not observed directly
(see Cheng and Van Ness, 1999) but only through a (additive) random mechanism
yielding an “estimate” of it, denoted as Mi , represented by the equation

Mi = mi + ξ i , i = 1, . . . , n.

In addition, it is assumed that⎛⎝ εi

ξ i

mi

⎞⎠∼ SMN 2q+1

⎡⎢⎣
⎛⎝ 0

0
μm

⎞⎠ ;
⎛⎜⎝σ 2

y 0 0
0 σ 2

ξ Iq 0
0 0 �m

⎞⎟⎠
⎤⎥⎦ , i = 1, . . . , n,

are independent random vectors where μm, σ 2
y , σ 2

ξ and �m are unknown parame-
ters to be estimated. This model is the flexible semi-parametric measurement error
model. It is assumed that the ratio ω = σ 2

y /σ 2
ξ is known, an assumption typically

made to make the model identifiable. Because a Bayesian approach is adopted,
specification of proper prior distributions for the model parameters is an alterna-
tive way of making the model identifiable.

The nonparametric components for model (2) are approximated by using B-
splines (see De Boor, 1978). For instance, suppose that we are estimating the
function f (v) in the interval [a, b], then a = t0 < t1 < · · · < tk < tk+1 = b

is a partition of this interval, where ti (i = 1, . . . , k) are the internal knots.
In this setup, the values fj (vij ) may be approximated by bT

ijαj , where bij =
(b1j (vij ), . . . , bKj j (vij ))

T is the vector of basis functions, αj ∈R
Kj is the B-spline

coefficient vector for variable vj , and Kj = Mj +kj , with Mj and kj as the degree
and the number of internal knots of the spline, respectively. Selection of knots is
generally an important aspect of spline smoothing. The number of internal knots is
assumed to be kj = [n1/5] according to the proposal by He, Fung and Zhu (2005),
where n is the sample size and [x] is the integer part of x. More specifically,
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the internal knots are selected as {q(v,1/(kj + 1)), . . . , q(v, kj /(kj + 1))}, where
q(x,p) is the quantile of order 0 < p < 1 of x. Under the frequentist approach, the
penalty term of αj is given by 1

2τ 2
αj

αT
j αj , where τ 2

αj
is the smoothing parameter. In

fact, this approximation of fj (vj ) can be considered to be an P-spline (see Eilers
and Marx, 1996) with a penalty term of order 0. Therefore, under the Bayesian
approach, this type of spline induces a well-known proper priori distribution for
αj (i.e., multivariate normal distribution).

4 Bayesian inference

Under the Bayesian approach the inference about the interest parameters is based
on their posterior distribution. In this section, the prior distributions for the
model parameters is described and the Markov chain Monte Carlo (MCMC) (see
Gamerman and Lopes, 2006) algorithm is proposed to draw samples from the pos-
terior distribution. Additionally, the model comparison is presented.

4.1 Prior distributions

One important step in a Bayesian approach is the specification of the prior distri-
butions for the model parameters. It is assumed a priori that the parameters β , ρ,
α1, . . . , αs , μT

m, �m and σ 2
y are independent and have the following distributions

β ∼ Np(β0,Sβ), ρ ∼ Nq(ρ0,Sρ),

αj ∼ NKj

(
αj0, τ

2
αj

IKj

)
, μm ∼ Nq(μmo

,�μo),

�−1
m ∼ W ishart(q,�m), σ 2

y ∼ IG
(

a

2
,
b

2

)
, τ 2

αj
∼ IG(aταj

, bταj
),

where the hyperparameters β0, ρ0, αj0, μmo
, Sβ > 0, Sρ > 0, �μo > 0, �m >

0, a > 0, b > 0, aταj
> 0 and bταj

> 0 (j = 1, . . . , s) are assumed known, In

corresponds to the identity matrix of order n, and the p.d.f. of a random variable
X ∼ IG(a, b) is given by

p(x|a, b) ∝ x−a−1 exp
(
−b

x

)
.

4.2 MCMC algorithm

The algorithm described in the sequel uses the fact that the distribution of the
response vector follows a multivariate scale mixture of normal distribution. It
is a data augmented algorithm (see Tanner and Wong, 1987) using ui and mi ,
i = 1, . . . , n, as latent (unobserved) variables. Therefore, according to the spec-
ifications above, the augmented likelihood function for the parameter vector
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(βT,ρT,αT
1 , . . . ,αT

s ,μT
m,�m,σ 2

y ) can be expressed as

L
(
β,ρ,αT

1 , . . . ,αT
s ,μm,�m,σ 2

y |y,X,M,v,u,m
)

∝
n∏

i=1

(
σ 2

y

)− 1
2
(
σ 2

ξ

)− q
2 κ(ui)

− (q+2)
2 |�m|− 1

2

× exp
[
−(Mi − mi )

T(Mi − mi )

2σ 2
ξ κ(ui)

− (yi − xT
i β − mT

i ρ −∑s
j=1 bT

ijαj )
2

2σ 2
y κ(ui)

− (mi − μm)T�−1
m (mi − μm)

2κ(ui)

]
.

To apply the Gibbs sampling, the likelihood and the prior distributions de-
scribed above are combined to obtain the complete conditional posterior distri-
butions for each parameter in model (2). Then, the algorithm encompasses the
following steps:

1. Start the algorithm with an initial value θ (0) = (β(0),ρ(0),μ
(0)
m ,�(0)

m ,α
(0)
1 , . . . ,

α
(0)
s , σ

2(0)
y );

2. Calculate the quantity S
(l)
i , i = 1, . . . , n, where S

(l)
i is Si evaluated at θ (l), and

Si = (yi − xT
i β − mT

i ρ −∑s
j=1 bT

ijαj )
2

σ 2
y

+ (Mi − mi )
T(Mi − mi )

ωσ 2
y

+ (mi − μm)T�−1
m (mi − μm).

3. Generate u
(l+1)
i ∼ p(ui |S(l)

i ), i = 1, . . . , n, independent, according to the dis-
tribution of the random component (ε, ξT,mT)T:
(a) Normal distribution: P(ui = 1|S(l)

i ) = 1.
(b) Student-t distribution:

p
(
ui |S(l)

i

)∝ u
q+η

2
i exp

[
−ui

2

(
S

(l)
i + η

)]
.

Thus, ui |S(l)
i ∼ Gamma(

η+q+2
2 ,

S
(l)
i +η

2 ).
(c) Slash distribution:

p
(
ui |S(l)

i

)∝ u
η+ q

2
i exp

[
−ui

2
S

(l)
i

]
I(0,1)(ui).

Therefore, ui |S(l)
i ∼ T runGamma(η + 1 + q

2 ,
S

(l)
i

2 ; (0,1)). that is, ui |S(l)
i

follows a truncated gamma distribution (see Nadarajah and Kotz, 2006).
(d) Contaminated normal distribution:

p
(
ui |S(l)

i

)= pηI(ui=η2) + (1 − pη)I(ui=1),
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where

pη ∝ η1η
q
2 +1
2 exp

{
−η2S

(l)
i

2

}
and (1 − pη) ∝ (1 − η1) exp

{
−S

(l)
i

2

}
.

(e) Symmetric hyperbolic distribution:

p
(
ui |S(l)

i

)∝ u
− q

2 −1
i exp

{
−1

2

[
S

(l)
i + 1

ui

+ η2ui

]}
,

that is, ui |S(l)
i ∼ GIG(−q

2 , S
(l)
i + 1, η2).

(f) Laplace distribution:

p
(
ui |S(l)

i

)∝ u
− q

2 −1
i exp

{
−1

2

[
S

(l)
i

ui

+ ui

4

]}
,

consequently, ui |S(l)
i ∼ GIG(−q

2 , S
(l)
i , 1

4).

4. Calculate the matrix L(l+1)
u = diag{u(l+1)

1 , . . . , u
(l+1)
n }.

5. Generate β̃
(l+1) ∼Np+q(μβ̃ ,�β̃ ), in which

�β̃ =
[(

S−1
β 0
0 S−1

ρ

)
+ 1

σ
2(l)
y

X
T(l)[

L(l+1)
u

]−1X
(l)
]−1

and

μβ̃ = �β̃

[(
S−1

β 0
0 S−1

ρ

)(
β0
ρ0

)
+ 1

σ
2(l)
y

X
T(l)[

L(l+1)
u

]−1

(
y −

s∑
j=1

Bjα
(l)
j

)]
,

where X
(l) = [X,m(l)], β̃ = (βT,ρT)T and Bj = (b1j , . . . ,bnj )

T.

6. Generate the ith row of m(l+1), which is denoted by m(l+1)
i , with m(l+1)

i ∼
Nq(μmi

,�mi
), where

�mi
=
[

(�(l)
m )−1

κ(u
(l+1)
i )

+ Iq

ωσ
2(l)
y κ(u

(l+1)
i )

+ ρ(l+1)ρT(l+1)

σ
2(l)
y κ(u

(l+1)
i )

]−1
and

μmi
= �mi

[
(�(l)

m )−1μ
(l)
m

κ(u
(l+1)
i )

+ Mi

ωσ
2(l)
y κ(u

(l+1)
i )

+ ρ(l+1)(yi − xT
i β(l+1) −∑s

j=1 bT
ijα

(l)
j )

σ
2(l)
y κ(u

(l+1)
i )

]
.

7. Generate μ
(l+1)
m ∼ Nq(μμm

,�μm), where

�μm =
[(

�(l)
m

)−1

(
n∑

r=1

1

κ(u
(l+1)
i )

)
+ �−1

μ0

]−1

and
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μμm
= �(l+1)

μm

[(
�(l)

m

)−1

(
n∑

r=1

m(l+1)
i

κ(u
(l+1)
i )

)
+ �−1

μ0
μm0

]
.

8. Generate (�(l+1)
m )−1 ∼ W ishart(q + n,�∗

m), where

�∗
m =

[
�−1

m +
n∑

r=1

(m(l+1)
i − μ

(l+1)
m )(m(l+1)

i − μ
(l+1)
m )T

κ(u
(l+1)
i )

]−1

.

9. Generate τ
2(l+1)
αj ∼ IG(

Kj

2 + aταj
,

2bταj
+(α

(l)
j −αj0)

T(α
(l)
j −αj0)

2 ), j = 1, . . . , s.

10. Generate α
(l+1)
j ∼ NKj

(μαj
,�αj

), j = 1, . . . , s, where

�αj
=
[

1

τ
2(l+1)
αj

IKj
+ 1

σ
2(l)
y

BT
j

[
L(l+1)

u

]−1Bj

]−1
and

μαj
= �αj

[
1

τ
2(l+1)
αj

αj0 + 1

σ
2(l)
y

BT
j

[
L(l+1)

u

]−1

×
(

y − X
(l+1)

β̃
(l+1) − ∑

0<i<j

Biα
(l+1)
i − ∑

j<i≤s

Biα
(l)
i

)]
.

11. Generate

σ 2(l+1)
y ∼ IG

(
n(1 + q) + a

2
,

1

2

[
n∑

r=1

b
(l+1)
i + b

])
,

where bi = (yi−xT
i β−mT

i ρ−∑s
j=1 bT

ijαj )2

κ(ui)
+ (Mi−mi )

T(Mi−mi )
ωκ(ui)

, and b
(l+1)
i is bi eval-

uated at β(l+1), ρ(l+1), m(l+1)
i , α

(l+1)
1 , . . . , α

(l+1)
s and u

(l+1)
i .

12. Repeat 2–11 until convergence is reached.

Therefore, following the MCMC algorithm, it is possible to sample from the
marginal posterior distributions for parameters β , ρ, α1, . . . ,αs , μm and σ 2

y . More-
over, given the generated sample of size R, the following summary statistics can
be computed:

β̄ = 1

R

R∑
r=1

β(r), ρ̄ = 1

R

R∑
r=1

ρ(r), ᾱj = 1

R

R∑
r=1

α
(r)
j ,

μ̄m = 1

R

R∑
r=1

μ(r)
m and σ̄ 2

y = 1

R

R∑
r=1

σ 2(r)
y .

4.3 Unknown extra parameter η

In the previous MCMC algorithm, the parameter η of the SMN r distributions is
assumed to be known. However, if it is unknown, it is possible introduce a new
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step in the algorithm, denoted by step 11.b, to deal with this parameter. Next, the
step 11.b under some SMN r distributions is provided.

11.b Generate η(l+1) ∼ p(η|θ (l)) according to the distribution of the random com-
ponent (ε, ξT,mT)T.
(a) Slash distribution

p(η|θ) ∝ ηn+aη−1 exp

[
−η

(
bη −

n∑
i=1

logui

)]
.

Thus, η|θ ∼ Gamma(n + aη, bη +∑n
i=1 logui). In this case, the prior dis-

tribution for η is η ∼ Gamma(aη, bη), where the hyperparameters aη > 0
and bη > 0 are assumed to be known.

(b) Contaminated normal distribution: Here, π(η1, η2) = π(η1)π(η2), in

which η1 ∼ Beta(aη1, bη1) and η2 ∼ T runGamma(
aη2
2 ,

bη2
2 ; (0,1)) are the

prior distributions for η, and

p(η1|θ) ∝ η
aη1+gη−1
1 (1 − η1)

bη1+n−gη−1 and

p(η2|θ) ∝ η

gη+aη2
2 −1

2 exp
[
−η2

2

( ∑
i:ui∈g(η)

Si + bη2

)]
I(0,1)(η2),

where gη =∑n
i=1 Ui and

Ui =
{

1, if ui = η2,

0, if ui = 1.

Then, η1|θ ∼ Beta(aη1 +gη, bη1 +n−gη) and η2|θ ∼ T runGamma(
gη+aη2

2 ,∑
i:ui∈g(η) Si+bη2

2 ; (0,1)), with the hyperparameters aη1 > 0, bη1 > 0, aη2 > 0
and bη2 > 0 are assumed to be known.

(c) Under Student-t and symmetric hyperbolic distributions a Metropolis–
Hastings step is required.

4.4 Model comparison

In the literature, there are many methodologies for comparing the goodness-of-
fit (penalized by the model complexity) of competitive models in order to select
the one that best fits the data. In this paper, the deviance information criterion
(DIC) proposed by Spiegelhalter et al. (2002) and the conditional predictive or-
dinate (CPO) studied by Gelfand, Dey and Chang (1992), are considered. These
measures can be estimated using a single sample drawn from the posterior dis-
tribution. The DIC is a generalization of the AIC (Akaike Information Criterion)
based on the posterior mean of the deviance, and it is calculated as follows

D̂IC = 2D − D(θ),
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where D = R−1∑R
r=1 D(θ (r)) and θ = R−1∑R

r=1 θ (r), with D(θ) =
−2

∑n
i=1 logf (y∗

i |θ) and θ (r) as the r th element of the posterior sample of θ ,
r = 1, . . . ,R, in which f (y∗

i |θ) ≡ f (y∗
i |μ∗

i ,�
∗
i , η), y∗

i = (yi,MT
i )T,

μ∗
i =

⎛⎜⎝xT
i β +

s∑
j=1

bT
ijαj + μT

mρ

μm

⎞⎟⎠ and

�∗
i =

(
σ 2

y + ρT�mρ ρT�m

ρT�m ωσ 2
y Iq + �m

)
.

Given a set of candidate models, the model yielding the smallest value of the DIC
could be considered as the one that best fits the data. The CPO is a measure based
on the cross validation criterion. This measure is the predictive density of one
observation conditional on the rest of the data. An estimate of CPOi for a posterior
sample of size R is given by

ĈPOi =
[

1

R

R∑
r=1

1

f (y∗
i |θ r )

]−1

.

Therefore, a statistic that summarizes the CPOi values is the log-marginal pseudo
likelihood, which is expressed by LMPL = ∑n

i=1 log(ĈPOi ), where the best fit is
obtained by the model with the larger value of this measure.

5 Simulation study

This section presents a simulation study aimed at evaluating the performance of
the algorithm derived under the model in (2). A sample of size n = 500 of (y,M)

is generated from the following mechanism⎧⎨⎩yi = β1 + β2xi + ρmi + 1

2
sin(2πvi) + εi,

Mi = mi + ξi, i = 1, . . . , n,
(3)

where (ε1, ξ1,m1)
T, . . . , (εn, ξn,mn)

T are independent and identically distributed
random vectors with a SMN 3 distribution; xi is generated according to the
U(−1,1); vi ∼ U(0,1); β1 = β2 = 1, ρ = 0.5, σ 2

y = 1, μm = 1, σ 2
m = 0.5 and

ω = 1.
For the error term (εi, ξi,mi)

T ∼ SMN 3(μ,�,η) the following distributions
are considered: (i) Normal; (ii) Student-t for η = 3,5,8 and 12; (iii) Slash for η =
2,4,7 and 11; (iv) Symmetric hyperbolic for η = 0.8,1.0,1.2 and 1.4; (v) Laplace;
and (vi) Contaminated normal for η = (0.4,0.2)T, (0.5,0.2)T, (0.55,0.2)T and
(0.6,0.2)T, where μ = (0,0,μm)T and � = diag(σ 2

y , σ 2
ξ , σ 2

m). Next, a sample is
taken from the conditional posterior distribution for model (3), in which f (v) =
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1
2 sin(2πv) is approximated by using cubic B-splines with [n1/5] internal knots.
Prior distributions for model parameters are as considered in the previous section
with the following hyperparameters values: β0 = ρ0 = μmo = 0, Sβ = Sρ = �μo =
�m = 103, α0 = 0K , and aτα = bτα = a = b = 0.001. We consider scenarios where
the parameter η is assumed to be known and unknown. The MCMC procedure with
55,000 iterations was implemented, which includes a burn-in of 5000 and thinning
of 10 so that a sample of size R = 5000 was retained. This procedure was repeated
100 times, where the values of x and v are kept fixed. The following summary
statistics were considered:

M(θj ) = 1

100

100∑
r=1

θ̄
(r)
j , D(θj ) =

{
1

99

100∑
r=1

[
θ̄

(r)
j − M(θj )

]2}1/2

,

where θ1 = β1, θ2 = β2, θ3 = ρ, θ4 = μm, θ5 = σ 2
m, θ6 = σ 2

y and θ̄
(r)
j are the

posteriori mean of θj in the replicate j , j = 1, . . . ,100. For the nonparametric
component, the following summary statistic was considered:

f̂ (v) = 1

100

100∑
j=1

B1ᾱ
(j)
1 ,

where ᾱ
(j)
1 is a posterior mean of α1 in the replicate j .

Tables 1 and 2 present the values of M(·) and D(·) for each one of parameters
of model (3) in the simulation scenarios considered. It can be seen that estimates
are close to the true parameter values. An exception seems to be parameter σ 2

m for
which to get a closer estimate larger sample sizes seem to be required. Moreover,
in all cases the values of D(·) increases as the tails of the error term distribution
becomes heavier. In general, we observe that the values of D(·) are higher when
the extra parameter η is considered to be unknown.

The focus is now on studying the performance of the estimates of the function
f (v). With such in view, Figures 2 and 3 present the true function (full line) and
their estimates (dotted lines) under different simulation scenarios. It can be con-
cluded that the estimates of the nonparametric function present behaviour similar
to the true one irrespective to the distribution of the error term (εi, ξi,mi)

T. The
estimates of the parameters and the nonparametric function are very close to the
true values, even when the extra parameter is assumed to be unknown.

A second simulation study was performed. The data were simulated using the
same setup than that of the first simulation study (that is, number of replicates,
parameter values, size of posterior sample, thinning, etc.), but in all cases the con-
taminated normal distribution (CN (0.6,0.2)) was considered for the error term.
Some SMN models were fitted to the data and the values of the M and D statis-
tics were calculated. The results are summarized in the Table 3.



630 L. M. Rondon and H. Bolfarine

Table 1 Summary statistics M(·) and D(·) when the parameter η is considered to be known

M D

Distribution β1 β2 ρ μm σ 2
m σ 2

y β1 β2 ρ μm σ 2
m σ 2

y

Normal 0.98 1.03 0.53 0.99 0.51 1.02 0.118 0.082 0.108 0.050 0.102 0.073
t (3) 0.93 0.96 0.54 1.01 0.65 1.08 0.148 0.107 0.132 0.058 0.179 0.118
t (5) 0.94 1.00 0.56 0.99 0.47 1.07 0.202 0.089 0.206 0.056 0.176 0.123
t (8) 0.88 1.01 0.62 1.02 0.41 1.06 0.271 0.088 0.260 0.049 0.179 0.112
t (12) 0.93 0.97 0.57 0.99 0.47 1.02 0.195 0.097 0.179 0.049 0.164 0.108
Sl(2) 0.90 0.98 0.59 1.02 0.39 1.06 0.205 0.098 0.201 0.061 0.156 0.108
Sl(4) 0.92 1.04 0.60 1.00 0.44 1.02 0.288 0.089 0.288 0.054 0.148 0.080
Sl(7) 0.90 1.00 0.60 1.00 0.38 1.03 0.271 0.082 0.271 0.057 0.151 0.097
Sl(11) 0.91 1.00 0.60 0.99 0.39 1.03 0.243 0.081 0.246 0.048 0.155 0.097
SH(0.8) 0.87 0.95 0.61 0.98 0.40 1.06 0.339 0.123 0.295 0.078 0.204 0.124
SH(1.0) 0.89 0.98 0.60 1.03 0.43 1.05 0.263 0.112 0.243 0.081 0.182 0.122
SH(1.2) 0.92 1.04 0.57 0.99 0.47 1.04 0.200 0.096 0.191 0.057 0.149 0.099
SH(1.4) 0.91 0.99 0.60 1.00 0.44 1.05 0.260 0.086 0.243 0.058 0.183 0.112
CN (0.4,0.2) 0.95 1.03 0.55 0.94 0.69 1.16 0.175 0.112 0.151 0.073 0.159 0.108
CN (0.5,0.2) 0.94 0.95 0.55 1.05 0.50 1.04 0.177 0.122 0.146 0.084 0.166 0.107
CN (0.55,0.2) 0.95 0.96 0.54 1.06 0.53 1.03 0.179 0.129 0.141 0.086 0.158 0.101
CN (0.6,0.2) 0.95 0.95 0.54 1.06 0.55 1.03 0.179 0.134 0.136 0.089 0.149 0.090
Laplace 0.96 0.98 0.54 1.04 0.57 1.05 0.184 0.160 0.150 0.133 0.196 0.118

Table 2 Summary statistics M(·) and D(·) when the parameter η is considered to be unknown

M D

Distribution β1 β2 ρ μm σ 2
m σ 2

y η β1 β2 ρ μm σ 2
m σ 2

y η

Normal 0.98 1.03 0.53 0.99 0.51 1.02 0.118 0.082 0.108 0.050 0.102 0.073
t (3) 0.92 0.98 0.56 1.02 0.67 1.08 3.35 0.189 0.085 0.174 0.057 0.192 0.140 0.422
t (5) 0.88 0.99 0.60 1.00 0.47 1.07 6.65 0.276 0.106 0.253 0.055 0.189 0.134 1.549
t (8) 0.87 1.01 0.63 1.01 0.40 1.06 11.85 0.284 0.081 0.278 0.048 0.194 0.134 4.758
t (12) 0.93 0.98 0.57 1.00 0.49 1.02 18.90 0.223 0.082 0.209 0.055 0.157 0.108 9.357
Sl(2) 0.89 0.99 0.60 1.03 0.40 1.06 2.17 0.255 0.096 0.235 0.069 0.161 0.124 0.314
Sl(4) 0.85 1.05 0.65 1.02 0.38 1.02 6.69 0.276 0.099 0.255 0.060 0.182 0.138 2.398
Sl(7) 0.92 1.01 0.59 1.00 0.37 1.03 9.11 0.214 0.078 0.194 0.054 0.140 0.104 2.564
Sl(11) 0.88 1.03 0.62 1.00 0.35 1.03 10.03 0.270 0.090 0.258 0.054 0.146 0.104 2.110
SH(0.8) 0.91 0.96 0.60 0.99 1.32 1.06 1.77 0.286 0.151 0.313 0.087 0.918 2.302 0.688
SH(1.0) 0.86 0.99 0.62 1.03 1.09 1.05 1.82 0.369 0.123 0.353 0.076 0.903 1.807 0.808
SH(1.2) 0.89 1.01 0.62 0.98 1.13 1.04 2.22 0.274 0.098 0.273 0.063 1.015 1.608 1.000
SH(1.4) 0.90 0.99 0.60 1.01 0.95 1.05 2.47 0.287 0.084 0.268 0.050 0.673 1.337 0.949
CN (0.4,0.2) 0.91 0.93 0.58 1.04 0.53 1.16 0.45, 0.25 0.232 0.108 0.209 0.069 0.197 0.212 0.088, 0.034
CN (0.5,0.2) 0.90 0.95 0.61 1.05 0.53 1.04 0.52, 0.26 0.328 0.128 0.313 0.076 0.236 0.318 0.098, 0.044
CN (0.55,0.2) 0.95 0.95 0.57 1.06 0.63 1.03 0.56, 0.27 0.197 0.118 0.168 0.075 0.267 0.370 0.109, 0.060
CN (0.6,0.2) 0.93 0.95 0.58 1.04 0.69 1.03 0.60, 0.27 0.267 0.124 0.235 0.073 0.289 0.388 0.111, 0.056

In all cases, the values of M are close to the true parameter values. However,
according to the values of D, when the error distribution have heavier tails than
those of the normal, the variability of the estimates around the true values is lower
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Figure 2 True function f (v) (full line) and estimates (dotted line) when the parameter η is consid-
ered known.

than when the error distribution is normal. That is, under the presence of outly-
ing observations, the models based on the SMN distributions (i.e., those with
heavier tails than those of the normal) outperform the usual measurement error
model.

5.1 Computational implementation

A function in the R (www.R-project.org) package BayesGESM has been
developed to provide an easy way to apply the statistical methodology pre-
sented in this paper. The package BayesGESM (Rondon and Bolfarine, 2014)
may be freely downloaded from the Comprehensive R Archive Network (CRAN)
at http://CRAN.R-project.org/package=BayesGESM. In fact, the
function fmem() supports the flexible measurement error models described in
Section 3 under the following prior distributions

β ∼ Np

(
0,105Ip

)
, ρ ∼Nq

(
0,105Iq

)
,

α ∼ NK

(
0, τ 2

αIK

)
, μm ∼ Nq

(
0,105Iq

)
,

�−1
m ∼ W ishart

(
q,105Iq

)
,

σ 2
y ∼ IG

(
10−5

2
,

10−5

2

)
and

τ 2
α ∼ IG

(
10−5,10−5).

http://www.R-project.org
http://CRAN.R-project.org/package=BayesGESM


632 L. M. Rondon and H. Bolfarine

Figure 3 True function f (v) c(dotted line) and estimated ones (dotted lines) when the parameter
η is considered known.

Table 3 Summary statistics M(·) and D(·) for second simulation study

M D

Distribution β1 β2 ρ β1 β2 ρ

Normal 0.9390 0.9175 0.5580 0.2461 0.1502 0.1940
t (3) 0.9499 0.9436 0.5476 0.1793 0.1335 0.1384
Sl(2) 0.9687 0.9504 0.5409 0.1745 0.1319 0.1354
SH(0.8) 0.9479 0.9474 0.5411 0.1822 0.1402 0.1345
Laplace 0.9710 0.9339 0.5228 0.1616 0.1468 0.1314
CN (0.6,0.2) 1.0027 0.9447 0.4900 0.1561 0.1309 0.1308

The arguments of the function fmem() are

fmem(formula, data, family, eta, omeg=1, burn.in,
post.sam.s, thin=1).

The systematic component of the model must be specified in the argument
formula. This argument comprises of three parts, namely: (i) observed response
variable; (ii) covariates with measurement error; and (iii) covariates without mea-
surement error. The first two parts are separated by the symbol “∼” and the second
and third parts are separated by the symbol “|”. In addition, the nonparametric
component can be specified in the third part of formula by using the function
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bsp(). For example, a model with observed response variable y, covariates x1
and x2 with measurement error, and covariates w1 and w2 without measurement
error, where the latter has a nonlinear effect whose functional form is unknown,
must be specified as

fmem(formula= y ~ x1 + x2 | w1 + bsp(w2), ...).

Moreover, the distribution of the multivariate error term and its extra parameter
must be specified in the arguments family and eta, respectively. The supported
distributions include normal, Student-t , Laplace, symmetric hyperbolic, slash, and
contaminated normal. The absence of argument eta in the call to the function
fmem() indicates that a model with a unknown extra parameter η is required. The
arguments burn.in and post.sam.s are used to specify the number of burn-in
iterations and the required sample size for the posterior distribution. Additionally,
the option thin allows for specification of the thinning interval to be used in the
simulation to obtain the required sample size for the posterior distribution.

The function fmem() provides a matrix with the simulated chains for all inter-
est parameters, in which each column represents the marginal posterior sample of
each involved parameter. In addition, the function fmem() calculates goodness-
of-fit measures such as DIC and LMPL as well as some diagnostic measures
such as residuals and global influence measures based in Kullback–Leibler di-
vergence and the χ2-distance proposed by Weiss and Cook (1992) and Peng
and Dey (1995). Examples and additional information on the fmem() func-
tion can be found in http://cran.r-project.org/web/packages/
BayesGESM/BayesGESM.pdf.

6 Application

In this section, the data set BOSTON is used to illustrate the proposed methodology.
This data set, which consists of 506 individuals and was discussed by Belsley, Kuh
and Welsch (2005) and Harrison and Rubinfeld (1978), relates the impact of the air
pollution and other explanatory variables on the price of owner-occupied homes
in Boston. The interest variable is the logarithm of the median value of owner-
occupied homes (log(medv)), and it is related with 14 explanatory variables,
six of them are defined from census track and the remaining variables are defined
for clusters. To this illustration, the following variables are considered:

• nox: nitrogen oxides concentration (parts per 10 million);
• crim: per capita crime rate by town;
• rm: average number of rooms;
• lstat: lower status of the population (percent);
• dis: weighted mean of distances to five Boston employment centres.

http://cran.r-project.org/web/packages/
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The dispersion graphs of variable log(medv) against explanatory variables
lstat and dis suggest a nonlinear relation between them, so that these relations
are described by using nonparametric functions. The explanatory variable nox is
assumed to be measured with error because this type of variables are prone to
errors introduced by the measurement tools. Therefore, the following model is
used to analyze the data set:⎧⎪⎪⎨⎪⎪⎩

log(medv)i = β0 + β1crimi + β2rmi + ρ1noxi + f1(lstati )

+ f2(disi ) + εi

Noxi = noxi + ξi, i = 1, . . . ,506,

where (ε1, ξ1,nox1)
T, . . . , (εn, ξn,noxn)

T are independent and identically dis-
tributed random vectors with SMN 3 distribution. Several values of ω were con-
sidered, but its value was fixed at 4 because in that case the best value of the DIC
statistic is obtained. Furthermore, the following independent prior distributions are
specified:

β0 ∼N
(
0,103), βj ∼ N

(
0,103),

ρ1 ∼N
(
0,103), αj ∼ NKj

(
0, τ 2

αj
IKj

)
,

μnox ∼N
(
0,103), τ 2

αj
∼ GI(0.001,0.001) and

σ 2
y ∼ GI(0.0005,0.0005), j = 1,2.

60,000 iterations of the MCMC algorithm described in Section 4 are simulated,
which include a burn-in period of 10,000 and thinning of 10 iterations, so that
an approximately independent sample of size R = 5000 is obtained. For the error
term (εi, ξi,noxi )

T, normal, Student-t , slash, symmetric hyperbolic, Laplace and
contaminated normal distributions were considered. In all cases, the extra param-
eters are assumed to be unknown. Model comparison was implemented by using
DIC and LMPL criteria. According to the DIC statistic the best model is that with
the lowest value on this criterion. Similarly, according to the LMPL statistic the
best model is that with the highest value on this criterion.

Table 3 presents the values of these criteria for each considered model. The
model where the error term follows contaminated normal distribution presents the
smallest DIC and the highest LMPL values. Thus, it may be considered as the best
model to describe the data set. In fmem() the chosen model can be fitted via

fit <- fmem(log(medv) ~ nox | crim + rm + bsp(lstat)
+ bsp(dis), data=Boston,
family="ContNormal", burn.in=10,000,
post.sam.s=5000, omeg=4, thin=10)

summary(fit)
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Table 4 DIC and LMPL values for the considered models

Distribution DIC LMPL

Normal −987.34 489.03
Student-t −1011.78 501.83
Sl −1006.99 498.27
SH −1010.62 501.39
CN −1017.56 504.63
Laplace −972.60 480.89

Figure 4 Chains and marginal posterior densities plots for parameters β1, β2, ρ1 , μnox, σ 2
nox

and σ 2
y under the contaminated normal model.

Figure 4 reveals the behaviour of the chains as well as the approximation of the
marginal posterior densities for β1, β2, ρ1, μnox, σ 2

nox and σ 2
y corresponding to

the contaminated normal model. These graphs suggest that the convergence was
reached and that the marginal posterior densities are approximately symmetric for
parameters β1, β2, ρ1 and μnox. Figure 5 depicts the behavior of the nonpara-
metric functions f1(lstat) and f2(dis), which are approximated by using B-
splines under the contaminated normal model. A nonlinear behavior is revealed
not only by the data set but also by the estimated functions. Analysis of residu-
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Figure 5 Graphs of f̂1(lstat) (a) and f̂2(dis) (b) under the contaminated normal model.

Figure 6 Graphs of the quantile residuals (a) and the influence measure (b) for the normal model
fitted to the Boston data.

als and influence measures (omitted here) indicate that the contaminated normal
model provides a suitable fit to the data set.

Figures 6 and 7 present some diagnostic plots for the normal and contaminated
normal models fitted to the Boston data. These graphs indicate that the contami-
nated normal model fit the data better than the normal one, especially in the left tail
of the distribution. Furthermore, the graphs of the influence measures suggest that
the contaminated normal model is also less sensitive than the normal one. There-
fore, the contaminated normal model is chosen as the best model to describe the
Boston data.

To investigate how measurement errors in covariate nox affects modelling re-
sults, we further compare two methods of estimation. One is based on the flex-
ible measurement error model (FMEM) taking into account measurement errors
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Figure 7 Graphs of the quantile residuals (a) and the influence measure (b) for the contaminated
normal model fitted to the Boston data.

Table 5 Behavior of parameter estimates for different values of ω for CN (0.3,0.5) model

Model Measure β0 β1 β2 ρ1 σ 2
y DIC LMPL

With measurement Mean 3.6988 −0.0127 0.1773 −1.1192 0.0156 −1017.565 504.631
error∗ Standard D. 0.2213 0.0016 0.0185 0.2441 0.0015
Without measurement Mean 3.4241 −0.0127 0.1774 −0.6132 0.0180 −1017.301 504.528
error∗∗ Standard D. 0.2046 0.0016 0.0184 0.1492 0.0014

∗ω = 4, i.e., σ 2
ξ = σ 2

y /4; ∗∗ω = 10,000, i.e., σ 2
ξ = σ 2

y /10,000 ≈ 0.

through the equation Noxi = noxi + ξi . The other, the naive method, uses the
raw (observed) Noxi to directly replace the true (unobserved) noxi . It can be seen
from Table 5 that there are important differences in the estimates of ρ1. The naive
model may produce unreasonable estimates and substantially underestimate the
covariate Nox effect. Furthermore, the model that best fits the data is the FMEM
as it has the smaller DIC value and the highest LMPL value.

7 Conclusions

A regression model based on scale mixture of normal distributions and covariates
measured with errors, is introduced. Parameter estimation is conducted by using
the Bayesian approach, which, given the model complexity, is implemented by us-
ing Monte Carlo Markov chains. The nonparametric part of the model is approxi-
mated via B-splines. Simulation studies and a real data application reveal that this
approach can produce satisfactory estimates and can be useful in practice.
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