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Statistical inference for the parameter of Lindley
distribution based on fuzzy data
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Abstract. In many practical situations, we face data which are not only ran-
dom but vague as well. To deal with these two types of uncertainties, it is
necessary to incorporate fuzzy concept into statistical technique. In this paper,
we investigate the maximum likelihood estimation and Bayesian estimation
for Lindley distribution when the available observations are reported in the
form of fuzzy data. We employ the EM algorithm to determine the maximum
likelihood estimate (MLE) of the parameter and construct approximate confi-
dence interval by using the asymptotic normality of the MLE. In the Bayesian
setting, we use an approximation based on the Laplace approximation as well
as a Markov Chain Monte Carlo technique to compute the Bayes estimate of
the parameter. In addition, the highest posterior density credible interval of
the unknown parameter is obtained. Extensive simulations are performed to
compare the performances of the different proposed methods.

1 Introduction

The Lindley distribution specified by the probability density function (p.d.f.)

f (x; θ) = θ2

1 + θ
(1 + x) exp(−θx); x > 0; θ > 0, (1.1)

and cumulative distribution function (c.d.f.)

F(x) = 1 − 1 + θ + θx

1 + θ
exp(−θx); x > 0, θ > 0 (1.2)

was introduced by Lindley (1958) as a new distribution useful to analyze lifetime
data especially in applications modeling stress-strength reliability. From now on
Lindley distribution with parameter θ will be denoted by Lindley(θ). Several au-
thors have addressed inferential issues for Lindley distribution parameter based on
complete and censored samples; for example, Ghitany, Al-Mutairi and Nadarajah
(2008) studied the properties of the Lindley distribution under a carefully math-
ematical treatment. They also showed in a numerical example that the Lindley
distribution gives better modeling than the one based on the Exponential distri-
bution. Gupta et al. (2011) discussed reliability estimation in Lindley distribution
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with progressively type II right censored sample. Mazucheli and Achcarb (2011)
considered a competing risks model when the causes of failure follow the Lindley
distribution. Gupta and Singh (2012) discussed the classical and Bayesian analysis
of the hybrid censored lifetime data under the assumption that the lifetimes follow
Lindley distribution.

The above inference techniques for estimating the parameter of Lindley dis-
tribution are based on precisely defined crisp data. However, in many practical
situations we face data which are not only random but vague as well. Randomness
involves only uncertainties in the outcomes of an experiment; vagueness, on the
other hand, involves uncertainties in the meaning of the data. As an example, con-
sider a case study on the ball bearing manufacturing process that focuses on the
lifetime of ball bearings. A ball bearing may work perfectly over a certain period
but be braking for some time, and finally be unusable at a certain time. Therefore,
the lifetime of each ball bearing may be reported by means of vague statements
such as “approximately lower than 17”, “approximately 33 to 35”, “approximately
47 to 90 but near to 90”, “approximately higher than 125”, and so on. In this
situation, randomness occurs when the ball bearings are selected at random and
vagueness is due to limited ability of the observer to describe the lifetime of ball
bearings using numbers. To deal with both types of uncertainties—randomness and
vagueness, it is necessary to incorporate fuzzy concept into statistical technique.

In recent years, many papers on generalization of classical statistical methods to
analysis of fuzzy data have been published. Wu (2004) discussed the Bayesian es-
timation on lifetime data under fuzzy environments. Gil, López-Diaz and Ralescu
(2006) presented a backward analysis on the interpretation, modelling and impact
of the concept of fuzzy random variable. Viertl (2006) studied generalization of
classical statistical inference methods for univariate fuzzy data. Zarei et al. (2012)
considered the Bayesian estimation of failure rate and mean time to failure based
on vague set theory in the case of complete and censored data sets. Very recently,
Pak, Parham and Saraj (2013) conducted a series of studies to develop the inferen-
tial procedures for the lifetime distributions on the basis of fuzzy data.

In this paper, we study different estimation procedures for the parameter of
Lindley distribution when the available information from the experiments are de-
scribed by means of fuzzy numbers. We first describe the construction of fuzzy
data from imprecise observations, and then discuss the computation of maximum
likelihood estimate of the parameter θ . Based on fuzzy data, there is no closed
form for the MLE; therefore, we employ EM algorithm to determine the maximum
likelihood estimate. We also construct the approximate confidence interval of the
unknown parameter by using the asymptotic distribution of the MLE. We further
consider the Bayesian inference of the parameter of Lindley distribution. Since the
Bayes estimate cannot be obtained in explicit form, we provide an approximation,
namely Tierney and Kadane’s approximation, as well as a Markov Chain Monte
Carlo (MCMC) technique to compute the Bayes estimate and construct the highest
posterior density (HPD) credible interval of the parameter θ .
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The rest of this paper is organized as follows. In Section 2, we obtain the max-
imum likelihood estimate of the parameter θ and also construct the approximate
confidence interval by using asymptotic normality of the MLE. The Bayesian anal-
yses are provided in Section 3. A Monte Carlo simulation study is presented in
Section 4, which provides a comparison of all estimation procedures developed in
this paper. In the following, we first review the main definitions of fuzzy sets and
some of the formula used in this paper.

Consider an experiment characterized by a probability space S = (X ,BX ,Pθ ),
where (X ,BX ) is a measurable space and Pθ belongs to a specified family of
probability measures {Pθ , θ ∈ �} on (X ,BX ). Any indicator function IA : X →
{0,1}, defined by

IA(x) =
{

1, x ∈ A,

0, x /∈ A,

characterizes a crisp subset A in X . For example, if X = {xi, i = 1, . . . , n}, repre-
sents all trees in a forest stand, then A = {x, x’s age ≤ 40 yr} is its subset. So if
tree x3 is 27 yr old, x3 ∈ A and IA(x3) = 1; and if x239’s age equals 56, x239 /∈ A

and IA(x239) = 0. However, when referring to a “young tree”, the set above de-
scribed becomes a fuzzy set. Now relate each tree to its youthfulness by assigning
a value between 1, representing absolutely young, and 0, representing absolutely
not young, as the membership degree describing the subjective uncertainty of a tree
being considered young. For instance, μyoung(x3) = 0.9, since x3 will most likely
be allocated into a younger class, whereas μyoung(x239) = 0.49 for x239 seems nei-
ther very young nor very old compared to other older trees in that stand.

Thus, similar to crisp sets, a fuzzy subset Ã in X is characterized by a member-
ship function μ

Ã
(x) which associates with each point x in X a real number in the

interval [0,1], with the value of μ
Ã
(x) at x representing the “grade of member-

ship” of x in Ã. A fuzzy event in X is a fuzzy subset Ã of X , whose membership
function μ

Ã
is Borel measurable. As an example, consider an opinion poll during

which a number of individuals are questioned on their perception of the relative
length of different line segments with respect to a fixed longer segment that was
used as a standard for comparison. The answer given by the individual may be
vague statement such as “The length of the line segment is approximately 30 to
40”. A fuzzy approach lies in expressing this observation as a fuzzy event Ã such
as that defined, for instance, by the membership function

μ
Ã
(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x − 20

10
, 20 ≤ x ≤ 30,

1, 30 ≤ x ≤ 40,
50 − x

10
, 40 ≤ x ≤ 50,

0, otherwise

(see Figure 1).
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Figure 1 Fuzzy approach of the imprecise observation “approximately 30 to 40”.

Definition 1 (Zadeh (1968)). Let (Rn,A,P ) be a probability space in which A
is the σ -field of Borel sets in R

n and P is a probability measure over R
n. The

probability of a fuzzy event Ã is defined by:

P(Ã) =
∫

μ
Ã
(x) dP . (1.3)

Two fuzzy events Ã and B̃ in the probability space (Rn,A,P ) are said to be
independent if P(ÃB̃) = P(Ã)P (B̃) where ÃB̃ is the fuzzy subset of R

n with
membership function μ

ÃB̃
(x) = μ

Ã
(x)μ

B̃
(x).

The conditional probability of Ã given B̃ is defined by

P(Ã|B̃) = P(ÃB̃)

P (B̃)

provided P(B̃) > 0.
In particular, assume that P is the probability distribution of a continuous ran-

dom variable X with probability density function g(x). For a crisp subset A and a
fuzzy subset B̃ , the above conditional probability becomes

P(A|B̃) =
∫

μA(x)μ
B̃
(x)g(x) dx∫

μ
B̃
(u)g(u) du

=
∫
A

μ
B̃
(x)g(x) dx∫

μ
B̃
(u)g(u) du

.

The conditional density of X given B̃ can thus be defined as

g(x|B̃) = μ
B̃
(x)g(x)∫

μ
B̃
(u)g(u) du

. (1.4)

Definition 2 (See Shafiq and Viertl (2014)). A fuzzy number is a subset, denoted
by x̃, of the set of real numbers (denoted by R) and is characterized by the so called
membership function μx̃(·). Fuzzy numbers satisfy the following constraints:

(1) μx̃ : R−→ [0,1] is Borel-measurable;
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(2) ∃x0 ∈ R : μx̃(x0) = 1;
(3) The so-called λ-cuts (0 < λ ≤ 1), defined as Bλ(x̃) = {x ∈ R : μx̃(x) ≥ λ},

are all closed interval, i.e., Bλ(x̃) = [aλ, bλ], ∀λ ∈ (0,1].
Examples of membership functions to characterize fuzzy numbers are trian-

gular and trapezoidal fuzzy numbers. A triangular fuzzy number is defined as
x̃ = (ν,ω, δ) with the corresponding membership function

μx̃(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x − ν

ω − ν
, ν ≤ x ≤ ω,

δ − x

δ − ω
, ω ≤ x ≤ δ,

0, otherwise.

The trapezoidal fuzzy number can be defined as x̃ = (δ, ν,ω,η) with the corre-
sponding membership function

μx̃(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x − δ

ν − δ
, δ ≤ x ≤ ν,

1, ν ≤ x ≤ ω,
η − x

η − ω
, ω ≤ x ≤ η,

0, otherwise.

Example 1. Consider a life-testing experiment in which n identical light emitting
diodes (LEDs) are placed on test. A tested LED may be considered as failed, or—
strictly speaking—as nonconforming, when at least one value of its parameters
falls beyond specification limits. In practice, however, the observer does not have
the possibility to measure all parameters and is not able to define precisely the
moment of a failure. So, he/she provides an interval [νi,ωi] which certainly con-
tains the lifetime of LED i and an interval [δi, ηi] which contains highly plausible
values for that lifetime. This information may be encoded as a trapezoidal fuzzy
number x̃i = (δi, νi,ωi, ηi) with the corresponding membership function

μx̃i
(xi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

xi − δi

νi − δi

, δi ≤ xi ≤ νi ,

1, νi ≤ xi ≤ ωi ,
ηi − xi

ηi − ωi

, ωi ≤ xi ≤ ηi ,

0, otherwise.

In this case randomness arises from the selection of LEDs as well as environmental
factors which influence the perception by the observer. In contrast, fuzziness arises
from the meaning of the reported failure times.
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2 Maximum likelihood estimation

Suppose that n identical units are placed on a life test with the corresponding
lifetimes X1, . . . ,Xn. It is assumed that these variables are independent and iden-
tically distributed as Lindley(θ). Let X = (X1, . . . ,Xn) denotes the vector of life-
times. If a realization x of X was known exactly, we could obtain the complete-data
likelihood function as


(θ) =
(

θ2

1 + θ

)n

exp

(
−θ

n∑
i=1

xi

)
n∏

i=1

(1 + xi). (2.1)

Consider the situation where the available information about x can not be ex-
actly perceived, but that rather it may be assimilated with fuzzy numbers x̃1, . . . , x̃n

with the corresponding membership functions μx̃1(·), . . . ,μx̃m
(·). Then, by using

expression (1.3), we can obtain the likelihood function of θ as

L(θ) =
n∏

i=1

∫
θ2

1 + θ
(1 + x) exp(−θx)μx̃i

(x) dx (2.2)

and the corresponding log-likelihood function L∗(θ) = logL(θ) becomes

L∗(θ) = 2n log θ − n log(1 + θ) +
n∑

i=1

log
∫

(1 + x) exp(−θx)μx̃i
(x) dx. (2.3)

The maximum likelihood estimate of the parameter θ can be computed as any
value maximizing the observed-data log-likelihood (2.3). Equating the derivative
of the log-likelihood L∗ with respect to θ to zero, we have

∂

∂θ
L∗(θ) = 2n

θ
− n

1 + θ
−

n∑
i=1

∫
x(1 + x) exp(−θx)μx̃i

(x) dx∫
(1 + x) exp(−θx)μx̃i

(x) dx
= 0. (2.4)

To achieve estimation via ML method, it is not easy to solve the equation (2.4),
directly. However, similar to the proof of Theorem 1 in Pak, Parham and Saraj
(2013), one can easily check that the likelihood equation (2.4) has a unique so-
lution. In this case, an iterative numerical search can be used to obtain the MLE.
Therefore, in the following, we describe the EM algorithm to determine the maxi-
mum likelihood estimate of the parameter θ .

The EM algorithm approaches the problem of maximizing the observed-data log
likelihood L∗(θ) by proceeding iteratively with the complete-data log likelihood

log
(θ) = 2n log θ − n log(1 + θ) +
n∑

i=1

log(1 + xi) − θ

n∑
i=1

xi.

Each iteration of the algorithm involves two steps called the expectation step
(E-step) and the maximization step (M-step). The E-step requires the calculation
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of

Eθ(h)

[
log
(θ)|x̃1, . . . , x̃n

]
(2.5)

= c(Y) + 2n log θ − n log(1 + θ) − θ

(
n∑

i=1

Eθ(h)[Xi |x̃i]
)
,

where c(Y) does not depend on θ , and θ(h) denotes the current fit of θ at iteration h.
By using Relation (1.4), the conditional expectation Eθ(h)[Xi |x̃i] for i = 1, . . . , n,
can be computed as:

Eθ(h)[Xi |x̃i[=
∫

x(1 + x) exp(−θx)μx̃i
(x) dx∫

(1 + x) exp(−θx)μx̃i
(x) dx

, i = 1, . . . , n. (2.6)

The M-step then consists in finding θ(h+1) which maximizes Eθ(h)[log
(θ)|x̃1, . . . , x̃n].
This is easily achieved by solving the likelihood equation. From

∂

∂θ
Eθ(h)

[
log
(θ)|x̃1, . . . , x̃n

] = 0,

we get

θ̂ (h+1) = −(α(h) − 1) +
√

(α(h) − 1)2 + 8α(h)

2α(h)
, (2.7)

where

α(h) = 1

n

n∑
i=1

Eθ(h)[Xi |x̃i].

The MLE of θ can be obtained by repeating the E- and M-steps until convergence.
Once the maximum likelihood estimate of θ is obtained, we can use the asymp-

totic normality of the MLEs to compute the approximate 100(1 − α)% confidence
interval for the parameter as follows:

θ̂ ± zα
2

√
1

I (θ̂)
. (2.8)

Here, zα
2

is an upper percentile of the standard normal variate and the observed

Fisher information I (θ̂) is obtained as

I (θ̂) = − ∂2

∂θ2 L∗(θ)|
θ=θ̂

,

where

∂2

∂θ2 L∗(θ) = −2n

θ2 + n

(1 + θ)2 +
n∑

i=1

{∫
x2(1 + x) exp(−θx)μx̃i

(x) dx∫
(1 + x) exp(−θx)μx̃i

(x) dx

−
[∫

x(1 + x) exp(−θx)μx̃i
(x) dx∫

(1 + x) exp(−θx)μx̃i
(x) dx

]2}
.
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3 Bayesian estimation

In this section, we describe the Bayes estimate of the unknown parameter as well
as the corresponding highest posterior density credible interval. In the Bayesian
estimation, unknown parameter is assumed to behave as random variable with dis-
tribution commonly known as prior probability distribution. Therefore, as a conju-
gate prior for θ , we take the Gamma(a, b) density of the form

π(θ) ∝ θa−1 exp(−θb), θ > 0, (3.1)

where a > 0 and b > 0. By combining (2.2) with (3.1), the joint density function
of the data and θ becomes

π(data, θ) ∝ θ2n+a−1 exp(−θb)

(1 + θ)n

n∏
i=1

∫
(1 + x) exp(−θx)μx̃i

(x) dx. (3.2)

Thus, the posterior density function of θ given the data can be obtained as

π(θ |data) = π(data, θ)∫ ∞
0 π(data, θ) dθ

. (3.3)

It is well known that the Bayes estimate of any function of θ , say h(θ), under
squared error loss function is the posterior mean which is obtained by∫ ∞

0
π(θ |data)h(θ) dθ. (3.4)

The Eqs. (3.3) and (3.4) do not simplified to nice closed forms due to the complex
form of the likelihood function. Therefore, we use Tierney and Kadane’s approxi-
mation as well as MCMC method for computing the Bayes estimate of θ .

3.1 Tierney and Kadane’s approximation

We first rewrite the expression in (3.4) as∫ ∞
0

π(θ |data)h(θ) dθ =
∫ ∞

0 enF ∗(θ) dθ∫ ∞
0 enF(θ) dθ

, (3.5)

where

F(θ) = 1

n
lnπ(data, θ)

and

F ∗(θ) = F(θ) + 1

n
lnh(θ)

Tierney and Kadane (1986) applied Laplace’s method to produce an approximation
of (3.5) as follows:

ĥBT(θ) =
[
φ∗

φ

]1/2

exp
{
n
[
F ∗(

θ̄∗) − F(θ̄)
]}

, (3.6)
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in which θ̄∗ and θ̄ maximize F ∗(θ) and F(θ), respectively, and φ∗ and φ are minus
the inverse of the second derivatives of F ∗(θ) and F(θ) at θ̄∗ and θ̄ , respectively.

We apply this approximation to obtain the Bayes estimate of the parameter θ .
Setting h(θ) = θ , we have

F(θ) = 1

n

{
(2n + a − 1) log θ − n log(1 + θ) − θb

(3.7)

+
n∑

i=1

log
∫

(1 + x) exp(−θx)μx̃i
(x) dx

}
,

and

F ∗(θ) = 1

n

{
(2n + a) log θ − n log(1 + θ) − θb

(3.8)

+
n∑

i=1

log
∫

(1 + x) exp(−θx)μx̃i
(x) dx

}
.

Substituting from (3.7) and (3.8) in (3.6), the Bayes estimate of θ under squared
error loss takes the form

θ̂BT =
(

φ∗

φ

)1/2(
θ̄∗2n+a

θ̄2n+a−1

)(
1 + θ̄

1 + θ̄∗

)n

exp
(
b
(
θ̄ − θ̄∗))

(3.9)

×
n∏

i=1

∫
(1 + x) exp(−θ̄∗x)μx̃i

(x) dx∫
(1 + x) exp(−θ̄x)μx̃i

(x) dx
.

3.2 MCMC and HPD credible interval

In this subsection, we first draw random samples from the posterior density func-
tion (3.3). Then, we compute the Bayes estimate of θ and also construct its HPD
credible interval. Since the density function π(θ |data) can not be computed explic-
itly, we use a Metropolis–Hastings algorithm to generate samples from posterior
density of θ as follows:

Step (1) Start with an initial guess θ0 and set j = 1.
Step (2) Generate θj from π(θ |data) by the following steps:
(a) Given initial value of θ , say ρ = θj−1.
(b) Generate τ from the normal proposal distribution g(θ) ≡ I (θ > 0)N(θ̂ ,1),

where I (·) is the indicator function and θ̂ is the MLE of θ .
(c) Let p(ρ, τ ) = min{1,

π(τ |data)q(ρ)
π(ρ|data)q(τ )

}.
(d) Generate a random number u from uniform (0,1). Retain τ if u ≤ p(ρ, τ ),

else accept ρ.
Step (3) Repeat Step (2), M times and obtain θj for j = 1, . . . ,M .
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The retained sample values, say θ1, . . . , θM , are a random sample from the
posterior density π(θ |data). Now, by using Monte Carlo integration technique
Rubinstein and Kroese (2006), the Bayes estimate of θ under squared error loss
function can be obtained as

θ̂BM = 1

M

M∑
t=1

θj .

For constructing HPD credible interval of θ , we can use the method proposed by
Chen and Shao (1999) as follows.

Let θ(1) < · · · < θ(M) be the ordered values of θj for j = 1, . . . ,M . Then, con-
sider the following 100(1 − α)% credible intervals of θ :

(θ(1), θ((1−α)M)), . . . , (θ(αM), θ(M)).

The HPD credible interval of θ can be derived by choosing the interval which has
the shortest length.

4 Simulation study and comparisons

In this section, simulation studies are conducted to compare the performances of
the different estimators and also different confidence/credible intervals. We mainly
compare the performances of the MLE and Bayes estimates of the unknown pa-
rameter, in terms of their average values and mean squared errors. We also com-
pare the average lengths of the asymptotic confidence intervals to the HPD credible
intervals and their coverage percentages. All the computations are performed on
R 2.11.1.

For simulation purposes, we have taken θ = 1 and different choices of sam-
ple sizes, namely n = 15,20,30,50,70. For each n, we have generated random
sample from the Lindley distribution. Then, using the method proposed by Pak,
Parham and Saraj (2013), each realization of the generated samples was fuzzified
by employing fuzzy information system {x̃1, . . . , x̃8} corresponding to the mem-
bership functions

μx̃1(x) =

⎧⎪⎪⎨
⎪⎪⎩

1, x ≤ 0.05,
0.25 − x

0.2
, 0.05 ≤ x ≤ 0.25,

0, otherwise,

μx̃2(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x − 0.05

0.2
, 0.05 ≤ x ≤ 0.25,

0.5 − x

0.25
, 0.25 ≤ x ≤ 0.5,

0, otherwise,
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μx̃3(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x − 0.25

0.25
, 0.25 ≤ x ≤ 0.5,

0.75 − x

0.25
, 0.5 ≤ x ≤ 0.75,

0, otherwise,

μx̃4(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x − 0.5

0.25
, 0.5 ≤ x ≤ 0.75,

1 − x

0.25
, 0.75 ≤ x ≤ 1,

0, otherwise,

μx̃5(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x − 0.75

0.25
, 0.75 ≤ x ≤ 1,

1.5 − x

0.5
, 1 ≤ x ≤ 1.5,

0, otherwise,

μx̃6(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x − 1

0.5
, 1 ≤ x ≤ 1.5,

2 − x

0.5
, 1.5 ≤ x ≤ 2,

0, otherwise,

μx̃7(x) =

⎧⎪⎪⎨
⎪⎪⎩

x − 1.5

0.5
, 1.5 ≤ x ≤ 2,

3 − x, 2 ≤ x ≤ 3,

0, otherwise,

μx̃8(x) =
⎧⎪⎨
⎪⎩

x − 2, 2 ≤ x ≤ 3,

1, x ≥ 3,

0, otherwise.

The estimate of the parameter θ for the fuzzy sample were computed using
the maximum likelihood method and Bayesian procedure. In computing the MLE,
we have used the true value of θ as the initial guess value of θ . For computing
the Bayes estimate, we have assumed that θ has gamma prior, including the non-
informative gamma prior, that is, a = b = 0, and informative gamma prior, that is,
a = b = 2. We replicate the process 10,000 times and report the average values
(AV) and mean squared errors (MSE) of the estimates in Tables 1–3.

We have also computed approximate 95% confidence interval and also the HPD
credible interval of the unknown parameter. Criteria appropriate to the evaluation
of the two methods under scrutiny include: closeness of the coverage probability
to its nominal value and expected interval width. For each simulated sample, we
have computed confidence/credible intervals and checked whether the true value
of the parameter lay within the intervals and recorded the length of the intervals.
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Table 1 Averages values and mean squared errors of the ML estimates of θ , coverage probabilities
and expected width of 95% confidence interval for different sample sizes

θ̂ Confidence interval

n AV MSE Coverage Length

15 1.0314 0.0446 0.9357 0.7593
20 1.0279 0.0407 0.9430 0.7285
30 1.0233 0.0355 0.9485 0.6221
50 1.0164 0.0264 0.9502 0.4770
70 1.0115 0.0221 0.9514 0.3854

100 1.0068 0.0144 0.9533 0.1935

Table 2 Averages values and mean squared errors of the Bayes estimates of θ , coverage probabili-
ties and expected width of the credible interval for a = b = 0

θ̂BT θ̂BM Credible interval

n AV MSE AV MSE Coverage Length

15 1.0319 0.0448 1.0322 0.0450 0.9376 0.7327
20 1.0286 0.0413 1.0290 0.0415 0.9438 0.7046
30 1.0235 0.0356 1.0236 0.0358 0.9489 0.6153
50 1.0168 0.0266 1.0172 0.0269 0.9506 0.4718
70 1.0119 0.0223 1.0121 0.0224 0.9519 0.3819

100 1.0073 0.0149 1.0074 0.0149 0.9537 0.1926

Table 3 Averages values and mean squared errors of the Bayes estimates of θ , coverage probabili-
ties and expected width of the credible interval for a = b = 2

θ̂BT θ̂BM Credible interval

n AV MSE AV MSE Coverage Length

15 1.0292 0.0411 1.0295 0.0412 0.9421 0.7109
20 1.0240 0.0385 1.0247 0.0387 0.9470 0.6856
30 1.0185 0.0317 1.0188 0.0319 0.9497 0.5732
50 1.0109 0.0235 1.0109 0.0235 0.9513 0.4478
70 1.0085 0.0196 1.0086 0.0196 0.9528 0.3625

100 1.0048 0.0131 1.0051 0.0132 0.9561 0.1877

The estimated coverage probability was computed as the number of intervals that
covered the true value divided by 10,000 while the estimated expected width of
the intervals was computed as the sum of the lengths for all intervals divided by
10,000. The coverage probabilities and the expected widths for different sample
sizes are presented in Tables 1–3.
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From Tables 1–3, some of the point are quite clear. The MSE of the estimators
decrease significantly as the sample size n increases, as one would expected. The
performances of the Bayes estimates with non-informative prior assumption and
the maximum likelihood estimates are identical in terms of AVs and MSEs; how-
ever, it is observed that the Bayes estimates with informative prior are uniformly
better. It is also seen that the Bayes estimates obtained by Tierney and Kadane’s
approximation and MCMC method behave in a similar manner. It should be men-
tioned that although the MCMC techniques are computationally expensive, but in
turn we can use them to construct HPD credible interval.

Now considering the confidence and credible intervals, it is observed that the
asymptotic results of the MLE work quite well. It can maintain the coverage per-
centages in most of the cases even when the sample size is small. The widths of the
confidence/credible intervals narrow down with an increase in the sample size n.
The performances of the credible intervals are satisfactory and their coverage per-
centages are close to the corresponding nominal level. Moreover, in most of the
cases, the average lengths of the credible intervals are slightly shorter than the
confidence intervals. It can be further observed that an informative prior distribu-
tion improves the performance of the Bayesian credible interval compared to the
one using non-informative prior.

5 Conclusions

In this paper, we have considered the classical and Bayesian inference procedures
for the Lindley distribution parameter when the available data are described in
terms of fuzzy numbers. We have obtained the maximum likelihood estimate of
the unknown parameter using EM algorithm. For computing the Bayes estimate,
we have used Tierney and Kadane’s approximation as well as MCMC technique,
with different types of prior information. We have further constructed approximate
confidence interval and HPD credible interval of the unknown parameter. The per-
formances of the different methods have been compared by Monte Carlo simula-
tions. Based on the results of the simulation study, we see clearly that, the Bayes
estimates based on non-informative prior and maximum likelihood estimates give
similar estimation results; however, the Bayes estimates with informative prior
have smaller MSE, showing that additional prior information about the parameter
θ provides an improvement in the estimates.
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