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Probabilistic models for the (sub)tree(s) of life

Amaury Lambert
UPMC Univ Paris 06

Abstract. The goal of these lectures is to review some mathematical aspects
of random tree models used in evolutionary biology to model species trees.

We start with stochastic models of tree shapes (finite trees without edge
lengths), culminating in the β-family of Aldous’ branching models.

We next introduce real trees (trees as metric spaces) and show how to
study them through their contour, provided they are properly measured and
ordered.

We then focus on the reduced tree, or coalescent tree, which is the tree
spanned by species alive at the same fixed time. We show how reduced trees,
like any compact ultrametric space, can be represented in a simple way via
the so-called comb metric. Beautiful examples of random combs include the
Kingman coalescent and coalescent point processes.

We end up displaying some recent biological applications of coalescent
point processes to the inference of species diversification, to conservation
biology and to epidemiology.

Contents

1. Tree shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416
1.1. Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416
1.2. Combinatorics warm up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417

1.2.1. Counting trees. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
1.2.2. Counting rankings and labellings. . . . . . . . . . . . . . . . . . . . . . . . . . 419

1.3. Random tree shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
1.3.1. Uniform distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
1.3.2. The law of your favourite random tree. . . . . . . . . . . . . . . . . . . . . . . 422

1.4. Markov branching models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
1.4.1. Definitions and interval splitting. . . . . . . . . . . . . . . . . . . . . . . . . . . 427
1.4.2. ERM, PDA and Aldous’ β-splitting model. . . . . . . . . . . . . . . . . . . . . 428
1.4.3. Sampling consistency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433

2. Real trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437
2.1. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437

2.1.1. Scaling limits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437
2.1.2. Local time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438

2.2. Definitions and examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439
2.2.1. The real tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439
2.2.2. First constructive example: Connecting segments. . . . . . . . . . . . . . . . . 440

Key words and phrases. Random tree, tree shape, real tree, reduced tree, branching process, coa-
lescent, comb, phylogenetics, population dynamics, population genetics.

Received January 2016; accepted April 2016.

415

http://imstat.org/bjps/
http://dx.doi.org/10.1214/16-BJPS320
http://www.redeabe.org.br/


416 A. Lambert

2.2.3. Second constructive example: Chronological trees. . . . . . . . . . . . . . . . . 441
2.3. The contour process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443

2.3.1. From the R-tree to its contour process. . . . . . . . . . . . . . . . . . . . . . . . 443
2.3.2. From the contour to the tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
2.3.3. A few words on topology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447

2.4. Random R-trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449
2.4.1. Splitting trees. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449
2.4.2. The continuum random tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450

3. Reduced trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451
3.1. The comb metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452

3.1.1. Definition and examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452
3.1.2. Spheres of R-trees. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454

3.2. Coalescent point processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
3.2.1. The reduced tree of splitting trees, of the Brownian tree. . . . . . . . . . . . . . 455
3.2.2. A more general class of models. . . . . . . . . . . . . . . . . . . . . . . . . . . 458

3.3. Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462
3.3.1. Bottlenecks and missing tips. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463
3.3.2. Loss of phylogenetic diversity. . . . . . . . . . . . . . . . . . . . . . . . . . . . 465
3.3.3. Do species age? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466
3.3.4. How long does speciation take? . . . . . . . . . . . . . . . . . . . . . . . . . . 467
3.3.5. Trees with random marks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468

3.4. Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472

1 Tree shapes

Standard references on the topic of this section include: Barthélémy and Guénoche
(1991), Stanley (1999) and Semple and Steel (2003).

1.1 Definitions

In these lecture notes, we call tree shape any rooted, finite tree (no edge lengths,
no plane embedding). A finite tree τ is an acyclic graph (V,E) where V = V(τ ) is
a finite set whose elements are called the vertices or nodes of τ , and E = E(τ ) is a
subset of V × V whose elements are (not ordered and) called the edges of τ . The
root of τ is a distinguished vertex of τ .

We will also use the following terminology.

• Degree. The degree of a node u of the tree shape τ is the number of its neighbors,
where a neighbor of u is an element v of τ such that (u, v) is an edge of τ . We
will always assume that the root has degree 1.

• Partial order. If u and v are two nodes of τ , we say that v is descending from u

and we write u � v, if v is not in the same connected component of τ \ {u} as
the root. The relation � is a (partial) order on the vertex set of τ .

• Tips/leaves. All nodes with degree 1 but the root, are called tips or leaves. All
other nodes (including the root) are called internal nodes (or internal vertices).



Probabilistic models for the (sub)tree(s) of life 417

• A tree shape is said binary when each of its internal nodes (but the root) has
degree 3.

In the next section, we will introduce a framework not needed at this stage, known
as Ulam–Harris–Neveu coding, in which finite trees can be embedded into the set
U of finite words, where a word v descends from a word u if u is a prefix of v.

We also mention that in combinatorial phylogenetics, a tree whose tips are la-
belled by some finite set X is usually identified as a so-called X-hierarchy (Semple
and Steel (2003)). An X-hierarchy is a collection H of subsets of X containing all
singletons and such that for any A,B ∈H, A∩B ∈ {∅,A,B}.

Exercise 1.1.1. Display the labelled tree coded by the {1,2,3,4,5}-hierarchy
H= {{1}, {1,4}, {1,4,5}, {2}, {2,3}, {3}, {4}, {5}}.

1.2 Combinatorics warm up

1.2.1 Counting trees.

Definition 1.2.1. We let Tn denote the set of all binary tree shapes with n tips, and
T �

n the set of binary tree shapes with n tips labelled by {1, . . . , n}. The elements
of T �

n are called cladograms or labelled tree shapes (with n tips).

Definition 1.2.2. For any (labelled or not) tree shape τ , we call radial order any
total order � on the internal nodes of τ respecting the genealogical order. In other
words, � is a radial order if for any internal nodes u and v of τ ,

u� v ⇒ u � v,

where we recall that u� v means that v is descending from u.

Note that the minimal element in a radial order is always the root.

Example 1.2.3. The archetypal example of radial order is the order in which splits
occur through continuous time in a tree produced by a birth–death process. Note
that this is specific to continuous time, since in discrete time there are always
several nodes with the same generation (i.e., the same graph distance to the root).

Definition 1.2.4. We let Rn denote the set of all binary tree shapes with n tips
endowed with a radial order. The elements of Rn are called ranked tree shapes
(with n tips).

Also, we let R�
n denote the set of ranked tree shapes with n tips labelled by

{1, . . . , n}. The elements of R�
n are called labelled, ranked tree shapes (with n

tips).
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There is a canonical surjection � :T �
n →Tn mapping each labelled tree shape

to the same tree shape without labels. We use the same notation for the surjection
� :R�

n→Rn.
Similarly, there is a canonical surjection r :Rn→Tn mapping each ranked tree

shape to the same tree shape without radial order. We use the same notation for the
surjection r :R�

n→T �
n .

The mappings � and r are sometimes called the forgetful maps, because they
consist in “forgetting” the labels or the ranks, respectively. It is obvious that �◦ r =
r ◦ �, so that the following diagram commutes.

R�
n

r−−−→ T �
n⏐⏐��

⏐⏐��

Rn
r−−−→ Tn

We now give explicit expressions for the cardinal numbers of T �
n and R�

n.

Proposition 1.2.5 (Murtagh (1984)). For each n ≥ 2, set tn := #T �
n and rn :=

#R�
n. Then

tn = (2n− 3)!! := (2n− 3)(2n− 5) · · · (3)(1),

rn = n!(n− 1)!
2n−1 .

Remark 1.2.6. No explicit expression is known for #Tn (sometimes called
Wedderburn–Etherington number) or #Rn.

Proof of Proposition 1.2.5. We reason by induction. Let pn :T �
n+1 →T �

n denote
the projection which maps each τ with n+ 1 labelled tips to the tree spanned by
the tips of τ carrying labels in {1, . . . , n}. Note that

tn+1 =
∑

τ∈T �
n

#p−1
n

({τ }).
Now let us compute #p−1

n ({τ }). It is immediate that each tree shape with n labelled
tips τ ∈T �

n has n external edges, n− 2 internal edges and a root edge. This gives
2n − 1 distinct locations where to grow a new external edge carrying the label
n + 1, which means that #p−1

n ({τ }) = 2n − 1. In conclusion, tn+1 = (2n − 1)tn
and the first result follows, since t2 = 1.

For ranked tree shapes, we can similarly consider the projection (still denoted)
pn :R�

n+1 →R�
n and use the similar equality

rn+1 =
∑

τ∈R�
n

#p−1
n

({τ }).
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Now let us compute #p−1
n ({τ }). Each ranked tree shape with n labelled tips τ ∈R�

n

has n− 1 ordered internal nodes. Growing a new edge with label n+ 1 requires
to add a new internal node. There are n distinct locations where to insert it in the
radial order, say between the (k − 1)st internal node and the kth internal node
for 1 ≤ k ≤ n. For a given k, there are k distinct edges where to grow the new
edge, which means #p−1

n ({τ })= 1+ · · · + n= n(n+ 1)/2. In conclusion, rn+1 =
n(n+ 1)rn/2 and the second result follows, since r2 = 1. �

Exercise 1.2.7. Check that t (x) :=∑
n≥1 tn

xn

n! is well defined for |x|< 1
2 . By com-

binatorial arguments, prove that for n≥ 2

tn = 1

2

n−1∑
i=1

(
n

i

)
ti tn−i

and deduce that t (x)= x + 1
2 t (x)2. Conclude that t (x)= 1−√1− 2x.

Exercise 1.2.8. A tree shape is said oriented when each internal vertex has a left
and a right descending subtree. Each orientation gives a tree a unique plane embed-
ding. Prove that the number of ranked oriented trees with n tips is (n−1)! and that
the number of ranked, oriented trees with n labelled tips is n!(n−1)!. Also if o de-
notes the map forgetting orientation, check that for any τ ∈R�

n, o−1({τ })= 2n−1.
This gives another proof of the formula rn = n!(n−1)!

2n−1 .

1.2.2 Counting rankings and labellings.

Definition 1.2.9. For any τ ∈Tn, an internal node u of τ is said symmetric if the
two subtrees descending from u (i.e., the two connected components of τ \ {u}
not containing the root) are identical. A particular case of symmetric node is when
u subtends (i.e., is the most recent common ancestor of) a cherry, that is u only
subtends (two) tips.

We denote by s(τ ) the number of symmetric nodes of τ , and by c(τ ) the number
of cherries of τ .

Assume we were to extend the notion of symmetric node to labelled (resp.
ranked) tree shapes, in the sense that the two descending subtrees of a symmet-
ric node should have not only the same shape but also the same tip labels (resp. the
same internal node ranks). Then in a labelled or ranked tree shape, only cherries
would be symmetric. This explains the following convention.

Definition 1.2.10. For any τ ∈ T �
n ∪Rn ∪R�

n, we denote invariably by s(τ ) or
c(τ ) the number of cherries of τ .
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Exercise 1.2.11. Prove that for any unlabelled tree shape τ with n tips (τ ∈Tn ∪
Rn), the number of distinct labellings of τ is

#�−1({τ })= 2−s(τ )n!, (1.1)

where we recall that if τ is ranked (τ ∈Rn), s(τ ) is the number of cherries of τ

(see previous discussion).

Definition 1.2.12. For any tree shape τ (labelled or not, ranked or not), for any
vertex v ∈ V(τ ), if τ ′ denotes the subtree descending from v, we denote invariably
by λ(v) or by λ(τ ′) the number of leaves subtended by v, which is also the number
of leaves of τ ′.

Note that λ(v)= 1 iff v is a leaf.
Equation (1.1) gives an explicit expression for the number of distinct labellings

of a given tree shape τ . The next statement gives the number of distinct rankings
of any given (either labelled or not labelled) tree shape.

Proposition 1.2.13 (Knuth (1997)). For any unranked tree shape τ with n tips
(τ ∈Tn ∪T �

n ), the number of distinct rankings of τ is

#r−1({τ })= 2c(τ )−s(τ ) (n− 1)!∏
v∈V̊(τ )(λ(v)− 1)

, (1.2)

where V̊(τ ) denotes the set of internal vertices of τ . Recall that when τ is labelled
(τ ∈T �

n ), s(τ )= c(τ ).

Proof. First, note that the total number of internal vertices of τ is #V̊(τ ) =
λ(τ)− 1.

Now assume that τ ∈ T �
n and let τ ′ and τ ′′ denote the two labelled subtrees

descending from the root of τ (say, e.g., that τ ′ is the subtree containing the tip
with label 1). Let k denote the number of internal vertices of τ ′. Assuming that
the k internal nodes of τ ′ are ordered and that the n− k − 2 internal nodes of τ ′′
are ordered, the number of ways of ordering the internal nodes of τ ′ and τ ′′ with
respect to each other is

(n−2
k

)
. In conclusion,

#r−1({τ })=
(
n− 2

k

)
#r−1({τ ′})#r−1({τ ′′}),

which also reads

#r−1({τ })
(n− 1)! =

1

n− 1

#r−1({τ ′})
k!

#r−1({τ ′′})
(n− 2− k)! .

An immediate induction yields

#r−1({τ })
(n− 1)! =

∏
v∈V̊(τ )

1

λ(v)− 1
,
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which is the expected result for labelled tree shapes.
Now assume that τ ∈Tn. The following proof relies on the equality

#�−1(r−1({τ }))= #r−1(�−1({τ })),
due to the fact that � and r commute.

First, let τ̃ ∈Rn such that r(τ̃ )= τ . Recall from equation (1.1) that the number
of distinct labellings of τ̃ is 2−s(τ̃ )n! = 2−c(τ )n!, which yields

#�−1(r−1({τ }))= #r−1({τ })2−c(τ )n!.
Second, let τ̄ ∈T �

n such that �(τ̄ )= τ . From what precedes, we know that

#r−1({τ̄ })= (n− 1)! ∏
v∈V̊(τ̄ )

1

λ(v)− 1
= (n− 1)! ∏

v∈V̊(τ )

1

λ(v)− 1
,

which yields

#r−1(�−1({τ }))= #�−1({τ })(n− 1)! ∏
v∈V̊(τ )

1

λ(v)− 1

= 2−s(τ )n!(n− 1)! ∏
v∈V̊(τ )

1

λ(v)− 1
,

thanks again to equation (1.1). Equalling the expression for #�−1(r−1({τ })) and
the expression for #r−1(�−1({τ })) provides the final result. �

1.3 Random tree shapes

1.3.1 Uniform distributions.

Definition 1.3.1. Let UnifT �
n

and UnifR�
n

denote the uniform distributions on

T �
n and R�

n, respectively.
We will adopt the following notation. The distributions P pda

n and P erm
n are the

probabilities on T �
n defined as

P pda
n := UnifT �

n
and P erm

n = UnifR�
n
◦ r−1.

The distribution P urt
n is the probability on Rn defined as

P urt
n := UnifR�

n
◦ �−1.

Note that P urt
n ◦ r−1 = P erm

n ◦ �−1 is the push forward of UnifR�
n

by � ◦ r .

Remark 1.3.2. The preceding denominations come from the terminology used
in the phylogenetics literature (Aldous (1996, 2001), Blum and François (2006),
Brown (1994), Lambert and Stadler (2013), Semple and Steel (2003)), where these
three TLAs1 have the following meanings.

1Three-Letter Acronym.
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• PDA stands for “proportional to distinguishable arrangements”,
• ERM stands for “equal rates Markov”,
• URT stands for “uniform on ranked (labelled) trees”.

Thanks to Proposition 1.2.5, and to equations (1.1) and (1.2), here are the prob-
abilities of any given tree τ under various of the previously defined distributions.

For any τ ∈T �
n ,

P pda
n (τ )= 1

tn
= 1

(2n− 3)!!
and

P erm
n (τ )= #r−1({τ })

rn
= 2n−1

n!
∏

v∈V̊(τ )

1

λ(v)− 1
.

For any τ ∈Rn,

P urt
n (τ )= #�−1({τ })

rn
= 2n−1−c(τ )

(n− 1)! .

For any τ ∈Tn,

P pda
n ◦ �−1(τ )= #�−1({τ })

tn
= n!2−s(τ )

tn
= 2n−1−s(τ )

cn−1
,

where ck := 1
k+1

(2k
k

)
is the kth Catalan number, and

P erm
n ◦ �−1(τ )= #�−1({τ })2n−1

n!
∏

v∈V̊(τ )

1

λ(v)− 1

= 2n−1−s(τ )∏
v∈V̊(τ )(λ(v)− 1)

.

Exercise 1.3.3. We will see that the tree generated by a Yule (pure-birth) pro-
cess stopped upon reaching n particles, has the law P urt

n of the uniform labelled,
ranked tree shape after ignoring labels. Check the computations shown for the Yule
tree with n tips (n= 4,5,6) in Figures 1, 2 and 3.

1.3.2 The law of your favourite random tree.

The Bienaymé–Galton–Watson tree shape. Let B stand for the law of a binary
(unlabelled) Galton–Watson tree with parameter p ∈ (0,1), where p is the prob-
ability of begetting two offspring, and Bn the law of the same tree conditioned to
have n leaves. Set σn the probability of having n leaves under B

σn := B(λ= n),
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Figure 1 Probabilities of trees shapes with n = 4 tips under P urt
n . (a) The caterpillar tree with 4

tips has only one conforming ranked shape, with probability 2/3; (b) The symmetric tree with 4 tips
also has one conforming ranked shape, with probability 1/3.

Figure 2 Probabilities of trees shapes with n= 5 tips under Purt
n . (a) Is the caterpillar tree with

5 tips, which has only one conforming ranked shape, with probability 1/3; (b) Has one conforming
ranked shape with probability 1/6; (c) Has 3 conforming ranked shapes, each with probability 1/6.

so that for each τ ∈Tn,

Bn(τ )= B(τ )

σn

.

Now I will leave the reader convince herself (by drawing an example, say the
two different binary trees with 4 leaves; or more rigorously, proving that the total
number of plane orientations of an unlabelled, unranked tree shape τ is 2n−1−s(τ ))
that

B(τ )= 2n−1−s(τ )

[ ∏
v∈V̊(τ )

p

][ ∏
u tip of τ

(1− p)

]

= 2n−1−s(τ )pn−1(1− p)n.

(1.3)

Now thanks to equation (1.1), we know that

tn =
∑

τ∈Tn

�−1({τ })= ∑
τ∈Tn

2−s(τ )n!
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Figure 3 Probabilities of trees shapes with n= 6 tips under Purt
n . (a) Is the caterpillar tree with

6 tips, which has only one conforming ranked shape, with probability 2/15; (b) Has one conforming
ranked shape with probability 1/15; (c) Has 3 conforming ranked shapes, each with probability
1/15; (d) Has 4 conforming ranked shapes, each with probability 1/30; (e) Has 4 conforming ranked
shapes, each with probability 1/15; (f) Has 3 conforming ranked shapes, each with probability 1/15.

so that

σn =
∑

τ∈Tn

2n−1−s(τ )pn−1(1− p)n = 2n−1tn

n! pn−1(1− p)n. (1.4)

In conclusion, for each τ ∈Tn,

Bn(τ )= B(τ )

σn

= n!2−s(τ )

tn
= #�−1({τ })

tn
= P pda

n ◦ �−1(τ ),

which can be recorded in the following statement.

Proposition 1.3.4. For each integer n≥ 2, Bn = P pda
n ◦ �−1.

If the reader is not convinced that (1.3) does hold, another proof will be given
in the context of Markov branching models page 429.

Notice that Bn does not depend on p. Also note for the record that the proba-
bility of a given labelled tree shape under the Galton–Watson model with uniform

labelling is 2n−1

n! pn−1(1− p)n (where n is its number of tips).

The Yule tree shape. The reason why UnifR�
n
◦r−1 is denoted P erm

n is that it is the
law of the (uniformly labelled) tree shape given by the genealogy of a population
where all particles split independently and at the same rate b, called birth rate, into
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two new particles (more details to come in Section 3). The process counting the
size of the population is a Markov process jumping from k to k + 1 at rate bk and
is usually called pure birth process, or Yule (sometimes Yule–Furry) process (see
Lambert (2008) for an introduction to stochastic models of population dynamics
and genealogies).

More specifically, let Yn denote the probability on Rn defined as the law of the
ranked tree shape generated by a pure-birth process started at 1 and stopped upon
reaching n, where the radial order is the chronological order of node splits. It is
clear that this probability does not depend on the birth rate b.

Proposition 1.3.5. For each integer n≥ 2, Yn = P urt
n . In particular, the law Yn ◦

r−1 of a Yule tree whose node ranks are ignored is P erm
n ◦ �−1.

Proof. Let us prove the proposition by induction on n (the proposition obviously
holds for n = 2). Let n ≥ 2 and assume the proposition holds for this n. Now let
τ be a ranked tree shape with n+ 1 tips. Let v denote the maximal interior node
in the radial order and let v′ denote the maximal interior node in the genealogical
order of the path from the root to v. Define τ̂ as the ranked tree shape with n tips
obtained from τ by collapsing the cherry subtended by v into a single terminal
edge. By definition of the Yule process, if v′ subtends a cherry in τ̂ , then splitting
any of the two tips of this cherry of τ̂ into a new cherry yields τ . Otherwise, only
one tip of τ̂ can be split to yield τ . This can be expressed as

Yn+1(τ )= 21λ(v′)=3

n
Yn(τ̂ ).

By the induction hypothesis,

Yn+1(τ̂ )= P urt
n (τ̂ )= 2n−1−c(τ̂ )

(n− 1)! ,

so that

Yn+1(τ )= 21λ(v′)=32n−1−c(τ̂ )

n! .

But now check that c(τ )= c(τ̂ )+ 1λ(v′) 
=3, which yields the result. �

The Kingman tree shape. Conversely, consider a population where each pair of
particles independently merges at the same rate c, called coalescence rate (or com-
petition rate) into one single new particle. The process counting the size of the pop-
ulation is a Markov pure-death process jumping from k to k−1 at rate ck(k−1)/2.

More specifically, let Kn denote the probability on R�
n of the labelled, ranked

tree shape generated by this process started from n labelled particles and naturally
stopped when it reaches 1, usually called Kingman n-coalescent tree (Kingman
(1982)). Obviously, Kn does not depend on c.
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Proposition 1.3.6. For each integer n ≥ 2, Kn = UnifR�
n
. In particular, the law

Kn◦�−1 of a Kingman tree whose labels are ignored is the law UnifR�
n
◦�−1 = Yn

of a Yule tree.

Proof. Let us prove the proposition by induction on n (the proposition obviously
holds for n = 2). Let n ≥ 2 and assume the proposition holds for this n. Let τ

be a ranked tree shape with n + 1 labelled tips. Let i and j be the labels of the
cherry subtended by the maximal interior node in the radial order, and as in the
previous proof, let τ̂ be the ranked tree shape with n labelled tips obtained from τ

by collapsing this cherry into one single terminal edge and relabelling the new tip.
By induction Kn(τ̂ )= 1/rn, so that

Kn+1(τ )= 2

n(n+ 1)
Kn(τ̂ )= 2

n(n+ 1)

1

rn
= 1

rn+1
,

which terminates the proof. �

Exercise 1.3.7. Explain why the probability distribution P erm
n puts more weight

on balanced trees than P pda
n . If an denotes the most imbalanced tree with n tips,

known as the caterpillar tree (see panel (a) in each of Figures 1–3), prove that

P pda
n ◦ �−1(an)= 2n−2

cn−1
and P erm

n ◦ �−1(an)= 2n−2

(n− 1)! .

One can easily see that the probability of the caterpillar tree with n tips, under
either of these two distributions, vanishes as n→∞. Nevertheless, the probability
that one of the two subtrees incident to the root subtends exactly one tip (i.e., a
long external edge) converges to 1

4 under P pda
n , as will be seen in Exercise 1.4.5

(see also Table 1).
It is generally observed that none of the random tree shapes generated by P erm

n

or by P pda
n statistically give a good fit to empirical species trees. More specifi-

cally, real phylogenies are less balanced than random trees under P erm
n but more

balanced than random trees under P pda
n . In the following section, we introduce

more general models of random tree shapes, as well as a one-parameter family of
tree shape distributions interpolating in particular P erm

n and P pda
n .

Table 1 Numerical values of the probability of the caterpil-
lar tree under Perm

n and P
pda
n . Observe the larger weight

put on this tree under P
pda
n than under Perm

n

n 3 4 5 6 7

P
pda
n ◦ �−1(an) 1 4

5
4
7

8
21

8
33

Perm
n ◦ �−1(an) 1 2

3
1
3

2
15

2
45
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1.4 Markov branching models

1.4.1 Definitions and interval splitting. In what follows, for each τ ∈ Tn ∪T �
n ,

we will write τ = τ ′ ⊕ τ ′′ to denote the fact that τ ′ and τ ′′ are the two subtrees
descending from the root of τ . It will be convenient to assume that τ ′ is chosen
uniformly at random among the two possible subtrees (except in the case when τ

is not labelled and the root is symmetric, since then τ ′ = τ ′′). Note that it would
also have been possible to select τ ′ deterministically as the subtree containing the
tip with label 1 say, or the subtree with the smaller number of tips.

Definition 1.4.1 (Aldous (1996)). A family of distributions (Pn) on T �
n is a

Markov branching model if there is a family of laws (qn) on {1, . . . , n− 1} such
that qn(i)= qn(n− i) for all i, and for any τ ∈T �

n ,

Pn(τ)= 2qn(i)(n
i

) Pi

(
τ ′
)
Pn−i

(
τ ′′

)
,

where τ = τ ′ ⊕ τ ′′ and i = λ(τ ′) (when n= 3, and i = 2, P2(τ
′)= 1= P1(τ

′′)).

Note the abuse of notation, since τ ′ is not in general labelled by {1, . . . , i}. It is
implicit that Pn is invariant by permutations of labels (Pn is said exchangeable or
equivariant) and defined independently from the chosen label set.

Remark 1.4.2. If τ ′ was chosen to be the subtree containing the tip with label 1
(instead of being chosen at random), the previous display would become

Pn(τ)= qn(i)(n−1
i−1

)Pi

(
τ ′
)
Pn−i

(
τ ′′

)
.

A third possibility would be to choose τ ′ as the subtree with the smaller number
of tips. The details are left to the reader (see also Aldous (2001)).

To generate a labelled tree shape with law Pn, proceed recursively.

1. Draw a random variable Kn ∈ {1, . . . , n− 1} with law qn.
2. Conditional on Kn = i, select a subset I of {1, . . . , n} with cardinality i, uni-

formly at random.
3. Create two edges joining the root of τ to τ ′ and τ ′′ respectively, where τ ′ and τ ′′

are two independent tree shapes labelled respectively by I and its complement,
with respective laws Pi and Pn−i .

Exercise 1.4.3. If τ ∈ Tn, recall that τ = τ ′ ⊕ τ ′′ still makes sense, and check
that s(τ ) = s(τ ′)+ s(τ ′′) except when τ ′ = τ ′′, where s(τ ) = 1+ s(τ ′)+ s(τ ′′).
Deduce that

Pn ◦ �−1(τ )= 21τ ′ 
=τ ′′qn(i)Pi ◦ �−1(τ ′)Pn−i ◦ �−1(τ ′′),
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where again i = λ(τ ′). Explain why (Pn ◦ �−1) can also be seen as a Markov
branching model (on unlabelled tree shapes).

Now we introduce a specific way of designing Markov branching models. Let
f be a non-negative function on (0,1) such that f (x) = f (1− x) and

∫ 1
0 x(1−

x)f (x) dx <∞. Set

αn :=
n−1∑
i=1

(
n

i

)∫ 1

0
xi(1− x)n−if (x) dx =

∫ 1

0

(
1− xn − (1− x)n

)
f (x) dx,

which is finite by assumption. Then we define

qf
n (i) := α−1

n

(
n

i

)∫ 1

0
xi(1− x)n−if (x) dx,

as well as (P
f
n ) the associated Markov branching model.

In the case when f is integrable, one can generate a labelled tree shape with law
P

f
n by throwing uniformly n points in (0,1) and performing a recursive interval

splitting procedure, down until each interval contains at most two of the initial
points. Let U1, . . . ,Un be i.i.d. random variables uniform in (0,1). Assume that∫ 1

0 f (x) dx = 1.

1. Draw an independent r.v. X with density f in (0,1).
2. Let I be the subset of {1, . . . , n} defined by: i ∈ I ⇔Ui < X. Then conditional

on X = x, proceed as in the general case, by putting the labels of I in τ ′ and
those of its complement in τ ′′.

3. Apply recursively the same procedure to the intervals (0, x) and (x,1) indepen-
dently.

It is intuitive from this description that the more f puts weight close to the bound-
aries of (0,1), the more the associated random tree shape is imbalanced.

1.4.2 ERM, PDA and Aldous’ β-splitting model.

Theorem 1.4.4 (Harding (1971), Slowinski (1990), Brown (1994)). Both (P erm
n )

and (P pda
n ) are Markov branching models with

qpdan (i)= 1

2

(
n

i

)
ti tn−i

tn
and qermn (i)= 1

n− 1
.

Proof. We know that for any τ ∈ T �
n written τ = τ ′ ⊕ τ ′′, with i = λ(τ ′),

P pda
n (τ )= 1

tn
, P

pda
i (τ ′)= 1

ti
and P

pda
n−i (τ ′′)= 1

tn−i
, so that

P pda
n (τ )= 1

tn
= ti tn−i

tn
P
pda
i

(
τ ′
)
P
pda
n−i

(
τ ′′

)
,
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Table 2 The limiting value, as n→∞, of
a basal split i vs. n− i, under P

pda
n

i 1 2 3 4

limn q
pda
n (i) 1

4
1

16
1

32
5

128

which agrees with the characterization of Markov branching models choosing
qpdan as in the theorem (see Table 2).

We now focus on the distribution of λ(τ ′)=: Jn under P erm
n . Recall that P erm

n ◦
�−1 is the law of the unranked and unlabelled Yule tree. Consider two particles, a
red one and a black one. Give these two particles independent Yule descendances
and stop the process when the total number of particles equals n. By the strong
Markov property of the Yule process (applied at the time it reaches 2), Jn has the
same law as the number of red (say) particles when the process stops. By the strong
Markov property applied at the first time when there are n− 1 particles, it is easy
to see that

P(Jn = i)= i − 1

n− 1
P(Jn−1 = i − 1)+ n− 1− i

n− 1
P(Jn−1 = i),

An immediate induction shows that P(Jn = i)= 1
n−1 .

Now recall that P erm
n is also the law of the unranked Kingman coalescent tree.

Fixing a subset I of {1, . . . , n} with cardinality i and conditioning the Kingman
coalescent tree to have on the one hand all lineages initially labelled by I and
on the other hand all lineages initially labelled by the complement of I , coalesce
within each other before coalescing between each other, yields two independent
Kingman coalescent trees (forbidding a restricted subset of the pairwise exponen-
tial clocks to ring does not alter the independence of the other clocks). Now these
two unranked, labelled subtrees follow respectively, P erm

i and P erm
n−i , which yields

the result. �

Exercise 1.4.5. Show that limn→∞ qpdan (i) = ci−14−i , which ‘contrasts sharply
with the flat distribution qermn ’ (Semple and Steel (2003)).

Back to the Galton–Watson tree. Here, we want to give a proof of Proposi-
tion 1.3.4 via Markov branching models, without using (1.3). Let τ ∈Tn and write
τ = τ ′ ⊕ τ ′′, i = λ(τ ′). Then by the branching property,

B(τ )= p21τ ′ 
=τ ′′B
(
τ ′
)
B
(
τ ′′

)
,

which becomes

Bn(τ )= p21τ ′ 
=τ ′′ σiσn−i

σn

Bi

(
τ ′
)
Bn−i

(
τ ′′

)
.
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Now recalling Exercise 1.4.3, this shows that Bn = Pn ◦ �−1, where (Pn) is the
Markov branching model associated with

qn(i)= p
σiσn−i

σn

.

Then it remains to show that

σn = 2n−1tn

n! pn−1(1− p)n, (1.5)

for this will ensure that

qn(i)= 1

2

(
n

i

)
ti tn−i

tn
,

which indeed is the splitting probability of the PDA model. Actually, (1.5) was
already obtained as equation (1.4), but this equation was derived from (1.3), so we
have to prove (1.5) by other means. This can actually be done in multiple ways,
using for example the Lukasiewicz path associated to the tree and Dwass identity
(see, e.g., Pitman (2006)).

Aldous’ β-splitting model. The β-splitting model of Aldous (1996, 2001) is a
one-parameter family of interval splitting branching models. Specifically, for any
β ∈ (−2,+∞), consider

fβ(x)= xβ(1− x)β, x ∈ (0,1).

The law q
fβ
n associated with fβ will be denoted q

β
n .

Exercise 1.4.6. Prove that

qβ
n (i)= 1

an(β)

�(β + i + 1)�(β + n− i + 1)

�(i + 1)�(n− i + 1)
, (1.6)

where � is the usual Gamma function �(x)= ∫∞
0 tx−1e−t dt , for x > 0, and

an(β) := �(2β + n+ 2)

�(n+ 1)

∫ 1

0

(
1− xn − (1− x)n

)
xβ(1− x)β dx.

This family has some interesting special cases. As noticed earlier, the balance
of the tree increases with β . As β →∞, the intervals are split deterministically in
their middle, while as β →−2, the splitting procedure converges to pure erosion,
that is P

β
n puts weight converging to 1 on the caterpillar tree. The three other cases

of interest are β = 0, β =−3/2 and β =−1.

• β = 0. Thanks to equation (1.6), q0
n(i) does not depend on i, which implies

q0
n(i)= 1

n−1 = qermn (i), so that

β = 0 =⇒ P β
n = P erm

n .
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• β =−3/2. We are going to prove that

β =−3/2 =⇒ P β
n = P pda

n .

First notice that we can write

tn = (2n− 3)!
2n−2(n− 2)! =

�(2n− 2)

2n−2�(n− 1)
= 2n−1 �(n− 1

2)

�(1
2)

,

where we used the identities �(x)�(x+ 1
2)= 21−2x

√
π�(2x) and �(1

2)=√π .
Now tedious calculations (note the missing ‘4’ in Aldous (1996), equation fol-
lowing equation 5) show that

an

(
−3

2

)
= 4�(n− 1

2)�(1
2)

�(n+ 1)
,

so that

q
− 3

2
n (i)= �(n+ 1)

4�(n− 1
2)�(1

2)

�(i − 1
2)�(n− i − 1

2)

�(i + 1)�(n− i + 1)

= 1

2

�(n+ 1)

�(i + 1)�(n− i + 1)

ti tn−i

tn
= qpdan (i).

• β = −1. This model is sometimes called AB model for “Aldous branching”.
First, check thanks to (1.6) that

q−1
n (i)= 1

an(−1)

�(i)�(n− i)

�(i + 1)�(n− i + 1)
= 1

an(−1)

1

i(n− i)
.

Then

an(−1)=
n−1∑
i=1

1

i(n− i)
= 1

n

n−1∑
i=1

(
1

i
+ 1

n− i

)
= 2hn−1

n
,

with the usual notation hn for the harmonic series

hn := 1+ 1

2
+ · · · + 1

n
.

In the end, we get

q−1
n (i)= n

2hn−1

1

i(n− i)

The remarkable feature of the β-splitting family is that it interpolates between
maximally imbalanced (caterpillar) trees and random (maximally) balanced trees
passing through P pda

n and P erm
n . Table 3 is taken from Aldous (2001), Table 3,

and provides the median size of the smaller daughter clade at the basal split under
P

β
n .
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Table 3 Median value of the smaller clade size at the basal

split as n→∞, under P
β
n (taken from Aldous (2001))

β −2 − 3
2 −1 0 ∞

Smaller clade size 1 1.5
√

n n
4

n
2

Remark 1.4.7. The reason why the name of Aldous is tied to the special case
β = −1 is due to the empirical observation that the trees generated by P−1

n give
the best fit to real phylogenies. In Aldous (2001), this was shown by a visual fit to a
linear dependence with slope 1/2 in the log–log scale of the size of the median split
vs. n (see Table 3). In Blum and François (2006), the MLE of β for species trees is
remarkably centered around −1. The biological reason for this pattern is still very
much debated (Hagen et al. (2015), Manceau, Lambert and Morlon (2015)).

For the record, we finally provide a closed-form expression for the probability
of a given labelled tree shape τ ∈T �

n under P
β
n .

Proposition 1.4.8. For any β >−2 and τ ∈T �
n ,

P β
n (τ )= �(β + 2)n2n−1

�(β + n+ 1)

∏
v∈V̊(τ )

�(β + λ(v)+ 1)

�(λ(v)+ 1)aλ(v)(β)
. (1.7)

Proof. Thanks to Definition 1.4.1 and equation (1.6), writing τ = τ ′ ⊕ τ ′′ and
i = λ(τ ′), we get by an immediate induction

P β
n (τ )= 2qn(i)(n

i

) P
β
i

(
τ ′
)
P

β
n−i

(
τ ′′

)

= 2

an(β)n!�
(
β + λ

(
τ ′
)+ 1

)
�
(
β + λ

(
τ ′′

)+ 1
)
P

β
i

(
τ ′
)
P

β
n−i

(
τ ′′

)

= ∏
v∈V̊(τ )

2

aλ(v)(β)λ(v)!�
(
β + λ(v1)+ 1

)
�
(
β + λ(v2)+ 1

)
,

where for each internal node v, we have denoted by v1 and v2 its two offspring
vertices. Therefore,

P β
n (τ )= �(β + n+ 1)−1

[ ∏
v∈V̊(τ )

2�(β + λ(v)+ 1)

aλ(v)(β)λ(v)!
]

×
[ ∏
u tip of τ

�
(
β + λ(u)+ 1

)]
,

which yields (1.7). �
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Exercise 1.4.9. By giving the value 0 or−3/2 to β , recover from (1.7) the explicit
expressions

P erm
n (τ )= 2n−1

n!
∏

v∈V̊(τ )

1

λ(v)− 1
and P pda

n (τ )= 1

tn
.

For β = 0 you will need to remember that an(0)= n− 1, and for β =−3/2 that

tn = 2n−1 �(n− 1
2)

�(1
2)

and an

(
−3

2

)
= 4�(n− 1

2)�(1
2)

�(n+ 1)
.

1.4.3 Sampling consistency. Following Aldous (1996), we will say that the
Markov branching model (Pn) is sampling consistent if for each n ≥ 2, the ran-
dom tree shape τ̂ obtained from the tree τ with law Pn+1, after removing its edge
subtending the label n+ 1, has law Pn.

Exercise 1.4.10. Prove that a Markov branching model where q4(2,2)= 1 cannot
be sampling consistent.

It is obvious that the interval splitting branching models (P
f
n ) are sampling

consistent. The converse statement is given in the following theorem.

Theorem 1.4.11. Let (Pn) be a sampling consistent Markov branching model.
Then there is a measure μ on [0,1] invariant by x �→ 1− x such that

∫
(0,1) x(1−

x)μ(dx) <∞ and

qn(i)= α−1
n

{(
n

i

)∫
(0,1)

μ(dx)xi(1− x)n−i

+ nμ
({0})1i=1 + nμ

({1})1i=n−1

}
,

(1.8)

where

αn =
∫
(0,1)

μ(dx)
(
1− xn − (1− x)n

)+ nμ
({0,1}).

Remark 1.4.12. If μ has a density f w.r.t. Lebesgue measure, then we are left
with the interval splitting models of Aldous. The terms due to atoms at 0 and 1 cor-
respond to single labels being taken away from the rest, a phenomenon called ero-
sion. The theorem states that the only Markov branching models that are sampling-
consistent combine interval splitting with erosion. In the case of pure erosion (i.e.,
when μ charges only {0,1}), all trees are caterpillar trees a.s.

Remark 1.4.13. A more general version of the previous statement (i.e., not re-
stricted to binary trees) is shown in Haas et al. (2008) by identifying the splitting
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rules with the transitions of a general fragmentation process (Bertoin (2006)). This
also allows the authors to study scaling limits of these random tree shapes. In
particular, when β ∈ (−2,−1), the trees with n tips generated by the β-splitting
branching model, converge as n→∞ when their edges are given properly scaled
lengths, to some closed set called real tree (weakly in the Gromov–Hausdorff
topology, see next section).

Proof of Theorem 1.4.11. Assume that (Pn) form a Markov branching model,
by definition exchangeable, and by assumption sampling consistent. Let 1 ≤ i ≤
n≤m. Consider the tree generated by Pm and let σn,m be the most recent common
ancestor (mrca, i.e., the ancestor with maximal distance to the root) of all its tips
carrying a label in {1, . . . , n}, let τn,m denote the descending subtree of σn,m, and
write τn,m = τ ′n,m ⊕ τ ′′n,m (each subtree being equally likely to be chosen as τ ′n,m).
Now let Jn,m (resp. J ′n,m, J ′′n,m) denote the set of labels carried by the tips of τn,m

(resp. τ ′n,m, τ ′′n,m). By construction, {1, . . . , n} is entirely contained in Jn,m, and
intersects both J ′n,m and J ′′n,m, which form a partition of Jn,m.

Next, by sampling consistency, the triple (Jn,m+1, J
′
n,m+1, J

′′
n,m+1) restricted to

{1, . . . ,m} has the same law as (Jn,m, J ′n,m, J ′′n,m). By Kolmogorov’s extension
theorem, all these triples can be coupled on a same probability space, that is, there
exists a random triple (Jn, J

′
n, J

′′
n ) of random subsets of N, such that Jn contains

{1, . . . , n}, (J ′n, J ′′n ) form a partition of Jn, both intersect {1, . . . , n}, and the re-
striction of (Jn, J

′
n, J

′′
n ) to {1, . . . ,m} has the same law as (Jn,m, J ′n,m, J ′′n,m).

From here on, we denote {1, . . . , n} by [n]. We define In as the set (Jn \[n])−n,
that is

In := sn
(
Jn ∩ {n+ 1, n+ 2, . . .}),

where sn(x)= x − n. We define similarly I ′n and I ′′n . Now the triple (In, I
′
n, I

′′
n ) is

exchangeable, so by de Finetti’s theorem, they all have an asymptotic frequency,
say Yn,Y

′
n and Y ′′n , respectively. Note that conditional on Yn = y, the random vari-

ables (1{k∈In})k are i.i.d. Bernoulli random variables with parameter y. In partic-
ular, In is empty iff Yn = 0 and if Yn 
= 0, In is infinite with positive asymptotic
frequency Yn.

Let us prove that P(In =∅)= 0 so that Yn > 0 a.s. Set pn,m := P(Jn,m = [n]).
In particular, p2,m is the probability that in the tree Tm, the tips labelled 1 and 2
form a cherry. Then by exchangeability,

1≥ P( the tip labelled 1 belongs to a cherry in Tm)= (m− 1)p2,m,

so that p2,m vanishes as m→∞. This shows that

P(I2 =∅)= P
(
J2 = [2])= lim

m→∞p2,m = 0.

Following the preceding discussion, I2 is a.s. infinite. Now it can be seen that τ2,m

is a subtree of τn,m, so that J2,m ⊆ Jn,m. As a consequence, #J2 is stochastically
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smaller than #Jn, which shows that Jn (and hence In) is infinite a.s. We have
proved that Yn > 0 a.s.

Now let X′n (resp. X′′n) be the asymptotic fraction of I ′n (resp. I ′′n ) in In, that is

X′n := lim
k→∞

#I ′n ∩ [k]
#In ∩ [k] =

Y ′n
Yn

and X′′n := lim
k→∞

#I ′′n ∩ [k]
#In ∩ [k] =

Y ′′n
Yn

.

Note that X′n +X′′n = 1. Since X′n and X′′n have the same law, we can record that
X′n and 1−X′n have the same law. The Markov property of the branching model
and the exchangeability imply that X′n is independent of In and in particular of Yn.
In addition, conditional on Jn and X′n, the indicator variables (1{ai∈I ′n}), where ai

is the ith element of In, are independent copies of a Bernoulli r.v. with success
parameter X′n.

From now on, we write K ′
n := J ′n ∩ [n] and K ′′

n = J ′′n ∩ [n], so that K ′
n ∪K ′′

n =[n]. Let A be a fixed subset of [n] such that 1 ∈ A but 2 /∈ A. Now observe that
on the event K ′

n = A, the triple (J2, J
′
2, J

′′
2 ) is either equal to (Jn, J

′
n, J

′′
n ) or to

(Jn, J
′′
n , J ′n) with probabilities equal to 1/2. So for any x ∈ (0,1), writing Ac for

[n] \A,

P
(
X′n ∈ dx,K ′

n =A
)= 1

2
P
(
X′2 ∈ dx, J ′2 ∩ [n] =A,J ′′2 ∩ [n] =Ac).

Now recall that J2 is independent of X′2 and conditional on J2 and X′2 = x, the
indicator variables (1{ai∈I ′2}), where ai is the ith element of J2, are independent
copies of a Bernoulli r.v. with success parameter x. So we get

P
(
X′2 ∈ dx, J ′2 ∩ [n] =A,J ′′2 ∩ [n] =Ac)
= P

([n] ⊂ J2
)
P
(
X′2 ∈ dx

)
P
(
J ′2 ∩ [n] =A,J ′′2 ∩ [n] =Ac|[n] ⊂ J2,X

′
2 = x

)
= P

([n] ⊂ J2
)
P
(
X′2 ∈ dx

)
xi−1(1− x)n−i−1,

where we let i denote the cardinality of A. We can rewrite the next-before-last
equality as

P
(
X′n ∈ dx,K ′

n =A
)= 1

2
P
([n] ⊂ J2

)
P
(
X′2 ∈ dx

)
xi−1(1− x)n−i−1.

Summing all these equalities over all possible A’s with cardinality 1≤ i ≤ n− 1,
gives

P
(
X′n ∈ dx,#K ′

n = i,1 ∈K ′
n,2 /∈K ′

n

)
= 1

2

(
n− 2

i − 1

)
P
([n] ⊂ J2

)
P
(
X′2 ∈ dx

)
xi−1(1− x)n−i−1.

By exchangeability again, the left-hand side equals

P
(
X′n ∈ dx,#K ′

n = i,1 ∈K ′
n,2 /∈K ′

n

)= P
(
X′n ∈ dx,#K ′

n = i
) i(n− i)

n(n− 1)
,
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so that

P
(
X′n ∈ dx,#K ′

n = i
)=

(
n

i

)
P
([n] ⊂ J2

)P(X′2 ∈ dx)

2x(1− x)
xi(1− x)n−i .

Now let us treat the case when X′n = 0, that is I ′n is empty and J ′n is reduced to a
singleton. By exactly the same reasoning as above,

P
(
X′n = 0, J ′n = {1}

)= 1

2
P
([n] ⊂ J2

)
P
(
X′2 = 0

)
,

so again by exchangeability

P
(
X′n = 0,#K ′

n = 1
)= n

2
P
([n] ⊂ J2

)
P
(
X′2 = 0

)
.

Reasoning symmetrically with X′′n , we finally get for all x ∈ [0,1] and i ∈ [n− 1],
P
(
X′n ∈ dx,#K ′

n = i
)

= P
([n] ⊂ J2

)(n

i

)(
xi(1− x)n−i1x∈(0,1) + 1(x,i)=(0,1) or (1,n−1)

)
μ(dx),

where μ is the positive measure on [0,1] defined by

μ(dx) := 1

2x(1− x)
P
(
X′2 ∈ dx

)
1x∈(0,1)

+ 1

2
P
(
X′2 = 0

)
δ0(dx)+ 1

2
P
(
X′2 = 1

)
δ1(dx).

Summing on i ∈ [n− 1] yields

P
(
X′n ∈ dx

)= P
([n] ⊂ J2

)((
1− xn − (1− x)n

)
1x∈(0,1) + n1x∈{0,1}

)
μ(dx).

Integrating w.r.t. x, we have

P
([n] ⊂ J2

)= (∫
x∈(0,1)

(
1− xn − (1− x)n

)
μ(dx)+ nμ

({0,1}))−1

=: 1

αn

,

so that

P
(
X′n ∈ dx,#K ′

n = i
)

= α−1
n

((
n

i

)
xi(1− x)n−i1x∈(0,1) + 1(x,i)=(0,1) or (1,n−1)

)
μ(dx).

Integrating w.r.t. x gives the result, because qn(i)= P(#K ′
n = i). �
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2 Real trees

Textbooks and surveys available on the topic of this section include: Duquesne and
Le Gall (2002), Evans (2008) and Le Gall (2005).

2.1 Preliminaries

2.1.1 Scaling limits. As seen in the previous section, it is tempting to investigate
the limiting behaviour of some marginals of our random tree shapes with n tips, as
n→∞. Typically interesting marginals include the maximal leaf height (the gen-
eration at which the population becomes extinct), the maximal width (the maximal
population size), the coalescence time (number of generations back to the most
common recent ancestor of a given subpopulation). There are also higher dimen-
sional, natural marginals like the leaf-height process (the sequence of heights of
tip i, i = 1, . . . , n, for some plane embedding of the tree), or the width process (the
process counting the number of individuals at each successive generation).

If for the same proper rescaling several of these marginals converge in distri-
bution, it is relevant to ask whether the trees themselves converge in some sense
to some continuous object. Such a limit theorem would have several important
implications.

First, if our marginals of interest can be obtained from the tree by a continuous
mapping, then by the continuous mapping theorem, they should converge to the
image of the limiting object by the same mapping (in practice however, it can be
easier to prove the convergence directly than to prove the mapping’s continuity. . . ).

Second, some difficult computations in the finite case can be smoothened out in
the limiting case, just as solving differential equations can be simpler than solving
difference equations. The limit theorem already provides the scaling, now compu-
tations can provide the constant in front of the scaling. For example, the maximal
distance achieved by a random walker in n time units scales like

√
n thanks to

Donsker’s theorem, and when rescaled by
√

n, it converges in distribution to the
maximum of the reflected Brownian motion on [0,1].

Third, exactly as in the case of Donsker’s theorem, we could hope that the limit
theorem is an invariance principle, in the sense that the law of the limiting object
is the same for a wide class of converging random sequences. In practice, this has
the very important consequence that the patterns predicted by the model do not
depend on the details of the model.

It is beyond the scope of these notes to give more details about limit theorems
for random trees, see Le Gall and Miermont (2012) or Haas (2016). In this section,
we want to directly pounce to the continuous objects, only mentioning in passing
how they arise as limits of discrete objects. We end this section recalling some
well-known definitions in this area. We will then introduce the general framework
of real trees and explain how they can be usefully coded by a real function called
the (jumping) contour process.
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2.1.2 Local time. If A is a closed subset of [0,∞), a local time associated to A

is a nondecreasing mapping L : [0,∞)→ [0,∞) such that L(0) = 0 and whose
points of increase coincide with A. If A is discrete, L can be defined simply, for
example as the counting process Lt = #[0, t]∩A. If A is not discrete, the counting
process will blow up at the first accumulation point of A, so a different strategy is
needed.

Assume that A is perfect, that is, it has empty interior and no isolated point.
For any compact interval, say [0,M], we can construct a continuous mapping L :
[0,M]→ [0,1] such that L(0)= 0, L(M)= 1 and for any 0≤ s < t ≤M

Lt > Ls ⇔ (s, t)∩A 
=∅.

The construction is recursive, exactly as for the Cantor–Lebesgue function, also
called “devil’s staircase”. The reader who already knows this construction may
skip the next paragraph.

First, recall that the open set B := (0,M) \ A can be written as a countable
union of open intervals, say (In)n≥1. Note that for any ε > 0, there can be only
finitely many of these intervals which have length larger than ε. Therefore, we can
assume that the intervals (In) are ranked by decreasing order of their lengths (in
case of equality, in their order of appearance, say). Finally for each n ≥ 1, write
In = (gn, dn).

We are going to construct recursively, for each n ≥ 1, a continuous mapping
Ln : [0,M] → [0,1] which is piecewise affine and constant exactly on

⋃n
k=1 Ik .

First, L1 is the function equal to 1/2 on I1, affine on [0, g1] and on [d1,1], such
that L1(0) = 0 and L1(M) = 1. Now assume that we are given a continuous
function Ln : [0,M] → [0,1] which is piecewise affine and constant exactly on⋃n

k=1 Ik . Writing d0 = 0 and g0 = 1, there is a unique pair 0≤ k, j ≤ n such that
dj < gn+1 < dn+1 < gk minimizing gk − dj . Then we can define Ln+1 as the con-
tinuous function equal to Ln outside (dk, gj ), constant to 1

2(Ln(gj )+Ln(dk)) on
[gn+1, dn+1], affine on [dj , gn+1] and on [dn+1, gk]. It is easy to see that Ln+1

satisfies the announced properties.
Now for any p ∈ N, let Dp denote the set of dyadic numbers of (0,1)

whose dyadic expansion has length smaller than p, that is, Dp = {x ∈ (0,1) :
∃(x1, . . . , xp) ∈ {0,1} : x =∑p

k=1 xk2−k}. Also for n ∈ N, let Jn denote the set
of values taken by Ln on its constancy intervals. Because A has no isolated point,
for each p ≥ 1 there is an integer N such that for all n≥N , Dp ⊂Jn, so that for
any n′ ≥N , ‖Ln −Ln′‖ ≤ 2−p , where ‖ · ‖ is the supremum norm on [0,1]. This
shows that (Ln) is a Cauchy sequence for the supremum norm, and so converges
uniformly on [0,1] to a continuous function L. It is not difficult to see, using the
stationarity of (Ln) on B , that L increases exactly on A.

In probability theory, local times are most often used to “count” the visits to a
point or set by a stochastic process, for example, the visit times of zero by Brow-
nian motion. In this case, there are alternative ways of constructing the local time
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which ensure that it is at the same time adapted and unique up to a multiplicative
constant. This contrasts with the recursive construction given above, where the
local time is measurable, but is certainly neither adapted nor unique.

In the case of the standard Brownian motion B (but also of many other Markov
processes or semi-martingales), there exist several possible such constructions. For
example, if Nε(t) denotes the number of positive excursions of B with height
larger than ε, then a.s. for all t , 2εNε(t) converges as ε ↓ 0 to L0

t , which is a local
time at 0 for B . Also,

L0
t = lim

ε↓0

1

2ε

∫ t

0
1|Bs |<ε ds,

where the limit again holds a.s. for all t . Even more interestingly, the local times
of B at all levels (not only 0) can be simultaneously constructed in a consistent
manner. Namely, let νt denote the so-called occupation measure of B , that is for
any non-negative Borel function f∫

R

f dνt =
∫ t

0
f (Bs) ds.

Then a.s. for all t , νt has a density (La
t ;a ∈ R) w.r.t. Lebesgue measure. In ad-

dition, the doubly indexed process (La
t ;a ∈ R) is bicontinuous and for each a,

(La
t ; t ≥ 0) is a local time for B at level a.
Not the least utility of an adapted local time L (at 0 say) for a stochastic process

X, is that it provides a way of indexing the excursions of X away from 0 in their
order of appearance. Indeed, if J denotes the inverse J of L, then to each jump

Js of J corresponds an excursion of X away from 0 with length 
Js , say es .
In particular, if X is a strong Markov process, ((s,
Js); s ≥ 0) are the atoms of
a Poisson point process in [0,∞)2. Furthermore, ((s, es); s ≥ 0) are the atoms of
a Poisson point process in [0,∞)× E , where E is the space of paths with finite
lifetime V visiting 0 at most at 0 and at V . The intensity measure of this Poisson
point process is called Itô’s excursion measure and is the analogue to the common
probability distribution of excursions when the visit times of 0 by X form a discrete
set.

2.2 Definitions and examples

2.2.1 The real tree.

Definition 2.2.1. A real tree, or R-tree, is a complete metric space (t, d) satisfy-
ing:

(A) Uniqueness of geodesics. For any x, y ∈ t, there is a unique isometric map
φx,y : [0, d(x, y)]→ t such that φx,y(0)= 0 and φx,y(d(x, y))= y.

The geodesic φx,y([0, d(x, y)]), also called arc, is denoted �x, y�.
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(B) No loop. For any continuous, injective map ψ : [0,1] → t, ψ([0,1]) =
�ψ(0),ψ(1)�.

The root of an R-tree t is a distinguished element of t denoted ρ.

Theorem 2.2.2 (Four points condition). The metric space (t, d) is a real tree if
it is complete, path-connected and satisfies for any x1, x2, x3, x4 ∈ t

d(x1, x2)+ d(x3, x4)≤max
[
d(x1, x3)+ d(x2, x4), d(x1, x4)+ d(x2, x3)

]
.

For references on real trees and the paternity of the last theorem, see Dress,
Moulton and Terhalle (1996) and Duquesne (2006), page 2.

Definition 2.2.3. For any x ∈ t, the multiplicity, or degree of x denotes the number
of connected components of t \ {x}.
• m(x)= 1 : x is called a leaf.
• m(x)= 2 : x is an internal vertex.
• m(x)≥ 3 : x is a branching point.

The set of leaves of t is denoted Lf(t) and the set of branching points Br(t). The
skeleton of t is Sk(t) := t \ Lf(t).

Exercise 2.2.4. Prove that for any sequence (xn) dense in the R-tree t,

Sk(t)=⋃
n

�ρ,xn�.

From now on, we will assume that t denotes a binary R-tree, that is, m(x)≤ 3 for
all x ∈ t. We will also assume that m(ρ)= 1. We will further need the following
notation and terminology.

• Mrca. For any x, y ∈ t the most recent common ancestor (in short mrca) of x

and y, denoted x ∧ y, is the unique z ∈ t such that �ρ,x�∩ �ρ,y� = �ρ, z�.
• Partial order. For any x, y ∈ t, y is said to descend from x, and then x is called

an ancestor of y if x ∈ �ρ,y�, and this is denoted x � y.
• Lebesgue measure. Whenever t is locally compact, there is a unique measure �

on the Borel σ -field of t, called Lebesgue measure or length measure, such that
for any x, y ∈ t, �(�x, y�)= d(x, y) (see Section 4.3.5 in Evans (2008)).

• Orientation. For any x ∈ Br(t), t \ {x} has 3 connected components: the one
containing ρ and two others, which are assumed to be labelled as the left subtree
Lx and the right subtree Rx .

2.2.2 First constructive example: Connecting segments. Fix some infinite-
dimensional, complete vector space X and let (γn) be a linearly independent,
countable family of X . Then construct a real tree by recursively connecting seg-
ments as follows.
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1. Start with a segment colinear to γ1.
2. Given a set consisting of the first n segments properly connected, draw a uni-

form point (according to Lebesgue measure) in this set and glue one of the
extremities of a segment colinear to γn+1 to this point.

3. When all segments are connected, take the closure t of the resulting set.

The (random) set t is obviously path connected and satisfies the four points con-
dition. So it is a real tree iff it is complete, which holds iff the sequence (‖γn‖)
vanishes (see Evans (2008), Lemma 4.33). In this case t is even compact.

2.2.3 Second constructive example: Chronological trees. We start with a well-
known coding of discrete, rooted (plane) trees, sometimes denoted UHN, for
Ulam–Harris–Neveu.

Definition 2.2.5. A (rooted) discrete tree T is a subset of U := ⋃
n∈Z+ N

n (fi-
nite words), with the convention N

0 = {∅}, whose elements are called vertices,
satisfying

(i) ∅ ∈ T ,
(ii) if v = uj ∈ T , then u ∈ T ,

(iii) for any u ∈ T , there is Ku ∈ Z+ ∪ {+∞} such that

uj ∈ T ⇔ 1≤ j < Ku.

The vertex ∅ is called the root of T .

Let us give some further terminology and notation.

• Edge. An edge is any (non-ordered) pair {u,uj} such that u ∈ T , uj ∈ T .
• Partial order. The vertex v is said to descend from u, and then u is called an

ancestor of v if there is a finite word w such that v = uw, and this is denoted
u� v.

• Generation. The number of letters in the word u is called its length, or genera-
tion, and denoted |u|.

• Ancestor. The ancestor of u at generation k is denoted u|k.
• Mrca. The most common recent ancestor (mrca) of u and v is

u∧ v := arg max
w∈T

{|w| :w � u,w � v
}
.

• Distance. The graph distance d in T can be written as

d(u, v)= |u| + |v| − 2|u∧ v|, u, v ∈ T .

• Boundary. We denote by ∂T the boundary of T defined as

∂T := {
u ∈N

N : ∀n ∈N, u|n ∈ T
}
.
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Definition 2.2.6. Let T be a discrete, rooted tree. Assume that each vertex
u ∈ T is endowed with a date of birth α(u) ∈ [0,+∞), a date of death ω(u) ∈
(α(u),+∞] and a lifetime duration ζ(u) := ω(u)− α(u), satisfying

(i) α(∅)= 0,
(ii) for any u ∈ T , for any j ∈N,

uj ∈ T ⇒ α(u) < α(uj)≤ ω(u),

(iii) for any u ∈ ∂T ,

α(u) := lim
n↑∞ ↑ α(u|n) <∞ ⇒ lim

n→∞ ζ(u|n)= 0.

Then we can define the chronological tree t as the subset of U := U × [0,∞]
defined by

t := ⋃
u∈T
{u} × (

α(u),ω(u)
]∪ ⋃

u∈∂T :α(u)<∞
{u} × {

α(u)
}
.

The chronological tree is naturally rooted at ρ := (∅,0). If in addition

α(ui) 
= α(uj), u ∈ T , i 
= j,

then the tree T is said binary.

We will further need the following notation and terminology. We use (here only)
the notation p2 :U→[0,∞] for the canonical projection p2((u, t))= t .

• Partial order. The point y = (v, t) ∈ t is said to descend from x = (u, s) ∈ t, and
then x is called an ancestor of y, if either u= v and s ≤ t , or u 
= v, u� v and
s ≤ α(v). This is denoted x � y.

• Mrca. The most common recent ancestor of x ∈ t and y ∈ t is

x ∧ y := arg max
z∈t

{
p2(z) : z� x, z� y

}
.

• Distance. We still denote by d the graph distance in t, defined by

d(x, y)= p2(x)+ p2(y)− 2p2(x ∧ y), x, y ∈ t.

Exercise 2.2.7. Prove the following statement.

Theorem 2.2.8. The metric space (t, d) is a locally compact R-tree.

Exercise 2.2.9. Check that the notions of partial order and mrca in the chrono-
logical tree t coincide with the corresponding notions in R-trees. Characterize the
leaves and branching points of t.
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�

x �

�

�

y

z

Figure 4 A binary chronological tree, where edges are vertical, time flows upward, dashed lines
represent filiation and daughters sprout to the right of their mother, conferring a natural orientation
to the tree. The three points x, y, z satisfy y � x and x ≤ y ≤ z.

Remark 2.2.10. For chronological trees represented in the plane with vertical
edges, there is a natural orientation stemming from the rule that “daughters sprout
to the right of their mother” (see Figure 4 and see Lambert (2010) for a rigorous
definition). We will always assume that chronological trees are endowed with this
specific orientation.

2.3 The contour process

2.3.1 From the R-tree to its contour process. Let t be a binary, oriented R-tree.

Definition 2.3.1. The relation ≤ on t is defined as follows. For any x, y ∈ t,

x � y ⇒ y ≤ x,

otherwise x ∧ y ∈ Br(t) and{
x ∈ Lx∧y ⇒ x ≤ y,

x ∈Rx∧y ⇒ y ≤ x.

Exercise 2.3.2. Prove that ≤ is a total order on t, that ρ =max t, and find min t
on the example shown in Figure 4.

Exercise 2.3.3. Prove that for any x ∈ t,

π(x) := {y ∈ t : y ≤ x}
is a Borel set.
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Now we assume that we are given a finite measure μ on the Borel σ -field of t,
called mass measure, satisfying

Mes 1 for any x ≤ y ∈ t,

x 
= y ⇒ μ
(
π(x)

)
< μ

(
π(y)

)
.

Mes 2 μ is diffuse (no atom).

Remark 2.3.4. Whenever �(t) <∞, the length measure � is a natural example of
finite measure which satisfies both Mes 1 and Mes 2.

Now define ϕ : (t,≤,μ)→ ([0,μ(t)],≤,Leb) by

ϕ(x) := μ
(
π(x)

)
, x ∈ t,

which always makes sense, since π(x) is a Borel set of t. It is clear that ϕ is one-
to-one (by Mes 1), preserves the order and the measure. But it is not clear whether
it is onto.

Exercise 2.3.5. Display an example of a real tree that has no minimal element,
and so for which 0 /∈ ϕ(t).

Lemma 2.3.6. The set D := ϕ(t) is dense in [0,μ(t)].
Proof. Let t ∈ (0,μ(t)). Set Gt := {x ∈ t : ϕ(x) < t} and Dt := {y ∈ t : ϕ(y) ≥
t}. Also set st := sup{ϕ(x) : x ∈Gt } and it := inf{ϕ(y) : y ∈Dt }, so that in partic-
ular st ≤ t ≤ it .

First notice that for any x ∈Gt , π(x)⊂Gt , so that Gt is necessarily of the form
π(x) or π(x) \ {x}, which yields μ(Gt)= st .

Now by definition of it , there is some ≤-decreasing sequence (yn) of elements
of Dt such that limn ↓ ϕ(yn)= it . Since (yn) is decreasing, the sequence π(yn) is
also decreasing, let L denote its limit. If there were two elements in L \Gt , say
z1 < z2, we would have t ≤ ϕ(z1) < ϕ(z2)≤ it by Mes 1. Now this contradicts the
definition of it , since L \Gt ⊂ Dt , so L \Gt contains at most one element. By
Mes 2, this shows that μ(L)= μ(Gt). Now recall that μ(Gt)= st , so that

it = lim
n
↓ ϕ(yn)= lim

n
↓ μ

(
π(yn)

)= μ(L)= μ(Gt)= st ,

which shows that it = st = t . �

In light of the previous lemma, we can define φ : [0,μ(t)]→ t as

φ(t) := lim
s↓t,s∈D

ϕ−1(s),

which we call the exploration process. The existence and the uniqueness of this
limit come from the fact that all monotonic sequences of t do converge (see
Lambert and Uribe Bravo (2016b)). Of course, φ does not preserve the order any
longer.
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Figure 5 A chronological tree (a) and (b) the jumping contour process of its truncation below T ,
where μ is chosen equal to �.

Theorem 2.3.7 (Lambert and Uribe Bravo (2016b)). The exploration process is
the only càdlàg extension to ϕ−1. The mapping h : [0,μ(t)] → [0,∞) defined by
h(s) := d(ρ,φ(s)) is called the jumping contour process of t. It is càdlàg and has
no negative jumps.

Figure 5 shows an example of a real tree and of the jumping contour process
of its truncation below T , when μ is chosen equal to �. Figure 6 shows how to
recover a chronological tree from its contour.

2.3.2 From the contour to the tree. Let h : [0,∞)→ [0,∞) be càdlàg with no
negative jumps and compact support. Set σh := sup{t > 0 : h(t) 
= 0}, as well as

mh(s, t) := inf[s∧t,s∨t]h, s, t ≥ 0,

and

dh(s, t) := h(s)+ h(t)− 2mh(s, t).
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Figure 6 The jumping contour process of a chronological tree with finite length, where μ is chosen
equal to �: how to recover the tree from the contour. (1) Start with a càdlàg map with compact
support; (2) Draw vertical solid lines in the place of jumps; (3) Report horizontal dashed lines from
each edge bottom left to the rightmost solid point; (4) Erase diagonal lines.

It is clear that dh is a pseudo-distance on [0,∞). Further let ∼h denote the equiv-
alence relation on [0,∞)

s ∼h t ⇔ dh(s, t)= 0 ⇔ h(s)= h(t)=mh(s, t).

Theorem 2.3.8. Denote by th the quotient space [0, σh]|∼h
. Then (th, dh) is a

compact R-tree.

Exercise 2.3.9. Prove the last statement using the four points condition.

From now on, let ph : [0, σh]→ th map any element of [0, σh] to its equivalence
class relative to ∼h. We can also endow th with a total order and a mass measure,
as follows.

• Total order. We define ≤h as the order of first visits, that is for any x, y ∈ th,

x ≤h y ⇔ infp−1
h

({x})≤ infp−1
h

({y}).
• Mass measure. The measure μh is defined as the push forward of Lebesgue

measure by ph.

Theorem 2.3.10 (Duquesne (2006), Lambert and Uribe Bravo (2016b)). Let
(t, d) be a compact, binary R-tree endowed with an orientation inducing a total
order ≤ (as in Definition 2.3.1) and with a (finite) mass measure μ (satisfying
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Mes 1 and Mes 2). Let h denote the jumping contour process associated with
≤ and μ. Then h is the unique càdlàg map such that the tree (th, dh,≤h,μh) is
isomorphic to (t, d,≤,μ).

2.3.3 A few words on topology. Real trees are metric spaces. The “space” of real
trees only makes sense if one can imbed all trees into the same metric space, say
(X , δ), and if two compact real trees, seen as closed subsets of X , are identified
when there is a root-preserving isometry mapping one tree onto the other.

Rigorously, the space of real trees is then the set of isometry classes of trees
which are closed subsets of X , and it can then be endowed with the usual Hausdorff
metric δH associated with δ (i.e., δH(F1,F2) is the smallest ε such that the ε-
enlargement of Fi is contained in Fj , i 
= j ), called on this occasion the Gromov–
Hausdorff distance and denoted dGH, see, for example, Burago, Burago and Ivanov
(2001) and Paulin (1989).

In other words, this distance is defined for any two R-trees t1 and t2 as

dGH(t1, t2)= inf
fi :ti→X

δH
(
f1(t1), f2(t2)

)∨ δ
(
f1(ρ1), f2(ρ2)

)
,

where the infimum is taken over all isometries imbedding t1 and t2 into X .

Theorem 2.3.11 (Evans, Pitman and Winter (2005)). The Gromov–Hausdorff
distance makes the space of compact real trees a complete, separable space.

Actually, one can avoid resorting to the abstract space X and directly deal with
correspondences between t1 and t2.

Definition 2.3.12. A correspondence between (t1, d1) and (t2, d2) is a subset R
of t1 × t2 such that

∀x1 ∈ t1 ∃x2 ∈ t2 (x1, x2) ∈R,

∀y2 ∈ t2 ∃y1 ∈ t1 (y1, y2) ∈R.

The distortion dis(R) of the correspondence R is defined as

dis(R)= sup
{∣∣d1(x1, y1)− d2(x2, y2)

∣∣ : (x1, x2) ∈R, (y1, y2) ∈R
}
.

Then we have the following useful equality (Burago, Burago and Ivanov (2001))

dGH(t1, t2)= 1

2
inf
R

dis(R),

where the infimum is taken over all distortions R between t1 and t2. This equality
has the following consequence (which is a slight improvement of Lemma 2.4 in
Le Gall (2005)).
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Proposition 2.3.13. Let h1, h2 :R+→R+ be two càdlàg functions with compact
support, and let t1 := th1 and t2 := th2 denote the real trees associated with h1
and h2, respectively. Then

dGH(t1, t2)≤ 2dS(h1, h2),

where dS denotes the Skorokhod distance.

Remark 2.3.14. A very important consequence of this proposition is that when-
ever a sequence (Xn) of càdlàg, non-negative stochastic processes with compact
support converges weakly in Skorokhod space to X, the trees coded by Xn con-
verge weakly in the Gromov–Hausdorff sense to the tree coded by X.

Also note that the separability of the Gromov–Hausdorff tree space stems from
the separability of the Skorokhod space, thanks again to the last statement.

Proof of Proposition 2.3.13. Let ε > 0 and let λ be a perturbation such that ‖h1 ◦
λ− h2‖ ≤ dS(h1, h2)+ ε, where ‖ · ‖ denotes the supremum norm. Then let R be
the correspondence defined by

R = {
(x1, x2) ∈ t1 × t2 : ∃t ≥ 0,ph1

(
λ(t)

)= x1,ph2(t)= x2
}
.

Then for any (x1, x2) ∈R and (y1, y2) ∈R, there are s, t ≥ 0 such that

x1 = ph1

(
λ(s)

)
, x2 = ph2(s) and y1 = ph1

(
λ(t)

)
, y2 = ph2(t).

Now

d1(x1, y1)= h1
(
λ(s)

)+ h1
(
λ(t)

)− 2mh1

(
λ(s), λ(t)

)
and

d2(x2, y2)= h2(s)+ h2(t)− 2mh2(s, t),

so that ∣∣d1(x1, y1)− d2(x2, y2)
∣∣

≤ |h1 ◦ λ− h2|(s)+ |h1 ◦ λ− h2|(t)+ 2
∣∣∣ inf[s,t]h1 ◦ λ− inf[s,t]h2

∣∣∣
≤ 4‖h1 ◦ λ− h2‖.

Then by definition of the distortion, dis(R) ≤ 4‖h1 ◦ λ − h2‖, so the inequality
stated before the proposition yields

dGH(t1, t2)= 1

2
inf
R

dis(R)≤ 2‖h1 ◦ λ− h2‖ ≤ 2dS(h1, h2)+ 2ε,

which yields the result. Note that we have not needed to control the difference
between λ and the identity. �
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2.4 Random R-trees

2.4.1 Splitting trees. Splitting trees (Geiger (1996), Geiger and Kersting (1997),
Lambert (2010)) are random chronological trees satisfying the branching prop-
erty. More specifically, let � be a positive measure on (0,∞], called the lifespan
measure, such that

∫
(0,∞](r ∧ 1)�(dr) <∞. A splitting tree is a random chrono-

logical tree, where individuals live and reproduce independently and conditional
on the life span (α(u),ω(u)] of a given individual u, pairs of birth times and life-
times of the newborns of u form a Poisson point process on (α(u),ω(u)]× (0,∞]
with intensity Leb⊗�. If � is finite with mass b =�((0,∞]), then individuals
give birth at rate b to individuals with lifetime distribution b−1�.

Observe that the width process of a splitting tree is not necessarily Markovian.
When � is finite, it is a binary, homogeneous Crump–Mode–Jagers (CMJ) process,
and it is not Markovian unless the lifetime distribution is exponential (or a Dirac
mass at {∞} in the pure-birth case). For modeling purposes, note that splitting
trees with absolutely continuous lifetimes can equivalently be defined via a “death
rate” that can be age-dependent.

Remark 2.4.1. There are two branching processes hidden in a splitting tree other
than its width process. The first one is the process tracking the number of indi-
viduals alive at each given (discrete) generation, and the second one is the process
tracking the total sum of lifetimes of individuals of each given generation. Both are
Markovian branching processes in discrete time, the first one with integer values
(a Galton–Watson process), and the second one with non-negative real values (a
Jirina process). Note that the Jirina process can take finite values even when � is
not finite, which is not the case of the Galton–Watson process.

Recall that chronological trees are naturally endowed with the orientation asso-
ciated with the rule that “daughters sprout to the right of their mother”, so they are
given a natural order ≤ associated with this orientation.

In addition, thanks to our assumption on �, the length measure is a.s. locally
finite. So it is possible to use the length measure to define the exploration process
and the jumping contour process for the tree truncated under some fixed, finite
height. The law of the jumping contour process is particularly appealing in this
setting (see also Figure 6).

Theorem 2.4.2 (Lambert (2010)). Let Xt = Yt − t , where Y is the subordinator
with Lévy measure �. Conditional on the lifetime x of the root individual, the
jumping contour process of the splitting tree with lifespan measure � truncated
below height a is distributed like the process X started at x, reflected below a and
killed upon hitting 0.
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2.4.2 The continuum random tree. Recall how in Section 2.2.2 we have con-
structed a (random) real tree t by connecting together segments colinear to the
elements (γn) of a linearly independent family of a complete vector space X . To
define the Continuum Random Tree (CRT) discovered by Aldous (1991, 1993), we
need the lengths of the segments to be random (X = �1 in the original paper).

Definition 2.4.3. The CRT is the tree t obtained by connecting segments whose
lengths (‖γn‖) are distributed as the successive distances between consecutive
atoms of a Poisson point process on the half line with inhomogeneous intensity
t dt .

Theorem 2.4.4 (Aldous (1991, 1993), Le Gall (1993)). Let e stand for the nor-
malized Brownian excursion, i.e., the positive Brownian excursion conditioned to
have lifetime 1. The R-tree te coded by e is isometric in law to the CRT.

It is standard that the contour process (in some appropriate meaning) of a
Galton–Watson tree with finite offspring variance conditioned to have n vertices,
rescaled by a factor

√
n, converges weakly in the Skorokhod space to the normal-

ized excursion. The results of the last section then imply that the CRT is the scaling
limit in the Gromov–Hausdorff topology of conditioned Galton–Watson trees with
finite offspring variance (see, e.g., Aldous (1993) and Le Gall (1993)).

Also, since binary trees with n tips have 2n− 1 vertices, binary Galton–Watson
trees conditioned to have n tips, which follow P pda

n , converge to the tree coded by
the Brownian excursion with length normalized to 2.

This conditioning (on number of vertices or tips) can sometimes be awkward
in some practical situations since it is evanescent in the limit. It can be more con-
venient to consider a forest of n independent critical Galton–Watson trees, whose
contour process (in the same appropriate meaning) is the concatenation of n inde-
pendent contour processes (Le Gall (2005)). In the limit, we should get a contour
process which is the concatenation of a fixed amount of excursions. This fixed
amount is measured by the local time at 0 of this process.

Actually, the contour processes of Galton–Watson processes are not in general
Markovian (Duquesne and Le Gall (2002), Le Gall (2005)), so it will be more
convenient to display the same kind of result starting with splitting trees, whose
contour process is Markovian, thanks to Theorem 2.4.2. For the sake of generality,
we will also allow the trees to be subcritical (α > 0 in the following statement).

Let ζ > 0. Consider a forest of [Aζ ] i.i.d. splitting trees, where A > 0 is a
scaling parameter, characterized by a finite birth rate bA and a lifetime distribution
given by a random variable VA. We make three assumptions.

(H1) bAE(VA)= 1− α
A
+ o( 1

A
).

(H2) limA→∞
AE(V 2

A)

2E(VA)
= β > 0.

(H3) limA→∞AbAE(V 3
A ∧ 1)= 0.
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Remark 2.4.5. Note that if VA is exponentially distributed with parameter dA,
then the assumptions (H1)–(H3) hold as soon as dA =A/β = bA + α/β .

Theorem 2.4.6 (Lambert, Simatos and Zwart (2013)). Let XA denote the jump-
ing contour process of this forest and ZA

t denote the total number of individuals
alive at time t , rescaled by A. Then the pair (XA,ZA) converges weakly in Sko-
rokhod space.

First, the limit of the sequence (XA) is the process X −X killed when X hits
−ζ , where Xt = infs∈[0,t]Xs , and

Xt =−αt +
√

2βBt ,

where B is the standard Brownian motion started at 0. Second, the limit of (ZA)

is a diffusion process Z started at Z0 = ζ and solution to an SDE of the form

dZt =−α

β
Zt dt +

√
2Zt

β
dWt .

Note that −X is a local time at 0 for X − X, so the limiting contour process
X−X is indeed killed when its local time hits ζ .

The fact that the width processes ZA converge cannot be deduced from the
convergences of the contours XA, since the local time functional (mapping the
tree to its width process) is not continuous. In this direction, notice that the theorem
does not specify that Z is the local time process of X−X.

Last, the convergence in Skorokhod space of the contours ensures that the split-
ting trees themselves converge in the Gromov–Hausdorff sense to what we could
call Brownian tree, in a wider sense than the CRT (no normalization of the contour
excursion interval, possible subcriticality).

Remark 2.4.7. Actually, the previous theorem only holds if the lifetimes of the
[Aζ ] progenitors are (i.i.d. and) distributed as the forward recurrence time V �

A of
VA, otherwise the width process is not continuous at 0

P
(
V �

A ∈ dx
)= P(VA ≥ x)

E(VA)
dx, x > 0.

Note that V �
A is distributed like VA if (and only if) VA is exponentially distributed.

3 Reduced trees

For a real tree t and a fixed real number T > 0, the so-called reduced tree at height
T is the tree spanned by points at distance T from the root{

y ∈ t : ∃x ∈ t, y � x, d(ρ, x)= T
}
.
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It is usually called reconstructed tree in phylogenetics and coalescent tree in pop-
ulation genetics. Its topology can be understood from the topology of the sphere
of t with center ρ and radius T > 0

t{T } := {
x ∈ t : d(ρ, x)= T

}
,

which will thus be the focus of the present section.

3.1 The comb metric

Most of this section is taken from Lambert and Uribe Bravo (2016a).

3.1.1 Definition and examples. Let I be a compact interval and f : I →R+ such
that for any ε > 0, {f ≥ ε} is finite.

For any s, t ∈ I , define d̄f by

d̄f (s, t)= 2 sup
(s∧t,s∨t)

f.

It is clear that d̄f is a pseudo-distance on {f = 0} and that it is ultrametric, in the
sense that

d̄f (r, t)≤max
(
d̄f (r, s), d̄f (s, t)

)
, r, s, t ∈ I.

It is a distance on {f = 0} whenever {f 
= 0} is dense in I for the usual distance.
This may not be the case in general, so we need to consider İ the quotient space
{f = 0}|∼ where ∼ is the equivalence relation

s ∼ t ⇔ d̄f (s, t)= 0 ⇔ f = 0 on [s ∧ t, s ∨ t].
Definition 3.1.1. We call f a comb-like function or comb, and d̄f the comb metric
on İ .

Let us give the canonical example of a comb. Let t be an oriented R-tree with
finite length, total order ≤ and jumping contour process h associated (e.g.) with its
length measure (i.e., the mass measure μ is taken equal to the length measure �).
Let T > 0 such that the sphere

t{T } = {
x ∈ t : d(ρ, x)= T

}
has finite cardinality NT ≥ 2. Let x1 ≤ · · · ≤ xNT

denote its elements labelled in
the order ≤. Then for any 1 ≤ i < j ≤ NT , writing si := infp−1

h ({xi}) (each set
p−1

h ({x}) is actually a singleton in the case when the sphere is finite),

d(xi, xj )= h(si)+ h(sj )− 2 inf[si ,sj ]
h= 2

(
T − inf[si ,sj ]

h
)
= 2 max(hi, . . . , hj−1),

where

hi := T − inf[si ,si+1]
h.
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Figure 7 (a) A comb-like function with finite support on [0,1]. The distance between the black dot
and the grey dot is h′, whereas h is the distance from either of these dots to the white dot; (b) In
dashed lines, the ultrametric tree associated to the comb shown in (a).

In conclusion, the metric on t{T } is isomorphic to the comb metric d̄f on İ , where

I = [1,NT ] and f :=∑NT−1
i=1 hi1{i}. We will extend this description to all locally

compact R-trees in Section 3.1.2.
Figure 7 shows a comb and how an ultrametric tree can be embedded into it.

As in Figure 8 the same metric space can be represented by identifying points of
İ to their left-neighbour in I \ İ (or to their right-neighbour) and reporting the
distances accordingly.

Remark 3.1.2. The space (İ , d̄f ) is not complete in general. To make it complete,
one has to distinguish for each point t ∈ I between its left face (t, l) and its right
face (t, r). The distance d̄f is extended to the space I × {l, r} by the following
definitions for s < t ∈ I

d̄f

(
(s, r), (t, l)

)= 2 sup
(s,t)

f, d̄f

(
(s, l), (t, l)

)= 2 sup
[s,t)

f,

d̄f

(
(s, r), (t, r)

)= 2 sup
(s,t]

f, d̄f

(
(s, l), (t, r)

)= 2 sup
[s,t]

f,

and the symmetrized definitions for s > t . If s = t , the four last quantities are re-
spectively, defined as f (t), 0, 0, f (t). This extension of d̄f is a pseudo-distance
and it can be shown (Lambert and Uribe Bravo (2016a)) that the associated quo-
tient space Ī is a compact, ultrametric space called comb metric space. Actually
the converse is also true, as states the next theorem.
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Figure 8 (a) A comb with finite support, and the associated ultrametric tree in dashed lines; equiv-
alent representations of this ultrametric space can be obtained by reporting all tips of the comb to
the left (b) or to the right (c).

Theorem 3.1.3 (Lambert and Uribe Bravo (2016a)). Any compact ultrametric
space is isometric to a comb metric space.

3.1.2 Spheres of R-trees. Here, we consider a locally compact R-tree t and we
assume that the sphere

t{T } = {
x ∈ t : d(ρ, x)= T

}
is not empty. Note that by the four-points condition, for any x, y, z ∈ t{T },

T + d(x, z)= d(ρ, y)+ d(x, z)

≤max
[
d(ρ, x)+ d(y, z), d(ρ, z)+ d(y, x)

]
=max

[
T + d(y, z), T + d(y, x)

]
,

which yields d(x, z) ≤ max[d(y, z), d(y, x)], that is the metric induced by d on
t{T } is ultrametric.

Since t is locally compact, t{T } is a compact ultrametric space and Theo-
rem 3.1.3 ensures that provided it has no isolated point, it is isometric to a comb
metric space. There is actually an isometry between t{T } and a comb metric space
preserving the order on t{T } inherited from the order ≤ on t. Let h denote the
jumping contour process of the tree truncated at height T , which is the closed ball
with center ρ and radius T .

Exercise 3.1.4. Assume that t{T } has no isolated point. Prove that {h= T } has no
isolated point and empty interior. Also prove that t{T } has empty interior.
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Recall from the paragraph page 438 on local time, that since {h= T } is perfect,
we can construct a local time at level T for h, that is a nondecreasing, continuous
map LT : [0,∞)→[0,∞) such that LT (0)= 0 and for any s < t

LT
t > LT

s ⇔ (s, t)∩ {h= T } 
=∅.

Let I = [0,LT
σh
], and set

ṫ{T } :=
{
x ∈ t{T } : ∃(x+n ) ↑,

(
x−n

) ↓∈ t{T }, lim
n
↑ x+n = lim

n
↓ x−n = x

}
,

where the sequences in the previous definition are requested to be strictly mono-
tonic.

Theorem 3.1.5 (Lambert and Uribe Bravo (2016a)). Assume as previously
that t is a locally compact R-tree such that t{T } is not empty and has no iso-
lated point. Then there is a comb-like function f on I and two global isometries
θ̇ : (İ , d̄f )→ (ṫ{T }, d) and θ̄ : (Ī , d̄f )→ (t{T }, d) preserving the order and map-
ping the Lebesgue measure to the push forward μT of the measure dLT by ph.

3.2 Coalescent point processes

3.2.1 The reduced tree of splitting trees, of the Brownian tree. Consider a split-
ting tree t with lifespan measure � satisfying

∫
(0,∞](r ∧ 1)�(dr) <∞. We have

seen in the last section that t is an oriented R-tree naturally endowed with the
associated total order ≤, and that it has locally finite length. Taking the mass mea-
sure equal to the length measure �, the jumping contour process X of the tree t
truncated below T is well defined and thanks to Theorem 2.4.2, it has the law of
the process (Yt − t; t ≥ 0), where Y is the subordinator with Lévy measure �,
reflected below T and killed upon hitting 0.

So t falls into the category of canonical examples given after Definition 3.1.1
and conditional on NT ≥ 1 (where NT = #t{T }), it is isometric to the comb metric
space (İ , d̄f ), where I = [1,NT ] and f :=∑NT−1

i=1 Hi1{i}, with

Hi := T − inf[σi,σi+1]
X,

and σi is the ith visit of T by X.
Note that Px(NT 
= 0) = Px(τ

+
T < τ0), where the subscript x records the life-

time x of the progenitor, which is also the starting point of the contour process,
and τ+z (resp. τy) denotes the first hitting time by X of [z,+∞) (resp. of {y}).

Also note, thanks to the strong Markov property of X, that conditional on
NT ≥ 1, NT is geometric with failure probability PT (τ+T > τ0). Furthermore, con-
ditional on NT = n, the Hi ’s are n i.i.d. random variables, all distributed as the
depth of the excursion of X away from T conditioned to be smaller than T . It is
then elementary to get the following result.
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Figure 9 A coalescent point process (upside down compared to previous pictures of combs) with 6
nonzero values (the 7th one is the first one larger than T ). To recover an oriented ultrametric tree
with 7 tips, draw horizontal lines from each tip left to the rightmost vertical line.

Proposition 3.2.1. The sphere tT of the splitting tree t is non empty with proba-
bility Px(τ

+
T < τ0). Conditional on being non-empty, it is isometric to the random

comb
∑

i≥1 Hi1{i}, where the Hi’s form a sequence of i.i.d. random variables killed
at its first value larger than T , and whose common distribution is given by

P(H1 > t)= PT

(
τT−t < τ+T

)
. (3.1)

We say that t{T } is (isometric to) a coalescent point process (CPP).

Figure 9 shows a coalescent point process and how it codes for an ultrametric
tree. By extension, we make the following definition.

Definition 3.2.2. Let ν be a σ -finite measure on (0,∞) such that ν([ε,∞)) <

∞ for all ε > 0. Let M be a Poisson point process on (0,∞)2 with intensity
Leb⊗ ν and denote by (Si,Hi)i its atoms. Finally, let (D,H) denote the first (i.e.,
smallest in the first dimension) atom such that H > T . We will say that the random
comb metric space associated with the comb

∑
i:Si<D Hi1{Si} is a coalescent point

process with height T and intensity measure ν.

The term “coalescent point process” has first been coined in the setting of the
Brownian tree by Popovic (2004). Recall that we called Brownian tree the tree
coded by a positive Brownian excursion (CRT when the excursion length is nor-
malized).
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The Brownian excursion has a local time at level T , which allows one to con-
struct as in Theorem 3.1.5 the comb giving the metric of the reduced tree at level
T . This comb is a “list”, in the plane order, of the depths of excursions of the
contour away from T .

Theorem 3.2.3 (Popovic (2004), Aldous and Popovic (2005)). Conditional on
being non-empty, the sphere t{T } of the Brownian tree t is a coalescent point pro-
cess with height T and intensity measure ν, where ν is the push forward of the
Brownian excursion measure by the depth mapping, that is

ν0(dx)= dx

2x2 . (3.2)

More generally, as a follow up to Theorem 2.4.6, it can be shown that under
suitable scaling, the coalescent point processes of (sub)critical splitting trees con-
ditioned on reaching height T converge to the Poisson point process of excursion
depths of a Brownian motion (with negative drift).

More specifically, under the assumptions (H1)–(H3) of Theorem 2.4.6, if
HA

1 ,HA
2 , . . . denote the coalescence times of the splitting tree conditioned on

reaching height T , then the point processes
∑

i≥1 δ
( i
A

,HA
i )

converge as A→∞
to a CPP with height T and intensity measure ν, where

να

(
(x,∞)

)= α

1− e−αx/β
. (3.3)

Formulae (3.1), (3.2) and (3.3) can actually all be rephrased in terms of the scale
function W of the relevant contour process, as we will now see. We refer the reader
to Bertoin (1996) and Kyprianou (2006) for more information about what follows.

Recall that a Lévy process X with no negative jumps is characterized by the
Laplace transform of its one-dimensional marginals

E
(
exp(−λXt)

)= exp
(
tψ(λ)

)
, t, λ≥ 0,

where ψ is called the Laplace exponent of X. If Xt = Yt − t (where Y is the
subordinator with Lévy measure �), the Lévy–Khinchin formula gives

ψ(λ)= λ−
∫
(0,∞]

(
1− e−λr)�(dr), λ≥ 0.

If Xt =−αt +√2βBt , then ψ(λ)= αλ+ βλ2.
Notice that ψ(0)= 0, that ψ is convex and has at most one positive root, here

denoted η. Then there is a unique non-negative, increasing function W called the
scale function such that∫ ∞

0
W(x)e−λx dx = 1

ψ(λ)
, λ≥ η. (3.4)
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In the case when Xt =−αt+√2βBt , it is not difficult to compute W(x)= x/β

when α = 0 and when α 
= 0,

W(x)= 1− e−αx/β

α
, x ≥ 0. (3.5)

In general, one can prove (see Bertoin (1996)) that

W(x)= exp
{∫ x

0
N(sup > s)ds

}
, x ≥ 0,

where N is the excursion measure of X − X away from 0. When X has finite
variation, like when Xt = Yt − t , N is merely the birth rate b =�((0,∞)) times
the law of X started from a random jump with law b−1�.

In all cases, it is a consequence of the exponential formula for the Poisson point
process of excursions of X−X away from 0 that

Px

(
τ0 < τ+a

)= W(a − x)

W(a)
, 0≤ x ≤ a. (3.6)

In the cases with infinite variation, such as Brownian motion (with or without
drift), W(0)= 0 and

N(− inf > x)= 1

W(x)
, x ≥ 0, (3.7)

where N is the excursion measure of X away from 0, so that equations (3.2) and
(3.3) are a consequence of (3.5) and (3.7). In the case when Xt = Yt− t , W(0)= 1,
and we can be more accurate in equation (3.1) using equation (3.6)

P(H1 > t)= PT

(
τT−t < τ+T

)= 1

W(t)
,

where W can be identified inverting the Laplace transform (3.4).

Remark 3.2.4. In Lambert and Popovic (2013), we have expressed the distri-
bution of the coalescent point process of non binary branching trees, including
Galton–Watson processes and continuous-state branching processes. One of the
main difficulties is to cope with the existence of points with arbitrarily large de-
gree in the tree.

3.2.2 A more general class of models. In this section, we seek to investigate pop-
ulation processes which generate trees whose spheres are (isometric to) CPPs.

Consider a population where all individuals live and reproduce independently,
and each individual is endowed with a trait (some random character living in R for
simplicity) that evolves through time according to independent copies of the same,
possibly time-inhomogeneous, Markov process K with generator Lt = L(t, ·).
Further assume what follows.



Probabilistic models for the (sub)tree(s) of life 459

• This trait is non-heritable, in the sense that any individual born at time t draws
the value of her trait at birth from the same distribution νt , independently of her
mother’s history;

• All individuals give birth at the same, possibly time-inhomogeneous rate b(t);
• An individual holding trait x at time t dies at rate d(t, x).

Theorem 3.2.5 (Lambert and Stadler (2013)). Under the previously defined
population model, starting with one individual at time 0 and conditional on hav-
ing at least one alive individual at time T , the reduced genealogical tree at level
T is given by a coalescent point process with typical depth H whose inverse tail
distribution is given by

W(t) := 1

P(H > t)
= exp

(∫ T

T−t
b(s)

(
1− q(s)

)
ds

)
, t ∈ [0, T ],

where q(t) denotes the probability that an individual born at time t has no descen-
dants alive by time T .

We will see later why the function W defined in the previous statement becomes
the scale function of the last section when there is no time-inhomogeneity and the
inheritable trait is the age.

In addition, W can be computed from the knowledge of g, where g(t, ·) denotes
the density of the death time of an individual born at time t .

Proposition 3.2.6 (Lambert and Stadler (2013)). The function W is solution to
the following integro-differential equation

W ′(t)= b(T − t)

(
W(t)−

∫ t

0
W(s)g(T − t, T − s) ds

)
, t ≥ 0, (3.8)

with initial condition W(0)= 1.

Proof. First, observe that

q(t)=
∫ T

t
g(t, s)e−

∫ s
t b(u)(1−q(u)) du ds.

Recalling that

W(t)= 1

P(H > t)
= exp

(∫ T

T−t
b(s)

(
1− q(s)

)
ds

)
,

we get

q(t)=
∫ T

t
g(t, s)

W(T − s)

W(T − t)
ds,
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or equivalently

q(T − t)=
∫ t

0
g(T − t, T − s)

W(s)

W(t)
ds.

Now check that

W ′(t)= b(T − t)
(
1− q(T − t)

)
W(t).

Equation (3.8) is a consequence of the last two equations. �

Remark 3.2.7. In general, g is not given directly in terms of the model ingredients
b, d and the generator Lt of the trait process K . To compute g and then W , one
can proceed as follows. Recall that g(t, ·) is the density of the death time of an
individual born at time t , so that

g(t, s)=
∫
R

νt (dx)us(t, x), s ≥ t,

where us(t, x) is that density conditional on the value x of the trait at birth (Kt =
x), that is,

us(t, x) := Et,x

(
d(s,Ks)e

− ∫ s
t d(r,Kr ) dr), s ≥ t, (3.9)

where Et,x denotes the expectation associated to the distribution of K started at
time t in state x. Now the Feynman–Kac formula ensures that us is solution to

∂us

∂t
(t, x)+Ltus(t, x)= d(t, x)us(t, x), (3.10)

with terminal condition us(s, x) = d(s, x). Specifically, when K is the age, the
initial trait value is x = 0 and the age at s of a species born at t is Ks = s − t so
that

g(t, s)= d(s, s − t)e−
∫ s
t d(r,r−t) dr , s ≥ t. (3.11)

Proof of Theorem 3.2.5. Let n≥ 1 be an integer, and let h1, . . . , hn−1 be elements
of (0, T ). Assume NT ≥ n, and condition on Hi = hi for i = 1, . . . , n− 1. We are
going to prove that the conditional law of Hn is given by

P(Hn > t)= exp
(
−
∫ T

T−t
b(s)

(
1− q(s)

)
ds

)
, t ∈ [0, T ], (3.12)

which will show that Hn is independent of H1, . . . ,Hn−1 and has W as inverse tail
distribution. This result yields the theorem by induction. Note that conditional on
NT ≥ n, NT exactly equals n iff Hn > T .

Label by 0,1, . . . , n − 1 the individuals alive at time T in the order induced
by the plane orientation of the tree, where daughters sprout to the right of their
mother. In particular, hi is the coalescence time between individuals i − 1 and i

(1≤ i ≤ n− 1).
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We denote by k the number of generations separating individuals n−1 from the
progenitor. We let xk denote the time when individual n− 1 was born, xk−1 < xk

the time when her mother was born, and so on, until x0 = 0 the birth time of the
progenitor. By the orientation of the tree, there are (conditionally) deterministic
indices 0 = i0 < · · · < ik = n − 1, such that xj = T − hij (and hv < hij for all
v ∈ {ij−1+ 1, . . . , ij − 1}), so that conditional on Hi = hi for i = 1, . . . , n− 1, the
times x0, . . . , xk are deterministic.

By the orientation of the tree again, apart from the individuals already labelled,
individuals alive at T descend from births occurring during one of the time inter-
vals Ij := [xj , xj+1), where xk+1 := T for convenience. On each of these time in-
tervals, births occur at rate b(t), and so by thinning, successful births, that is, births
with alive descendance at time T , occur at rate b(t)(1− q(t)). But conditional on
the (xj ), all the ancestors of individual n− 1 (including her) independently give
birth on their corresponding interval Ij . Then if A denotes any subset of [0, T ),
the number N(A) of successful births occurring during A is the sum

N(A)=
k∑

j=0

N(A∩ Ij ),

where the random numbers N(A∩ Ij ) are independent. Now N(A∩ Ij ) is a Pois-
son random variable with parameter

∫
A∩Ij

b(t)(1 − q(t)) dt . As a consequence,
N(A) is a Poisson random variable with parameter

k∑
j=0

∫
A∩Ij

b(t)
(
1− q(t)

)
dt =

∫
A

b(t)
(
1− q(t)

)
dt.

The proof finishes noticing that Hn > t iff N([T − t, T ))= 0, which occurs with
the probability stated in (3.12). �

Exercise 3.2.8. When there is no trait dependence of the death rate, the process
is merely a time-inhomogeneous birth–death process. Prove that in this case W is
given by

W(t)= 1+
∫ T

T−t
b(s)e

∫ T
s r(u) du ds,

where r(t) := b(t) − d(t). In particular, when rates do not depend on time, the
process is a linear birth–death process with birth rate b and death rate d . The last
formula then boils down to

W(t)=
⎧⎨
⎩1+ b

r

(
ert − 1

)
if r 
= 0,

1+ bt if r = 0.
(3.13)

Figure 10 shows the density W ′/W 2 (recall W(t) = 1/P(H ≥ t)) of coales-
cence times in the pure-birth case (d = 0) and in the critical case (b= d).



462 A. Lambert

Figure 10 The common density function f =W ′/W2 of the node depths of the reduced tree for a
birth–death process with constant rates b and d . In blue, the pure birth case f (t)= be−bt (b = 0.1
in the figure); in red, the critical case f (t)= bt/(1+ bt)2 (b = d = 0.1 in the figure). The critical
process gives a density with a faster decay initially, but has a heavier tail than for the pure-birth
model. This figure is taken from Lambert and Steel (2013).

Exercise 3.2.9. When there is no time-dependence of the birth and death rates,
and the trait is chosen to be the age, we are back to the splitting tree model. Here,
g(t, s)≡ g(s − t) and �(dr)= bg(r) dr . First prove thanks to (3.8) that

W ′ = b(W −W � g), (3.14)

and then recover that the Laplace transform of W indeed is 1/ψ (as in equation
(3.4)), where here ψ can be written as ψ(λ)= λ− b

∫∞
0 (1− e−λr)g(r)(dr).

In passing, equation (3.14) offers to compute the pair (W,W ′) by solving nu-
merically a 2D integro-differential equation (equation (3.14) along with W(t) =
1 + ∫ t

0 W ′(s) ds) instead of inverting the Laplace transform of W , which can be
numerically tricky.

Exercise 3.2.10. Prove that the shape of an ultrametric tree associated with a coa-
lescent point process conditioned to have n tips is always P erm

n .

3.3 Applications

In this section, we wish to give a taste of some recent applications of contour pro-
cesses and coalescent point processes in evolutionary biology and in epidemiology.
They rely in particular on the property that the density (or likelihood) of a given
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ultrametric tree t with age T and node depths (hi), seen as the reduced tree of a
tree generated under one of the models displayed in the last section, is in product
form

L (t)= p(T )
∏
i

f (hi),

where p and f have to be computed in terms of the model ingredients, in particular
f =W ′/W 2 is the density of a random node depth.

3.3.1 Bottlenecks and missing tips. Let t be a rooted R-tree interpreted as the
genealogy of some population. We want to model the fact that at some fixed time
point t , a macroscopic proportion say p of the population, is killed (and its entire
descendance as well of course). In population genetics, such events are called bot-
tlenecks, whereas in phylogenetics they model mass extinctions. When t = T is
present time, this procedure is meant to model incomplete sampling (or contempo-
rary extinctions, see next section).

There are two reduced trees to consider, the reduced tree ex ante, spanned by in-
dividuals alive at time T in the absence of bottleneck, and the reduced tree ex post,
spanned by individuals alive even in the presence of the bottleneck. The second
one is of course included in the first one.

Note that the reduced tree ex post is not affected by lineages that do not even
make it to the present in the absence of bottleneck, so we can equally assume that
the bottleneck is only applied to the reduced tree ex ante. See Figure 11.

As soon as the reduced tree is compact it is a comb metric space, and if t < T

we can model the bottleneck by simply disconnecting each lineage of the reduced
tree ex ante at distance t from the root, independently with probability p. The next
statement ensures that this operation preserves the CPP property.

Proposition 3.3.1 (Lambert and Stadler (2013)). Start with a CPP with inverse
tail distribution W . Add bottlenecks with survival probabilities ε1, . . . , εk at times
T − s1 > · · · > T − sk (where s1 > 0 and sk < T ). Then conditional on survival,
the reduced tree ex post is again a coalescent point process, with inverse tail dis-
tribution Wε given by

Wε(t)= ε1 · · · εmW(t)+
m∑

j=1

(1− εj )ε1 · · · εj−1W(sj ),

t ∈ [sm, sm+1],0≤m≤ k,

(3.15)

where s0 := 0 and sk+1 = T (empty sum is zero, empty product is 1).
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Figure 11 Bottleneck at time point T − t , black dots disconnect lineages. (a) Coalescent point
process ex ante, in the absence of bottleneck; (b) Reduced tree ex post, after passage of the bottleneck.

In the case of a finite number of tips, this formula can also include sampling
with probability p by adding a bottleneck with s0 = 0 and ε0 = p, resulting in

Wε(t)= ε0 · · · εmW(t)+
m∑

j=0

(1− εj )ε0 · · · εj−1W(sj ),

t ∈ [sm, sm+1],0≤m≤ k,

which boils down to Wε = 1− p+ pW when k = 0 (since W(0)= 1).

Proof of Proposition 3.3.1. We characterize the effect of one bottleneck on a CPP
with finitely many individuals at height T .

Assume k = 1 and s1 ∈ (0, T ). Recall that a CPP is defined thanks to a sequence
of independent, identically distributed random variables (Hi). We will see that
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the tree obtained after thinning is still a coalescent point process, defined from
independent random variables, say (Bi). Let (ei) be the i.i.d. Bernoulli random
variables defined by ei = 1 if lineage i survives the bottleneck (this has a meaning
only if Hi ≥ s1; it happens with probability ε1). By the orientation of the tree, a tip
terminating a pendant edge with depth smaller than s1 is kept alive iff the rightmost
pending edge on its left with depth larger than s1 survives. As a consequence, if
H1 < s1, then the first lineage is trivially still alive and its coalescence time with
the left-hand ancestral lineage is B := H1. Otherwise, define 1 = J1 < J2 < · · ·
the indices of consecutive edges with depths larger than s1. Then the first lineage
kept alive after thinning is the least Jm such that eJm = 1, and its coalescence
time with the ancestral lineage is B :=max(HJ1, . . . ,HJm). By the independence
property of coalescent point processes and by the independence of the Bernoulli
random variables (ei), the new genealogy is obtained by a sequence of independent
random variables (Bi) all distributed as B .

Let us specify the law of B . First, with probability P(H < s1), P(B ∈ ·) =
P(H ∈ ·|H < s1). Second, with probability P(H ≥ s1)

B
(d)= max{A1, . . . ,AM},

where the Ai ’s are i.i.d. distributed as H conditional on H ≥ s1 and M is an inde-
pendent (modified) geometric random variable, that is, P(M = j)= ε1(1−ε1)

j−1.
Then for any s ≥ s1

1

P(B ≥ s)
= 1− ε1

P(H ≥ s1)
+ ε1

P(H ≥ s)
, s ≥ s1.

Then if Wε denotes the inverse tail distribution of B , that is, Wε(s) := 1/P (B ≥ s),
we have

Wε(s)=
{
W(s) if 0≤ s ≤ s1,

(1− ε1)W(s1)+ ε1W(s) if s1 ≤ s ≤ t,

where W is the inverse tail distribution of H . Iterating this procedure yields the
result in Proposition 3.3.1. �

3.3.2 Loss of phylogenetic diversity. In the context of the contemporary crisis of
biodiversity, conservation biologists have proposed to quantify the loss of evolu-
tionary heritage by the sum of branch lengths that disappear from the Tree of Life
as new extinctions occur, that is, evolutionary heritage of a clade is quantified by
the sum of its branch lengths, called phylogenetic diversity (PD). Then a natural
question to ask is the following. If a random, say 10% of species from some given
clade were to disappear in the next 100 years due to current high rates of extinction,
how much evolutionary heritage would be lost?

“Not so much”, asserted Nee and May (1997) in a very much debated paper,
where the tree of life was modeled by Kingman coalescent. “A lot more”, replied
Mooers et al. (2012), in a paper where the tree of life was modeled by a Yule tree.
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In Lambert and Steel (2013), we generalized their calculations to the case of
a splitting tree with age T and typical node depth H , where tips (contemporary
species) are eliminated independently with probability 1 − p (“field of bullets”
model). Let G denote a geometric random variable with success probability p, let
(Ai) be a sequence of independent copies of H conditioned on H ≤ T and set

B := max
i=1,...,G

Ai,

that is B is the typical node depth of the tree after passage of the field of bullets
(see previous paragraph on bottlenecks).

Conditional on the number of tips n of the tree ex ante and on the number kn

of the tree ex post, as n→∞ and kn/n→ p, elementary SLLN-type arguments
show that the ratio of the remaining PD to the old PD converges a.s. to

πT (p)= p
E(B)

E(A)
.

The ratio of remaining to old PD is always above the identity, corresponding to
the case when the tree is star-like. This obviously holds also for πT . In addition,
it is not difficult to see that πT is always a concave, increasing function such that
πT (0)= 0 and πT (1)= 1.

If we take T =∞, we get

π∞(p)= p

∫∞
0

dt
1−p+pW(t)∫∞
0

dt
W(t)

.

In the case of a birth–death tree with rates b and d , with r := b− d > 0, we get

π∞(p)=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dp

bp− r

ln(bp/r)

ln(b/r)
if b > r 
= bp;

−p ln(p)

1− p
if b= r > bp;

−1− p

ln(p)
if b > r = bp.

Figure 12 shows the graph of π∞ for a range of birth and death rates b > d .
Note that the more concave the better for evolutionary heritage. Also the larger
d/b < 1, the larger the remaining fraction of phylogenetic diversity, converging,
but very slowly, to 1 as d/b→ 1.

3.3.3 Do species age? In Lambert, Alexander and Stadler (2014a), we have de-
veloped a framework to test the assumption that the extinction rate of a species
remains constant all the way through its lifetime. Specifically, we have applied
a maximal likelihood procedure to the recently published bird phylogeny (Jetz
et al. (2012)), to infer the lifetime distribution of bird species, assuming they are
Gamma distributed. We tested the assumption that the shape parameter k of the
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Figure 12 Remaining fraction π∞ of phylogenetic diversity (PD) as a function of the probability p

of species survival to the mass extinction, for a constant-rate birth–death process. Observe the slow
progression toward the unit step function (from pure birth to critical): d/b= 0 (the lowest curve) and
then d/b= 0.5,0.9,0.99,0.999. This figure is taken from Lambert and Steel (2013).

Gamma r.v. equals 1 (exponential lifetimes, i.e., age-independent extinction rate)
vs k 
= 1 (age-dependence). This study generalizes previous works on the infer-
ence of diversification processes from reconstructed phylogenies (e.g., Nee, May
and Harvey (1994), Nee (2006), Stadler (2011)).

Our estimate of k is much larger than 1, indicating that the extinction rate is not
constant but increases with age. For the record, our estimate of the speciation rate
in birds is 0.11 My−1 and our estimate of the mean bird species lifetime is 15 My.

3.3.4 How long does speciation take? In most models of diversification, like
the previous one, species are seen as particles that split instantaneously into two
daughter species upon speciation. It is obvious that on the contrary speciation takes
time, but the last assumption would still be relevant if the time speciation takes was
negligible compared to a species lifetime. There is evidence that this is not the case
in nature, and some authors have recently proposed an alternative model of diver-
sification, called protracted speciation, meant to take this effect into account.

In this model, a species is described as an ensemble of populations, and as
time passes, these populations diverge (genetically) gradually from each other. To
not have to record all (phylo)genetic distances between all populations composing
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Figure 13 Duration of speciation (in My). Distribution inferred from 46 bird clades, ranging from
10,000 years to 10 My. This figure is taken from Etienne, Morlon and Lambert (2014).

each species, Etienne and Rosindell (2012) have proposed a model where each
population passes through k different stages of maturation, after which it becomes
a so-called good species. This model produces quite realistic patterns in terms
of phylogenetic balance and branching tempo, but an inference framework was
missing.

Since speciation stage is a non-heritable trait, Theorem 3.2.5 ensures that if spe-
ciation rate does not depend on speciation stage, the phylogeny produced by this
model is a CPP. In Lambert, Morlon and Etienne (2014b), we have characterized
the common distribution of node depths in this CPP.

In Etienne, Morlon and Lambert (2014), we have developed an inference frame-
work that we tested against 46 bird clades. Individual parameters are difficult to
infer, but the method is relatively good at inferring a composite parameter of inter-
est, the duration of speciation. The duration of speciation is defined as the time it
takes for a novel population to get a good species in its descendance. The results
are shown in Figure 13.

3.3.5 Trees with random marks. In this section, trees are endowed with marks to
model sampling, detection or mutation.

The phylogeny of pathogens. In this paragraph, we focus on a population of pa-
tients carrying (or not) an infectious disease. We stick to the framework of splitting
trees, with the interpretation that a birth is a transmission event and a death is either
a real death or the end of the infectious period (exit from the infective population).
The branching property assumption is justified in the case of a well-mixed popu-
lation where susceptibles are always in excess.

Our setting where lifetime distributions are not exponential is mostly suited to
diseases like flu or HIV, where the infectious period is known to be deterministic
(flu) or heavy-tailed (HIV).
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In addition, we assume that patients are detected to be infective after some ran-
dom time D, at which they are tagged by a mark (see figures). Upon detection (if
D is smaller than the infectious period/lifetime), the patients are assumed to exit
the infective population, for example because they change their behaviour to avoid
transmission or because they are treated and become non-infectious.

In Lambert, Alexander and Stadler (2014a), we have considered the case where
the transmission tree spanned by detected patients has been reconstructed, simi-
larly as Stadler (2010). Actually, the data is not directly the transmission tree but
the phylogenetic tree of the pathogens carried by patients, reconstructed thanks to
biological samples taken from the patients upon detection. Figure 14 shows the ori-
ented tree of the epidemic, with black dots showing detection events, along with
its reduced tree and contour process. Patients can be labelled in the plane order,
so we can define Si the detection time of patient i and Ri the coalescence time
between patients i − 1 and i.

By considering the jumping contour process of the epidemics, we have shown
that the sequence (Si,Ri) is a killed Markov chain. The likelihood of a tree t with
coalescence times (xi)2≤i≤n and detection times (yi)1≤i≤n can be written in the
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Figure 14 The transmission tree. (a) Binary tree with marks (detection events); (b) its reduced tree
and (c) its contour process.
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form

L (t)= g(y1)k(yn)

n∏
i=2

f (yi−1;xi, yi),

where g, k and f can be semi-explicitly expressed in terms of the model ingredi-
ents (law of infectious lifetimes, transmission rate, detection rate).

The state of the epidemics at first detection. We have considered the same setting
in Lambert and Trapman (2013), but for a different question, namely the struc-
ture of the epidemic at the first detection time. This question arises in the case of
hospital-borne diseases due for example to bacterial antibiotic resistance. In this
situation, everything can be known about all carriers of the disease, but only af-
ter the first detection of a case. At this random time, denoted T , everybody in the
hospital is scanned and infected individuals are identified. Here the phylogeny of
pathogens is not assumed to be known but patients’ data like entrance dates or
durations of stays are precisely known.

We assume that patients have i.i.d. lengths of stay in the hospital, all distributed
as some r.v. K . Conditional on infection, the length of stay of a patient is supposed
to be a size-biased version of K . Finally, the transmission rate is b and the detection
rate per patient is denoted δ.

For individual i, set

• Ui := time elapsed from entrance of the hospital up to infection.
• Ai := time elapsed from infection up to T .
• Ri := residual lifetime in the hospital after T .

See Figure 15 for an example. Set m := E(K) and let φ denote the inverse of the
convex function

x �→ x − b

m

∫
(0,∞]

(
1− e−xy)

P(K > y)dy.

Using Vervaat’s transform applied to the path of the contour process, we were able
to show that conditional on NT = n, the triples (Ui,Ai,Ri) of the n infectives at
time T are i.i.d. distributed as

E
(
f (U,A,R)

)
= b

m

φ(δ)

φ(δ)− δ

∫ ∞
u=0

du

∫ ∞
a=0

da

∫ ∞
z=u+a

P(K ∈ dz)

×e−φ(δ)af (u, a, z− u− a).

In particular, the times Ji = Ui + Ai spent in the hospital up to time T are i.i.d.
distributed as the r.v. J

P(J ∈ dy)= b/m

φ(δ)− δ
P(K > y)

(
1− e−φ(δ)y)dy.
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Figure 15 The structure of the stay in the hospital of an infected patient. Some (other) patient is
detected at time T (random). The focal patient has total duration of stay K =U +A+R (see text).

The last formulae will allow us to infer the dynamical characteristics of hospital-
borne disease epidemics from hospital data. This contrasts with the fact that infer-
ence is impossible from the sole numbers of cases found upon detection (Trapman
and Bootsma (2009)), due to the geometric distribution of NT (recall however that
here T is random).

Mutations. Marks on a tree can also be used to model mutations. In population
genetics, it is standard to assume that each new mutation occurs at a new site of
the DNA sequence, the infinitely-many-sites assumption. The list of mutated sites
of a sequence is called allele. One of the fundamental questions in population ge-
netics is to interpret genetic data such as the number of individuals in a population
carrying a specific mutation or a specific allele. Reciprocally, the number of mu-
tations, or of alleles, carried by k individuals in the population is called frequency
spectrum by sites, or by alleles.

The frequency spectrum of neutral mutations (that is, mutations with no in-
fluence on the population dynamics) has been extensively studied for random
genealogies arising from models with constant population size, culminating in
so-called Ewens’ sampling formula (Ewens (1972)). In a series of recent pa-
pers relying heavily on contour techniques, we have studied the frequency spec-
trum in branching genealogies (Lambert (2009, 2011), Champagnat and Lambert
(2012, 2013), Richard (2014), Delaporte, Achaz and Lambert (2016)).
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3.4 Perspectives

For who has understood how to identify which forward-in-time processes generate
trees whose reduced tree is a coalescent point process, and has learnt the proce-
dure of characterizing W and the coalescent density from the model ingredients,
coalescent point processes are a very convenient tool:

• They arise in a wide class of models;
• They generate robust patterns, that in particular are invariant under incomplete

sampling and under the action of bottlenecks;
• The reconstructed tree has a particularly simple distribution, which is extremely

fast to simulate, in contrast to the entire forward-in-time process, that may even
not be Markovian;

• The inference of model parameters from the knowledge of the reconstructed tree
can be done using low-tech statistical methods.

On the other hand, CPPs also have a number of shortcomings:

• The models in which CPP arise exclude some interesting features from the mod-
eling point of view, in particular the trait/age-dependence of birth rates;

• Among the robust patterns they generate, the shape of the reduced tree is always
ERM, which is certainly not the rule in empirical genealogies/phylogenies;

Currently, one of our main lines of research (not only mine but more generally that
of the SMILE group—Stochastic models for the inference of life evolution, UPMC
& Collège de France) is to produce and study models that

1. Are grounded on the microscopic description of individuals, either at the eco-
logical scale or at the genetic scale;

2. Feature a small number of parameters, which can nevertheless be tuned so as to
generate a wide range of different patterns, when the corresponding empirical
patterns vary across datasets (e.g., species abundance distributions);

3. Generate robust patterns when the corresponding empirical patterns are well
conserved across datasets (e.g., the MLE of β in empirical phylogenies, that
revolves around −1);

4. Produce observable statistics (e.g., reconstructed trees) with computable likeli-
hoods.

Criterion 3 is in general difficult to satisfy, especially simultaneously with 2.
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