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G method in action: Fast exact sampling from set of
permutations of order n according to Mallows

model through Cayley metric

Udrea Păun
Romanian Academy

Abstract. Using G method, we give a fast exact (not approximate) Marko-
vian method for sampling from Sn, the set of permutations of order n, ac-
cording to the Mallows model through Cayley metric (a model for ranked
data). This method has something in common with the cyclic Gibbs sampler
and something in common with the swapping method. The number of steps
of our method is equal to the number of steps of swapping method, that is,
n − 1; moreover, both methods use the best probability distributions on sam-
pling, the swapping method uses uniform probability distributions while our
method uses almost uniform probability distributions (all the components of
an almost uniform probability distribution are, here, identical, excepting at
most one of them). But, besides sampling, we can do other things for the
Mallows model through Cayley metric—we compute the normalizing con-
stant and, by Uniqueness theorem, certain important probabilities.

1 The basic result we need

In this section, we present the basic result from Păun (2010) we need.
Set

Par(E) = {�|� is a partition of E},
where E is a nonempty set. We shall agree that the partitions do not contain the
empty set.

Definition 1.1. Let �1,�2 ∈ Par(E). We say that �1 is finer than �2 if ∀V ∈ �1,
∃W ∈ �2 such that V ⊆ W .

Write �1 � �2 when �1 is finer than �2.

In this article, a vector is a row vector and a stochastic matrix is a row stochastic
matrix.

The entry (i, j) of a matrix Z will be denoted by Zij or, if confusion can arise,
Zi→j .
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Set

〈m〉 = {1,2, . . . ,m} (m ≥ 1),

Nm,n = {P |P is a nonnegative m × n matrix},
Sm,n = {P |P is a stochastic m × n matrix},
Nn = Nn,n,

Sn = Sn,n.

Let P = (Pij ) ∈ Nm,n. Let ∅ �= U ⊆ 〈m〉 and ∅ �= V ⊆ 〈n〉. Set the matrices

PU = (Pij )i∈U,j∈〈n〉, P V = (Pij )i∈〈m〉,j∈V , and P V
U = (Pij )i∈U,j∈V .

Set ({i})i∈{s1,s2,...,st } = ({s1}, {s2}, . . . , {st });({i})i∈{s1,s2,...,st } ∈ Par
({s1, s2, . . . , st }).

Definition 1.2. Let P ∈ Nm,n. We say that P is a generalized stochastic matrix if
∃a ≥ 0, ∃Q ∈ Sm,n such that P = aQ.

Definition 1.3 (Păun (2010)). Let P ∈ Nm,n. Let � ∈ Par(〈m〉) and � ∈ Par(〈n〉).
We say that P is a [�]-stable matrix on � if P L

K is a generalized stochastic matrix,
∀K ∈ �,∀L ∈ �. In particular, a [�]-stable matrix on ({i})i∈〈n〉 is called [�]-
stable for short.

Definition 1.4 (Păun (2010)). Let P ∈ Nm,n. Let � ∈ Par(〈m〉) and � ∈ Par(〈n〉).
We say that P is a �-stable matrix on � if � is the least fine partition for which P

is a [�]-stable matrix on �. In particular, a �-stable matrix on ({i})i∈〈n〉 is called
�-stable while a (〈m〉)-stable matrix on � is called stable on � for short. A stable
matrix on ({i})i∈〈n〉 is called stable for short.

Let �1 ∈ Par(〈m〉) and �2 ∈ Par(〈n〉). Set (see Păun (2010) for G�1,�2 and
Păun (2011) for

_
G�1,�2 )

G�1,�2 = {
P |P ∈ Sm,n and P is a [�1]-stable matrix on �2

}
and

_
G�1,�2=

{
P |P ∈ Nm,n and P is a [�1]-stable matrix on �2

}
.

When we study or even when we construct products of nonnegative matrices (in
particular, products of stochastic matrices) using G�1,�2 or

_
G�1,�2 we shall refer

this as the G method.
Below, we give the basic result from Păun (2010) we need.
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Theorem 1.5 (Păun (2010)). Let P1 ∈ G(〈m1〉),�2 ⊆ Sm1,m2 , P2 ∈ G�2,�3 ⊆
Sm2,m3 , . . . , Pn−1 ∈ G�n−1,�n ⊆ Smn−1,mn , Pn ∈ G�n,({i})i∈〈mn+1〉 ⊆ Smn,mn+1 . Then

P1P2 · · ·Pn

is a stable matrix (i.e., a matrix with identical rows, see Definition 1.4).

Proof. See Păun (2010). (Theorem 1.5 is part of Theorem 2.10 from Păun (2010);
a generalization of Theorem 2.10 from Păun (2010) is Theorem 1.6 from Păun
(2011).) �

2 The Markovian method

In this section, we present the Mallows model and our fast Markovian method
for sampling exactly (not approximately) from Sn, the set of permutations of or-
der n, according to the Mallows model through Cayley metric. In addition to sam-
pling, for this special Mallows model, we compute the normalizing constant and,
by Uniqueness theorem, certain important probabilities.

Consider the group (Sn,◦), where ◦ is the usual composition of functions. (u, v)

is a transposition, ∀u, v ∈ 〈n〉, u �= v. Set (u,u) = Id, ∀u ∈ 〈n〉, where Id is the
identity permutation.

Theorem 2.1. Let n ≥ 2. Let σ0 ∈ Sn. Let

Mn,l = {
σ0 ◦ (1, i1) ◦ (2, i2) ◦ · · · ◦ (l, il) ◦ σl|i1, i2, . . . , il ∈ 〈n〉,1 ≤ i1 ≤ n,

2 ≤ i2 ≤ n, . . . , l ≤ il ≤ n,σl ∈ Sn, σl(v) = v,∀v ∈ 〈l〉} ∀l ∈ 〈n − 1〉.
Then

Mn,l = Sn ∀l ∈ 〈n − 1〉.
Proof. Let l ∈ 〈n − 1〉. Since (Sn,◦) is a group, we have Mn,l ⊆ Sn. There-
fore, |Mn,l| ≤ |Sn| = n! (| · | is the cardinal). To finish the proof, we show that
|Mn,l| = n!.

The number of permutations σl ∈ Sn with σl(v) = v, ∀v ∈ 〈l〉, is equal to
(n − l)!. Since 1 ≤ i1 ≤ n, 2 ≤ i2 ≤ n, . . . , l ≤ il ≤ n, it follows that |Mn,l| is
at most equal to

n(n − 1) · · · (n − l + 1)
[
(n − l)!] = n!.

We show that

σ0 ◦ (1, i1) ◦ (2, i2) ◦ · · · ◦ (l, il) ◦ σl = σ0 ◦ (1, j1) ◦ (2, j2) ◦ · · · ◦ (l, jl) ◦ τl

if and only if ik = jk , ∀k ∈ 〈l〉, and σl = τl , where i1, j1, i2, j2, . . . , il , jl ∈ 〈n〉,
1 ≤ i1, j1 ≤ n, 2 ≤ i2, j2 ≤ n, . . . , l ≤ il , jl ≤ n, σl, τl ∈ Sn, σl(v) = τl(v) = v,
∀v ∈ 〈l〉.
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“⇐�” Obvious.
“�⇒” σ0 can be removed. We remove it, so, we suppose that

(1, i1) ◦ (2, i2) ◦ · · · ◦ (l, il) ◦ σl = (1, j1) ◦ (2, j2) ◦ · · · ◦ (l, jl) ◦ τl.

It follows that[
(1, i1) ◦ (2, i2) ◦ · · · ◦ (l, il) ◦ σl

]
(1) = [

(1, j1) ◦ (2, j2) ◦ · · · ◦ (l, jl) ◦ τl

]
(1).

Therefore,

i1 = j1.

Since i1 = j1, removing (1, i1) and (1, j1), we have

(2, i2) ◦ · · · ◦ (l, il) ◦ σl = (2, j2) ◦ · · · ◦ (l, jl) ◦ τl.

It follows that[
(2, i2) ◦ · · · ◦ (l, il) ◦ σl

]
(2) = [

(2, j2) ◦ · · · ◦ (l, jl) ◦ τl

]
(2).

Therefore,

i2 = j2.

Proceeding in this way, we obtain

i1 = j1, i2 = j2, . . . , il = jl,

and, as a result of these equations,

σl = τl.

We conclude that

|Mn,l| = n!. �

Theorem 2.1 says that we can work with Mn,l instead of Sn, ∀l ∈ 〈n − 1〉 (this
fact will be used in Theorem 2.3).

Let C(σ, τ) = minimum number of transpositions required to bring σ to τ ,
∀σ, τ ∈ Sn. C is a metric on Sn, called the Cayley metric (see, e.g., Diaconis and
Saloff-Coste (1998)).

Theorem 2.2. Let n ≥ 2. Let σ0 ∈ Sn. Consider on Sn the Cayley metric. Then

C
(
σ0 ◦ (1, i1) ◦ (2, i2) ◦ · · · ◦ (l − 1, il−1) ◦ (l, j) ◦ σl, σ0

)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

C
(
σ0 ◦ (1, i1) ◦ (2, i2) ◦ · · · ◦ (l − 1, il−1) ◦ (l, k) ◦ σl, σ0

)
if j = k = l or j, k > l,

C
(
σ0 ◦ (1, i1) ◦ (2, i2) ◦ · · · ◦ (l − 1, il−1) ◦ (l, k) ◦ σl, σ0

) − 1
if j = l, k > l,

C
(
σ0 ◦ (1, i1) ◦ (2, i2) ◦ · · · ◦ (l − 1, il−1) ◦ (l, k) ◦ σl, σ0

) + 1
if j > l, k = l,
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∀l ∈ 〈n−1〉, ∀i1, i2, . . . , il−1, j, k ∈ 〈n〉, 1 ≤ i1 ≤ n, 2 ≤ i2 ≤ n, . . . , l −1 ≤ il−1 ≤
n, l ≤ j , k ≤ n, ∀σl ∈ Sn, σl(v) = v, ∀v ∈ 〈l〉 ((1, i1) ◦ (2, i2) ◦ · · · ◦ (l − 1, il−1),
etc. vanish when l = 1).

Proof. Case 1. j = k = l or j , k > l.
Subcase 1.1. j = k = l. Obvious ((l, j) = (l, k) = Id).
Subcase 1.2. j , k > l. It is known that (u, v) ◦ (u, v) = Id, ∀(u, v), (u, v) is a

transposition, ψ1 ◦ ψ2 = ψ2 ◦ ψ1, ∀ψ1,ψ2 ∈ Sn, ψ1 and ψ2 are disjoint cycles,
any permutation can be factored uniquely (leaving the order of factors aside) into
a product of pair-wise disjoint cycles (“factored”, “factors”, and “product” are im-
proper words), and any cycle of length s (s ≥ 2) can be factored into a product of
s − 1 transpositions in s different ways. Since σl(v) = v, ∀v ∈ 〈l〉, it follows that,
for any cycle of σl , any factorization of the cycle into a product of s − 1 transpo-
sitions, where s is the length of cycle (“factorization” is an improper word), does
not contain the transpositions (1, i1), (2, i2), . . . , (l − 1, il−1), (l, j), and (l, k). So,

(1, i1) ◦ (2, i2) ◦ · · · ◦ (l − 1, il−1) ◦ (l, j) ◦ σl,

(1, i1) ◦ (2, i2) ◦ · · · ◦ (l − 1, il−1) ◦ (l, k) ◦ σl

cannot be simplified. The equation we need prove is now obvious.
Case 2. j = l, k > l. Since j = l, we have (l, j) = Id. Proceeding similar to

Subcase 1.2,

(1, i1) ◦ (2, i2) ◦ · · · ◦ (l − 1, il−1) ◦ σl,

(1, i1) ◦ (2, i2) ◦ · · · ◦ (l − 1, il−1) ◦ (l, k) ◦ σl

cannot be simplified. Therefore, the equation we need prove holds.
Case 3. j > l, k = l. Similar to Case 2. �

Recall that R+ = {x|x ∈R and x > 0}.
Let

πσ = θd(σ,σ0)

Z
∀σ ∈ Sn,

where θ ∈ R
+ (cases of interest: 0 < θ ≤ 1; θ > 1), σ0 ∈ Sn (n ≥ 1), d is a metric

on Sn, and

Z = ∑
σ∈Sn

θd(σ,σ0).

The probability distribution π = (πσ )σ∈Sn
(on Sn) is called the Mallows model

through metric d (see Mallows (1957); see, e.g., also Critchlow (1985), Diaconis
(2009), Diaconis and Saloff-Coste (1998), Fligner and Verducci (1993), and
Marden (1995)). This is a model—an exponential model when θ �= 1—for ranked
data (see the above references).
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In this article, the transpose of a vector x is denoted by x′. Set e = e(n) =
(1,1, . . . ,1) ∈ R

n, ∀n ≥ 1.
Below, we give the main result of this work.

Theorem 2.3. Let n ≥ 2. Let π = (πσ )σ∈Sn
be the Mallows model through Cayley

metric. Consider a Markov chain with state space Sn, initial probability distri-
bution p0, and transition matrix P = P1P2 · · ·Pn−1, where Pl , l ∈ 〈n − 1〉, are
stochastic matrices on Sn,

(Pl)σ0◦(1,i1)◦(2,i2)◦···◦(l,il )◦σl→ξ

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

πσ0◦(1,i1)◦(2,i2)◦···◦(l−1,il−1)◦(l,j)◦σl∑
l≤k≤n πσ0◦(1,i1)◦(2,i2)◦···◦(l−1,il−1)◦(l,k)◦σl

if ξ = σ0 ◦ (1, i1) ◦ (2, i2) ◦ · · · ◦ (l − 1, il−1) ◦ (l, j) ◦ σl

for some j, l ≤ j ≤ n,

0 if ξ �= σ0 ◦ (1, i1) ◦ (2, i2) ◦ · · · ◦ (l − 1, il−1) ◦ (l, j) ◦ σl,

∀j, l ≤ j ≤ n,

∀l ∈ 〈n− 1〉—((1, i1)◦ (2, i2)◦ · · · ◦ (l − 1, il−1) vanishes when l = 1), ∀i1, i2, . . . ,

il ∈ 〈n〉, 1 ≤ i1 ≤ n, 2 ≤ i2 ≤ n, . . . , l ≤ il ≤ n, ∀σl ∈ Sn, σl(v) = v, ∀v ∈ 〈l〉,
∀ξ ∈ Sn, where σ0 is the parameter from Sn of Mallows model through Cayley
metric. Then

P = e′π
(therefore, the chain attains its stationarity at time 1, its stationary (limit) proba-
bility distribution being, obviously, π ).

Proof. Set

K(i1,i2,...,il ) = {
σ0 ◦ (1, i1) ◦ (2, i2) ◦ · · · ◦ (l, il) ◦ σl|σl ∈ Sn, σl(v) = v,∀v ∈ 〈l〉},

∀l ∈ 〈n − 1〉, ∀i1, i2, . . . , il ∈ 〈n〉, 1 ≤ i1 ≤ n, 2 ≤ i2 ≤ n, . . . , l ≤ il ≤ n. We have⋃
i1,i2,...,il∈〈n〉

1≤i1≤n

2≤i2≤n

...
l≤il≤n

K(i1,i2,...,il ) = Mn,l = Sn ∀l ∈ 〈n − 1〉

(see Theorem 2.1). We show that

K(i1,i2,...,il ) ∩ K(j1,j2,...,jl ) = ∅
if ∃u ∈ 〈l〉 such that iu �= ju, where l ∈ 〈n−1〉, i1, j1, i2, j2, . . . , il , jl ∈ 〈n〉, 1 ≤ i1,
j1 ≤ n, 2 ≤ i2, j2 ≤ n, . . . , l ≤ il , jl ≤ n. To see this, we suppose that ∃u ∈ 〈l〉 with
iu �= ju such that

K(i1,i2,...,il ) ∩ K(j1,j2,...,jl) �= ∅.
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Let ω ∈ K(i1,i2,...,il ) ∩ K(j1,j2,...,jl). We have

ω = σ0 ◦ (1, i1) ◦ (2, i2) ◦ · · · ◦ (l, il) ◦ σl

= σ0 ◦ (1, j1) ◦ (2, j2) ◦ · · · ◦ (l, jl) ◦ τl,

where σl, τl ∈ Sn, σl(v) = τl(v) = v,∀v ∈ 〈l〉. Proceeding as in the proof of Theo-
rem 2.1 (σ0 is removed, . . . ), we obtain

i1 = j1, i2 = j2, . . . , il = jl, σl = τl.

Therefore, we obtained a contradiction.
The above results lead to the fact that

(K(i1,i2,...,il ))i1,i2,...,il∈〈n〉
1≤i1≤n

2≤i2≤n

...
l≤il≤n

is a partition of Mn,l (Mn,l = Sn), ∀l ∈ 〈n − 1〉. Set the partitions (this can now be
done)

�1 = (Sn),

�l+1 = (K(i1,i2,...,il ))i1,i2,...,il∈〈n〉
1≤i1≤n

2≤i2≤n

...
l≤il≤n

,

∀l ∈ 〈n − 1〉. Obviously, we have �n = ({σ })σ∈Sn
.

By hypothesis and Theorem 2.2, we have

(Pl)σ0◦(1,i1)◦(2,i2)◦···◦(l,il)◦σl→ξ

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

θC(σ0◦(1,i1)◦(2,i2)◦···◦(l−1,il−1)◦(l,j)◦σl,σ0)∑
l≤k≤n θC(σ0◦(1,i1)◦(2,i2)◦···◦(l−1,il−1)◦(l,k)◦σl,σ0)

if ξ = σ0 ◦ (1, i1) ◦ (2, i2) ◦ · · · ◦ (l − 1, il−1) ◦ (l, j) ◦ σl

for some j, l ≤ j ≤ n,

0 if ξ �= σ0 ◦ (1, i1) ◦ (2, i2) ◦ · · · ◦ (l − 1, il−1) ◦ (l, j) ◦ σl,

∀j, l ≤ j ≤ n,
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=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

1 + (n − l)θ
if ξ = σ0 ◦ (1, i1) ◦ (2, i2) ◦ · · · ◦ (l − 1, il−1) ◦ (l, l) ◦ σl,
θ

1 + (n − l)θ
if ξ = σ0 ◦ (1, i1) ◦ (2, i2) ◦ · · · ◦ (l − 1, il−1) ◦ (l, j) ◦ σl

for some j, l < j ≤ n,

0 if ξ �= σ0 ◦ (1, i1) ◦ (2, i2) ◦ · · · ◦ (l − 1, il−1) ◦ (l, j) ◦ σl,

∀j, l ≤ j ≤ n,

∀l ∈ 〈n − 1〉, ∀i1, i2, . . . , il ∈ 〈n〉, 1 ≤ i1 ≤ n, 2 ≤ i2 ≤ n, . . . , l ≤ il ≤ n, ∀σl ∈ Sn,
σl(v) = v, ∀v ∈ 〈l〉, ∀ξ ∈ Sn. It follows that

Pl ∈ G�l,�l+1 ∀l ∈ 〈n − 1〉.
Since P = P1P2 · · ·Pn−1, by Theorem 1.5, P is a stable matrix. Consequently,
∃ψ , ψ is a probability distribution on Sn, such that

P = e′ψ.

It is easy to see that

πσ (Pl)στ = πτ (Pl)τσ ∀l ∈ 〈n − 1〉,∀σ, τ ∈ Sn

(Sn = Mn,l , ∀l ∈ 〈n − 1〉). This thing implies

πPl = π ∀l ∈ 〈n − 1〉,
and, further,

πP = π.

Finally, we have

π = πP = πe′ψ = ψ,

so,

P = e′π. �

We comment on Theorem 2.3 and its proof.
First, we can work with the chain with transition matrix P or, equivalently,

with the chain with transition matrices P1,P2, . . . ,Pn−1, P1,P2, . . . ,Pn−1, . . .

(the former chain is homogeneous while the latter one is nonhomogeneous when
n ≥ 3). We chose the first case. (For finite Markov chain theory, see, e.g., Iosifescu
(2007).) Any 1-step of the chain with transition matrix P is performed via
P1,P2, . . . ,Pn−1, that is, doing n − 1 transitions: one using P1, one using P2, . . . ,
one using Pn−1. By Theorem 2.3, the chain with transition matrix P attains its
stationarity at time 1 (to attain the stationarity, the chain with transition matrix P

makes one step while the other chain makes n−1 steps (due to P1,P2, . . . ,Pn−1)).
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We constructed the chain with transition matrix P being guided by G method,
Theorem 1.5, our hybrid Metropolis–Hastings chain(s) from Păun (2011), and,
especially, certain results and suggestions from Păun (2017). The chain with tran-
sition matrix P belongs to our collection of hybrid Metropolis–Hastings chains
from Păun (2011) (this follows from K(i1,i2,...,il+1) ⊂ K(i1,i2,...,il ), ∀l ∈ 〈n − 2〉,
∀i1, i2, . . . , il+1, 1 ≤ i1 ≤ n, 2 ≤ i2 ≤ n, . . . , l + 1 ≤ il+1 ≤ n, etc.; for our collec-
tion, see also Păun (2017)). The chain with transition matrix P is a cyclic Gibbs
sampler in a generalized sense because the state space is, here, Sn, ratios used to
define the transition probabilities of matrices Pl , l ∈ 〈n − 1〉, are similar to those
of (usual) cyclic Gibbs sampler with—keeping the finite framework—finite state
space (this chain also belongs to our collection of hybrid Metropolis–Hastings
chains from Păun (2011), see Păun (2017)), and matrices P1, P2, . . . ,Pn−1 are
used cyclically. (For the Gibbs sampler, see, e.g., Madras (2002).)

Second, to define transition probabilities of Pl , l ∈ 〈n − 1〉 fixed, we used states
from Mn,l . So, using Pl , the chain passes from a state, say, γ of Mn,l to a state,
say, δ of Mn,l also. For Pl+1, when l + 1 ≤ n − 1, we need states from Mn,l+1, so,
when we run the chain, we must rewrite δ using the generators of Mn,l+1.

Third, there exists a case, a happy case, for which rewriting the states from Sec-
ond is not necessary, namely, when σl = Id. So, to avoid rewriting the states, we
consider the chain with initial probability distribution p0 with (p0)σ0 = 1 (warn-
ing! here we have σ0 and above we have σl). Since P = e′π , we have

p0P
m = π ∀m ≥ 1,∀p0,p0 = initial probability distribution.

So, for the initial probability distribution p0 with (p0)σ0 = 1, the above equations
hold as well. From σ0 = σ0 ◦ (1,1) ◦ Id ∈ Mn,1 (σ1 = Id), the chain passes in one
of the states

σ0 = σ0 ◦ (1,1) = σ0 ◦ (1,1) ◦ Id ∈ Mn,1,

σ0 ◦ (1,2) = σ0 ◦ (1,2) ◦ Id ∈ Mn,1,

...

σ0 ◦ (1, n) = σ0 ◦ (1, n) ◦ Id ∈Mn,1.

Suppose that it passed in the state σ0 ◦ (1,2). From σ0 ◦ (1,2) = σ0 ◦ (1,2)◦ (2,2)◦
Id ∈Mn,2 (σ2 = Id), the chain passes in one of the states

σ0 ◦ (1,2) = σ0 ◦ (1,2) ◦ (2,2) = σ0 ◦ (1,2) ◦ (2,2) ◦ Id ∈Mn,2,

σ0 ◦ (1,2) ◦ (2,3) = σ0 ◦ (1,2) ◦ (2,3) ◦ Id ∈ Mn,2,

...

σ0 ◦ (1,2) ◦ (2, n) = σ0 ◦ (1,2) ◦ (2, n) ◦ Id ∈ Mn,2.
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Suppose that it passed in the state σ0 ◦ (1,2) ◦ (2, n − 1), etc. Therefore, the states
are generated proceeding similar to the swapping method, the difference being
that, here, we use the probability distributions(

1

1 + (n − l)θ
,

θ

1 + (n − l)θ
,

θ

1 + (n − l)θ
, . . . ,

θ

1 + (n − l)θ

)
, l ∈ 〈n − 1〉,

instead of uniform probability distributions. (For the swapping method, see, e.g.,
Devroye (1986), pp. 645–646.) The above probability distributions, the former be-
ing almost uniform probability distributions—we call them almost uniform prob-
ability distributions because each of these probability distributions has identical
components, excepting at most one of them (all the components are identical when
θ = 1)—and the latter, those of swapping method, being uniform probability dis-
tributions, are, concerning the implementation, the best ones. To see that this is
also true for almost uniform probability distributions, we split each almost uni-
form probability distribution into two blocks,(

1

1 + (n − l)θ

)
,

(
θ

1 + (n − l)θ
,

θ

1 + (n − l)θ
, . . . ,

θ

1 + (n − l)θ

)
.

If

X >
1

1 + (n − l)θ
, X ∼ U(0,1),

further, we work with the latter block, which, by normalization, leads to the uni-
form probability distribution(

1

n − l
,

1

n − l
, . . . ,

1

n − l

)
.

Therefore, our exact sampling Markovian method, having n − 1 steps, is simple
and good.

Fourth, using the equation P = e′π , we can compute the normalizing con-
stant Z. Set � � �′ if �′ � � and � �= �′, where �, �′ ∈ Par(E), E is a
nonempty set. The partitions �1 = (Sn), �2, . . . ,�n−1, �n = ({σ })σ∈Sn

from
the proof of Theorem 2.3 have the property: �1 � �2 � · · · � �n (recall that
K(i1,i2,...,il+1) ⊂ K(i1,i2,...,il ), ∀l ∈ 〈n − 2〉, ∀i1, i2, . . . , il+1, 1 ≤ i1 ≤ n, 2 ≤ i2 ≤
n, . . . , l + 1 ≤ il+1 ≤ n). Pl is a block diagonal matrix (eventually by permutation
of rows and columns), ∀l ∈ 〈n−1〉− {1}, and �l-stable matrix on �l , ∀l ∈ 〈n−1〉
(see First again—the fact that the chain with transition matrix P belongs to our col-
lection of hybrid Metropolis–Hastings chains from Păun (2011)). Moreover, Pl is a
�l-stable matrix on �l+1, ∀l ∈ 〈n−1〉. Due to these facts, using P = e′π , it is easy
to compute πσ0 (hint: use, directly, Sn ⊃ K(1) ⊃ K(1,2) ⊃ · · · ⊃ K(1,2,...,n−1) = {σ0}
or, indirectly, the operator (·)−+ from Păun (2010)); we have

πσ0 = 1

1 + (n − 1)θ
· 1

1 + (n − 2)θ
· · · · · 1

1 + θ
.
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Since, on the other hand,

πσ0 = θ0

Z
= 1

Z
,

we obtain

Z = (1 + θ)(1 + 2θ) · · · (1 + (n − 1)θ
)
.

This result is known (see, e.g., Diaconis (2009)), but our computation method is
new, simple, and interesting.

Fifth, using Uniqueness theorem from Păun (2017) (the presentation of this re-
sult is too long, so, we omit to give it here), we can compute certain important
probabilities of the Mallows model through Cayley metric. Indeed, by Uniqueness
theorem we have

P(K(i1)) = ∑
σ∈K(i1)

πσ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

1 + (n − 1)θ
, if i1 = 1,

θ

1 + (n − 1)θ
, if 1 < i1 ≤ n.

Note that

K(i1) = {
σ |σ ∈ Sn, σ (1) = σ0(i1)

} ∀i1,1 ≤ i1 ≤ n

(K(i1) is the set of permutations from Sn, each permutation having the first compo-
nent equal to σ0(i1), the i1th component of σ0). Further, by Uniqueness theorem
we have

P(K(i1,i2))

P (K(i1))
=

∑
σ∈K(i1,i2)

πσ∑
σ∈K(i1)

πσ

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

1 + (n − 2)θ
, if i2 = 2,

θ

1 + (n − 2)θ
, if 2 < i2 ≤ n,

∀i1, 1 ≤ i1 ≤ n, so,

P(K(i1,i2)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

[1 + (n − 1)θ ][1 + (n − 2)θ ] , if i1 = 1, i2 = 2,

θ

[1 + (n − 1)θ ][1 + (n − 2)θ ] , if i1 = 1,2 < i2 ≤ n

or 1 < i1 ≤ n, i2 = 2,
θ2

[1 + (n − 1)θ ][1 + (n − 2)θ ] , if 1 < i1 ≤ n,2 < i2 ≤ n.

Note that

K(i1,i2) =
{{

σ |σ ∈ Sn, σ (1) = σ0(i1), σ (2) = σ0(1)
}
, if i2 = i1,{

σ |σ ∈ Sn, σ (1) = σ0(i1), σ (2) = σ0(i2)
}
, if i2 �= i1,
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∀i1, 1 ≤ i1 ≤ n, ∀i2, 2 ≤ i2 ≤ n. To compute P(K(i1,i2,i3)), etc., we use (see
Uniqueness theorem)

P(K(i1,i2,...,iu))

P (K(i1,i2,...,iu−1))
=

∑
σ∈K(i1,i2,...,iu)

πσ∑
σ∈K(i1,i2,...,iu−1)

πσ

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

1 + (n − u)θ
, if iu = u,

θ

1 + (n − u)θ
, if u < iu ≤ n,

∀i1, 1 ≤ i1 ≤ n, ∀i2, 2 ≤ i2 ≤ n, . . . ,∀iu−1, u − 1 ≤ iu−1 ≤ n (3 ≤ u ≤ n − 1).
Finally, to illustrate Theorem 2.3, its proof, and the above comments, we give

an example.

Example 2.4. Consider the Mallows model on S3 through Cayley metric with
σ0 = (213). By Theorem 2.3, we have (the rows and columns of P1 and P2 are
labeled in lexicographic order)

(123) (132) (213) (231) (312) (321)

P1 =

(123)

(132)

(213)

(231)

(312)

(321)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

θ

1 + 2θ
0

1

1 + 2θ
0

θ

1 + 2θ
0

0
θ

1 + 2θ
0

1

1 + 2θ
0

θ

1 + 2θ
θ

1 + 2θ
0

1

1 + 2θ
0

θ

1 + 2θ
0

0
θ

1 + 2θ
0

1

1 + 2θ
0

θ

1 + 2θ
θ

1 + 2θ
0

1

1 + 2θ
0

θ

1 + 2θ
0

0
θ

1 + 2θ
0

1

1 + 2θ
0

θ

1 + 2θ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

(123) (132) (213) (231) (312) (321)

P2 =

(123)

(132)

(213)

(231)

(312)

(321)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

1 + θ

θ

1 + θ

1

1 + θ

θ

1 + θ
1

1 + θ

θ

1 + θ

1

1 + θ

θ

1 + θ
1

1 + θ

θ

1 + θ

1

1 + θ

θ

1 + θ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Since, for P1, we have

(123) = (213) ◦ (1,2) ◦ Id ∈M3,1,

(132) = (213) ◦ (1,2) ◦ (2,3) ∈M3,1,

(213) = (213) ◦ (1,1) ◦ Id ∈M3,1,

(231) = (213) ◦ (1,1) ◦ (2,3) ∈M3,1,

(312) = (213) ◦ (1,3) ◦ Id ∈M3,1,

(321) = (213) ◦ (1,3) ◦ (2,3) ∈M3,1,

it follows that

K(1) = {
(213), (231)

}
, K(2) = {

(123), (132)
}
,

K(3) = {
(312), (321)

}
.

Since, for P2, we have

(123) = (213) ◦ (1,2) ◦ (2,2) ◦ Id ∈M3,2,

(132) = (213) ◦ (1,2) ◦ (2,3) ◦ Id ∈M3,2,

(213) = (213) ◦ (1,1) ◦ (2,2) ◦ Id ∈M3,2,

(231) = (213) ◦ (1,1) ◦ (2,3) ◦ Id ∈M3,2,

(312) = (213) ◦ (1,3) ◦ (2,2) ◦ Id ∈M3,2,

(321) = (213) ◦ (1,3) ◦ (2,3) ◦ Id ∈M3,2,

it follows that

K(1,2) = {
(213)

}
, K(1,3) = {

(231)
}
,

K(2,2) = {
(123)

}
, K(2,3) = {

(132)
}
,

K(3,2) = {
(312)

}
, K(3,3) = {

(321)
}
.

Further, we have

�1 = (S3),

�2 = (K(1),K(2),K(3)),

�3 = (K(1,2),K(1,3),K(2,2),K(2,3),K(3,2),K(3,3)).

Obviously, �1 = (S3) � �2 � �3 = ({σ })σ∈S3 . It is easy to see that P1 ∈ G�1,�2 ,
P2 ∈ G�2,�3 , and πσ (Pl)στ = πτ (Pl)τσ , ∀l ∈ 〈2〉, ∀σ, τ ∈ S3. By Theorem 2.3
or direct computation, P = e′π . Since πσ0 = 1

Z
, it is easy to see, using P = e′π ,
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that Z = (1 + θ)(1 + 2θ). Obviously, P2 is a block diagonal matrix and �2-stable
matrix on �2. Moreover, P2 is a �2-stable matrix, see Definition 1.4. P1 is a stable
matrix both on �1 and on �2. By Uniqueness theorem from Păun (2017) or direct
computation, we have

P(K(1)) = 1

1 + 2θ
, P (K(2)) = P(K(3)) = θ

1 + 2θ
,

P (K(1,2)) = 1

(1 + θ)(1 + 2θ)
,

P (K(1,3)) = P(K(2,2)) = P(K(3,2)) = θ

(1 + θ)(1 + 2θ)
,

P (K(2,3)) = P(K(3,3)) = θ2

(1 + θ)(1 + 2θ)
.

If the initial state of chain is σ0, σ0 = (213), then from this state the chain passes
in one of the states (213) ◦ (1,1), (213) ◦ (1,2), (213) ◦ (1,3). Suppose that it
passed in state (213) ◦ (1,3). (213) ◦ (1,3) = (312). From (312) the chain passes
in one of the states (312) ◦ (2,2), (312) ◦ (2,3). Suppose that it passed in state
(312) ◦ (2,3). (312) ◦ (2,3) = (321). (321) is the state selected from S3 with our
method, having, here, two (3 − 1 = 2) steps.

Acknowledgments. The author wishes to express his thanks to the referees for
their interest in the publication of this article.
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