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Ranked set sampling with scrambled response model to
subsample non-respondents
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Abstract. This paper considers use of the scrambled response model in
Ranked Set Sampling (RSS) for collecting information on second call to esti-
mate population mean when non-response is due to sensitivity of the study
variable. It also uses Extreme Ranked Set Sampling (ERSS) and Median
Ranked Set Sampling (MRSS) to sub-sample the non-respondents. Expres-
sions for variances of different estimators are derived. A Monte Carlo exper-
iment is carried out to observe the efficiency of proposed estimators.

1 Introduction

Non-response is a phenomenon in which complete information for estimation of
population parameters is not easily obtainable from the selected sample. In surveys
related to human beings, it may happen due to failure to contact the respondents,
refusal or unable to answer questions asked by the interviewer. Consequently it es-
timates population parameters significantly too high or too low. To overcome this
difficulty, Hansen and Hurwitz (1946) introduced a method for sub-sampling the
non-respondent to estimate the finite population mean. After that many researchers
extended this technique in different sampling schemes. When the study character is
sensitive in nature then it is difficult to obtain a true response again on second call
which result in violation of assumption made by Hansen and Hurwitz (1946) to es-
timate the finite population mean. In surveys related to sensitive characters, some
statistical techniques exist that provide unbiased estimators for population param-
eters by protecting the confidentiality of respondents. These techniques are known
as Randomized Response Techniques (RRT’s). Warner (1965) used the RRT to
estimate the proportion of persons in population possessing a sensitive character.
Later on many authors have worked for improving efficiency of the estimator of
population mean or proportion using different RRT’s under different sampling de-
signs. Diana and Perri (2011) used a general linear scrambled response model to
propose an estimator for population mean of sensitive quantitative character. Later
on Diana, Riaz and Shabbir (2014) used this model to sub-sample non-respondent
by assuming that the person who do not respond on first call give a scrambled
response on the second call. The estimator proposed by Diana, Riaz and Shabbir
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(2014) gives greater privacy protection to respondents but some efficiency loses
due to use of scrambled response model on second call.

Ranked set sampling (RSS) is a better alternative to simple random sampling
that can offer large improvement in precision in some situations. It was originally
developed for estimating the herbage yield in agriculture by McIntyre (1952). It is
preferable when actual measurement of a unit is either expensive or time consum-
ing and ranking of a small set of experimental units is cheap and easy. Dell and
Clutter (1972) proved that even if ranking is not perfect the ranked set sampling is
still unbiased. Many authors including Patil (2002), Muttlak (1996) and Samawi,
Abu-Dayyeh and Ahmed (1996) showed that RSS is better than SRSWR in terms
of accuracy. Bouza (2009) used RSS with Randomized response technique for
estimating the population mean of sensitive quantitative variable to protect confi-
dentiality of respondents. Bouza (2002) proposed unbiased estimator of population
mean using RSS in presence of non-response. Bouza (2010) introduced an estima-
tor for population mean using RSS to sub-sample the non-respondents on second
call claiming that the first visit allows information on Y for ranking the units in
the sub-sample Ś2 from non-response group S2 and use different RSS methods
for selecting sub-sample on second call. Motivating from Diana, Riaz and Shabbir
(2014) work, we propose an estimator for finite population mean assuming that
non-response is due to sensitivity of the study character and using RSS with ran-
domized response model to sub-sample non-respondents on second call. Use of
RSS improves efficiency and use of RRT improves confidentiality so in this way
we can obtain these twin objectives simultaneously. Therefore, the proposed esti-
mators perform better than Diana and Perri (2011) estimator, in terms of accuracy,
and Bouza (2010) estimator in terms of confidentiality.

2 Estimation of mean in non-response

Let U = (U1,U2,U3, . . . ,UN) be a finite population of size N and yi be the ob-
served values of the study variable y on the ith unit. We select a sample of size n

by using SRSWR. Now suppose that from n sampling units only n1 units respond
on first call and n2 units don’t respond. Consequently whole population divides
into two groups G1 (respondents) with N1 units and G2 (non-respondent) with
N2 units such that with N = N1 + N2. So we select a sub-sample of size ń2 = n2

k
(k > 1) from n2 non-responding units by using SRSWR. Hansen and Hurwitz
(1946) estimator in SRSWR, is given by

ȳ∗
srs = w1ȳ1 + w2 ´̄y2, (1)

where w1 = n1
n

, w1 = n2
n

, ȳ1 = 1
n1

∑n1
i=1 yi and ´̄y2 = 1

ń2

∑ń2
i=1 yi . Also E(ȳ∗

srs) = μ

and variance of ȳ∗
srs is:

V
(
ȳ∗

srs
) = 1

n
σ 2 + W2(k − 1)

n
σ 2

2 , (2)
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where W2 = N2
N

is fraction of non-respondent in population, σ 2 and σ 2
2 are pop-

ulation variances of the study character for whole population and population of
non-respondents respectively. If non-response is due to sensitivity of the study
character then it is difficult to obtain a truthful response again on second call.
Diana, Riaz and Shabbir (2014) suggested an estimator for population mean using
scrambled response model to overcome this deficiency.

Let Z be the scrambled response and A and B are two independent random
variables unrelated to Y with known means (μA,μB) and variances (σ 2

A,σ 2
B), such

that:

Z = AY + B, (3)

where ER(Z) = μAY + μB and variance of Z is VR(Z) = σ 2
AY 2 + σ 2

B , here
ER,VR are expectation and variance with respect to randomization device.

Let ŷi be transformed scrambled response of the ith unit whose expectation
under randomization mechanism equals to true response yi , that is,

ŷi = zi − μB

μA

, ER(ŷi) = yi,

(4)

VR(ŷi) = σ 2
Ay2

i + σ 2
B

μ2
A

.

Diana, Riaz and Shabbir (2014) proposed following estimator

ˆ̄y∗
srs = w1ȳ1 + w2

´̂̄
y2, (5)

where ´̂̄
y2 = 1

ń2

∑ń2
i=1 ŷi . It is easy to show that E( ˆ̄y∗

srs) = μ using the fact that

ER( ´̂y2) = ´̄y2. The variance of ˆ̄y∗
srs, is given by

V
( ˆ̄y∗

srs
) = 1

n
σ 2 + W2(k − 1)

n
σ 2

2 + W2k

n

[
σ 2

A

μ2
A

{
σ 2

2 + μ2
2
} + σ 2

B

μ2
A

]
. (6)

The estimator in (5) is better than (1) in terms of privacy protection but it is obvi-
ous from (2) and (6) that former is less efficient than the later. So our objective is
to increase efficiency of the estimator. For this purpose, we use the RSS scheme
which gives more efficient result than SRSWR. Bouza (2010) introduced a pro-
cedure for selecting sub-sample Ś2(rss) of size ń2 from S2 group having size n2
who don’t respond at first call by using RSS. The procedure consist of selecting
ń2 sub-samples by using SRSWR. The units are ranked accordingly with the vari-
able closely related with variable of interest Y . We have ń2 independent random
samples

Y11, Y12, . . . , Y1ń2;Y21, Y22, . . . , Y2ń2; . . . ;Yń21, Yń22, . . . , Yń2ń2 .

After ranking, we get

Y(1:1), Y(1:2), . . . , Y(1:ń2);Y(2:1), Y(2:2), . . . , Y(2:ń2); . . . ;Y(ń2:1), Y(ń2:2), . . . , Y(ń2:ń2),
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where Y(j :t) is the j th order statistics (OS) of the t th sample, j = 1,2, . . . , ń2 and
t = 1,2, . . . , ń2. We obtain the following sample,

Y(1:1), Y(2:2), . . . , Y(ń2:ń2).

The estimate of μ2 is made by using the estimator ´̄y2(rss) = 1
ń2

∑ń2
j=1 Y(j :j).

Also E(Y(j :j)|n2) = μ(j) where j = 1,2, . . . , ń2. Now the estimator introduced
by Bouza (2010) using Hansen and Hurwitz (1946) technique, is given by

ȳ∗
rss = n1

n
ȳ1 + n2

n
´̄y2(rss), (7)

with E(ȳ∗
rss) = μ and variance

V
(
ȳ∗

rss
) = σ 2

n
+ W2(k − 1)

n
σ 2

2 − W2k

n
�2

2(M),

where �2
2(M) = E{ 1

ń2

∑ń2
j=1 �2

2(j)}

V
(
ȳ∗

rss
) = V

(
ȳ∗

srs
) − W2k

n
�2

2(M) . (8)

Since V (ȳ∗
rss) < V (ȳ∗

srs) as �2
2(M) > 0. Hence, ȳ∗

rss is more efficient than ȳ∗
srs.

In some cases it is difficult to rank all units, which results in large error. Detect-
ing only some units with distinct ranks may be easier and more accurate. Keeping
this point in mind Samawi, Abu-Dayyeh and Ahmed (1996), we use an RSS sam-
pling procedure called Extreme Ranked Set Sampling (ERSS). The procedure in-
cludes identification of two extreme values Y(1:j) and Y(ń2:j) from the j th sample.
The extreme ranked set sampling in case of ranked set sampling works as follow.
Select Y2(e:j) such that:

Y2(e:j) =
{

Y2(1:j) for j = 1, . . . , ń2
2 ,

Y2(ń2:j) for j = ń2
2 + 1, . . . , ń2,

where

E(Y2(e:j)) =
{

μ2(1) for j = 1, . . . , ń2
2 ,

μ2(ń2) for j = ń2
2 + 1, . . . , ń2,

and

V (Y2(e:j)) =
⎧⎨⎩σ 2

2(1) for j = 1, . . . , ń2
2 ,

σ 2
2(ń2)

for j = ń2
2 + 1, . . . , ń2,

an estimate of μ2 is:

´̄y2(erss) = 1

ń2

ń2∑
j=1

Y(e:j) = Y2(1) + Y2(ń2)

2
,

where E( ´̄y2(erss)) = μ2(1) + μ2(ń2)

2
�= μ2.
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Hence, it is a biased estimator of μ2. It will be unbiased if μ2(1) = μ2(ń2). It is
possible only in case of symmetric distribution. Now Hansen and Hurwitz (1946)
estimator in ERSS, is given by

ȳ∗
erss = n1

n
ȳ1 + n2

n
´̄y2(erss). (9)

The Bias of the estimator ȳ∗
erss is given by

Bias
(
ȳ∗

erss
) = W2

(μ2(1) − μ2) + (μ2(ń2) − μ2)

2
, (10)

which is almost negligible in case of near to symmetric distribution, its variance is
given by

V
(
ȳ∗

erss
) = σ 2

n
+ W2(k − 1)

n
σ 2

2 − W2k

n
�2

2(e),

where �2
2(e) = �2

2(1)+E�2
2(n2)

2 . The above expression can also be written as:

V
(
ȳ∗

erss
) = V

(
ȳ∗

srs
) − W2k

n
�2

2(e) . (11)

ERSS will be preferred on RSS if �2
2(e) > �2

2(M).
Bouza (2010) used another modification to RSS that include selecting medians

of all ranked set samples. Assuming ń2 as even, select Y2(m:j) such that:

Y2(m:j) =
{

Y2((ń2/2):j) for j = 1, . . . , ń2
2 ,

Y2((ń2/2)+1:j) for j = ń2
2 + 1, . . . , ń2,

where

E(Y2(m:j)) =
{

μ2(ń2/2) for j = 1, . . . , ń2
2 ,

μ2((ń2/2)+1) for j = ń2
2 + 1, . . . , ń2

and

V (Y2(m:j)) =
⎧⎨⎩σ 2

2(ń2/2)
for j = 1, . . . , ń2

2 ,

σ 2
2((ń2/2)+1)

for j = ń2
2 + 1, . . . , ń2.

The estimator for μ2 using Median Ranked Set Sampling (MRSS) is:

´̄y2(mrss) = 1

ń2

ń2∑
j=1

Y(m:j) = Y2(ń2/2) + Y2((ń2+2)/2)

2
,

where

E( ´̄y2(mrss)) = μ2(ń2/2) + μ2((ń2+2)/2)

2
�= μ2.
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Hence, it is a biased estimator of μ2. It will be unbiased if μ2(ń2/2) = μ2((ń2+2)/2).
Now Hansen and Hurwitz (1946) estimator in MRSS, is given by

ȳ∗
mrss = n1

n
ȳ1 + n2

n
´̄y2(mrss). (12)

The Bias of the estimator ȳ∗
mrss is given by

Bias
(
ȳ∗

mrss
) = W2

(μ2(ń2/2) − μ2) + (μ2((ń2+2)/2) − μ2)

2
, (13)

which is almost negligible in case of approximately symmetric distribution, its
variance, is given by

V
(
ȳ∗

mrss
) = σ 2

n
+ W2(k − 1)

n
σ 2

2 − W2k

n
�2

2(m),

where �2
2(m) = E{�2

2(ń2/2)
+�2

2((ń2+2)/2)

2 } . The above expression can also be written
as:

V
(
ȳ∗

mrss
) = V

(
ȳ∗

srs
) − W2k

n
�2

2(m) . (14)

MRSS will be preferred over RSS if �2
2(m) > �2

2(M). Also MRSS will be preferred

over ERSS if �2
2(m) > �2

2(e).

3 Proposed estimators

When the study variable is sensitive in nature than non-response occurs due to
sensitivity of the character under study, consequently the estimators in (7), (9) and
(12) fail to estimate population mean of the study character as it is hard to find
a sub-sample on second call. Taking motivation from Diana, Riaz and Shabbir
(2014) estimator, we use a randomized response model in RSS, ERSS and MRSS
for sub-sampling non-respondents to overcome this difficulty. From (3), a ranked
set sampled j th scrambled response in the j th sample is given as follow when
ranking is performed on Y :

Z[j :j ] = AjY(j :j) + Bj (j = 1,2, . . . , ń2), (15)

where ER(Z[j :j ]) = μAY(j :j) + μB and variance of Z[j :j ] is VR(Z[j :j ]) =
σ 2

AY 2
(j :j) + σ 2

B , here ER,VR are expectation and variance with respect to random-
ization device.

Let ŷ[j ;j ] be transformed scrambled response of the j th unit in the j th sample
whose expectation under randomization mechanism equals to true response y(j ;j).

ŷ[j :j ] = z[j :j ] − μB

μA

, ER(ŷ[j :j ]) = y(j :j),

(16)

VR(ŷ[j :j ]) = σ 2
Ay2[j :j ] + σ 2

B

μ2
A

.
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The estimate of μ2 using this technique is, ´̄y2(rss) = 1
ń2

∑ń2
j=1 ŷ2[j :j ]. The pro-

posed estimator using this technique to sub-sample non-respondents is given
by

ˆ̄y∗
rss = n1

n
ȳ1 + n2

n

´̂̄
y2(rss), (17)

with expected value

E
( ˆ̄y∗

rss
) = E1E2

[
w1ȳ1 + w2ER{ ´̂̄y2(rss)}

]
= E1E2[w1ȳ1 + w2 ´̄y2(rss)] as ER(

´̂̄
y2(rss)) = ´̄y2(rss)

= μ.

Hence, ˆ̄y∗
rss is an unbiased estimator of μ and variance of ˆ̄y∗

rss, can be derived as
following:

V
( ˆ̄y∗

rss
) = E1

[
V2

{
ER

( ˆ̄y∗
rss

)} + E2
{
VR

( ˆ̄y∗
rss

)}]
. (18)

Take

E1
[
V2

{
ER

( ˆ̄y∗
rss

)}] = E1
[
V2

(
ȳ∗

rss
)]

(19)

= σ 2

n
+ W2(k − 1)

n
σ 2

2 − W2k

n
�2

2(M) .

Now for another part,

VR

( ˆ̄y∗
rss

) = w2
2

ń2
2

ń2∑
j=1

VR[ŷ2[j :j ]]

= w2
2

ń2
2

ń2∑
j=1

[σ 2
Ay2

(j :j) + σ 2
B

μ2
A

]
,

E2
{
VR

( ˆ̄y∗
rss

)} = w2
2

ń2
2

[σ 2
A(

∑ń2
j=1 σ 2

2(j) + ∑ń2
j=1 μ2

2(j)) + ń2σ
2
B

μ2
A

]

= w2
2

ń2
2

[σ 2
A{ń2σ

2
2 − ∑ń2

i=1 �2
2(j) + ∑ń2

j=1 μ2
2(j)} + ń2σ

2
B

μ2
A

]
.

Hence

E1E2
{
VR

( ˆ̄y∗
rss

)} = W2k

n

[σ 2
A{σ 2

2 + μ2
2(M)} + σ 2

B

μ2
A

− σ 2
A

μA

�2
2(M)

]
, (20)
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where μ2
2(M) = E{ 1

ń2

∑ń2
j=1 μ2

2(j)} and �2
2(M) is defined earlier. Substituting (19)

and (20) in (18), we get:

V
( ˆ̄y∗

rss
) = σ 2

n
+ W2(k − 1)

n
σ 2

2 − W2k

n
�2

2(M)

+ W2k

n

[σ 2
A{σ 2

2 + μ2
2(M)} + σ 2

B

μ2
A

− σ 2
A

μ2
A

�2
2(M)

]
, (21)

V
( ˆ̄y∗

rss
) = V

( ˆ̄y∗
srs

) − W2k

n
�2

2(M) θ,

where θ = 1 + σ 2
A

μ2
A

and θ > 1. Hence,

GEff(rss) = W2k

n
�2

2(M) θ > 0,

where GEff(rss) denotes the gain in efficiency due to RSS.
Taking motivation from Bouza (2010), we propose an estimator of population

mean by using ERSS with scrambled response model on second call in situation
of non-response. Because it is easier to identify only extreme units from a sample
than ranking all units. The scrambled response is given by

Z[e:j ] = AjY(j :e) + Bj (j = 1,2, . . . , ń2), (22)

where ER(Z[e:j ]) = μAY(e:j) + μB and variance of Z[e:j ] is VR(Z[j :e]) =
σ 2

AY 2
(j :e) + σ 2

B ,
Let ŷ[e:j ] be transformed scrambled response from extreme units in the j th sam-

ple whose expectation under randomization mechanism equals to true response
y(e:j).

ŷ[e:j ] = z[e:j ] − μB

μA

, ER(ŷ[e:j ]) = y(e:j),

(23)

VR(ŷ[e:j ]) = σ 2
Ay2[e:j ] + σ 2

B

μ2
A

= φ[e:j ].

The estimate of μ2 using this technique is:

´̂̄
y2(erss) = 1

ń2

ń2∑
j=1

ŷ(e:j) = Ŷ2(1) + Ŷ2(ń2)

2
,

where E
{
ER(

´̂̄
y2(erss))

} = E(
´̂̄
y2(erss)) = μ2(1) + μ2(ń2)

2
�= μ2.

In case of symmetric distribution it will be unbiased as μ2(1) = μ2(ń2). The pro-
posed estimator using this technique to sub-sample non-respondents is given by

ˆ̄y∗
erss = n1

n
ȳ1 + n2

n

´̂̄
y2(erss). (24)
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The Bias of proposed estimator is,

E
( ˆ̄y∗

erss
) = E1E2

[
w1ȳ1 + w2ER{ ´̂̄y2(erss)}

]
= E1E2[w1ȳ1 + w2 ´̄y2(erss)] as ER(

´̂̄
y2(erss)) = ´̄y2(erss) (25)

⇒ Bias
( ˆ̄y∗

erss
) = W2

(μ2(1) − μ2) + (μ2(ń2) − μ2)

2
,

which is almost negligible in case of near to symmetric distribution, its variance is
given by

V
( ˆ̄y∗

erss
) = E1

[
V2

{
ER

( ˆ̄y∗
erss

)} + E2
{
VR

( ˆ̄y∗
erss

)}]
. (26)

Consider the first part

E1
[
V2

{
ER

( ˆ̄y∗
erss

)}] = E1
[
V2

(
ȳ∗

erss
)]

,
(27)

= σ 2

n
+ W2(k − 1)

n
σ 2

2 − W2k

n
�2

2(e) .

Consider the second part

VR

( ˆ̄y∗
erss

)
= w2

2

ń2
2

ń2∑
j=1

[σ 2
Ay2

(j :e) + σ 2
B

μ2
A

]
,

E2
{
VR

( ˆ̄y∗
erss

)}
= w2

2

ń2
2

[σ 2
AE2((ń2/2)y2

2(1) + (ń2/2)y2
2(ń2)

) + ń2σ
2
B

μ2
A

]

= w2
2

ń2
2

[σ 2
A{(ń2/2)(σ 2

2(1) + μ2
2(1)) + (ń2/2)(σ 2

2(ń2)
+ μ2

2(ń2)
)} + ń2σ

2
B

μ2
A

]

= w2
2

ń2
2

[
σ 2

A{(ń2/2)τ1 + (ń2/2)τń2} + ń2σ
2
B

μ2
A

]
,

where τ1 = σ 2
2 − �2

2(1) + μ2
2(1) and τń2 = σ 2

2 − �2
2(ń2)

+ μ2
2(ń2)

. Hence,

E1E2
{
VR

( ˆ̄y∗
erss

)} = W2k

n

[
σ 2

A

μ2
A

{
σ 2

2 − 1

2

(�2
2(1) + E1�2

2(ń2)

)
(28)

+ 1

2

(
μ2

2(1) + E1μ
2
2(ń2)

)} + σ 2
B

μ2
A

]
.
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Using (27) and (28) in (26), we get

V
( ˆ̄y∗

erss
) = σ 2

n
+ W2(k − 1)

n
σ 2

2 − W2k

n

[
�2

2(e) + σ 2
A

μ2
A

{
σ 2

2 − �2
2(e) + μ2

2(e)

} + σ 2
B

μ2
A

]

= σ 2

n
+ W2(k − 1)

n
σ 2

2 + W2k

n

[σ 2
A{σ 2

2 + μ2
2(e)} + σ 2

B

μ2
A

]
(29)

− W2k

n
�2

2(e) θ

= V
( ˆ̄y∗

srs
) − W2k

n
�2

2(e) θ,

where μ2
2(e) = 1

2(μ2
2(1) +E1μ

2
2(ń2)

) and �2
2(e) is defined earlier in previous section.

The gain in efficiency due to ERSS is

GEff(erss) = W2k

n
�2

2(e) θ > 0.

Since θ > 0. ERSS will give more efficient result than RSS if:

�2
2(e) > �2

2(M).

We propose an estimator of population mean by using scrambled response model
in Median of Ranked Set Sampling. The scrambled response is given by

Z[m:j ] = AjY(m:j) + Bj (j = 1,2, . . . , ń2), (30)

where ER(Z[m:j ]) = μAY(m:j) + μB and variance of Z[m:j ] is VR(Z[m:j ]) =
σ 2

AY 2
(m:j) + σ 2

B .
Let ŷ[m:j ] be transformed scrambled response from median units in the j th sam-

ple whose expectation under randomization mechanism equals to true response
y(m:j).

ŷ[m:j ] = z[m:j ] − μB

μA

, ER(ŷ[m:j ]) = y(m:j),

(31)

VR(ŷ[m:j ]) = σ 2
Ay2[m:j ] + σ 2

B

μ2
A

= φ[m:j ].

The estimate of μ2 using this technique is:

´̂̄
y2(mrss) = 1

ń2

ń2∑
j=1

ŷ(j :m) = Ŷ2(ń2/2) + Ŷ2((ń2/2)+1)

2
,

where E
{
ER(

´̂̄
y2(mrss))

} = E(
´̂̄
y2(mrss)) = μ2(ń2/2) + μ2((ń2/2)+1)

2
�= μ2.
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It will be unbiased if μ2((ń2/2)+1) = μ2(ń2/2) which is possible only in case of
symmetric distribution. The proposed estimator using this technique to sub-sample
non-respondents given bellow.

ˆ̄y∗
mrss = n1

n
ȳ1 + n2

n

´̂̄
y2(mrss). (32)

The Bias of proposed estimator ˆ̄y∗
mrss is given by

E
( ˆ̄y∗

mrss
) = E1E2

[
w1ȳ1 + w2ER(

´̂̄
y2(mrss))

]
= E1E2

[
w1ȳ1 + w2( ´̄y2(mrss))

]
as ER(

´̂̄
y2(mrss)) = ´̄y2(mrss) (33)

⇒ Bias
( ˆ̄y∗

mrss
) = W2

(μ2(ń2/2) − μ2) + (μ2((ń2/2)+1) − μ2)

2
,

which is almost negligible when the distribution tends to symmetric, its variance
using law of total variance, is given by

V
( ˆ̄y∗

mrss
) = E1

[
V2

{
ER

( ˆ̄y∗
mrss

)} + E2
{
VR

( ˆ̄y∗
mrss

)}]
. (34)

The first part of (34) is:

E1
[
V2

{
ER

( ˆ̄y∗
mrss

)}] = σ 2

n
+ W2(k − 1)

n
σ 2

2 − W2k

n

{�2
2(m)

}
. (35)

Also the second part of (34) is

VR

( ˆ̄y∗
mrss

) = w2
2

ń2
2

ń2∑
j=1

{σ 2
Ay2

(j :m) + σ 2
B

μ2
A

}
,

E2
{
VR

( ˆ̄y∗
mrss

)} = w2
2

ń2
2

[
σ 2

A{(ń2/2)T1 + (ń2/2)T2} + ń2σ
2
B

μ2
A

]
,

where T1 = σ 2
2 − �2

2(ń2/2)
+ μ2

2(ń2/2)
and T2 = σ 2

2 − �2
2((ń2/2)+1)

+ μ2
2((ń2/2)+1)

.
Therefore,

E1E2
{
VR

( ˆ̄y∗
mrss

)} = W2k

n

[
σ 2

A

μ2
A

{
σ 2

2 − �2
2(m) + μ2

2(m)

} + σ 2
B

μ2
A

]
, (36)

where μ2
2(m) = 1

2(μ2
2(ń2/2)

+ E1μ
2
2((ń2/2)+1)

and �2
2(m) is defined in previous sec-

tion. Using (35) and (36) in (34), we get

V
( ˆ̄y∗

mrss
) = σ 2

n
+ W2(k − 1)

n
σ 2

2 + W2k

n

[σ 2
A{σ 2

2 + μ2
2(m)} + σ 2

B

μ2
A

]

− W2k

n
�2

2(m) θ, (37)

V
( ˆ̄y∗

mrss
) = V

( ˆ̄y∗
srs

) − W2k

n
�2

2(m) θ.
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Gain in efficiency due to MRSS is

GEff(mrss) = W2k

n
�2

2(m) θ > 0.

MRSS will give more efficient result than RSS if: �2
2(m) > �2

2(M).

Also MRSS will give more efficient result than ERSS if: �2
2(m) > �2

2(e).

4 A Monte Carlo comparison of the efficiency of the estimators

To compare the efficiency of proposed estimators in RSS to the corresponding
estimators in SRSWR, we conduct a simulation study taking motivation from
Agarwal, Allende and Bouza (2012). The values of auxiliary variable X are gen-
erated by using three different distributions that is, (1) Normal (μ = 0, σ 2 = 1),
(2) Exponential (λ = 5) and (3) Uniform (a = 0, b = 1). After that, Y is computed
such that Y = rX + e, taking r = 0.80, where r is the coefficient of correlation
between X and Y and e ∼ N(0,1) is the error term. Assuming different values of
W2, we identified some unit in the population as non-respondents. We denote each
RSS procedure with R:

R = RSS, ERSS, MRSS.
The Monte Carlo experiment works as follows:

Step 1. We select a sample s from the above hypothetical populations and divide
it into two groups s1 with size n1 and s2 with size n2, where n2 = n × W2
and n1 = n − n2. Then calculate the sample mean of Y from s1 and ń2 is
determined such that ń2 = n2

k
(k > 1).

Step 2. Select ś2 by using R of size ń2 from s2 and then compute the sample mean
of Y for non-response group. Note that we used scrambled responses (see
Section 3) rather than direct responses for computing sample mean on
second call to obtain results of last three columns of Table 1.

Step 3. The mean estimator ˆ̄y∗
R = n1

n
ȳ1 + n2

n

´̂̄
y(2R) is computed for the hth (h =

1,2, . . . ,H ) sample corresponding to R.

The cycle is repeated for obtaining H = 10,000 samples and compute respective
sample means. Then the mean and variance for the sample mean of these H sam-
ples are calculated and relative efficiencies of these estimators are obtained by
using following formula

RE = Var(ȳ∗)
Var(ȳ∗

R)
and R̂E = Var( ˆ̄y∗

)

Var( ˆ̄y∗
R)

.

The results are presented in Table 1.
The first three columns give relative efficiency (RE) of Bouza (2002) estima-

tors w.r.t. Hansen and Hurwitz (1946) estimator and the last three columns of Ta-
ble 1 give relative efficiency (R̂E) of proposed estimators with respect to Diana,
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Table 1 The relative efficiency of RSS, ERSS and MRSS

RE R̂E

Distribution W2 k RSS ERSS MRSS RSS ERSS MRSS

Normal

2 1.1250 1.0609 1.0935 1.3513 1.2867 1.3946
0.1 4 1.1013 1.1049 1.2241 1.2122 1.2088 1.2862

6 1.1013 1.1049 1.2241 1.2122 1.2088 1.2862

2 1.2728 1.1763 1.2138 2.1318 1.6430 2.2981
0.2 4 1.4389 1.2135 1.3260 1.9032 1.6060 2.1399

6 1.3291 1.1242 1.3359 1.5354 1.2804 1.7114

2 1.4455 1.0917 1.1437 3.1526 1.5960 3.4264
0.3 4 1.6438 1.4535 1.5430 2.7307 1.9072 3.2724

6 1.6769 1.2640 1.4570 2.2765 1.8958 2.7598

2 1.6160 1.2031 1.2515 4.5716 2.1163 5.1349
0.4 4 1.9228 1.6177 1.7300 3.4769 2.1427 4.3755

6 2.0375 1.2540 1.4467 3.0449 1.5971 3.8519

Exponential

2 1.1170 1.0543 1.0828 1.6186 1.6780 1.6661
0.1 4 1.1123 1.1098 1.2265 1.3107 1.5030 1.4821

6 1.1123 1.1098 1.2265 1.3107 1.5030 1.4821

2 1.2596 1.1517 1.1909 3.1984 1.8218 3.3736
0.2 4 1.3659 1.1088 1.2214 2.4734 2.4532 2.7109

6 1.3584 1.1875 1.3860 1.9270 1.7200 2.0568

2 1.4439 1.1188 1.1682 5.2756 1.4882 5.6374
0.3 4 1.5923 1.4473 1.5372 3.8759 2.0581 4.4753

6 1.7389 1.3048 1.5143 3.0151 2.8765 3.4168

2 1.6419 1.1481 1.1986 7.7175 1.6036 8.6775
0.4 4 1.9136 1.5654 1.6774 5.0912 1.8970 5.9705

6 1.9693 1.3389 1.5237 3.9496 1.7195 4.7537

Uniform

2 1.1138 1.0674 1.0977 1.6765 1.6903 1.7198
0.1 4 1.1204 1.1017 1.2161 1.3577 1.5053 1.4567

6 1.1204 1.1017 1.2161 1.3577 1.5053 1.4567

2 1.2533 1.1726 1.2050 3.2788 1.9403 3.5413
0.2 4 1.3812 1.1515 1.2621 2.4932 2.4591 2.7205

6 1.3049 1.1039 1.3151 1.8869 1.7240 2.0569

2 1.4491 1.1234 1.1726 5.5418 1.6480 6.1193
0.3 4 1.6808 1.5261 1.6343 4.0407 2.2174 4.7350

6 1.5325 1.2022 1.3913 2.8012 2.8716 3.3526

2 1.6165 1.2146 1.2635 8.2002 1.6974 9.1755
0.4 4 1.9746 1.6667 1.7758 5.5181 2.1727 6.3218

6 2.0436 1.2798 1.4815 4.2700 1.8340 5.0032
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Riaz and Shabbir (2014) estimator. The proposed estimators give larger relative
efficiency than the Bouza (2002) estimators. We can see that relative efficiency
of proposed estimators tend to decreases for larger k. This implies that for small
sub-sample size proposed estimators give greater precision. Relative efficiency of
proposed estimators are greater for larger values of W2. It can also be inferred
from Table 1 that RSS perform better in term of efficiency for case of Uniform
distribution as compared to other two distributions. In all cases, MRSS performs
better than RSS under scrambled response model. But relative efficiency of ERSS
is smaller than RSS and MRSS for all cases.

5 Conclusion

This article presented a procedure for estimation of population mean in non-
response where we can obtain twin objectives of survey sampling; (i) one is to
give greater confidentiality to the respondents which results increment of response
rate, (ii) another is gain in precision of estimates involve in study. By assuming that
non-response is due to sensitivity of the study character we proposed three estima-
tors using scrambled response model by selecting a ranked set sample, extreme
ranked set sample and median ranked set sample. It is proved both mathematically
and numerically that the estimators of population mean perform better in RSS,
ERSS and MRSS than SRSWR. Further work can be extended to give more pri-
vacy protection to respondents by applying other randomized response models.
Efficiency can be improved by using other ranked set sampling procedure.

Acknowledgments

The authors thank the referees for their valuable comments which allowed improv-
ing a previous version.

References

Agarwal, G. K., Allende, S. M. and Bouza, C. (2012). Double sampling with ranked set selection in
the second phase with nonresponse: Analytical results and Monte Carlo experiences. Journal of
Probability and Statistics 2012, Article ID 214959. MR2897336

Bouza, C. (2002). Estimation of the mean in ranked set sampling with non-responses. Metrika 56,
171–179. MR1932086

Bouza, C. (2009). Ranked set sampling and randomized response procedures for estimating the mean
of a sensitive quantitative character. Metrika 6, 0184–0191. MR2550750

Bouza, C. (2010). Ranked set sampling procedure for the estimation of the population mean under
non-response: A comparison. Revista Investigation Operational 31, 140–150. MR2840959

Dell, T. and Clutter, J. (1972). Ranked set sampling theory with order statistics background. Biomet-
rics 28, 545–555.

http://www.ams.org/mathscinet-getitem?mr=2897336
http://www.ams.org/mathscinet-getitem?mr=1932086
http://www.ams.org/mathscinet-getitem?mr=2550750
http://www.ams.org/mathscinet-getitem?mr=2840959


Ranked set sampling with Scrambled response model to subsample non-respondents 193

Diana, G. and Perri, P. (2011). A class of estimators for quantitative sensitive data. Statistical Papers
52, 633–650. MR2821061

Diana, G., Riaz, S. and Shabbir, J. (2014). Hansen and Hurwitz estimator with scrambled response
on the second call. Journal of Applied Statistics 41, 596–611. MR3291275

Hansen, M. H. and Hurwitz, W. (1946). The problem of non response in sample surveys. Journal of
The American Statistical Association 41, 517–529.

McIntyre, G. (1952). A method of unbiased selective sampling using ranked sets. Australian Journal
of Agricultural Research 3, 385–390.

Muttlak, H. (1996). Median ranked set sampling. Journal of Applied Statistical Science 6, 91–98.
Patil, G. (2002). Ranked set sampling. In Encyclopedia of Enviromentrics 3 (A. H. El-Shaarawi and

W. W. Piegorsch, eds.) 1684–1690. Chichester: Wiley.
Samawi, H., Abu-Dayyeh, W. and Ahmed, S. (1996). Extreme ranked set sampling. Biometrical

Journal 30, 577–586.
Warner, S. (1965). Randomized response: A survey technique for eliminating evasive answer bias.

Journal of The American Statistical Association 60, 63–69.

Department of Statistics
Quaid-i-Azam University
Islamabad
Pakistan
E-mail: shakeelatish05@gmail.com

http://www.ams.org/mathscinet-getitem?mr=2821061
http://www.ams.org/mathscinet-getitem?mr=3291275
mailto:shakeelatish05@gmail.com

	Introduction
	Estimation of mean in non-response
	Proposed estimators
	A Monte Carlo comparison of the efﬁciency of the estimators
	Conclusion
	Acknowledgments
	References
	Author's Addresses

