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Comment on Article by Pratola∗

Robert B. Gramacy†

I’d like to offer my congratulations to Pratola for engaging in timely study on a high-
impact topic, namely the efficient exploration of the space of reasonable partition-
based representations of the input–output relationships in data. Tree-based partitioning
schemes for regression and classification have proliferated in machine learning, spatial
statistics, and computer experiments. However, the Bayesian approach has long been
limited by expensive Markov chain Monte Carlo (MCMC) and poor mixing therein.

Pratola said that the MCMC mixing “problem [with trees] has been recognized since
such models were established . . . and little progress has been made.” That’s true, but
why? MCMC is falling out of fashion a bit, so that may be one explanation. Referees
routinely ask authors to remove MCMC details from papers, or at best move them to an
appendix, which discourages authors from embarking on the kind of very valuable study
that Pratola has taken on in this work. But I think the main reason is that trees are
a difficult data structure to deal with. The intersection of talented coders (particularly
C data structures), and thoughtful experienced Bayesians, is unfortunately quite small.
Not many people are qualified for the job.

My aim over the next several pages is to emphasize, primarily through a series of
worked-code illustrations, the value of the contribution Pratola has made. Pratola has
provided many of his own illustrations within the Bayesian Additive Regression Tree
(BART, Chipman et al., 2010) framework, involving sums of trees, whereas mine will
complement those by looking at single-tree models. Following that, I will mention a
small potential downside, which I think could be addressed although it may involve a
substantial undertaking. Finally, I will conclude with some comments on tree priors,
a topic which has been similarly overlooked in the almost two decades since the first
swarm of Bayesian tree methods arrived on the scene.

1 An illustration

Pratola talked about rotations, extending an idea from my PhD work (Gramacy, 2005).
Whereas my version of rotations worked only on adjacent splits on identical input
variables, Pratola’s are far more general. Here my aim is to illustrate the value of
rotations, and for ease of visualization I shall limit myself to a simple 1-dimensional
regression problem.

The data generating mechanism is given by the R code below. This data was used
to illustrate treed Gaussian processes in the original methods paper (Gramacy and Lee,
2008) and in the software paper (Gramacy, 2007) for the tgp package in R. It is part
sinusoid and part linear; a visual will be provided shortly.
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R> X <- seq(0,20,length=200)

R> Ztrue <- (sin(pi*X/5) + 0.2*cos(4*pi*X/5)) * (X <= 9.6)

R> Ztrue[X>9.6] <- -1 + X[X>9.6]/10

R> Z <- Ztrue + rnorm(length(Ztrue), sd=0.1)

The code below uses a routine from the tgp package to fit a so-called “Bayesian
CART” surface—the Bayesian analog of the Classification and Regression Tree method
of Breiman et al. (1984), which fits piece-wise constant surfaces to the data.

R> library(tgp)

R> orig <- bcart(X=X, Z=Z, BTE=c(10000, 1010000, 2), minpart=4, verb=0)

R> orig$gpcs

## grow prune change swap

## 1 0.01721804 0.0169296 0.3617887 0.7117769

The output shown (out$gpcs) provides the acceptance rate(s) of tree MCMC moves.
The rotate move is a special case of swap, so the rate quoted above for swap combines
both swap and rotate moves. I would consider this mixing to overall be good, perhaps
even very good for change and swap. The mixing indicated is merely “acceptable” for the
dimension-changing proposals grow and prune. Figure 1 shows the data and the resulting
predictive surface. Obviously this data wasn’t tailor-made for piecewise constant models,
but nevertheless the fit is pretty good. You can see the MCMC smoothing over possible
splitting locations.

At Pratola pointed out, the trouble comes (in part) when there are confounders in
the inputs. A simple way to illustrate that is with a “perfect” confounder: a duplicate
x coordinate. The R code below shows what I mean.

R> confound <- bcart(X=cbind(X,X), Z=Z, BTE=c(10000, 1010000, 2),

+ minpart=4, verb=0)

R> gpcs <- rbind(orig=orig$gpcs, confound=confound$gpcs)

R> gpcs

## grow prune change swap

## orig 0.01721804 0.0169296 0.3617887 0.7117769

## confound 0.01221110 0.0118770 0.3630451 0.5479598

The tree shouldn’t care whether it is partitioning on x1 or x2 because they are the
same. But since the tgp software can’t perform rotations on different input variables,
only identical adjacent ones, MCMC mixing suffers. Observe the decrease in the rate
of accepted swaps. There should be no direct effect on grow and prune rates. However,
fewer accepted rotates limits the scope for pruning and re-growth, a problem which is
easily exacerbated in higher dimension.

Several remedies have been proposed to improve exploration of the Bayesian tree
posterior. The simplest—multiple restarts of the MCMC chain—goes back to the origi-



R. B. Gramacy 915

plot(X,Z, cex=0.25)

lines(X, orig$Zp.mean, lwd=2)

lines(X, orig$Zp.q1, lwd=2, lty=2, col=1)

lines(X, orig$Zp.q2, lwd=2, lty=2, col=1)

Figure 1: Bayesian CART fit to the sinusoidal data.

nal Bayesian CART paper (Chipman et al., 1998). That feature is facilitated in the tgp
package via the optional R= argument.

restart <- bcart(X=cbind(X,X), Z=Z, minpart=4, verb=0,

BTE=c(10000, 20000, 2), R=100)

gpcs <- rbind(gpcs, restart=restart$gpcs)

gpcs

## grow prune change swap

## orig 0.01721804 0.01692960 0.3617887 0.7117769

## confound 0.01221110 0.01187700 0.3630451 0.5479598

## restart 0.02807488 0.01898019 0.3919503 0.5384241

Observe that the swap rate isn’t much affected, but grow and prune have improved
substantially. In fact, they are better than in the original (non-confounded) run. Restarts
are a “clunky” way of improving mixing in MCMC, but they do have the implementa-
tion advantage of simplicity, and the computational advantage of trivial parallelization.
A more involved solution, that has been shown to work well with tree MCMC, involves
simulated/parallel tempering (Richardson and Green, 1997). A variation, called im-
portance tempering (Gramacy et al., 2010), which combines simulated tempering and
importance sampling (to save samples from heated chains), is implemented in the tgp

package. Its usage in the package is described in a follow-on tutorial (Gramacy and
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Taddy, 2010). That documentation encourages three restarts, to adjust the tempera-
ture ladder via stochastic approximation, and a particular form of hierarchical prior to
ensure propriety of the prior at hotter temperatures.

R> temper <- bcart(X=cbind(X,X), Z=Z, bprior="b0", R=3,

+ BTE=c(10000, 350000, 2), minpart=4, verb=0, itemps=itemps)

gpcs <- rbind(gpcs, temper=temper$gpcs)

gpcs

## grow prune change swap

## orig 0.01721804 0.01692960 0.3617887 0.7117769

## confound 0.01221110 0.01187700 0.3630451 0.5479598

## restart 0.02807488 0.01898019 0.3919503 0.5384241

## temper 0.07863162 0.07734743 0.6114380 0.4311797

Observe the much improved mixing compared to any of the three previous runs.
Strangely, swaps benefit less than the others however. The predictive surfaces obtained
from the four methods are so similar to the ones from Figure 1 that I do not duplicate
them here, to economize on space. I encourage interested readers to re-run the code for
themselves if curious.

To conclude this illustration it is worth pointing out that while the remedies explored
above have the potential to offer substantial mixing improvements, they are like a band-
aid. By contrast, Pratola’s re-designed rotate and perturbation moves are more of a
surgical procedure. Additionally they may be combined with restarts and tempering to
achieve further improvements still.

2 Potential downside?

Much of the Pratola’s setup assumes that one has access to an integrated likelihood for
the terminal nodes, following similar assumptions in the original Bayesian tree papers.
This is almost always the right thing to do, generically, in Bayesian inference: analyt-
ically integrate out as much as possible, leaving as little as possible to Monte Carlo
integration via MCMC. In the case of the usual leaf models under conjugate priors, for
example the constant and multinomial models (CART), and the linear model (i.e., OLS
Chipman et al., 2002), these integrated likelihoods are readily available. It is probably
also doable for other members of the exponential family, such as the Poisson, Gamma,
log Normal, Beta, etc., although I am not aware of any work along these lines.

However, it is clearly not always possible, for example in the contexts outlined above
without conjugate priors, or with a generalized linear model at the leaves, or with
Gaussian processes (GP) at the leaves (Gramacy and Lee, 2008)—a case near and dear
to me. In all three situations, the parameters that describe the local fit at the leaves
cannot be (fully) integrated out, which means that values of those parameters need to
be stored in the data structure at the terminal node, and they need to be updated
by the MCMC. MCMC moves which keep the tree topology fixed or nearly-so (e.g.,
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change and swap), or which condition on the current tree, are straightforward. Several
authors have developed simple, efficient, Metropolis schemes for those updates. See, for
example, Gramacy and Lee (2008) for the GP case in particular. Tree-moves, however,
must involve joint proposals for change in topography as well as leaf-node parameter
values. Dimension-changing moves, like grow and prune must involve proposals for new
parameters (and a reversible way to discard them) in a reversible jump-like fashion
(Richardson and Green, 1997). Details have been worked out in the GP case, and they
essentially involve borrowing of information locally in nearby leaf or parent nodes.

It is not clear, however, whether similar schemes could be extended to Pratola’s
new rotate move, which in its current form assumes integrated likelihoods at the leaves.
Since, by design, the moves make “big” jumps in tree-space, rather than local ones, it is
not clear where new values of leaf parameters could come (or be absorbed) from. More-
over, the new perturbation move could drastically alter the composition of terminal
nodes, rendering the parameters stored in those nodes useless, at least from the per-
spective of posterior support relative to the current, unaltered tree before the proposed
modifications. So two questions I have for Pratola are: (1) How would you complete
the new rotate description to include leaf parameters; and (2) similarly, how would you
complete the same for perturbation?

3 Final thought on priors

The process prior of Chipman et al. (1998) reigns in tree complexity by penalizing splits
on nodes η based on their depth Dη in the tree T :

psplit(η, T ) = α(1 +Dη)
−β .

Usually a uniform prior prule is placed on splitting variables (i.e., splitting dimension)
and on locations for splits along those variables. This induces a prior for the full tree T
via the probability that internal nodes IT split and leaves LT do not:

π(T ) ∝
∏

η ∈IT

psplit(T , η)
∏

η ∈LT

[1− psplit(T , η)].

In what follows I call this the CGM prior.

In nearly every Bayesian tree paper that I know of, since 1998, this prior has been
adopted, or has been used as the basis for a slightly more elaborate process. Why is this
prior so popular? Is it any good? Of course, those who know the literature know that
there are two notable exceptions to this prior’s ubiquity. One is the so-called “pinball”
prior of Wu et al. (2007), and the other came from a peer paper (Denison et al., 1998)
published in the same year as CGM. The pinball prior has some attractive features, but
it is somewhat more complicated to calculate. The latter paper is interesting because it
offers something simpler than the CGM prior, in that only the number of splits (before a
terminal node) is penalized, with the length of that chain following a truncated Poisson.
Lets call that the DMS prior. Denison et al. felt compelled to defend the DMS prior,
and thereby their entire Bayesian tree modeling philosophy, relative to the CGM one.
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They said:

The Chipman et al. (1998) approach concentrates more on the prior specification . . . to
encourage trees to grow to specific topologies . . . Although this . . . may be beneficial in a
few examples, we rarely know the type of tree structure we expect, so we prefer to place
no constraint on the structure and let the data speak for themselves.

Apparently, they feel that their Poisson approach is “more uniform” than CGM, or
at least gives the data more opportunity to shine. I wonder if that is really the case,
although clearly the calculation involves a less cumbersome procedure. They also claim
that the DMS’s uniformity is better, in the sense that it ought to work better in a
generic sense, i.e., for most examples where one would have little a priori information
about tree structure. My hunch is that this is probably not true, but I the only evidence
I have is anecdotal. Nearly twenty years after these papers were published—in 1998,
with earlier versions appearing several years previous—we know now the full value of
regularization in hard regression and classification problems. We opt for stronger priors,
offering more regularization, not less. The CGM prior reins in complexity by controlling
tree topography in a more aggressive way than the DMS prior does. You could criticize
that it does so arbitrarily, but the jury is out until someone does a proper comparison.
The fact that the CGM, not the DMS, has been chosen in several recent papers—on
BART, on tgp, as part of a dynamic tree prior (Taddy et al., 2011), and an online tree
prior (Anagnostopoulos and Gramacy, 2013)—suggests that CGM has emerged as the
champion. But nobody has offered a thorough comparison study.

So to conclude, I shall reiterate that Pratola has, in my opinion, sealed the deal on
MCMC moves in Bayesian tree models, at least for the next twenty years. I look forward
to the R package implementing the new tree moves, because the code behind them isn’t
the sort of thing that a keen student can recreate for themselves over along weekend,
or even over a semester! However, before another twenty years goes by, I’d like to see
some re-thinking of the tree prior. The next paper on Bayesian trees should explore the
two-or-three existing alternatives, and probably recommend a new one because none of
the existing ones provides an interpretable way to specify elucidated prior beliefs.
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