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Abstract. This note is a discussion of the article “Bayesian Solution Uncertainty
Quantification for Differential Equations” by Chkrebtii, Campbell, Calderhead,
and Girolami. The authors propose stochastic models for differential equation
discretizations. While appreciating the main concepts, we point out some possible
extensions and modifications.
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1 Introduction

In modeling a physical system governed by differential equation, quantifying uncertainty
of the solution is an important issue and Bayesian methodology provides a natural frame-
work in such problems Chakraborty et al. (2016); Stuart (2014); Konomi et al. (2014);
Hoang et al. (2013); Holmes et al. (2012); Guha et al. (2015); Mondal et al. (2014);
Efendiev et al. (2008b,a). This is a very nice contribution to develop structured models
for uncertainty discretization within the forward problem and construction of efficient
sequential algorithms. The authors used Gaussian process models for the unknown func-
tion as well as for the corresponding derivatives. The key component of modeling with
Gaussian process is the specification of the covariance kernel. This specification could
be very complex in higher dimensions and for complex multiscale problems. In the
latter case, the stochastic modeling of discretization errors can be important as one
can not represent all degrees of freedom. Typical subgrid basis functions representing
the solutions over computational grids can not include all fine-grid information of the
solution space. Some important subgrid information can be taken into account, while
un-resolved scales and information can be modeled in a probabilistic fashion. The pro-
posed framework can take this into account in a more systematic way if appropriate
scales are resolved and un-resolved ones are modeled using appropriate probabilistic
models. Though the applications presented in the paper are somewhat simplistic, the
proposed concepts can be applied to more complex problems. In particular, with the
help of appropriate subgrid models, one can obtain accurate representation of uncer-
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tainties and the applications to partial differential equations (PDEs) can benefit from
variational formulations.

2 Variational Approaches with Multiscale Basis
Functions

An alternative way is to approximate the function u using basis functions and use a
variational formulation of PDEs. As we mentioned, the basis functions can represent
some subgrid effects or can be taken as splines or wavelets. As an illustrative example,
we can consider

∂u

∂t
= L(κ(x), u,∇u),

where, for example, L(κ(x), u,∇u) = div(κ(x)∇u) with κ(x) having a multiscale nature,
or L is a nonlinear differential equation, which can generate subgrid effects (e.g., viscous
fingering,. . . ). In these applications, we can express the unknown solution function as

u(x, t) =
∑
i

βi(t
∗) φi(x, t),

where βi’s are the unknown regression coefficients defined in each computational time
interval and φi are basis functions. We consider a simpler case, where φi is the spatial
functions and βi(t) are time-varying functions. We note that it can be important to
separate variables to avoid higher derivatives and introduce auxiliary variables. In the
diffusion example, we can, for example, introduce v = ∇u and use additional subgrid
basis functions for v, v =

∑
i γi(t)ψi(x). Using an appropriate variational approach, one

obtains
∂[β; γ]

∂t
= A[β; γ],

where A can be a nonlinear operator, in general. An appropriate variational principle
allows avoiding instability in spatial discretization, which could be a source of the error.

Modeling subgrid errors in each computational domain can be a challenging task.
Multiscale techniques Efendiev and Hou (2009); Chung et al. (2016a,b); Calo et al.
(2016) are designed to extract important features (typically non-local) in each compu-
tational grid and couple them via a global formulation. For example, if in each compu-
tational grid K (in 2D or 3D), we use basis functions φK

i , where i = 1, . . . , NK is the
number of basis functions. The “computable” part of the solution can be sought as

uc(x, t) =
∑
i,K

βK
i (t) φK

i (x),

where βK
i can be found from the variational formulation. To model un-resolved scales,

one can consider several approaches. One of them includes writing the solution as

u = uc + ur,
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where ur is the un-resolved part. The equation for ur can be formulated and solved.
This approach is similar of modeling the error Kennedy and O’Hagan (2001). Another
approach (which is closer to the proposed method) is to model subgrid errors for each
basis functions. These new subgrid basis functions can be adaptively defined in space
and time. In this case, the solution is sought as

u(x, t) =
∑
i,K

βK
i (t) (φK

i (x) + rKi (x, t)),

where rKi (x, t) account for un-resolved scales. In this case, one can seek the solution as

u(x, t) =
∑
i,K

β̃K
i (t) φK

i (x),

with β̃K
i (t) contain uncertainties due to un-resolved scales. This can be considered as

one of the applications of the proposed method, which provides a framework.

In addition to subgrid errors, the proposed method designs efficient sequential algo-
rithm. The solution representation can be used within a natural variational formulation
for underlying PDEs, which results a model equation for β. In the iterative framework,
let the discretized solution of a PDE at time t+1 be ut+1, which is a vectorized value at
grid points on the spatial domain. If we can write the solution as the following linearized
form,

ut+1 = Aut,

with the given initial condition u0. Then, we can quantify the uncertainty of the solution,
through specifying Gaussian distribution structure, or specifying the covariance function
ut+1
i and ut

j , where j in the subscript denote the value at the j th grid point. The
algorithm will be very fast due to inherent Markov structure. Furthermore, we can add
the approximation error as ut = Rβt + ε with a Gaussian distribution for ε. When we
put a Gaussian prior on βi, we also make u become a Gaussian distribution which could
be used to quantify the uncertainty.

Next, we would like to comment on using multiscale approaches, which incorporate
subgrid information into basis functions. We consider the example in Section 5.4. In
this case, multiscale basis functions for 1D case can be constructed by solving local
problems with boundary conditions φi(xj) = δij (see Efendiev and Hou (2009)). One
can regard these approaches as seeking solutions’ values at the coarse-grid computational
nodes. The information on the fine grid in this case is approximated via basis functions
containing subgrid information. In a multiscale approach, we can use the Gaussian
updates on coarse nodes and write the solution at {x, tj} (for a generalized equation for
(5.6)) as

u(x, tj) =

N1∑
i=1

αi(t)φi(x),

where φi(x) is the multiscale basis at coarse grid points. Therefore, by updating on α
by the Gaussian kernel as given in Algorithm 8, we would be able to capture the local
structure while attaining computational efficiency.
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For high dimensional multiscale PDEs, a separability assumption can be used in

solving the differential equation over the whole parameter domain (Yang et al. (2016)).

We write the solution as

u(x) =

N∑
i=1

M∏
j=1

φi,j(xj),

where x = (x1, x2, · · · , xM ), which can include the parameters and spatial/temporal

variables. This can be used to estimate the mean function and uncertainty quantifi-

cation, by assuming Gaussian processes on the separated functions φi,j . We can also

get probabilistic solutions for high-dimensional PDE by this separable scheme. Similar

separability assumptions can be made on the Gaussian Process covariance kernel but it

is difficult to evaluate its effect due to misspecification.

3 Consistency Result

The Gaussian process is characterized by the covariance kernel, which is parametrized by

prior precision α−1 and correlation length λ. Here, α controls the variability of solution

path at some grid points and λ controls the effect of other grid points through the

covariance kernel. From the consistency theorem (Theorem 3.1 in Chakraborty et al.

(2016)), with α−1 and λ going to zero, the consistency actually comes to the accuracy

of the numerical solver, which is a function of grid size when we deal with smooth

solutions. Otherwise, they can be related to local approximation with multiscale basis

functions. Hence, as prior variance, correlation length, and grid size converge to zero,

the solution converges to the unique solution of the differential equation. It can also be

helpful to look into posterior consistency and convergence rate (Vollmer (2013), Barron

et al. (1999)) of θ, the unknown initial condition. The posterior consistency would imply

that with more observed data and dense grids the posterior distribution of θ would be

concentrated in a small ball around unknown true θ∗, where the radius of the ball goes

to zero at some appropriate rate given by the rate of convergence.

4 Concluding Remarks

The proposed method characterizes the uncertainty in the discretization of the solutions

of differential equations. Using space–time basis functions and variational formulations,

we can use the proposed concepts and construct the mean function by appropriately

incorporating the subgrid effects. Furthermore, using Gaussian process structure, we can

describe the uncertainty around the mean function and this allows characterizing the

uncertainty of the solution. Comparing methods based on basis functions with subgrid

models for un-resolved scales in the case of multiscale problems with the sequential

interrogation can be an interesting exercise.



B. K. Mallick, K. Yang, N. Guha, and Y. Efendiev 1283

References
Barron, A., Schervish, M. J., Wasserman, L., et al. (1999). “The consistency of posterior
distributions in nonparametric problems.” The Annals of Statistics, 27(2): 536–561.
MR1714718. doi: http://dx.doi.org/10.1214/aos/1018031206. 1282

Calo, V. M., Efendiev, Y., Galvis, J., and Li, G. (2016). “Randomized oversampling for
generalized multiscale finite element methods.” Multiscale Modeling & Simulation,
14(1): 482–501. MR3477310. doi: http://dx.doi.org/10.1137/140988826. 1280

Chakraborty, A., Bingham, D., Dhavala, S. S., Kuranz, C. C., Drake, R. P., Grosskopf,
M. J., Rutter, E. M., Torralva, B. R., Holloway, J. P., McClarren, R. G., et al. (2016).
“Emulation of numerical models with over-specified basis functions.” Technometrics,
doi: http://dx.doi.org/10.1080/00401706.2016.1164078. 1279, 1282

Chung, E., Efendiev, Y., and Hou, T. Y. (2016a). “Adaptive multiscale model reduc-
tion with generalized multiscale finite element methods.” Journal of Computational
Physics, 320: 69–95. MR3506953. doi: http://dx.doi.org/10.1016/j.jcp.2016.
04.054. 1280

Chung, E., Efendiev, Y., Leung, W. T., and Li, G. (2016b). “Sparse Generalized Mul-
tiscale Finite Element Methods and their applications.” International Journal for
Multiscale Computational Engineering , 14(1). 1280

Efendiev, Y., Datta-Gupta, A., Hwang, K., Ma, X., and Mallick, B. (2008a). “Bayesian
partition models for subsurface characterization.” Large-Scale Inverse Problems and
Quantification of Uncertainty , 107–122. MR2856653. 1279

Efendiev, Y., Datta-Gupta, A., Ma, X., and Mallick, B. (2008b). “Modified Markov
Chain Monte Carlo method for dynamic data integration using streamline approach.”
Mathematical Geosciences, 40(2): 213–232. 1279

Efendiev, Y. and Hou, T. Y. (2009). “Multiscale finite element methods: Theory and
Applications.” Springer Science & Business Media, 2009, MR2477579. 1280, 1281

Guha, N., Wu, X., Efendiev, Y., Jin, B., and Mallick, B. K. (2015). “A variational
Bayesian approach for inverse problems with skew-t error distributions.” Journal
of Computational Physics, 301: 377–393. MR3402736. doi: http://dx.doi.org/
10.1016/j.jcp.2015.07.062. 1279

Hoang, V. H., Schwab, C., and Stuart, A. M. (2013). “Complexity analysis of accel-
erated MCMC methods for Bayesian inversion.” Inverse Problems, 29(8): 085010.
MR3084684. doi: http://dx.doi.org/10.1088/0266-5611/29/8/085010. 1279

Holmes, C., Denison, D. T., Ray, S., and Mallick, B. (2012). “Bayesian prediction via
partitioning.” Journal of Computational and Graphical Statistics. 14(4): 811–830,
doi: http://dx.doi.org/10.1198/106186005X78107. 1279

Kennedy, M. C. and O’Hagan, A. (2001). “Bayesian calibration of computer models.”
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63(3):
425–464. MR1858398. doi: http://dx.doi.org/10.1111/1467-9868.00294. 1281

http://www.ams.org/mathscinet-getitem?mr=1714718
http://dx.doi.org/10.1214/aos/1018031206
http://www.ams.org/mathscinet-getitem?mr=3477310
http://dx.doi.org/10.1137/140988826
http://dx.doi.org/10.1080/00401706.2016.1164078
http://www.ams.org/mathscinet-getitem?mr=3506953
http://dx.doi.org/10.1016/j.jcp.2016.04.054
http://dx.doi.org/10.1016/j.jcp.2016.04.054
http://www.ams.org/mathscinet-getitem?mr=2856653
http://www.ams.org/mathscinet-getitem?mr=2477579
http://www.ams.org/mathscinet-getitem?mr=3402736
http://dx.doi.org/10.1016/j.jcp.2015.07.062
http://dx.doi.org/10.1016/j.jcp.2015.07.062
http://www.ams.org/mathscinet-getitem?mr=3084684
http://dx.doi.org/10.1088/0266-5611/29/8/085010
http://dx.doi.org/10.1198/106186005X78107
http://www.ams.org/mathscinet-getitem?mr=1858398
http://dx.doi.org/10.1111/1467-9868.00294


1284 Comment on Article by Chkrebtii et al.

Konomi, B. A., Sang, H., and Mallick, B. K. (2014). “Adaptive Bayesian non-
stationary modeling for large spatial datasets using covariance approximations.”
Journal of Computational and Graphical Statistics, 23(3): 802–829. MR3224657.
doi: http://dx.doi.org/10.1080/10618600.2013.812872. 1279

Mondal, A., Mallick, B., Efendiev, Y., and Datta-Gupta, A. (2014). “Bayesian Un-
certainty Quantification for Subsurface Inversion Using a Multiscale Hierarchical
Model.” Technometrics, 56(3): 381–392. MR3238075. doi: http://dx.doi.org/

10.1080/00401706.2013.838190. 1279

Stuart, A. (2014). “Uncertainty quantification in Bayesian inversion.” ICM2014. Invited
Lecture. 1279

Vollmer, S. J. (2013). “Posterior consistency for Bayesian inverse problems through
stability and regression results.” Inverse Problems, 29(12): 125011. MR3141858.
doi: http://dx.doi.org/10.1088/0266-5611/29/12/125011. 1282

Yang, K., Guha, N., Efendiev, Y., and Mallick, B. (2016). “Bayesian and Variational
Bayesian approaches for flows in heterogenous random media.” arXiv:1611.01213.
1282

http://www.ams.org/mathscinet-getitem?mr=3224657
http://dx.doi.org/10.1080/10618600.2013.812872
http://www.ams.org/mathscinet-getitem?mr=3238075
http://dx.doi.org/10.1080/00401706.2013.838190
http://dx.doi.org/10.1080/00401706.2013.838190
http://www.ams.org/mathscinet-getitem?mr=3141858
http://dx.doi.org/10.1088/0266-5611/29/12/125011
http://arxiv.org/abs/1611.01213

	Introduction
	Variational Approaches with Multiscale Basis Functions
	Consistency Result
	Concluding Remarks
	References

