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Abstract. The authors present an ingenious probabilistic numerical solver for
deterministic differential equations (DEs). The true solution is progressively iden-
tified via model interrogations, in a formal framework of Bayesian updating.
I have attempted to extend the authors’ ideas to stochastic differential equations
(SDEs), and discuss two challenges encountered in this endeavor: (i) the non-
differentiability of SDE sample paths, and (ii) the sampling of diffusion bridges,
typically required of solutions to the SDE inverse problem.
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1 Motivation

A stochastic differential equation (SDE) for a one-dimensional continuous Markov pro-
cess Xt = X(t) is written as

dXt = μ(Xt,θ) dt+ σ(Xt,θ) dBt, X0 = x0, (1)

where Bt is Brownian motion. Much like for deterministic differential equations (DEs),
the transition density p(Xt+s |Xt,θ) for the SDE (1) is rarely available in closed form.

The SDE forward problem consists of sampling a path Xt solving (1) on the interval
t ∈ [0, T ]. Perhaps the simplest approach to this is with an Euler-type scheme,

ΔXt ≈ μ(Xt,θ)Δt+ σ(Xt,θ)ΔBt, (2)

where ΔXt = Xt+Δt −Xt and ΔBt = Bt+Δt − Bt ∼ N (0,Δt). The Euler approxima-
tion (2) becomes arbitrarily accurate as Δt → 0.

In a Bayesian setting, the SDE inverse problem consists of sampling from the poste-
rior distribution p(θ |X) ∝ p(X |θ)π(θ) of the unknown parameters θ, given discrete
observations X =

(
X(t0), . . . , X(tn)

)
. It is commonly approached by way of data aug-

mentation (Section 3).

In Chkrebtii et al. (2016), referred to hereafter as UQDE, the authors present an
ingenious probabilistic method for solving deterministic DEs, which I have attempted to
apply to the SDE inverse problem. In the following I describe two challenges encountered
along the way:

1. Non-differentiability of SDE sample paths (Section 2).
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2. Solving the SDE forward problem conditioned on both endpoints: X0 = x0 and
XT = xT (Section 3). This is called diffusion bridge sampling, features prominently
in most numerical approaches to the SDE inverse problem, and is a notoriously
difficult endeavor (e.g., Bladt et al., 2016, and the references therein).

2 Non-Differentiability of SDE Sample Paths

Consider the SDE forward problem of generating a probabilistic solution Xt to (1) on
the interval t ∈ [0, T ]. Since the Brownian motion Bt can be pre-generated, in some
sense the problem reduces to finding a deterministic solution to (1) for a fixed path
Bt = {Bt : t ∈ [0, T ]}. One then could apply directly the methodology of the authors
– if Xt were differentiable in the traditional sense. As it is not, instead I have tried to
work with the increment process ΔXt = Xt+Δt −Xt.

That is, suppose we wish to evaluate a given solution to the SDE forward problem at
times t0, . . . , tN , with ti = iΔt and Δt = T/N . An adaptation of the authors’ approach is
presented in Algorithm 1, using the following notation: Xi = X(iΔt), ΔXi = Xi+1−Xi,
X = (X1, . . . , XN ), ΔX = (ΔX0, . . . ,ΔXN−1), Xt =

{
Xt : t ∈ [0, T ]

}
, and similarly

for Bi, ΔBi,B, ΔB, andBt. For the model interrogations f1, . . . , fN , let f i = (f1, . . . , fi).

Algorithm 1 Probabilistic solution to the SDE forward problem (1).

Input. The initial value X0 = x0, and pre-generated increments ΔBi
iid∼ N (0,Δt).

Prior. A natural candidate is π0(Xt) ⇐⇒ Xt
L
= Bt, which captures both the Markov

property and correct “smoothness” of the true solution.

First Update. The model interrogation is f1 = μ(x0,θ)Δt+ σ(x0,θ)ΔB0, which cor-
responds to the Euler step (2) for ΔX0. Thus, the likelihood p(f1 |Xt) is defined by the
density f1 |Xt ∼ N (ΔX0,Δt), noting that Δt is the predictive variance for ΔX0 under
π0. This density together with the prior π0(Xt) leads to the posterior distribution

π1(Xt) = p(Xt | f1) ∝ p(f1 |Xt)π0(Xt).

Subsequent Updates.Given f i and πi(Xt) = p(Xt | f i), sample xi ∼ πi(Xi), i.e., from
the prior on X(ti), and set fi+1 = μ(xi,θ)Δt+σ(xi,θ)ΔBi. The likelihood contribution
p(fi+1 | f i,Xt) is defined by fi+1 | f i,Xt ∼ N (ΔXi,Δt), where Δt is the predictive
variance of ΔXi under πi. This density together with the prior πi(Xt) leads to the
posterior distribution

πi+1(Xt) = p(Xt | f i+1) ∝ p(fi+1 | f i,Xt)πi(Xt).

Output. A realization of the solution at discrete time points, X ∼ πN (X) = p(X | fN ).

The final step of Algorithm 1 can be obtained by drawing ΔX ∼ πN (ΔX), which is

ΔXi
ind∼ N

(
1
2 fi+1,

1
2Δt

)
. Note that this draw is conditional on the pre-generated Brow-
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nian increments, ΔB. Unfortunately, upon integrating over ΔB, Algorithm 1 produces

ΔX0 ∼ N
(

1
2μ(x0,θ)Δt,

(
1
2 + 1

4σ
2(x0,θ)

)
Δt

)
,

which for X0 = x0, does not give the correct diffusion limits

lim
Δt→0

E[XΔt −X0]

Δt
= μ(x0,θ), lim

Δt→0

var(XΔt −X0)

Δt
= σ2(x0,θ).

The failure of Algorithm 1 is due perhaps to a poor choice of likelihood p(fi+1 | f i,Xt),
or to the degenerate relation between Xt and its increment process ΔXt. However, these
issues can be circumvented if one is willing to replace Bt by a continuously differentiable
process Gt. In this case, (1) becomes

Ẋt = μ(Xt,θ) + σ(Xt,θ)Ġt, (3)

where Ẋt = d
dtXt and Ġt = d

dtGt. Then, if Ġt is pre-generated at appropriate loca-
tions, (3) reduces to a differentiable deterministic problem, and the authors’ method of
solution can be applied directly.

One possibility for Gt in (3) is the integrated Ornstein–Uhlenbeck (iOU) process,
a stationary Gaussian process with cov(Ġ0, Ġt) = e−λ|t|. As λ → ∞, one recovers
the original SDE (1), with the caveat that the stochastic integral be defined in the
Stratonovich sense (e.g., Van Kampen, 1981). Note that this is also the sense in which (1)
can be interpreted pathwise for any continuous Gt, including Brownian motion (Lysy
and Pillai, 2013).

3 Diffusion Bridge Sampling

In light of the above, let us consider the simplified problem of drawing a path Xt,
t ∈ [0, T ], from a differentiable SDE with “additive” noise:

Ẋt = μ(Xt,θ) + σ(θ)Ġt, X0 = x0, XT = xT , (4)

where Gt is an iOU process. The connection between (4) and the SDE inverse problem
on p(θ |X0, XT ) owes to the following method of data augmentation.

Carrying forward the notation of Section 2 (Δt = T/N , Xi = X(iΔt), etc.), let
f(ΔG |λ) denote the joint density of the iOU increments, ΔG = (ΔG0, . . . ,ΔGN−1).
Then by continuous differentiability of Xt and Gt, the approximate joint density

p̂(X |X0,θ) = f(ΔĜ |λ)/σ(θ)N , ΔĜi =
(
ΔXi − μ(Xi,θ)Δt

)
/σ(θ),

converges to the true density p(X |X0,θ) as N → ∞. One then can approach the SDE
inverse problem by sampling from the “complete data” posterior distribution

p̂(Xmiss,θ |X0, XT ) ∝ p̂(X |X0,θ)π(θ), Xmiss = (X1, . . . , XN−1), (5)

thereby indirectly obtaining samples from the desired parameter distribution

p̂(θ |X0, XT ) =

∫
p̂(Xmiss,θ |X0, XT ) dXmiss

N→ p(θ |X0, XT ).
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Sampling from the complete data posterior (5) typically requires Markov chain
Monte Carlo (MCMC) techniques. A natural candidate for this is the Gibbs sampler
which alternately draws from p̂(θ |Xmiss, X0, XT ) and p̂(Xmiss |θ, X0, XT ). Efficient ex-
ploration of the latter of these densities relies heavily on bridge sampling. However, the
authors’ ideas could lead to the construction of joint MCMC proposals for (θ,Xmiss), as
outlined in UQDE, Section 4.1. That is, if (θ,Xmiss) is the current value of the sampler,
draw θ′ ∼ q(θ′ |θ) from some proposal distribution, and X ′

miss ∼ p(X ′
miss |θ) from the

probabilistic solver. The new proposal (θ′,X ′
miss) is then accepted with probability

ρ = min

{
p̂(X ′ |X0,θ

′) · π(θ′)

p̂(X |X0,θ) · π(θ)
× q(θ |θ′)

q(θ′ |θ) , 1
}
.

This approach circumvents the Gibbs sampler’s well-known arbitrary mixing-time de-
generation as Δt → 0 (Roberts and Stramer, 2001). This deficiency is currently ad-
dressed in the SDE literature using sophisticated particle filtering techniques (e.g.,
Andrieu et al., 2010), to which the authors’ “Metropolis-free” probabilistic solver, if
applicable to bridge sampling, stands to offer an attractive alternative.

An adaptation of the authors’ methodology to SDE bridge sampling might proceed
as follows.

Algorithm 2 Probabilistic solution to the bridge sampling problem (4).

Input. The fixed model parameters θ and endpoints X0 = x0 and XT = xT .

Prior. Define π0(Xt,Gt) such that Xt and Gt are independent iOU processes, subject
to (G0, X0, XT ) = (0, x0, xT ). Note that this implies a joint Gaussian process distribu-
tion between (Xt, Gt) and At = Xt−σ(θ)Gt, along with their (continuous) derivatives.

First Update. Draw x1 ∼ π0(X1), i.e., from the prior on X(t1), and let f1 = μ(x1,θ).
To define a likelihood for this first model interrogation, note that Ȧt = μ(Xt,θ), such
that p(f1 |Xt,Gt) is defined via f1 |Xt,Gt ∼ N (Ȧ1, v0), where v0 is the predictive
variance of Ȧ1 = Ȧ(t1) under π0. This leads to the posterior distribution

π1(Xt,Gt) = p(Xt,Gt | f1) ∝ p(f1 |Xt,Gt)π0(Xt,Gt).

Subsequent Updates. Given f i and πi(Xt) = p(Xt | f i), sample xi+1 ∼ πi(Xi+1), i.e.,
from the prior on X(ti+1), and let fi+1 = μ(xi+1,θ). Define the likelihood contribution
p(fi+1 | f i,Xt,Gt) via fi+1 | f i,Xt,Gt ∼ N (Ȧi+1, vi), where vi is the predictive variance
of Ȧi+1 = Ȧ(ti+1) under πi. This leads to the posterior distribution

πi+1(Xt,Gt) = p(Xt,Gt | f i+1) ∝ p(fi+1 | f i,Xt,Gt)πi(Xt,Gt).

Output. A discretized realization of the SDE bridge, X ∼ πN (X) = p(X | fN ).

Convergence of Algorithm 2 to the bridge process (4) once again can be related
to a deterministic problem. That is, if Gt is treated as a fixed but unknown path –
rather than an iOU process – then (4) becomes a deterministic DE with uncountably
many solutions. The problem of solution multiplicity is considered by the authors in



M. Lysy 1273

UQDE, Section 5.2. Their approach is to put a prior on a set of initial conditions i0
which uniquely identify a candidate DE solution, but for which only the candidate DEs
corresponding to a restricted set i0 ∈ I are actually valid. In connection with the
bridge sampling problem, I am eager to solicit the authors’ opinion on the following
proposition:

Proposition 1. Consider the authors’ probabilistic solver for a deterministic DE, with
solution multiplicity and prior on identifying conditions i0 ∼ π0(i0). Then as N → ∞,
the posterior on i0 converges to the restriction of π0(i0) to valid solutions:∫

p(i0 | fN )p(fN ) dfN → π0(i0 | i0 ∈ I).

If Proposition 1 should hold, then correctness of Algorithm 2 follows upon setting
i0 = Gt. Contingent on this, Algorithm 2 perhaps can be developed to accommodate
the more complex SDE models used in practice: without the conspicuous restriction to
additive noise (σ(Xt,θ) = σ(θ)), and in a multivariate, latent variable setting.
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