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Bayesian Spectral Modeling for Multivariate
Spatial Distributions of Elemental

Concentrations in Soil

Maria A. Terres∗,†, Montserrat Fuentes∗,‡,
Dean Hesterberg§, and Matthew Polizzotto¶

Abstract. Recent technological advances have enabled researchers in a variety of
fields to collect accurately geocoded data for several variables simultaneously. In
many cases it may be most appropriate to jointly model these multivariate spatial
processes without constraints on their conditional relationships. When data have
been collected on a regular lattice, the multivariate conditionally autoregressive
(MCAR) models are a common choice. However, inference from these MCARmod-
els relies heavily on the pre-specified neighborhood structure and often assumes
a separable covariance structure. Here, we present a multivariate spatial model
using a spectral analysis approach that enables inference on the conditional rela-
tionships between the variables that does not rely on a pre-specified neighborhood
structure, is non-separable, and is computationally efficient. Covariance and cross-
covariance functions are defined in the spectral domain to obtain computational
efficiency. The resulting pseudo posterior inference on the correlation matrix al-
lows for quantification of the conditional dependencies. A comparison is made with
an MCAR model that is shown to be highly sensitive to the choice of neighbor-
hood. The approaches are illustrated for the toxic element arsenic and four other
soil elements whose relative concentrations were measured on a microscale spatial
lattice. Understanding conditional relationships between arsenic and other soil
elements provides insights for mitigating pervasive arsenic poisoning in drinking
water in southern Asia and elsewhere.

Keywords: conditional dependence, lattice, non-separable covariance,
quasi-matern spectral density, spatial modeling.

1 Introduction

Expansive spatial datasets are becoming more common as data-collection efficiency is
improved with technological advances. In turn, this has created a need for compu-
tationally efficient modeling approaches that can accommodate these large datasets.
Examples of such approaches include the predictive process (Banerjee et al., 2008),
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nearest-neighbor Gaussian process (Datta et al., 2014), partitioning of the spatial re-
gion (Kim et al., 2005), covariance tapering (Sang and Huang, 2012), SPDE approx-
imations to Gaussian random fields (Lindgren et al., 2011) and others. Each of these
approaches exhibits unique strengths and weaknesses, as discussed by Stein (2014). In
addition, for many modern datasets there may be interest in modeling multiple spa-
tial variables jointly, treating them as dependent spatial random variables, in lieu of a
regression approach where several variables are simply being conditioned on. However,
few of the aforementioned methods can easily accommodate these multivariate spatial
datasets. Development of computationally efficient approaches to handle such data has
the potential to greatly improve the extent to which researchers can learn about the
relationships between spatial processes.

When data have been collected on a spatial lattice, common in fields such as medi-
cal imaging and environmental science, some of the most common modeling approaches
come from the family of conditionally autoregressive (CAR) models, laid out by Be-
sag (1974) and extended to the multivariate case (MCAR) by Mardia (1988). At their
heart, CAR models have been defined such that the spatial observation at any location
will be normally distributed with a mean that is a weighted average of the neighboring
observations. Defined through a series of conditional distributions, CAR models assume
conditional independence between observations that are not spatially adjacent, and as
such are special cases of Markov Random Field (MRF) models. In the literature MCAR
models have been criticized for possessing a poorly identified and overly elaborate de-
pendence structure, and multiple reparameterizations have been proposed to improve
propriety and model behavior (Gelfand and Vounatsou, 2003; Sain and Cressie, 2007;
Zhang et al., 2009; Sain et al., 2011).

Although originally proposed by Mardia (1988), the most prevalent form of an
MCAR model is the adaptation by Gelfand and Vounatsou (2003) ensuring distri-
butional propriety. In this form the covariance structure is separable and can be de-
composed into a covariance matrix describing the (non-spatial) relationship between
the variables and a second covariance matrix describing the spatial dependence shared
across all variables. Although this is computationally efficient, it is quite restrictive in its
description of the marginal spatial dependencies of the variables. Alternative formula-
tions, such as Jin et al. (2005) and Jin et al. (2007), allow for non-separable formulations
but become more computationally expensive. Finally, all of these approaches rely on
a pre-defined neighborhood structure that limits the shape and extent of the spatial
dependence in a way that is avoided by working with the spectral approach we propose
here.

The Markovian structure of the MCAR model constrains spatial dependence to a
set of neighbors pre-determined through an adjacency matrix. This is in contrast to
geostatistical approaches where spatial dependence is assumed to decay as a smooth
function of distance and the covariance parameters. In situations where there is inter-
est in jointly modeling multivariate spatial lattice data while avoiding the separable
Markovian structure and propriety issues inherent in MCAR models, spectral analy-
sis procedures provide a natural framework to turn to. Computations are conducted
after transforming the data into the “spectral domain,” allowing for greater efficiency
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as discussed in Section 3. The literature on spectral analysis techniques is prolific in
time series contexts (Priestley, 1981; Koopmans, 1995), and also fairly common in the
frequentist spatial literature (Stein, 1999). However with a few exceptions, e.g. Hand-
cock and Stein (1993), Reich and Fuentes (2012), and Stroud et al. (2014), there has
been relatively little work in this area when modeling spatial data within a Bayesian
framework.

In this paper we present a joint multivariate spatial model using spectral analysis
procedures to gain computational efficiency. Each spatial variable has a spectral density
controlling the marginal spatial covariance function, while a correlation matrix controls
the relative cross-covariances between the variables. The model is fit in a Bayesian frame-
work, allowing for uncertainty quantification in all aspects of the model. As described
in Section 3, the multivariate normal likelihood is approximated by the Whittle Like-
lihood (Whittle, 1954), and all posterior distributions are thus referred to as “pseudo
posteriors.” Of particular interest is the pseudo posterior examination of the correlation
matrix which provides inference on the nature of the conditional dependencies between
the variables.

This methodology is illustrated for an analysis of microscale accumulation of po-
tentially toxic arsenic in soil. Arsenic contamination of drinking water is a widespread
human health concern, particularly in Asian countries where over 100 million people
routinely consume dangerous levels of arsenic by drinking naturally contaminated well
water (Ravenscroft et al., 2009). Several methods of water treatment have been studied
with varying success, including the introduction of additional chemical salts or solutions
that will react with the arsenic (Jiang et al., 2012; Komárek et al., 2013). Soil chemical
processes influence the distribution of arsenic in well water and subsequent threats to
human health (Polizzotto et al., 2008). However, because soils comprise multiple ele-
ments in multiple mineral and organic components, a more precise understanding of
chemical reactions could be aided through a statistical description of the soil elements’
dependencies.

For this analysis synchrotron X-ray fluorescence microprobe (μ-XRF) analysis was
used to map accumulated arsenic in relation to other chemical elements in thin coatings
on a quartz sand grain collected from a soil sample. The technique produces multivariate
spatial lattice maps that essentially reflect relative abundances of elements. Interest
lies in understanding the conditional dependencies between arsenic and the other soil
components, and whether these dependent components serve to mitigate or potentiate
the accumulation of arsenic.

In natural systems, the mobility and toxicity of arsenic is largely controlled by
various competing abiotic and biotic redox and adsorption processes involving organic
matter and iron, aluminum, and manganese oxides (Borch et al., 2009). Many of these
reactions have been studied using single or binary mixtures of aqueous species, model
minerals and/or organic components. In contrast, less mechanistic detail is known about
arsenic behavior in soils, which comprise diverse assemblages of minerals and organic
matter. Unlike the common approach of modeling X-ray absorption spectra from soils
to identify pure chemical species (Manceau et al., 2014), our approach aims to identify,
via element associations, possible interactions between multiple soil components that
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cause the reactivity of soil species to differ from what may be expected from model
chemical analogues studied in isolation of soil.

Studying the pairwise behavior of soil elements, a common approach for analysis of
microscale soil chemical data, provides only a very limited view of their relationships
and neglects to account for higher-order interactions between multiple elements. This is
in contrast to our hypothesis that interactions between soil components inferred from
element pairs may depend on other co-localized elements in complex assemblages of
soil components. In order to capture these kinds of behaviors, it is necessary to have
a model that is sufficiently flexible in its treatment of conditional dependencies. The
model developed here is illustrated for arsenic and several co-localized elements. Such
conditional dependency models would enable scientists to better understand how arsenic
behaves when multiple components are co-localized within complex soil materials.

The lattice structure of the μ-XRF data make spectral procedures a natural choice
for model-fitting. This approach was previously explored by Guinness et al. (2014) in a
frequentist setup, but the methodology could not accommodate more than three spatial
variables and lacked adequate measures of uncertainty. The need for additional model
flexibility and improved uncertainty quantification indicated a fresh look at the problem
from a Bayesian perspective. Unlike the model developed by Guinness et al. (2014), the
modeling framework we outline can easily accommodate any arbitrary number of spatial
variables. We illustrate the methodology with five soil elements, including the three that
were previously analyzed, providing full descriptions of the uncertainty associated with
our estimates based on the pseudo posteriors and producing conditional dependence
graphs that clearly illustrate the relationships between the variables.

The remainder of this article is organized as follows. In Section 2 the μ-XRF data
are presented as a motivating example. Section 3 provides an overview of the spectral
analysis approach in the spatial domain, outlining some properties of the commonly used
approximations, and specifying additional modeling details. Section 4 outlines details for
the MCAR model used for comparison with the proposed spectral model. In Section 5
the model results and potential implications are discussed for both a simulation example
as well as the μ-XRF data. Finally, Section 6 concludes with a brief discussion of the
presented methodology and its potential for future work.

2 Multivariate Spatial μ-XRF Quartz Sand Grain Data

Data generated for this analysis were obtained by introducing solutions of arsenic to a
quartz sand grain collected from a soil sample and subsequently assessing the microscale
spatial distributions of arsenic and a number of native soil elements. The sand grain
analyzed was separated from a surface soil sample collected from a forest at the Cen-
tral Crops Research Station in Clayton, NC. The spatial distributions of elements were
mapped by μ-XRF using Beamline X27A at the National Synchrotron Light Source
(NSLS), Brookhaven National Laboratory. Our analysis focuses on element maps col-
lected after sequential treatments of the grain with 100 and 1000 μM arsenic (III)
treatments. A 350×450 μm region of interest (ROI) was mapped using an X-ray beam
of approximately 10×10 μm2 to yield a 35×45 pixel array. Resulting elemental maps
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reflect the relative abundance of elements within each 10×10× ∼ 15 μm3 voxel ana-
lyzed by the incident X-ray beam. Additional details of data collection were outlined
by Guinness et al. (2014).

We focus our analysis on soil concentrations of arsenic (As), iron (Fe), chromium
(Cr), nickel (Ni) and zinc (Zn); iron is an abundant soil element found in As-reactive
Fe-oxide minerals, and the other four are trace elements. The elements are modeled
on the log-scale and, since our interest lies primarily in understanding the dependence
structure between these elements, we center each spatial process by subtracting the
sample mean and assume zero means in our modeling. Arsenic and iron were most
abundant, averaging 7.23 and 9.47 on the log-scale, with the other elements averaging
between 5.35 and 5.60. To specify the model, let Z(m)(s) be the centered log fluorescence
signal at location s ∈ JN for soil element m, for m = 1, . . . ,M , with M = 5. The Z(m)(s)
are spatial quantities, with each assumed to be a realization from a Gaussian process
and are modeled jointly in the spectral domain, as described in Section 3.

The spatial maps of these five soil elements are provided in Figure 1. Note that some
concentrated hotspots of iron, chromium and nickel (e.g. at coordinates (300,200)) are
known contaminants from stainless steel deposited on the sample during handling prior
to reaction. The correlation between arsenic, iron, and to some extent chromium is
readily apparent, with similar spatial features throughout the region. The correlations
with nickel and zinc are less apparent. Through our joint modeling procedure we seek to
make inference regarding the conditional dependencies exhibited by these five elements.

3 Spectral Methods

3.1 Computing the Likelihood

Consider a spatial process Z = (Z(s1), . . . , Z(sN ))′ assumed to be a realization from a
Gaussian process with stationary covariance function c(h) = cov(Z(s), Z(s + h)) that
depends on parameters θ. Let Σθ denote the corresponding covariance matrix. Then
Z ∼ N(0,Σθ) and the log-likelihood can be computed,

log(p(Z|θ)) = −1

2
(log detΣθ + Z′Σ−1

θ Z), (1)

where proportionality constants have been ignored. Normal likelihoods are generally
easy to compute when N is small and are commonly used in spatial modeling (Stein,
1999; Cressie and Wikle, 2011; Banerjee et al., 2014). However, the matrix inverse
Σ−1

θ requires O(N3) floating point operations (flops), rendering computation of this
likelihood undesirable when working in large dimensions. In a Bayesian analysis this
likelihood may need to be computed multiple times in each iterate of the Gibbs sampler.
Such repeated computation of the likelihood may be a critical component in determining
the overall computational efficiency of the proposed approach.

When the observations are available on a lattice of size N = n1 × n2, denoted JN ,
then it is convenient to work in the spectral domain since the normal log-likelihood
can be approximated using the Whittle likelihood (Whittle, 1954; Zimmerman, 1989).
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Figure 1: The logged and centered soil components arsenic, iron, chromium, nickel, and
zinc.

This approximation takes advantage of the computational efficiency of the Fast Fourier
Transform (FFT), dramatically reducing computation time. This approach is outlined
below.

Bochner’s Theorem states that any stationary covariance function can be represented
as an inverse Fourier transform,

c(h) =

∫
R2

exp(iω′h)dF (ω), (2)

where h is a separation vector for spatial locations s and s + h, and ω = (ω1, ω2) is
a bivariate spectral frequency. We assume there exists some continuous differentiable
f(ω) such that dF (ω) = f(ω)dω, commonly referred to as the spectral density. The
Spectral Representation Theorem states that the spatial process associated with this
covariance function can similarly be represented,

Z(s) =

∫
R2

exp(iω′s)dZ̃(ω), (3)

where dZ̃(ω) have uncorrelated increments and E|dZ̃(ω)|2 = f(ω) (Yaglom, 1987). It
should be noted that the above theorems are stated in the spatial context, focusing on
two dimensions, but similar statements can be made for Rd with d > 2.
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When the data have been observed on a grid, there is inadequate information to
fully recover the continuous process. In particular, if the data are observed at uniformly
spaced locations with intervals of length δ, i.e. the process can be written Z(δx) for
x ∈ Z2, then the associated spectra are constrained to frequencies in the finite interval
−π/δ ≤ ω ≤ π/δ. This can be seen by observing that exp(iω′h) = exp(i(ω+2πj/δ)′h),
the so called “aliasing” phenomenon.

When working with lattice data the aliasing must be accounted for in the choice of
the associated spectral density. One approach is to choose a spectral density defined on
the real plane, then accumulate the density over all aliased frequencies. An alternative
is to work with a spectral density that has been explicitly defined to have support on
ω ∈ [−π/δ, π/δ]2. We follow the latter approach in our analyses, selecting the quasi-
Matérn spectral density introduced by Guinness et al. (2014). To ensure a real-valued
process, the spectral densities must additionally be even functions symmetric around
zero, which is again satisfied by the quasi-Matérn spectral density.

In practice we cannot compute the integrals in (2) and (3), so we instead approximate
them with discrete sums,

c(h) =
∑
j∈JN

eiωjhf(ωj), (4)

Z(s) =
∑
j∈JN

eiωjsZ̃(ωj) (5)

evaluated at the Fourier frequencies ωj = (2πj1/n1, 2πj2/n2), j = (j1, j2) ∈ JN . These
approximations have a long history of use in spectral modeling of spatial processes, and
their properties are well established (Whittle, 1954; Guyon, 1982). In particular, these
approximations are known to perform well for stationary processes where data have
been observed on a regular lattice, though work exists extending applicability beyond
both of these assumptions, such as Fuentes (2007) and Stroud et al. (2014).

Due to the lattice structure in the data, the corresponding covariance matrix Σθ

will be block circulant and the FFT will effectively diagonalize Σθ. This enables the
log-likelihood to be rewritten in the spectral domain, with computation limited by the
FFT requiring only O(N logN) flops,

log(p(Z|θ)) = −1

2

⎛
⎝∑

j∈JN

log(f(ωj)) +
∑
j∈JN

FN (Zj)
∗f(ωj)

−1FN (Zj)

⎞
⎠ , (6)

where FN (Z) is an array denoting the 2-dimensional Fourier transformation of the
lattice data Z such that the entry FN (Zj) corresponds to the Fourier frequency ωj .
The first term in the summation corresponds to the contribution of log detΣθ in (1).
This equality can be seen in part by noting that the eigenvalues of Σθ correspond to the
spectral density f(ω) evaluated at each of the Fourier frequencies. The second term in
the summation is the Fourier representation of the quadratic term in (1), with f(ωj)

−1

corresponding to the covariance and FN (Zj) and its complex conjugate corresponding
to the observed data. These relationships arise by inverting the expressions in (4) and
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(5). Further discussion of the Whittle Likelihood is beyond the scope of this paper, and
we instead refer interested readers to the extensive literature on that topic (e.g. Whittle,
1954; Guyon, 1982; Dahlhaus and Künsch, 1987; Stein, 1999; Stein et al., 2004).

The disadvantage of this approximation is that the discreteness of (4) and (5) pro-
duces the generally undesirable property of periodicity over the range of the data. An
adjustment is necessary to mitigate this feature. Some new approaches have recently
been proposed in the literature involving an imputed expansion of the lattice such
that the periodicity occurs beyond the domain of the observed data (e.g. Guinness and
Fuentes, 2016; Stroud et al., 2014). However, we follow the more common approach
of data tapering (Dahlhaus, 1983; Dahlhaus and Künsch, 1987). Intuitively, tapering
dampens the data along the edges towards zero in a smooth way such that the lattice
could be folded into a torus shape without introducing discontinuities.

Specifically, we implement a cosine taper, or Tukey taper (Tukey, 1967; Bloomfield,
2004), defined as,

wd(j) =

⎧⎪⎨
⎪⎩

1
2 (1 + cos(2πr (j − r

2 ))), 0 ≤ j < r
2 ,

1, r
2 ≤ j < 1− r

2 ,
1
2 (1 + cos(2πr (j − 1 + r

2 ))), 1− r
2 ≤ j ≤ 1,

(7)

for dimensions d = 1, 2 and j = 0/nd, . . . , (nd − 1)/nd. The parameter r controls the
extent of the tapering, typically chosen to be 5–10% of the observations at each bound-
ary. The original data Zj = Zj1,j2 in the likelihood in (6) is then replaced with the

tapered data Zj1,j2 ×w1(j1)×w2(j2), and a multiplicative adjustment of
2∏

d=1

nd∑
j=1

wd(j)
2

is incorporated into the FN (Zj) terms. This cosine taper is a common choice in spectral
modeling, tapering most strongly at the margins and smoothly transitioning to unta-
pered data away from the margins. For more information on the properties of the cosine
taper readers are referred to Bloomfield (2004).

When the data are multivariate, with lattice observations for M spatial variables
Z = (Z(1), . . . ,Z(M)), the multivariate process will require a positive definite M × M
matrix of spectral densities, f(ω). The matrix entries along the diagonal, fm,m(ω),
dictate the marginal covariances for each of the variables. Similarly, the matrix entries on
the off-diagonal, fm,m′(ω), dictate the cross-covariances between each pair of variables.
The likelihood can then be approximated similarly to the univariate case,

log(p(Z|θ)) = −1

2

⎛
⎝∑

j∈JN

log det f(ωj) +
∑
j∈JN

FN (Zj)
∗f(ωj)

−1FN (Zj)

⎞
⎠ , (8)

where FN (Z(i)) is an array denoting the 2-dimensional Fourier transformation of the

lattice data for spatial variable Z(i) such that entry FN (Z
(i)
j ) corresponds to the Fourier

frequency ωj , the M × 1 vector FN (Zj) = (FN (Z
(1)
j ), . . . , FN (Z

(M)
j ))′ concatenates the

elements of these matrices corresponding to the frequency ωj for each spatial variable,
and FN (Zj)

∗ is the analogous vector corresponding to the complex conjugate transpose
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of the Fourier transformed lattice data. Data tapering can be conducted in the same
manner as in the univariate case.

Similar to the univariate case, computation of the multivariate likelihood (8) is
limited only by the computation of the FFT on each of the spatial variables and the
inversion of the M ×M matrix f(ω). In addition, the Whittle Likelihood provides an
important advantage in the multivariate setting that is not relevant in the univariate
case: it avoids specification of a cross-covariance matrix. In a standard setup the cross-
covariance matrix would need to be specified in a constrained way in order to ensure
positive definiteness. By working in the spectral domain the cross-covariances are speci-
fied via spectral densities, allowing for straight forward incorporation of non-separability
or dependence on covariates without the risk of issues regarding positive definiteness.

3.2 Marginal Spectral Densities

Recall that the covariance function, c(h), for each soil element is defined in the spectral
domain using a spectral density, f(ω). The spectral densities are constrained to be even
and to have support on [−π/δ, π/δ]2 in order to produce real-valued realizations and
to avoid the aliasing effect that occurs with lattice observations, as described earlier.
While several parametric densities exist in the literature, many are defined on the real
line and require care with the aliased frequencies, and others are difficult to interpret.

With the above properties in mind, we focus on the non-separable quasi-Matérn
spectral density defined on a lattice,

f(ω) = f(ω1, ω2) =
σ2

(1 + (α/δ)2(sin2(δω1/2) + sin2(δω2/2)))ν+1
, (9)

for α, σ2, ν > 0 and ω = (ω1, ω2) ∈ [−π/δ, π/δ]2 as described by Guinness et al. (2014).
This spectral density is attractive in part because it approaches the spectral density
of the isotropic Matérn covariance function as δ → 0. In this sense, the quasi-Matérn
spectral density is a natural choice for researchers who commonly model point referenced
spatial processes and are familiar with the properties of the Matérn class of covariance
functions.

The parameter α functions as a range parameter, indicating the distance at which
spatial dependence becomes negligible. The parameter σ2 functions as a variance pa-
rameter, controlling the magnitude of the spatial correlation. The parameter ν controls
the smoothness of the spatial surface. Due to concerns regarding lack of identifiability
between the parameters (Zhang, 2004), we fix ν ≡ 1 in our model fitting.1 We addi-
tionally assume that each 10 × 10 μm grid cell represents one unit of distance, setting
δ ≡ 1.

In this proposed framework the covariance structure for the multivariate process is
constructed in terms of marginal covariance functions for each of the elements. While

1Additional values of ν were considered to test for sensitivity, and all produced comparable results
to those presented here.
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some multivariate covariance functions have been proposed in the literature, such as
Apanasovich et al. (2012), these approaches are generally quite complex and computa-
tionally inefficient. As such, these families of covariance functions were not considered
here.

3.3 Cross-Covariance Structure

To guarantee a well defined spatial process theM×M matrix f(ω), corresponding to the
cross-covariance matrix in the spatial domain, must be positive definite. To guarantee
this, we follow the approach of Guinness et al. (2014) and write

f(ω) = diag(f1/2(ω))ρ(ω) diag(f1/2(ω)), (10)

where diag(f1/2(ω)) is a diagonal matrix with diagonal entries f
1/2
m (ω), the square root

of the marginal spectral density for the mth element as defined in (9), for m = 1, . . . ,M .
Here, ρ(ω) is the coherence matrix, a correlation matrix with ones on the diagonal and
elements ρm,m′(ω) describing the correlation between components m and m′. This is
analogous to decomposing a covariance matrix into a correlation matrix and vectors
of standard deviations, where here the standard deviations are the square roots of the
spectral densities instead of the square roots of the variances.

Even in relatively low dimensions, modeling the matrix ρ(ω) will require the esti-
mation of many correlation functions ρm,m′(ω). For example, in our example with 5
soil elements there would be 5 × (5 − 1)/2 = 10 functions that need to be estimated
in the ρ(ω) matrix. Estimating this many functions may rapidly become prohibitive as
the dimension increases. As an alternative, we propose

f(ω) = diag(f1/2(ω))ρ diag(f1/2(ω)), (11)

where the matrix ρ is constant across frequencies. This assumption implies that for any
pair of soil elements, the spatial dependence described by the cross-covariance functions
will be dictated solely by the pair of marginal covariance functions and a multiplicative
factor ρm,m′ . While this assumption is primarily motivated by the need for computa-
tional efficiency, the resulting model is also better identified and still defines a very
flexible framework deemed sufficient to describe the μ-XRF data.

Decomposing f(ω) as in (11) additionally simplifies the computation of the like-

lihood. Specifically, it is straight forward to show that det f(ω) = (detρ)
M∏

m=1
fm(ω)

and to rewrite the inverted matrix f(ω)−1 = diag(f−1/2(ω))ρ−1diag(f−1/2(ω)). Then,
substituting into the multivariate likelihood from (8) we have,

log(p(Z|θ)) =− 1

2

(
N log detρ+

∑
j∈JN

M∑
m=1

log fm(ωj) (12)

+
∑
j∈JN

FN (Zj)
∗diag(f−1/2(ω))ρ−1diag(f−1/2(ω))FN (Zj)

)
.

Note, during model fitting the inversion and determinant of ρ need only be computed
once at each iteration since it does not depend on the frequency.
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3.4 Conditional Independencies and the Correlation Matrix

As described by Guinness et al. (2014), conditional independencies between the soil
components can be explored through examination of f(ω)−1, or equivalently through ex-
amination of ρ−1 under our proposed parameterization. The Bayesian paradigm allows
us to consider uncertainties for each element of the correlation matrix enabling exam-
ination of the implied conditional independencies, similar to the approach followed by
Hoff (2007). Specifically, consider a vector of normal random variables (z1, z2, . . . , zn)

′

with associated correlation matrix C. Then in the conditional distribution for zj given
the other variables, p(zj |z−j), the “coefficients” on z−j will be C[j,−j]C

−1
[−j,−j]. The

sign of these “coefficients” and whether the credible intervals overlap zero will provide
inference on the graph of conditional dependence between variables. In this manner,
the conditional independencies between the soil elements will be explored in our model
through the correlation matrix ρ.

3.5 Prior Specification and Model Fitting

The following prior distributions are assumed for the model parameters,

αm|s2 ∼ TN(0,∞)(0, s
2),

s2 ∼ IG(2, 2),

σ2
m|ν0, σ2

0 ∼ IG(ν0/2, ν0σ
2
0/2),

σ2
0 |ν0 ∼ IG(2, 2),

p(ν0) ∝ e−ν0 ,

p(ρ) ∝ 1, ρ ∈ R5,

where ν0 ∈ Z+, and R5 is the space of all 5 × 5 positive definite correlation matrices.
Each spatial process Zm has a unique pair of parameters (αm, σ2

m), with hyperpriors for
these parameters facilitating sharing of information across soil elements. A Truncated
Normal prior is assumed for the range parameter αm, ensuring the parameter is positive.
The variance parameter for the Truncated Normal, s2, has a vague and uninformative
Inverse Gamma prior. The prior on σ2

m is an Inverse Gamma prior, with vague priors
on the hyper parameters following the suggestion of Hoff (2010). The prior on ρ follows
the suggestion of Barnard et al. (2000), who similarly decomposed a covariance matrix
into standard deviations and a correlation matrix.

We make inference on the model parameters through Markov chain Monte Carlo
(MCMC), based on 5000 samples after a thinning of every 25th iterate and a burn-in
of 5000 iterations.2 The αm parameters were updated with a random walk Metropolis
Hastings step with the proposal variance tuned during a burn-in period to achieve
acceptance rates between 0.3 and 0.5. The σ2

m parameters are also updated with a
Metropolis Hastings step, but in this case a more clever proposal distribution can be

2Using a 2008 MacBook with a 2 GHz Intel Core 2 Duo processor and 4 GB 1067 MHz DDR3
memory, it takes approximately 30 minutes to sample 5000 iterations of the model.
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used. If the spatial process Zm were being modeled marginally, then σ2
m would be

conjugate,

σ2
m|θ∼

IG

(
ν0 + J

2
,

ν0σ
2
0 +

∑
j∈JN

FN (Z
(m)
j )∗FN (Z

(m)
j )(1+α2

m(sin2(ω1j/2)+ sin2(ω2j/2)))
2

2

)
,

where θ is the collection of all other parameters. This conjugacy breaks down in the
multivariate case, but we utilize this marginal conjugate distribution as a proposal in the
Metropolis Hastings step with good results. The hyperparameters s2, ν0, σ

2
0 are updated

via straightforward Gibbs steps.

At each iterate of the Gibbs sampler ρ is updated by sequentially sampling each
entry of the matrix, ρi,j , conditional on the others. These conditional distributions
restrict ρi,j to an interval that will guarantee continued positive definiteness of the full
matrix. These distributions are derived by Barnard et al. (2000) and are available up to
a proportionality constant. Each ρi,j is then sampled using a griddy Gibbs step (Ritter
and Tanner, 1992): the proportional likelihood is evaluated for a grid of values in the
permitted interval, and an updated draw is sampled according to the resulting weights.

Note that since the multivariate normal likelihood is being approximated with the
Whittle Likelihood, we refer to the resulting posteriors as “pseudo posteriors.” It is
assumed that the well known theoretical guarantees regarding the MCMC algorithm
will similarly apply to the approach using the Whittle Likelihood approximation.

4 Multivariate Conditionally Autoregressive Model

Due to its popularity for multivariate lattice data, a separable multivariate conditionally
autoregressive (MCAR) approach is compared to the spectral model for both simulated
data (Section 5.1) and the μ-XRF data (Section 5.3). The MCAR model used for those
analyses is described here in the context of the μ-XRF data.

The model was defined such that for each soil element k and each location i =
1, . . . , N the centered log fluorescence is distributed as a spatial random effect with a
separable MCAR prior plus some normally distributed noise. Specifically,

Zk,i ∼ N(μk,i, τ
2
k ), (13)

μk,i = αk + φk,i,

φi|φj �=i ∼ N(
∑
j

wi,j

wi,+
φj ,

1

wi,+
Σ),

where wi,j is an indicator function equal to one if locations i and j are neighbors,
wi,+ =

∑
j wi,j , and φi = (φ1,i, . . . , φ5,i)

′ is the collection of random effects at location
i for the five soil elements. The MCAR structure assumes the spatial random effect at
any location is centered at a weighted average of its neighbors’ spatial random effects.
For identifiability, these spatial random effects are constrained to sum to zero.
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The joint density for φ is then,

p(φ|Σ) ∝ exp(−1

2
φ′(Dw −W )⊗ Σ−1φ),

where Dw −W is an N ×N matrix with Dw = diag(wi,+), and W a proximity matrix
such that Wi,j = wi,j and Wi,i = 0. The separability of this model can be easily seen
since (Dw−W ) is controlling the spatial dependence, and Σ−1 is across the correlations
between the soil elements.

The following prior distributions are assumed for the model parameters,

αk ∝ 1,

τ2k ∼ IG(2, 2),

Σ ∼ InvWish(I5, 5).

The above model was fit in OpenBUGS and R using the package R2WinBUGS. All results
are based on 5000 sample iterations after a burn-in of 1000 iterations. The above priors
were chosen due to constraints imposed by WinBUGS/OpenBUGS – the MCAR prior in
WinBUGS/OpenBUGS requires the priors for αk and Σ to be flat and Inverse Wishart
respectively, with no other choices supported.

5 Analysis Results

5.1 Simulation Example with Comparison to MCAR

One of the key strengths of the proposed spectral model is its ability to capture con-
ditional relationships between several correlated spatial processes. This feature is first
illustrated for a simulation example using a multivariate spatial process that follows the
structure described in Section 3. These data are simulated to be the same size as the
μ-XRF data: five spatial processes on a 35×45 unit lattice. The spatial processes are
labeled z1, . . ., z5. Conditional independence is induced by introducing zeros into the in-
verse correlation matrix. Specifically the following pairs are conditionally independent:
(z1, z2), (z1, z3), and (z3, z5).

Three models are fit to these data: the spectral model described in Section 3.5, an
MCAR(1), and an MCAR(5). The MCAR models were fitted as described in Section 4
using two neighborhood structures to test for sensitivity in the resulting inference on
the conditional relationships.

The resulting conditional dependence “coefficients” from the spectral model and
the MCAR models are plotted in Figure 2. The spectral estimates are black dots, the
MCAR(1) estimates are open triangles, and the MCAR(5) estimates are crosses. The
95% credible intervals associated with each estimate are shown as vertical lines, and
the true values are plotted as red circles. Each subplot demonstrates the conditional
relationships between the element given on the y-axis with those on the x-axis. For
example, the true values in the first subplot demonstrate that z1 conditional on the
other four elements is independent of z2 and z3.
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Figure 2: Estimated “coefficients” on z−j describing conditional dependencies between
the simulated soil components, defined to be C[j,−j]C

−1
[−j,−j]. The red circles indicate the

true “coefficients” computed based on the correlation matrix used for simulation, the
black dots are estimates using the spectral modeling approach, the open triangles are
estimates from an MCAR(1) model, and the crosses are estimates from an MCAR(5)
model.

The estimates from the spectral model align well with the true “coefficients”, with all
of the conditional independencies correctly identified and with relatively narrow credible
intervals. In contrast, the MCAR(1) intervals are wider than the spectral approach,
and the MCAR(5) intervals are even wider. MCAR(1) did not correctly identify any
true zero, and it erroneously identified z4 and z5 as being conditionally independent.
MCAR(5) correctly identified two true zeros, but it also erroneously identified z4 and z5
as being conditionally independent. There was no clear pattern of superior performance
when comparing MCAR(1) and MCAR(5); sometimes the estimate from MCAR(1) was
closer to the truth and sometimes MCAR(5) was closer.

In summary, the spectral method outperforms the MCAR approach. It produces
estimates of the conditional relationship that are closer to the true values and have
narrower credible intervals, it reliably identifies pairs that are conditionally independent,
and it does not require manual selection of a neighborhood structure that can sway the
resulting inference (as seen for the MCAR(1) and MCAR(5) models here).

5.2 μ-XRF Data – Spectral Approach

The model described in Section 3.5 was fitted to the μ-XRF data with a 10% taper
yielding covariance and cross-covariance functions for each of the five soil elements and
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Figure 3: Estimated covariance functions (95% pointwise intervals in grey) for each of
the five soil components, plotted for different distances h (μm). A horizontal dashed
line indicates a covariance of zero.

the ten soil element pairs. To check for sensitivity, the model was additionally run
for a 5% and 15% taper with comparable results (not shown here). The covariance
functions are provided in Figure 3 and indicate varying marginal variances and spatial
ranges across the soil elements, with iron having the longest spatial dependence and
zinc having the shortest. The ability to capture this variability in spatial dependence
is a direct outcome of the flexible spectral specification of the model and would be far
more difficult to capture in a MRF model with a pre-specified neighborhood structure. In
addition, the Bayesian approach provides straightforward descriptions of the uncertainty
surrounding these covariance functions, shown here through grey shading representing
95% pointwise credible intervals.

The cross-covariance functions are provided in Figure 4 and similarly illustrate the
benefits of this spectral Bayesian modeling approach. In particular, the credible intervals
for the cross-covariances between arsenic/nickel, arsenic/zinc and nickel/zinc clearly
overlap zero. If one were to plot only the estimated covariance functions, then it would
appear that these soil elements are minimally positively correlated with one another.
However, the 95% credible intervals enabled by the Bayesian framework make it quite
clear that one cannot infer any pairwise relationships between these pairs of elements.

In addition to learning about the pairwise relationships between these soil elements,
researchers are particularly interested in learning multi-element effects on the chemical
reactivity of an element, i.e., the nature of pairwise relationships when we condition
on the presence of other elements in the sample. Using the approach outlined in Sec-
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Figure 4: Estimated cross-covariance functions (95% pointwise intervals in grey) for each of the soil component pairs, plotted
for different distances h (μm). A horizontal dashed line indicates a cross-covariance of zero.
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tion 3.4, for each soil element we consider the “coefficients” that would be placed on
the other soil elements in the conditional distribution implied by the fitted joint model.
Pseudo posterior estimates and credible intervals for these “coefficients” are provided
in Figure 5, with each subplot corresponding to one of the five soil elements. For ex-
ample, looking at the first subplot one can see that arsenic has a strong relationship
with iron and a slight negative relationship with nickel, but does not have a significant
relationship with chromium and zinc. In conjunction with Figure 4, we can infer that
arsenic and chromium will be positively correlated when examined pairwise, but that
this relationship disappears when the other soil elements are accounted for.

To illustrate these conditional relationships more intuitively, a conditional depen-
dence graph is provided in Figure 6. Each of the soil elements is represented by a node,
with edges connecting the nodes when there is a positive (indicated by a ‘+’) or negative
(indicated by a ‘–’) conditional relationship between the elements. For example, there
is no edge connecting arsenic and chromium, suggesting that they are independent con-
ditional on nickel and iron. That is, the observed pairwise correlation between arsenic
and chromium can be explained statistically via the relationships each have with nickel
and iron.

Finally, as a form of model-checking, we can compare the analysis results for ar-
senic, iron and chromium to those of Guinness et al. (2014). The covariance functions
in Figure 3 are consistent with those found in the previous work, as are the shapes of
the cross-covariance functions in Figure 4. This agreement is encouraging and suggests
that minimal meaningful flexibility was lost by setting ρ(ω) ≡ ρ. Additionally, Guin-
ness et al. (2014) explored the dependence between arsenic and chromium through a
hypothesis testing approach and found “strong but not overwhelming evidence for con-
ditional dependence.” In contrast, our analysis suggests that when nickel and zinc are
incorporated into the model, the conditional dependence between chromium and arsenic
is no longer significant. I.e., not surprisingly, the nature of these conditional dependen-
cies will change depending on the soil elements being accounted for. This highlights
the importance of being able to accommodate several variables of interest, previously
impossible using the earlier model.

Our model can also be checked with respect to the known chemistry of arsenic.
Specifically, we consider the strong positive marginal and conditional relationships de-
tected between arsenic and iron. Scanning electron microscopy – energy-dispersive X-ray
(SEM-EDX) analysis indicated that visibly dark spots on the sand-grain sample corre-
sponded with hotspots (Figure 1) that are enriched in iron, chromium, and nickel at a
ratio corresponding with stainless steel (SEM-EDX data not shown). We deduced that
the contamination was introduced to the sample during mounting with stainless steel
forceps. However, the most common form of iron in the sample (Fe(III)-oxides) was
natural and has a high capacity to bind arsenic, with the effects of stainless steel ad-
sorption being trivial in comparison. This known binding between the iron and arsenic
is consistent with the positive relationship indicated by the model. Moreover, the model
was able to separate the negative effect of the minor stainless steel contamination from
that of the pervasive, arsenate-adsorbing Fe(III)-oxides
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Figure 5: Estimated “coefficients” on z−j describing conditional dependencies between the soil components, defined to be
C[j,−j]C

−1
[−j,−j].
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Figure 6: Reduced conditional dependence graph for the five soil components.

5.3 μ-XRF Data – MCAR Approach

For comparative purposes, a separable multivariate conditionally autoregressivebreak
(MCAR) model was additionally fit to these data. As discussed earlier, this is one of
the most common Bayesian approaches to modeling areal data due to its structural
simplicity and relative computational efficiency. However, this simplicity imposes clear
limitations on the model’s flexibility, as we illustrate below.

One of the common selling points for separable MCAR models is their simplicity and
fast computation. However, when fitting this model on the soil data some unexpected
computational challenges arose. When the model was run without saving the samples
of the spatial random effects the computation time was approximately 15 minutes. Of
course, the spatial random effects are the main component of this model and should
ideally be examined. Unfortunately, when the spatial random effects were included in
the list of parameters to return, the code (Terres et al., 2016) ran for over 4 hours and
was eventually aborted. This is likely due to the large size of the data, consisting of
35×42 = 1470 areal units for each of the five soil elements, equating to 7350 spatial
random effects! In contrast, if a researcher were studying a phenomenon across the
United States, then a state-level outcome would require only 50 random effects.

The model defined in (13) relies on an explicit choice of neighborhood structure,
defined through the wi,js, corresponding to an assumed extent of spatial dependence. To
test for sensitivity, the MCAR model was fit with two different neighborhood structures.
In the first setup any location within 10 μm was identified as a neighbor, setting wi,j = 1.
In the second setup this distance was extended to 50 μm, consistent with some of the
spatial dependencies that were seen in the results from the spectral modeling.

The MCAR model differs from the spectral model in several key ways that limit its
flexibility as well as our capacity to make comparisons between the two models. The first
is the separable nature of the multivariate modeling. There is a matrix Σ that controls
the correlation structure between the five soil elements, and this is completely separated
from the neighbor-averaging approach to modeling the spatial structure. In contrast,
the spectral model discussed earlier is non-separable, allowing for this dependence to
differ across different spatial distances. Second, the separable MCAR model requires
a pre-defined neighborhood structure that is shared across all soil elements. I.e., not
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Figure 7: Reduced conditional dependence graph for the five soil components using
MCAR with neighbors within distance 1 (10 μm).

Figure 8: Reduced conditional dependence graph for the five soil components using
MCAR with neighbors within distance 5 (50 μm).

only is the practitioner hand-selecting the distances at which spatial dependence is

non-negligible, but this spatial dependence must be the same for all five soil elements.

Looking at Figure 1, as well as the results of the spectral model in Figure 3, this is
clearly not the case. Some of these assumptions can be relaxed in more complex setups

for the MCAR model, but this is at the sacrifice of computational efficiency.

Despite the differences in model structure, the results of the MCAR model enables

assessment of conditional dependencies similarly to the spectral approach described

in Section 3.4. Here the assessment is made based on the matrix Σ, controlling the

covariance between the soil elements, which can be decomposed similarly to the ρmatrix

from the spectral model. This approach allows for construction of graphs similar to 6,

shown in Figures 7 and 8 for the MCAR models with first order neighbors and fifth

order neighbors respectively. The stark differences between these graphs emphasizes the
reliance of this model on the neighborhood structure that, in contrast to the spectral

model, is not explicitly learned from the data.

A more formal model comparison can be made between the two MCAR models and

the proposed spectral model using the deviance information criterion (DIC). The DIC
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is defined as follows,

DIC = D(θ̄) + 2pD,

D(θ) = −2 log p(Z|θ),

pD =
1

2
V arθ|Z(D(θ)),

where θ̄ is the posterior mean of the parameters. The first term in the DIC is the deviance
computed using the posterior mean of the parameters and is intended to be a measure
of the goodness of fit. The second term is a penalty for the number of parameters in
the model. Here the definition of pD is based on the posterior variance of the deviance,
following the suggestion of Gelman et al. (2014) and Spiegelhalter et al. (2014).

The computed DICs for each model are provided in Table 1. Recalling that lower
DIC values indicate a better fit, the MCAR(5) appears to be the worst model for these
data and the spectral model appears to be the best model.

Model DIC |DIC −DICbest|
Spectral −3583 0
MCAR(1) 355636 359219
MCAR(5) 1103108 1106691

Table 1: Comparison of DIC across the three models, ordered from best (lowest DIC) to
worst (highest DIC). The third column provides the absolute difference between each
model’s DIC and that of the best model.

6 Discussion

The framework we have outlined enables joint spatial modeling of multiple spatial pro-
cesses in a computationally efficient manner through the use of Fourier transformations
and spectral analysis theory. A primary advantage of this joint modeling is the abil-
ity to make inference on conditional dependencies between the spatial processes while
allowing for flexibility in the spatial properties of each process individually. The repre-
sentation of the covariance structure using spectral densities enables a flexible structure
for the covariance functions and cross-covariance functions, with properties such as
non-separability and covariate dependence being easily incorporated. The covariance
parameters provide inference on the extent of spatial dependence, avoiding specification
of a neighborhood matrix required for other methods. By implementing the approach
in a Bayesian setup, we can fully quantify the uncertainty associated with our estimates
of covariance functions via the pseudo posterior while simultaneously taking advantage
of the computationally efficient aspects of spectral modeling. All of this is achieved by
utilizing the Whittle likelihood approximation to the multivariate normal likelihood,
since the true likelihood may be prohibitively expensive to compute in models with
comparable flexibility.

This approach was illustrated for soil elements mapped in thin mineral-organic coat-
ings on the surface of a quartz soil-sand grain using μ-XRF analysis, including separating
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effects of elements that are known to occur at least partially as non-reactive stainless-
steel contamination. Our proposed model provides a framework for assessing the con-
ditional relationships between several soil elements that can have different geochemical
effects on arsenic accumulation in soils. Interactive effects between pollutants, multiple
minerals and/or organic matter co-localized in soil microsites are difficult to disentan-
gle using current analytical techniques, thereby limiting our predictive capabilities for
natural environmental settings.

Understanding how microscale relationships between soil elements affect arsenic
binding is one approach for determining the importance of multi-component interac-
tions in soils that are not accounted for by single-component model systems. Specifically,
molecular-scale reactions known from model systems control the partitioning of contam-
inants between soil solids and soil water which, in turn, controls the macroscale impacts
of trace-element contaminants. Macroscale reactions may include mobilization into the
human food chain or drinking water, which is illustrated by the mass poisoning of hu-
mans in southern Asia. The modeling presented here provides an approach to couple
microscale spatial data with existing molecular-scale knowledge to infer specific chem-
ical controls on element partitioning. By quantifying these relationships, researchers
can then develop better strategies to mitigate human exposure to environmental con-
taminants. With additional overlapping spatial data sets, the analyses presented here
could reasonably be expanded to other soil elements such as aluminum, manganese, and
carbon that are also known to impact soil arsenic reactivity.

Unlike our proposed approach, previous work analyzing these data (Guinness et al.,
2014) was not able to account for more than three soil elements at a time and also
lacked adequate descriptions of uncertainty. Despite using a similar spectral represen-
tation for the likelihood, the authors adopted a hypothesis testing framework in order
to assess the conditional relationships between soil elements. In their framework each
pairwise correlation function was characterized in part through a multiplicative scalar,
which indicated conditional independence when set to zero. The model was fit with and
without this parameter set to zero, and the resulting log-likelihood ratio was computed
and compared to theoretical distribution quantiles. The reliance on a single parameter
hypothesis test limited the parameterization of the joint model and prevented extensions
to dimensions greater than three. In the case of soil elements, as well as other multi-
variate problems for which the methodology may be applicable, restricting analysis to
three variables is a severe limitation.

In contrast, by approaching the problem in a Bayesian framework one can take
advantage of the same computational benefits of the spectral representation and simul-
taneously make a more thorough analysis of the conditional relationships of interest.
Instead of rigidly defining the model around a single parameter of interest, a prior can
be put on the correlation matrix allowing for a flexible model structure that can ac-
commodate an arbitrary number of variables. In this setup, inference on the conditional
relationships is a natural byproduct of the pseudo posterior inference on the correlation
matrix and can be made simultaneously for several variables.

The standard Bayesian approaches to modeling lattice data revolve around MCAR
models, specifically separable MCARmodels when computational efficiency is a concern.



M. A. Terres, M. Fuentes, D. Hesterberg, and M. Polizzotto 23

With these models, as was illustrated in Sections 5.1 and 5.3, the resulting inference on
the conditional relationships between variables will be heavily dependent on the neigh-
borhood structure. This neighborhood structure is not explicitly learned from the data;
it is instead pre-specified based on an assumed distance of spatial dependence. To select
a neighborhood structure from the data, a model comparison approach would be nec-
essary post-model fitting. This is in contrast to methods utilizing a covariance function
where a range parameter is fitted to the data along with the other parameters. Since
this spatial dependence impacts the resulting inference on the conditional relationships
between soil elements, it is convenient for it to be included during the model-fitting.

In a separable MCAR model the spatial behavior and multivariate correlation struc-
tures are incorporated into the model somewhat independently – one component of the
model controls spatial dependence while another controls the correlation between soil
elements. As such, in these models the neighborhood structure is shared across all soil
elements. As was seen from the results shown in Figure 3, the assumption of equal spatial
ranges does not appear to hold true for the soil data. In addition, the separable MCAR
requires a fixed (non-spatial) covariance matrix to describe the dependencies across the
soil elements. The assumption of separability simplifies the model structure and reduces
computation times, but separable models are often criticized for being unrealistic.

Fundamentally the spectral modeling approach proposed here is very similar to an
MCAR model. Both assume a Gaussian distribution to describe a spatial process, re-
lying on parametric forms to describe the spatial dependencies. However, the spectral
approach has some advantages over the separable MCAR that is used when there are
concerns about computational efficiency. Unlike the MCAR, the spectral approach al-
lows for inference regarding the extent of the spatial dependence across distances, and
the nonseparable specification of the covariance structure allows for the spatial depen-
dence to differ across the five soil elements. As was shown here, the MCAR model’s lack
of flexibility in these regards can greatly affect posterior inference regarding conditional
relationships between the elements.

Several areas for future work can be suggested by the proposed methodology. In
its current form the model is appropriate for jointly modeling multiple spatial vari-
ables observed on a complete lattice. However, future adaptations can be envisioned
to accommodate such spatial processes that are non-stationary (Fuentes, 2002), and/or
were collected on an incomplete lattice (Fuentes, 2007; Stroud et al., 2014; Guinness
and Fuentes, 2016). Specifically, recent papers have introduced methodology for im-
putation at unobserved lattice locations for a univariate spatial process. However, no
such methodology exists for the multivariate case explored in this paper. In addition
to enabling modeling when there is missing data, such imputation methods would en-
able posterior predictive checks to assess the extent of the spatial correlation that was
captured by the multivariate model.

Finally, future work could add even more flexibility to the model structure. Flex-
ibility to model more complex dependence structures could be achieved through the
introduction of a nonparametric spectral density. Additionally, in the current paper
the correlation matrix ρ was assumed to be constant across frequencies in the above
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analyses, enabling straight forward sampling and interpretation of the conditional re-
lationships. In the future this assumption may be relaxed in order to achieve a more
flexible model structure.

Supplementary Material

Supplementary Material of “Bayesian Spectral Modeling for Multivariate Spatial Dis-
tributions of Elemental Concentrations in Soil” (DOI: 10.1214/16-BA1034SUPP; .zip).
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