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Adaptive Shrinkage in Pólya Tree Type Models

Li Ma∗,†

Abstract. We introduce a hierarchical generalization to the Pólya tree that in-
corporates locally adaptive shrinkage to data features of different scales, while
maintaining analytical simplicity and computational efficiency. Inference under
the new model proceeds efficiently using general recipes for conjugate hierarchical
models, and can be completed extremely efficiently for data sets with large num-
bers of observations. We illustrate in density estimation that the achieved adaptive
shrinkage results in proper smoothing and substantially improves inference. We
evaluate the performance of the model through simulation under several schematic
scenarios carefully designed to be representative of a variety of applications. We
compare its performance to that of the Pólya tree, the optional Pólya tree, and
the Dirichlet process mixture. We then apply our method to a flow cytometry
data with 455,472 observations to achieve fast estimation of a large number of
univariate and multivariate densities, and investigate the computational proper-
ties of our method in that context. In addition, we establish theoretical guarantees
for the model including absolute continuity, full nonparametricity, and posterior
consistency. All proofs are given in the Supplementary Material (Ma, 2016).
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1 Introduction

In his seminal works that jump-started modern Bayesian nonparametric inference, Fer-
guson (1973, 1974) formalized the notion of a Dirichlet process (DP) and introduced a
tail-free process that contains the DP as a special case. This tail-free process was later
named the Pólya tree (PT) due to its relationship to the Pólya urn (Mauldin et al., 1992),
and was popularized in the 1990s by a sequence of works (Lavine, 1992; Mauldin et al.,
1992; Lavine, 1994) that investigated its various theoretical properties. Recently, sev-
eral authors have proposed extensions of the PT, improving its statistical performance
and furthering its applicability. Some examples are mixtures of finite PTs (Hanson and
Johnson, 2002; Hanson, 2006; Jara et al., 2009), the optional PT (Wong and Ma, 2010),
the multivariate/dependent PT (Trippa et al., 2011), covariate-dependent tail-free pro-
cesses (Jara and Hanson, 2011), and the rubbery PT (Nieto-Barajas and Müller, 2012).
The PT and its relatives—which we refer to generally as “PT-type models”—have been
applied to a variety of problems including density estimation, regression, and hypothesis
testing. See for example Walker et al. (1999); Berger and Guglielmi (2001); Paddock
et al. (2003); Holmes et al. (2015); Ma and Wong (2011); Chen and Hanson (2014);
Tansey et al. (2015) among others.
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The PT produces probability measures through a multi-resolution generative pro-
cedure. The sample space is recursively bisected into smaller and smaller sets, and
for each set A that arises during the partition, the probability assigned to A is ran-
domly split between its two children Al and Ar based on a Beta variable—which we
shall refer to (and define later) as the probability assignment coefficient (PAC) on A—
corresponding to the proportion of mass assigned to Al. (The PACs are sometimes also
referred to as “branching probabilities” by other authors (Nieto-Barajas and Müller,
2012).)

Inference under the PT adopts a “divide-and-conquer” strategy: the original non-
parametric problem is transformed into a collection of independent parametric ones—
each PAC is inferred through a simple Beta-Binomial conjugate model. This results in
extremely fast computation, often completed within a fraction of a second even for large
data sets, which makes the PT an excellent choice for problems involving large quan-
tities of data and/or require fast output compared to other Bayesian nonparametric
models, which typically rely on Markov Chain Monte Carlo (MCMC) sampling.

In addition to computational efficiency, the conjugate nature of the PT allows in-
tuitive interpretation on how the model incorporates prior knowledge and empirical
evidence in drawing inference—in terms of “shrinkage” of the empirical distribution
toward a prior mean distribution. The PT allows the amount of shrinkage to vary
for empirical features of different scales. This will be more fully explained in Sec-
tion 2.2.

Despite its computational efficiency and interpretability, however, the PT can often
perform poorly in comparison to kernel mixture-based methods such as the Dirichlet
process mixture (DPM), and in particular when the underlying density contains struc-
tures of varying scales and/or smoothness. As will be explained more in this work,
this is largely because the Beta-Binomial model that the PT adopts for inferring each
PAC imposes a predetermined, fixed amount of shrinkage, allowing no adaptivity to the
(possibly varying) smoothness and scales of the underlying distributional features. We
illustrate this through a simple example.

Example 1. We simulate 750 i.i.d. data from the following mixture distribution on [0, 1]

0.1U(0, 1) + 0.3U(0.25, 0.5) + 0.4Beta(0.25,0.5)(2, 2) + 0.2Beta(6000, 4000),

where Beta(0.25,0.5)(2, 2) represents a Beta(2, 2) translated and scaled to be supported
on the interval (0.25,0.5)—that is, the distribution with density 8(4x − 1)(1 − 2x)
on (0.25, 0.5). Figure 1 illustrates the pdf (red dashed). The “hump” on the interval
(0.25, 0.5) constitutes a large-scale, smooth distributional structure, while the mode
given by Beta(6000, 4000) constitutes a small-scale, spiky feature.

Let us place a PT prior on the underlying distribution corresponding to a Beta(k2, k2)
prior on the PACs at level k of the partition sequence (Section 2.1 gives a brief review
on PTs), which is the most common specification recommended by many authors in
applying the PT. (See Lavine (1992); Walker et al. (1999); Hanson and Johnson (2002);
Hanson (2006); Holmes et al. (2015) for example.) The gray solid curves in Figure 1
show the posterior predictive density (PPD) of the PT. The middle and right plots give
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Figure 1: The true density (red dashed) and the posterior predictive density (PPD) of
the PT (gray solid) for Example 1. The middle and right plots give the zoom-in views
of the low- and high-resolution features.

the zoom-in views of the large-scale and small-scale features respectively. We see that
overall the PT induces a decent amount of shrinkage for capturing the large-scale fea-
ture (middle), as the general shape of that feature is adequately recovered in the PPD.
For the spiky feature, however, it results in too much shrinkage and thus underestima-
tion of the mode (right). Interestingly, if we zoom into higher resolutions within the
large-scale feature (middle), the PPD shows jumpy patterns of overfitting, indicating
that more shrinkage is needed there at higher resolutions to ensure proper smooth-
ness.

The above example represents a typical situation—the appropriate amount of shrink-
age and smoothness varies across locations and scales. The PT is incapable of adjusting
to the proper levels of shrinkage in a locally adaptive manner, which greatly hampers its
usefulness in modern applications. Given the extremely desirable analytical and compu-
tational properties of the PT, a natural question is whether it is possible to install such
adaptivity in the PT framework, but doing so in a manner that maintains the analytical
simplicity and computational efficiency of the model. We will show that this is achiev-
able in a principled hierarchical Bayesian approach through constructing hyperpriors
on the Beta variances of the PACs.

The rest of the work is organized as follows. In Section 2, we construct a hyperprior
on the variance of the PACs that induces a stochastically varying, adaptive rate of
shrinkage across the sample space. We derive efficient inference recipe and investigate
theoretical properties of the proposed model. In Section 3 we demonstrate our method
in density estimation and evaluate its performance under various scenarios where the
underlying density possesses a variety of features. We compare our method to two PT-
type models—the PT and the optional Pólya tree (OPT) (Wong and Ma, 2010)—as
well as to the very popular Dirichlet process mixture (DPM) of Gaussians (Escobar and
West, 1995). Then in Section 4 we apply our method to analyzing data from a flow
cytometry experiment. We conclude in Section 5 with brief remarks.
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2 Method

2.1 Multi-resolution representation of probability distributions

We start by introducing some basic concepts and definitions that form the building
blocks for PT-type multi-resolution modeling. Throughout this work, we let Ω denote
the sample space, which can be finite or a (possibly unbounded) Euclidean rectangle such
as an interval in R or a rectangle in R

p. Let μ be the natural measure associated with
Ω, i.e., the counting measure if Ω is finite and the Lebesgue measure if Ω is Euclidean.

Let A1,A2, . . . ,Ak, . . . be a sequence of nested dyadic partitions of Ω. That is, each

Ak = {Ak,1, Ak,2, . . . , Ak,2k} and it satisfies (i) Ω = ∪2k

m=1Ak,m, (ii) Ak,m1 ∩ Ak,m2 = ∅
for all m1 �= m2, and (iii) Ak,m = Ak+1,2m−1 ∪ Ak+1,2m for all k = 1, 2, . . . and m =
1, 2, . . . , 2k. In other words, starting from A1 = Ω, the partition Ak+1 is obtained by
dividing each Ak,m in Ak into two children, the left child Ak+1,2m−1 and the right child
Ak+1,2m. We shall call Ak the partition at resolution (or scale/level) k. Also, we let
A(∞) = ∪∞

k=1Ak, the totality of all partition sets that arise in all resolution levels. The
partition sets form a bifurcating tree, so from now on we shall refer to A(∞) as the
partition tree, and each A in A(∞) as a node.

For example, when the sample space Ω is a (possibly unbounded) one-dimensional
interval, a simple strategy for constructing such a partition tree is by sequentially di-
viding an interval Ak,m = (a, b]—the two bounds can either be open or closed—into
Ak+1,2m−1 = (a, c] and Ak+1,2m = (c, b]. A general way of division that applies to both
bounded and unbounded intervals is to let c = H−1((H(a) +H(b))/2) for a cumulative
distribution function H supported on Ω. In this case, the nodes in Ak are given by
(H−1((m− 1)/2k), H−1(m/2k)] for m = 1, 2, . . . , 2k.

Given a partition tree A(∞) that generates the Borel σ-algebra, one can describe a
probability distribution G by specifying how probability mass is split between the left
and right children on each node A ∈ A(∞). Let Al and Ar be the left and right children
of a node A. We define the probability assignment coefficient (PAC) for A to be the
proportion of probability mass assigned to Al, and denote it as θ(A). So if the total
probability mass on A isG(A) then those assigned to the children areG(Al) = G(A)θ(A)
and G(Ar) = G(A)(1− θ(A)).

Lemma 1. Given a partition tree A(∞) that generates the Borel σ-algebra, every prob-
ability distribution G can be mapped to a collection of PACs {θ(A) : A ∈ A(∞)}, and
the mapping is unique on all A’s such that G(A) > 0.

Remark. A collection of PACs corresponding to G is given by θ(A) = G(Al)/G(A) for
all A with G(A) > 0 and θ(A) = 0 otherwise.

Figure 2(a) illustrates the transformation of a distribution into PACs. Each PAC
specifies the structure of the distribution at a given scale and location.

The lemma implies that inference on a distribution can be achieved by inferring
the PACs, which motivates a “divide-and-conquer” strategy for nonparametric infer-
ence. More specifically, the multi-resolution transformation of G into PACs induces
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Figure 2: The divide-and-conquer inference schema.

a corresponding decomposition of the statistical experiment that generates an i.i.d.
sample of size n from G. In particular, the experiment is divided into a collection
of “local” binomial experiments, carried out sequentially from low to high resolution:
{n(Al) ∼ Binomial(n(A), θ(A)) : A ∈ Ak} for k = 1, 2, . . . where n(A) is the number
of data points in A arising from the binomial experiment on A’s parent in the previous
resolution level k − 1, except that for k = 1, n(A) = n by design. See Figure 2(b) for
an illustration of the local binomial experiment.

Accordingly, inferring a distribution through the PACs is divided into inference on
the success probabilities of a collection of sequential binomial experiments. Viewed this
way, the PT model provides a simple solution to this problem—it places independent
conjugate Beta priors on the success probabilities. The posterior conjugacy of the PT
follows immediately from the Beta-Binomial conjugacy. Thus inference under the PT is
analytically tractable and computationally efficient.

2.2 Adaptive shrinkage in the Pólya tree

One can now understand how the PT applies shrinkage toward the prior mean by
viewing how each of the Binomial experiments does so. Under the PT model, θ(A) ∼
Beta(αl(A), αr(A)) for all A ∈ A(∞). (A popular specification has αl(A) = αr(A) = k2

for A ∈ Ak as mentioned previously.) We shall prefer an alternative parametrization of
Beta distributions in terms of its mean θ0(A) = αl(A)/(αl(A) + αr(A)) and precision
ν(A) = αl(A) + αr(A). The posterior distribution of θ(A) is still Beta with mean

θ1(A) = E(θ(A)|x) = θ0(A) ·
ν(A)

ν(A) + n(A)
+

n(Al)

n(A)
· n(A)

ν(A) + n(A)

and precision ν̃(A) = ν(A) + n(A). The posterior mean is a weighted average between
θ0(A), or the prior mean, and n(Al)/n(A), or the PAC on A of the empirical distribution.
The level of shrinkage for θ(A) is controlled by the precision parameter ν(A), and thus
we shall refer to ν(A) also as the shrinkage parameter.

The prior mean of the PT is the probability distribution given by the PACs {θ0(A) :
A ∈ A(∞)}, which we call Q0. The posterior mean of the PT is the distribution given
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Figure 3: Graphical representations of the PT, APT, and Markov-APT.

by the PACs {θ1(A) : A ∈ A(∞)}. Intuitively, the posterior mean of a PT is a weighted
average between Q0 and the empirical distribution, but the weighting can be scale and
location dependent. Figure 3(a) provides a graphical model representation of the PT.

From a hierarchical Bayesian perspective, we can incorporate data-adaptivity into
the shrinkage by placing a hyperprior FA on ν(A) thereby allowing the appropriate level
of shrinkage for θ(A) to be inferred from the data. The subscript “A” in FA indicates
that the hyperprior can be specified differently across A’s. In most applications, however,
one typically does not have the prior knowledge to differentially specify the precision
parameter for each A. Instead, we shall recommend a default choice for FA that does
not depend on A (details later). As such, we shall from now on suppress the notation,
and use F to indicate the hyperprior on each ν(A).

This leads to a generative hierarchical model specified by F and Q0. Using φ =
(F,Q0) to represent the totality of all hyperparameters, we can write the model as

ν(A) |φ ∼ F

θ(A) |φ,ν ∼ Beta(θ0(A)ν(A), (1− θ0(A))ν(A)),

for all A ∈ A(∞), where ν = {ν(A) : A ∈ A(∞)}, the collection of all shrinkage
parameters. Figure 3(b) provides a graphical representation of this model.

We consider priors F supported on (0,∞]. Note that we allow ν(A) = ∞, in which
case Beta(θ0(A)ν(A), (1− θ0(A))ν(A)) is a point mass at θ0(A), corresponding to com-
plete shrinkage of θ(A) to the prior mean θ0(A). A first necessary question to address is
whether this model always generates well-defined probability measures. In other words,
given a set of PACs {θ(A) : A ∈ A(∞)} arising from the above model, does there (almost
surely) exist a distribution G such that G(Al|A) = θ(A) for all A ∈ A(∞)? The answer
is positive by Theorem 3.3.2 in Ghosh and Ramamoorthi (2003). Hence we can define
this model as a distribution on probability measures.

Definition 1 (Adaptive Pólya tree). A probability measure Q is said to have an adap-
tive Pólya tree (APT) distribution with parameters φ = (F,Q0) if the corresponding
PACs of Q, {θ(A) : A ∈ A(∞)}, are generated from the above hierarchical model. We
write Q ∼ APT(F,Q0), or equivalently APT(F,θ0).
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2.3 Stochastically increasing shrinkage and adaptive smoothing

In many applications such as density estimation, a reasonable assumption adopted (ex-
plicitly or implicitly) in all statistical methods is the smoothness of the underlying
density. Indeed, even “jumpy” densities—those with sharp changes—must be assumed
to eventually smooth out at high enough resolutions as opposed to infinitely oscillat-
ing in arbitrarily small regions, because otherwise reliable estimation is infeasible. In
PT-type models, it is well-understood that smoothing translates into an increase in
shrinkage or decrease in the prior variance of the PACs for higher resolutions (Kraft,
1964). This is exactly the motivation for increasing Beta parameters with the level (such
as k2) in the PT (Lavine, 1992). Generally, the faster the shrinkage increases with the
resolution level, the smoother the induced process.

However, to effectively model densities involving structures of various scales and
varying smoothness across the sample space, it is necessary to incorporate a potentially
heterogeneous rate of increasing shrinkage across the sample space into PT-type models.
Because the proper varying rate of increasing shrinkage across the sample space is
unknown a priori, we propose to infer it from the data.

To this end, next we shall construct a generative model for the priors on the Beta
variances in an APT to allow data-adaptive rates of increasing shrinkage for higher
resolutions across the sample space. First, we introduce a latent mixture representation
for F whose mixing components represent different extents of shrinkage. Let us specify
F using a mixture of I component distributions in a monotone increasing stochastic
order

F1 ≺ F2 ≺ . . . ≺ FI .

In particular, we can choose these components to have non-overlapping supports. For
example Fi may be supported on an interval [a(i), a(i + 1)) where a(i) is increasing
sequence in i. For now we shall treat the number of components I and each Fi as given,
but will provide guidelines on choosing them in Section 2.6. We let F = (F1, F2, . . . , FI)
denote the totality of all component distributions.

Moreover, we introduce a latent state variable C(A) for each A ∈ A(∞) that indicates
the mixture component ν(A) comes from:

ν(A) |C(A) = i ∼ Fi,

for i = 1, 2, . . . , I. We refer to C(A) as the shrinkage state on A, and let C = {C(A) :
A ∈ A(∞)} be the collection of all shrinkage states.

Now we can enforce a stochastic rate of increasing shrinkage along each branch of
A(∞) by specifying a joint prior on C that prevents the shrinkage state from moving
lower in any branch. That is, if Ap is A’s parent in A(∞), then we require C(A) ≥ C(Ap).
A simple stochastic model for C that can help us impose such a constraint is the Markov
tree (MT) (Crouse et al., 1998), which links the C(A)’s using a Markov process such
that the shrinkage state C(A) depends on that of Ap through Markov transition. The
Markov process is initiated on the root, Ω, as follows

P (C(Ω) = i) = γi(Ω) for i ∈ {1, 2, . . . , I},
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where the γi(Ω)’s are called the initial state probabilities, and can be put into a vector

γ(Ω) = (γ1(Ω), γ2(Ω), . . . , γI(Ω)).

Then for each A �= Ω, C(A) is determined sequentially based on its parent according to

P (C(A) = i′ |C(Ap) = i) = γi,i′(A) for i, i′ ∈ {1, 2, . . . , I},

where γi,i′(A) is called the state transition probability, which can be organized into a
transition probability matrix

γ(A) =

⎛⎜⎜⎜⎝
γ1,1(A) γ1,2(A) · · · γ1,I(A)
γ2,1(A) γ2,2(A) · · · γ2,I(A)

...
...

...
...

γI,1(A) γI,2(A) · · · γI,I(A)

⎞⎟⎟⎟⎠ .

Note that we set this transition probability matrix without reference to Ap—γi,i′(A)
gives the probability for C(A) = i′ given that C(Ap) = i, regardless of what Ap is.

The desired stochastically increasing shrinkage is achieved when the transition ma-
trices are all upper-triangular. That is, γi,i′(A) = 0 if i > i′ for all A ∈ A(∞). From
now on, we shall use γ = {γ(A) : A ∈ A(∞)} to denote the collection of all initial
state probabilities and transition probability matrices needed for specifying the MT.
In Section 2.6 we present recommended choices of these hyperparameters. In particu-
lar, without additional information, we shall recommend a simple choice of γ(A) that
is common for all A, in which case the “(A)” notation is unnecessary. We keep the
“(A)” notation because it maintains the generality of the model and will be needed in
describing the corresponding posterior.

Putting the pieces together, now we have the following hierarchical model for a
probability distribution with hyperparameters φ = (γ,F , Q0):

C |φ ∼ MT(γ), ν(A) |φ, C ∼
I∑

i=1

Fi · 1C(A)=i,

θ(A) |φ,ν, C ∼ Beta(θ0(A)ν(A), (1− θ0(A))ν(A)),

for all A ∈ A(∞). A graphical representation of this model is given in Figure 3(c).

Because this hierarchical model also generates a probability measure with probabil-
ity 1, one can again define it formally as a distribution on probability measures.

Definition 2 (Markov adaptive Pólya tree). A probability measure Q is said to have a
Markov adaptive Pólya tree (Markov-APT) distribution with parameters φ = (γ,F , Q0)
if Q corresponds to the collection of PACs {θ(A) : A ∈ A(∞)} generated from the
above hierarchical model. We write Q ∼ Markov-APT(γ,F , Q0). When γ(A) is upper-
triangular for all A ∈ A(∞), we say that the Markov-APT is stochastically increasing.

In practice, it is typically sufficient to infer Q up to some finite maximum resolu-
tion K (Hanson, 2006). Such a “truncated” or “finite” Markov-APT can be constructed
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by simply setting the conditional measure Q(·|A) = Q0(·|A) for all A at level K. A re-
lated question is how one may choose the maximum resolution K in applications. Some
recent works (Hanson, 2006; Watson et al., 2014) have investigated how well finite
PT-type models can characterize the underlying distribution according to some global
measure of distributional properties (such as L1 distance and Kullback–Leibler diver-
gence), and have proposed rules for setting K based on these results. One limitation
of using global distances for choosing K is that they are insensitive to highly local
structures, and the rules derived based on these results can be overly conservative when
one is interested in characterizing local distributional features, which we believe is the
situation when PT-type models are most favorable compared to other nonparametric
models. (See our simulation results for example.) As such, we recommend setting the
maximum resolution at what the available computational resources allow, and/or trun-
cate the partition whenever the number of sample size is too few (e.g., < 5) on a node,
in which case reliable inference on higher resolutions becomes infeasible anyway.

2.4 Bayesian inference with the Markov-APT

Next we address how to carry out posterior inference for the Markov-APT. We show
that the full posterior can be derived following a general recipe for hierarchical models
(Gelman et al., 2013, Sec. 5.3) and inference can proceed in a usual manner through
drawing a sample from the posterior and/or computing some summary statistics such
as the posterior mean. In particular, the posterior is available analytically (up to some
numerical approximation) and so no MCMC is needed. In particular, the full posterior
π(C,ν,θ |φ,x) can be described in three pieces: (i) π(θ |φ,ν, C,x), (ii) π(ν |φ, C,x),
and (iii) π(C |φ,x) as follows.

(i) π(θ |φ,ν, C,x). This conditional posterior follows directly from the Beta-Binomial
conjugacy. Specifically, we have

θ(A) |φ,ν,x ∼ Beta(θ1(A)ν̃(A), (1− θ1(A))ν̃(A)) for all A ∈ A(∞),

where as before ν̃(A) = ν(A) + n(A) and θ1(A) = (θ0(A)ν(A) + n(Al))/ν̃(A).

(ii) π(ν |φ, C,x). Due to the conjugacy of finite mixture models, the conditional
posterior for ν(A) is still an I-component mixture

ν(A) |φ, C,x ∼
I∑

i=1

F̃A,i · 1C(A)=i,

where each new mixture component distribution F̃A,i (which depends on A) has density

dF̃A,i(ν) = dFi(ν) ·MA(θ0, ν)/MA,i(θ0),

for i = 1, 2, . . . , I, where

MA(θ0, ν) =
Γ(θ0(A)ν + n(Al))Γ((1− θ0(A))ν + n(Ar))Γ(ν)

Γ(ν + n(A))Γ(θ0(A)ν)Γ((1− θ0(A))ν)
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is the marginal likelihood of the local Binomial experiment on A given ν, and

MA,i(θ0) =

∫
MA(θ0, ν)dFi(ν)

is the marginal likelihood of the local Binomial experiment on A given θ0(A) and C(A) =
i, which can be numerically evaluated using standard strategies for one-dimensional
integration. We describe a simple grid-based finite Riemann method in Supplementary
Material S2 (Ma, 2016). Note that when ν = ∞, MA(θ0,∞) := limν↑∞ MA(θ0, ν) =
θ0(A)

n(Al)(1− θ0(A))
n(Ar).

(iii) π(C |φ,x). The last piece is the marginal posterior on C, which follows again
from the conjugacy of finite mixtures (of which the MT is a special case) to be an MT.
The initial and transition probabilities of the posterior MT are computable analytically
through a forward–backward algorithm, which is a dynamic programming strategy that
can be used for evaluating marginal posterior state probabilities of Markov models. See
Liu (2001) for more background. The forward step, or the summation step, is a bottom–
up (leaf-to-root) recursion on the partition tree and the backward step, or the sampling
step, a top–down recursion.

To describe the algorithm, we first define a mapping ξA for each A ∈ A(∞) as follows

ξA(i,φ) :=

{∫
q(x|A)π(dq |φ, C(Ap) = i) if A ∈ A(∞)\{Ω}∫
q(x|A)π(dq |φ) if A = Ω,

for i = 1, 2, . . . , I, where q(x|A) :=
∏

x∈A
q(x)
Q(A) with q = dQ/dμ, and Ap is the parent

of A in A(∞). Intuitively, ξA(i,φ) gives the marginal likelihood of the “submodel” on
A—the Markov-APT with A being the sample space—given that the shrinkage state on
Ap is i. Note that when A = Ω, it does not have a parent, and ξΩ(i,φ) is equal for all i
to the overall marginal likelihood of the Markov-APT. The following lemma provides a
bottom–up recursive recipe for computing ξA(i,φ).

Lemma 2 (Forward-summation). For A ∈ A(∞)\{Ω},

ξA(i,φ)

=

⎧⎪⎨⎪⎩
∑I

i′=1 γi,i′(A) ·MA,i′(θ0) · ξAl
(i′,φ)ξAr (i

′,φ) if n(A) > 1

q0(x|A) if n(A) = 1 or A has no children

1 if n(A) = 0,

where q0(x|A) =
∏

xi∈A q0(xi)/Q0(A) with q0 = dQ0/dμ. For A = Ω, we simply replace
γi,i′(A) with γi′(Ω) in the above equation. In particular, ξΩ(1,φ) is the overall marginal
likelihood, as a function of the hyperparameters φ.

Remark I. There are two situations in which a node A has no children. The first is
when it is atomic—i.e., A = {a} for a single value a—and so cannot be further divided.
In this case, q0(·|A) is a unit mass at the value a and so q0(x|A) = 1 as well. The
other situation is when the partition is truncated at some maximum level K, and so all
A ∈ AK have no children. In this case q(x|A) = q0(x|A) by construction.
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Remark II. This lemma shows that one can compute the mapping for A based on
those for its children, Al and Ar (hence bottom–up).

Remark III. Given that the data are arising from some true absolutely continuous
distribution P0, with P0 probability 1, all nodes at deep enough levels of A(∞) will either
have no children or contain ≤ 1 observation, and hence the recursive computation can
be applied with or without setting a maximum resolution. One can start the recursion
from those A’s such that n(A) ≤ 1 but n(Ap) ≥ 2, because all descendants of such A’s
have no more than one data point and so the mapping is known there.

After computing {ξA(i,φ) : A ∈ A(∞) and i = 1, 2, . . . , I}, we can then carry out a
backward (top–down) recursion to derive the marginal posterior of C.
Theorem 1 (Backward-sampling). The marginal posterior of the shrinkage states is

C |φ,x ∼ MT(γ̃)

whose initial state and transition probabilities γ̃ = {γ̃(A) : A ∈ A(∞)} are as follows.

• The initial state probability vector: γ̃(Ω) = γ(Ω)D′′(Ω)/ξΩ(1,φ);

• The state transition probability matrix: γ̃(A) = D′(A)−1γ(A)D′′(A) for all A ∈
A(∞)\{Ω},

where for all A ∈ A(∞), D′(A) is the I × I diagonal matrix with the diagonal elements
being ξA(i,φ) for i = 1, 2, . . . , I, and D′′(A) is the I × I diagonal matrix with the
diagonal elements being MA,i(θ0)ξAl

(i,φ)ξAr (i,φ) for i = 1, 2, . . . , I if A has children
and q0(x|A) if not.
Remark. In particular, for any A with n(A) ≤ 1, by the theorem γ̃(A) = γ(A). So
a posteriori the MT on A with no more than one observation is the same as the prior
MT.

We have completely described the three components of the full posterior for (θ,ν, C).
One can draw from the joint posterior by sampling in the order of π(C |
φ,x), π(ν |φ, C,x), and π(θ |φ,ν, C,x). The forward–backward recursion given in
Lemma 2 and Theorem 1 is the most computationally intense step in the posterior
inference. Fortunately, for any given data set and prior specification, this recursion only
needs to be carried out once and for all, because γ̃ stays the same for all the posterior
draws.

With posterior draws (θ(1),ν(1), C(1)), (θ(2),ν(2), C(2)), . . . , (θ(B),ν(B), C(B)), one can
carry out Bayesian inference in the usual manner. In particular, when one is interested in
the unknown distribution Q, one can use θ(1),θ(2), . . . ,θ(B) to obtain a posterior sample
Q(1), Q(2), . . . , Q(B) while discarding the other variables. Sampling from the posterior is
extremely efficient. We illustrate inference based on such a posterior sample in our anal-
ysis of a flow cytometry data set in Section 4 and evaluate the computation efficiency
of the method in the context of that analysis.
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Moreover, some posterior summaries can be evaluated analytically without resort-
ing to posterior sampling at all. In particular, the PPD at any x∗ ∈ Ω is equal to
ξ∗Ω(1,φ)/ξΩ(1,φ), where ξ

∗
Ω(1,φ) is the overall marginal likelihood computed according

to Lemma 2 for a data set that contains the original data plus an additional point at x∗.
This is particularly useful in applications such as density estimation because it avoids
Monte Carlo errors in computing an estimator. In our numerical examples in Section 3,
we compute all PPDs this way. Note that after computing the ξA(i,φ) mappings for
the original data set, the corresponding mappings ξ∗A(i,φ) for the new data set can be
obtained by updating only the branch of partition tree in which the new data point x∗

falls, because the mapping stays the same on all other nodes.

2.5 Theoretical properties

We shall establish four basic but important theoretical properties of the Markov-APT
model. The first two properties will guide us in prior specification. The latter two provide
theoretical guarantees in terms of prior support and posterior consistency, which are
deemed necessary for Bayesian nonparametric models.

Theorem 2 (Prior centering). The mean of a Markov-APT is Q0. That is, for any Borel
set B ⊂ Ω, a random measure Q with a Markov-APT distribution satisfies EQ(B) =
Q0(B).

We shall focus on Markov-APTs as a tool for modeling densities. In order to model
a density, we must ensure that a random measure Q generated from a Markov-APT has
a density. Earlier works in the literature have established two general approaches for
achieving absolute continuity for PT-type priors, which could both be adopted for the
Markov-APT. The first is to force ν(A) to increase with the level of A at a sufficiently
fast rate (Lavine, 1992). For the Markov-APT, this can be achieved by choosing F such
that for any A ∈ Ak, ν(A) > l(k) with probability 1 where l(k) is a positive function in k
that satisfies

∑∞
k=1 1/l(k) < ∞ (Kraft, 1964). But this would impose a minimum amount

of prespecified shrinkage homogeneously across the sample space, which is exactly the
undesirable feature of the PT that we wish to avoid through adaptive shrinkage. Hence
we prefer an alternative strategy for ensuring absolute continuity (Wong and Ma, 2010),
which is to include a “complete shrinkage” state as follows.

Theorem 3 (Absolute continuity). Suppose Q has a stochastically increasing Markov-
APT distribution for which FI = 1∞, a point mass at ∞, and there exists δ > 0 such
that for all large enough k, the state transition probabilities for any A ∈ Ak satisfies

γi,I(A) > δ for i = 1, 2, . . . , I − 1,

then with probability 1, Q  Q0 (i.e., Q is absolutely continuous with respect to Q0).
In particular, if Q0  μ, then Q  μ.

Remark. The complete shrinkage state eliminates the need for increasing lower bound
on the support of ν(A) to ensure absolute continuity.
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Next we establish two theoretical guarantees for inference using the Markov-APT
model. The first regards the flexibility of the model—it shows that Markov-APT enjoys
full prior support. Thus inference with the Markov-APT is fully nonparametric.

Theorem 4 (Large prior support). Suppose Q ∼ Markov-APT(γ,F , Q0) and the condi-
tions in Theorem 3 are satisfied. In addition, suppose (i) Q0  μ, (ii) I ≥ 2, (iii) ∃δ′ > 0
such that for all large enough k, γi,I(A) < 1− δ′ for all A ∈ Ak and i = 1, 2, . . . , I − 1,
and (iv) ∃ε > 0 and N > 0 such that Fi

(
(0, N ]

)
> ε for all i = 1, 2, . . . , I − 1 and all

A ∈ A(∞). Then for any distribution G  Q0 and any τ > 0, we have

π

(
Q :

∫
|q − g|dμ < τ

)
> 0,

where q = dQ/dμ and g = dG/dμ are the corresponding densities with respect to μ.

The next result regards the asymptotic consistency of inference using the Markov-
APT and it guarantees that with more and more data, the posterior will eventually
concentrate into any weak neighborhood of the true density. For any probability measure
P0 on Ω, a weak neighborhood U of P0 is a set of probability measures on Ω of the form

U =

{
Q :

∣∣∣ ∫ fi(·)dQ−
∫

fi(·)dP0

∣∣∣ < εi, for i = 1, 2, . . . ,K

}
,

for any bounded continuous functions fi’s and non-negative constants εi’s.

Theorem 5 (Posterior consistency under weak topology). Suppose X1, X2, . . . , Xn, . . .
are i.i.d. data from Q, and let π(·) be a stochastically increasing Markov-APT prior on
Q that satisfies the conditions in Theorem 4 and let π(·|X1, X2, . . . , Xn) be the corre-
sponding posterior. Then for any P0  Q0 with bounded density dP0/dQ0, we have

π(U |X1, X2, . . . , Xn) −→ 1 as n → ∞,

with P
(∞)
0 probability 1 for any weak neighborhood U of P0.

2.6 Prior specification for Markov-APTs

Next we provide guidelines for specifying a Markov-APT, i.e., for choosing the hy-
perparameters {(θ0(A),γ(A),F ) : A ∈ A(∞)}, in the context of density estimation.
The objective is to balance robustness (for a variety of distributional features) and
parsimony—involving only a small number of hyperparameters (i.e., the tuning param-
eters). We give an empirical Bayes strategy to set the hyperparameters adaptively.

Prior choice of θ0(A). θ0 is the PACs corresponding to Q0, the prior mean of the
model. That is, θ0(A) = Q0(Al)/Q0(A) for all A ∈ A(∞). Depending on the application,
one may or may not have relevant prior knowledge for setting the prior mean. In lack
of such knowledge, a simple default is to let Q0 be uniform over a wide enough interval.
Another common situation is that one wants to center the Markov-APT around some
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parametric family such as the Gaussian location-scale family as in Berger and Guglielmi
(2001); Hanson (2006), without specifying which member in that family Q0 is. This can
be achieved by placing another layer of hierarchical prior on Q0, e.g. on the location
and scale parameters (Hanson, 2006), forming a mixture of Markov-APTs.

Prior choice of γ(A). In density estimation, we shall choose γ(A) to be upper-
triangular to achieve adaptive smoothing through stochastically increasing shrinkage.
The most simple choice adopts the same transition probabilities for all A. For example,

γi,i′(A) =

{
1/(I − i) if i ≤ i′

0 if i > i′,

for all i, i′ ∈ {1, 2, . . . , I} and A ∈ A(∞)\{Ω}. That is, given A’s parent is in shrinkage
state i, A can take any higher shrinkage state (including i) with equal probability. This
“uniform” transition probability specification is a special case of a more flexible kernel
specification. Specifically, we can choose a kernel function k(i, i′) such that k(i, i′) is
non-increasing in |i− i′|, and set the transition probability

γi,i′(A) ∝ k(i, i′)1i≤i′ .

A kernel k(i, i′) strictly decreasing in |i−i′| will introduce “stickiness” into the shrinkage
levels between a node and its parent (and thus also with its siblings and other relatives
to a lesser degree). It encourages the shrinkage level to change gradually among nearby
nodes in the partition tree, which is particularly useful when the smoothness of the
underlying distribution tends to be similar for places closed in the sample space.

Of course, typically one does not know a priori whether and to what extent such
sticky shrinkage is needed. Thus it is useful to allow the stickiness to be adaptively
determined. One natural way to achieving this additional adaptivity is to choose a
kernel that contains a tuning parameter for the stickiness, and use empirical Bayes to
choose its value. For example, consider the exponential kernel

k(i, i′) = e−β|i−i′|,

where β ≥ 0 is the stickiness parameter. Note that β = 0 corresponds to the uniform
transition probabilities described above, while a large positive value of β corresponds
to strong stickiness in shrinkage. Finally, the initial state probabilities can be set to
γ1(Ω) = γ2(Ω) = · · · = γI(Ω) = 1/I.

Prior choice of F . Following a common practice (Gelman et al., 2013, Sec. 5.3) in
Bayesian hierarchical modeling for Beta-binomial experiments, we specify prior on ν(A)
on the log scale. First, we determine a global support for log10 ν(A), i.e. the union of the
supports of all Fi. A convenient choice of the global support, aside from the complete
shrinkage state, is a finite interval [L,U ].

A simple and robust strategy for choosing the interval is to choose a wide enough
range that covers all reasonable shrinkage levels and yet not so wide as to induce ex-
cessive prior probability in extremely strong or weak shrinkage levels. We recommend
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setting [L,U ] = [−1, 4]. On one end, log10 ν(A) = −1 corresponds to a prior sample size
of 10−1 = 0.1, enforcing little shrinkage, while on the other log10 ν(A) = 4 corresponds
to shrinkage equivalent to about 10,000 prior “observations” for the local binomial ex-
periment, resulting in very strong shrinkage. We have experimented with treating L and
U as tuning parameters and choosing their values in a data dependent fashion using
empirical Bayes (described below), but that resulted in little improvement over the very
simple choice of [−1, 4] in all of the numerical scenarios we investigated.

Given the global support of log10 ν(A), [L,U ] ∪ {∞}, where ∞ is included for the
complete shrinkage state, we now divide this support into I non-overlapping intervals.
Specifically, we let the first (I−1) intervals evenly divide [L,U ] and the last being {∞}:

[a(1), a(2)), [a(2), a(3)), . . . , [a(I − 1), a(I)), {∞},

where a(i) = L+ (i− 1) · (U − L)/(I − 1). Then we let

Fi : log10 ν(A) ∼ Uniform(a(i), a(i+ 1)),

for i = 1, 2, . . . , I − 1 and FI being a point mass at ∞.

Choosing the tuning hyperparameters by empirical Bayes. Our default prior specifica-
tion is parsimonious in that it reduces the number of free parameters down to two—the
number of shrinkage states I and the stickiness parameter β for the transition kernel.
One can set them in a data-adaptive manner by empirical Bayes. Lemma 2 provides
the recipe for computing ξΩ(1,φ(I, β)), the overall marginal likelihood. Maximizing
this likelihood over a grid of allowed values of (I, β) produces the maximum marginal

likelihood estimate (MMLE) (Î , β̂), which one can then keep fixed in the inference.

2.7 Adaptive partitioning in multi-dimensional cases

So far the proposed model relies on a pre-determined, fixed bifurcating partition tree
A(∞) on Ω that generates the Borel σ-algebra. In multivariate cases, however, there are
a multitude of different dyadic partition sequences that all can generate the Borel σ-
algebra, and not all partition trees are equally effective for characterizing the underlying
distribution. In particular, an efficient partition tree should divide more frequently along
the dimensions in which the underlying distribution changes sharply than in those the
density is relatively flat. While the proper partitioning is not known a priori, one can
infer it under the Bayesian hierarchical framework by treating A(∞) as a parameter and
placing a hyperprior on it. Ideally, the hyperprior on A(∞) should be so chosen that it
is flexible enough to cover a variety of partition sequences, but it must also maintain
the analytical simplicity and computational efficiency of the resulting model. Otherwise
a critical advantage for PT-type models would be lost.

One class of hyperpriors on A(∞) that satisfy these criteria is a dyadic recursive
partitioning (RP) prior (Wong and Ma, 2010; Ma, 2013), which can be described in-
ductively. Starting from A = Ω, we consider all possible axis-aligned dyadic parti-
tions of A, and divide A by randomly drawing one of these possible ways of parti-
tioning from a uniform distribution. Specifically, suppose there are a total of N(A)
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dimensions that we can divide A along. We draw J(A) ∈ {1, 2, . . . , N(A)} such that
P (J(A) = j) = λj(A) = 1/N(A) for all j = 1, 2, . . . , N(A). Then if J(A) = j, we divide

A into two halves along the jth dimension to two children Aj
l and Aj

r. Applying this
random partitioning on each child node and proceed iteratively in this manner generates
the bifurcating partition sequence A(∞). With this hyperprior on A(∞), we arrive at
the following hierarchical model:

A(∞) ∼ RP, C |φ,A(∞) ∼ MT(γ), ν(A) |φ, C,A(∞) ∼
I∑

i=1

Fi · 1C(A)=i,

θ(A) |φ,ν, C,A(∞) ∼ Beta(θ0(A)ν(A), (1− θ0(A))ν(A)),

for all A ∈ A(∞). One can show that the four properties enjoyed by the Markov-APT
remain true for this new model. Moreover, Bayesian inference for this model can still pro-
ceed in a similar fashion as before—through direct posterior sampling from three pieces
in the following order π(C,A(∞) |φ,x), π(ν |φ, C,A(∞),x) and π(θ |φ,ν, C,A(∞),x).
The last two pieces are essentially the same as before with a fixed A(∞). The first
piece, the joint posterior of (C,A(∞)), is an inductive generative procedure that can be
directly sampled from using forward–backward recursion. Details are given in Supple-
mentary Material S3 (Ma, 2016). We apply this model in the flow cytometry example.

3 Performance evaluation in density estimation

We next evaluate the performance of the Markov-APT in density estimation under four
schematic simulation scenarios (Figure 4). Each scenario corresponds to an underlying
density with a particular type of structure commonly encountered in real applications.
In particular, in Scenarios 1 and 2 the underlying densities contain structures of varying
scales (both spiky and smooth). In Scenario 3 the density contains only spiky structures
and in Scenario 4 only smooth structures. In each scenario, the underlying density is
supported on the interval [0,1]. Our proposed model does not require the support to be
a bounded interval. This choice is to simplify the numerical evaluation of the L1 loss as
a performance measure. This causes no loss of generality because any density on R can
be transformed onto [0,1] after applying, say, a CDF transformation. For each scenario,
we simulate data sets of six different sample sizes—125, 250, 500, 750, 1,000, and 1,250.

We compare the performance of Markov-APT to that of three other models—the
PT, the OPT, and the DPM of normals (Escobar and West, 1995). For the PT, we
use the standard specification with θ(A) ∼ Beta(ck2, ck2) for all A ∈ Ak, with the
global smoothing parameter c chosen by empirical Bayes through MMLE. For the OPT,
θ(A) ∼ Beta(0.5, 0.5) for all A ∈ A(∞) as recommended in Wong and Ma (2010),
and set the stopping probability on each A to a common value ρ0, chosen through
empirical Bayes (MMLE). We fit the DPM in R using the library DPpackage (Jara,
2007; Jara et al., 2011). Details on the specification of the DPM are in Supplementary
Material S4 (Ma, 2016).

For each method, we use the PPD, denoted by f̂ , as an estimator. To measure
performance, we adopt the L1 loss, i.e. the L1 distance between f̂ and the true density
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Figure 4: True densities of the four simulation scenarios.

f0, ||f̂ − f0||1 =
∫
|f̂ − f0|dμ. For each simulation scenario and sample size, we generate

200 data sets, with f̂ (k) being the estimate for the kth data set. We numerically calculate
||f̂ (k) − f0||1 using Riemann integral for all four methods. To make a comparison, for
each of the competitors—PT, OPT, and DPM—we compute the percentage difference
between its L1 loss and that of the Markov-APT:

||f̂ (k)
Competitor − f0||1 − ||f̂ (k)

Markov-APT − f0||1
||f̂ (k)

Markov-APT − f0||1
× 100%.

A positive value indicates outperformance of the Markov-APT over the competitor, with
larger values indicating more gain of the Markov-APT. Computing this metric for each
simulation allows us to evaluate both the average performance gain and the variability
in the improvement across repeated experiments. In addition, we also estimate the
average L1 loss, i.e. the L1 risk, RL1(f0, f̂) = Ef0 ||f̂ − f0||1 for each method under each

simulation setting using the Monte Carlo average R̂L1(f0, f̂) =
1

200

∑200
k=1 ||f̂ (k) − f0||1.
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Figure 5: Estimated L1 risk by sample size for the four simulation scenarios.

In all simulation settings, we adopt the prior specification recommended in Sec-
tion 2.6 with an exponential transition kernel, and use empirical Bayes to set the tuning
parameters (I, β). The range of tuning parameter values over which we maximize the
marginal likelihood is {2, 3, . . . , 11} × [0, 2]. The OPT also involves a tuning parameter
ρ0, the prior “stopping” probability (Wong and Ma, 2010), which we set by empirical
Bayes using MMLE over [0, 1]. We implement Markov-APT, PT, and OPT up to the
12th level in the partition tree. Deeper partitioning results in little numerical difference.

Figure 5 presents the L1 risks for all methods and scenarios versus sample size. Fig-
ure 6 presents histograms of the percentage increase in L1 loss for the three competitor
methods relative to Markov-APT for each simulation setting. For easier comparison,
we overlay the histograms for three different sample sizes—125 (small), 500 (medium),
and 1,000 (large)—to show how the relative performance changes for different sample
sizes. (We only show the three sample sizes in this figure rather than all six sample
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Figure 6: Histograms of percentage increase (or lag) in L1 risk in 500 simulations for
three methods compared to Markov-APT over three sample sizes—125, 500, and 1,000.

sizes because overlaying six histograms makes the plot illegible while using the three
sample sizes is sufficient to convey the main finding.) Finally, to help understand why



798 Adaptive Shrinkage in Pólya Tree Type Models

each method performs well or poorly in each scenario, in Figure 7 we plot a typical
PPD for each model under each scenario for a sample size that well differentiates the
performance of the methods. We discuss the results for each scenario below.

• Scenario 1: Non-overlapping structures of different scales. The true distribution is

0.1U(0, 1) + 0.3U(0.25, 0.5) + 0.4Beta(0.25,0.5)(2, 2) + 0.2Beta(6000, 4000).

See Figure 4(a) for the true density. This is the scenario given earlier in Example 1. The
underlying density has two bumps of different scales—one large and the other small—
that are not overlapping with each other. This is a favorable scenario for kernel mixture
methods such as the DPM. By allowing the local kernel to have varying variance, the
DPM is also able to adapt to the different scales of the two bumps. Thus one would
expect the DPM to perform well.

From Figure 5(a) and Figure 6(a), we see that the Markov-APT achieves better
performance than the DPM at sample size 125, and comparable performance at larger
sample sizes. The performance gain of Markov-APT over the other PT-type models—
OPT and PT—is substantial at all sample sizes. Figure 7(a) shows that the OPT sub-
stantially oversmooths the large-scale feature while capturing the small-scale feature
well. The reason is that OPT only allows two extremes of shrinkage—no shrinkage or
complete shrinkage. While no shrinkage state for the small-scale feature in this example,
for the large-scale feature, the complete shrinkage, which is the more appropriate of the
two states, results in considerable oversmoothing. The PT oversmooths the small-scale
feature while undersmooths at high-resolutions within the large-scale feature.

• Scenario 2: Overlapping structures of different scales. The true distribution is

0.1U(0, 1) + 0.3U(0.25, 0.5) + 0.4Beta(0.25,0.5)(2, 2) + 0.2Beta(4000, 6000).

See Figure 4(b) for the true density. This case is similar to the previous except that now
the spiky local structure lies inside the smooth large-scale structure. From Figure 5(b),
we see that the performance of the Markov-APT is essentially unchanged from the case
where the structures are non-overlapping. In contrast, Figure 5(b) and Figure 6(b) show
that the other methods all perform quite differently in this scenario. In particular, there
is a substantial decay in performance for the DPM at smaller sample sizes compared to
the case with non-overlapping structures, whereas the OPT and PT perform better for
the current scenario. The dramatic change in the performance of PT compared to that
in Scenario 2 illustrates the importance of adaptivity in achieving robust inference.

The sudden improvement in PT’s performance is readily explained in Figure 7(b).
The estimation error from PT in this and the previous scenario comes from two sources—
the under-smoothing (i.e. under-shrinkage) in the large-scale smooth structure and over-
smoothing (i.e. over-shrinkage) in the local spiky structure. By moving the spiky struc-
ture into the smooth structure, the error that comes from the under-smoothing in the
large-scale structure is reduced because the smooth portion of the large-scale structure
now accounts for a smaller proportion of the total probability mass, while the error
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Figure 7: Typical PPDs (solid) of four methods and true density (dashed) for the four
simulation scenarios. Sample sizes and tuning parameters for Markov-APT chosen by
MMLE are given.

that comes from over-smoothing the local structure is also reduced because now the
local structure corresponds to more probability mass and hence more data. Note also
in Figure 5(b) and Figure 6(b) that the relative performance gain of Markov-APT over
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PT increases with the sample size.

• Scenario 3: Spiky local structures. In this case, the true distribution is

0.2U(0, 1) + 0.2U(0.2, 0.205) + 0.2U(0.4, 0.405) + 0.2U(0.6, 0.605) + 0.2U(0.8, 0.805).

See Figure 4(c) for the true density. This represents the case when the underlying
distribution has a few spiky structures in the midst of a flat background. The key is to
effectively determine the size (or height) of those spikes and pin down their boundaries.

As shown in Figure 5(c) and Figure 6(c), the Markov-APT and the OPT perform
comparably and substantially better than the DPM, especially for medium and large
sample sizes. It may first appear surprising that the PT, being a multi-resolution ap-
proach, performs the worst among all in capturing spiky structures, as multi-scale meth-
ods are known to be effective in characterizing such features. But this can be expected
because the PT is unable to amply capture the height of the spikes due to over shrink-
age at high-resolutions. In contrast, the amount of shrinkage under the Markov-APT
is adaptive and thus automatically adjusts to low levels in and around the spikes. The
OPT, which only allows no shrinkage or complete shrinkage, also performs very well.
Because the underlying density consists of step functions, the only appropriate shrink-
age levels are indeed no shrinkage and complete shrinkage. Therefore the OPT is in a
sense an “oracle” in this case and one should expect it to perform the best. It is reas-
suring that the Markov-APT, while allowing more flexible shrinkage, did not lose much
efficiency relative to the “oracle”.

From the PPDs in Figure 7(c) we see that the DPM tends to overestimate the
height of the spikes—this is likely because in order to characterize the sharp boundaries
the DPM needs to “squeeze” the mixture component to have very thin tails, and thus
making the mode of the mixture component much taller than the truth.

• Scenario 4: Globally smooth structure. The true distribution is Beta(10, 20).

See Figure 4(d) for the true density, which is an approximately Gaussian, smooth dis-
tribution. DPM with a Gaussian kernel is essentially the true model for this scenario,
and unsurprisingly performs the best. Figure 5(d) and Figure 6(d) show that for all
sample sizes, the L1 loss is on average about 50% smaller under the DPM vs that under
the Markov-APT. Among the multi-resolution methods, the Markov-APT substantially
outperforms the OPT and the PT, and the performance gain widens for larger sample
sizes.

4 Case study: density estimation in flow cytometry

In a flow cytometry experiment, a large number (typically thousands to millions) of
cells are measured in terms of p parameters or markers. Each cell is thus an observation
in R

p and the density of the underlying cell distribution can be used for automatically
classifying the cells into various subtypes (Malek et al., 2015). Traditionally such clas-
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Figure 8: The PPD of Markov-APT (left column) and the pointwise central 95% cred-
ible band (middle and right columns), estimated from 1,000 posterior samples, for the
CD4/CD8 two-marker density for two sample sizes 455,472 (top) and 5,000 (bottom).

sification, so-called “gating”, is done manually—human experts look at the marginal
distributions of the data set over (typically pairs of) signature markers, and determine
the grouping and clustering of the cells based on expert knowledge. This can be very
time-consuming especially in cases with relatively large numbers of parameters. More
recently, automatic gating methods based on estimated marginal density functions of
the cell distribution have been proposed (Malek et al., 2015). Fast and accurate auto-
matic gating under this approach hinges on the availability of high-performance density
estimators that enjoy both statistical and computational efficiency in handling large
numbers of observations. The density of the cells is often multi-modal and contains
structures of different scales.

We apply the Markov-APT with adaptive partitioning as described in Section 2.7
(with maximum level 11) to a flow cytometry data set, consisting of n = 455,472
cells each with p = 14 marker measurements. The computational efficiency of our
method allows us to very quickly estimate all 14 one-marker, 91 two-marker, and
364 three-marker marginal densities on a single desktop CPU core, each in a mat-
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# post. samples n = 1,000 n = 10,000 n = 100,000 n = 455,472
100 0.16(0.02) 0.24(0.02) 0.42(0.03) 0.82(0.04)

1D 500 0.7(0.1) 1.1(0.1) 1.6(0.1) 2.3(0.2)
1,000 1.4(0.2) 2.1(0.2) 3.1(0.3) 4.2(0.5)
100 0.5(0.1) 1.0(0.2) 2.0(0.2) 5.0(0.2)

2D 500 1.9(0.2) 3.2(0.5) 5.4(0.8) 9.3(0.9)
1,000 3.5(0.4) 6.1(0.8) 9.8(1.4) 14.9(1.7)
100 1.6(0.3) 3.1(0.6) 7.7(0.7) 22.8(0.8)

3D 500 3.4(0.5) 6.2(1.2) 12.1(1.5) 28.0(1.7)
1,000 5.7(0.9) 10(1.9) 17.3(2.6) 34.6(2.8)

Table 1: Average computing time in seconds (standard error in parentheses) on a single
3.6 GHz Intel R© CoreTM-i7 desktop core to draw posterior samples over four sample
sizes using Markov-APT for 1D, 2D, and 3D marginal densities in the flow cytometry
data.

ter of seconds (Table 1). In Figure 8(a) we plot as an example the PPD for a two-
marker (CD4 and CD8) density, along with the pointwise 2.5% and 97.5% quantiles
of 1,000 posterior draws. The large sample size allows us to pin down precisely the
underlying density except in the tails, where most of the variability in the posterior
variability is and where often is the biologically interesting region in identifying rare
cell types. To further illustrate the nature of the posterior estimate from Markov-
APT, we also present the corresponding PPD and quantiles for a randomly drawn
subsample of 5,000 cells in Figure 8(b) where the posterior uncertainty is more appar-
ent.

To investigate the computational properties of our method, we repeat our analysis
at a range of different sample sizes, obtained through down-sampling the original data,
along with different numbers of posterior draws. Table 1 presents the average computing
time along with the standard error for all one-, two-, and three-marker densities. The
computation is done on a single Intel R© CoreTM-i7 3820 3.6 GHz CPU core without
parallelization.

5 Concluding remarks

We have showed that inference under PT-type models can be understood from a shrink-
age perspective, and have introduced a hierarchical Bayesian approach to incorporating
multi-scale adaptive shrinkage into such models. This development maintains the an-
alytic tractability and computational efficiency of PT-type models while substantially
improving statistical performance. Through incorporating a combination of numerical
integration and conditional sampling, inference under the model avoids MCMC sam-
pling. We believe that due to their computational efficiency and principled probabilistic
nature, PT-type methods have tremendous potential for applications where flexible non-
parametric modeling is desired, but computational speed is critical and/or sample sizes
are huge. Additional effort is worthwhile to study the theory and to further improve the
statistical and computational performance of this class of methods.
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Supplementary Material for “Adaptive Shrinkage in Pólya Tree Type Models” (DOI:
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