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The Scaled Beta2 Distribution as a Robust
Prior for Scales

Maŕıa-Eglée Pérez∗, Luis Raúl Pericchi†, and Isabel Cristina Ramı́rez‡

Abstract. We put forward the Scaled Beta2 (SBeta2) as a flexible and tractable
family for modeling scales in both hierarchical and non-hierarchical settings. Var-
ious sensible alternatives to the overuse of vague Inverted Gamma priors have
been proposed, mainly for hierarchical models. Several of these alternatives are
particular cases of the SBeta2 or can be well approximated by it. This family
of distributions can be obtained in closed form as a Gamma scale mixture of
Gamma distributions, as the Student distribution can be obtained as a Gamma
scale mixture of Normal variables. Members of the SBeta2 family arise as intrin-
sic priors and as divergence based priors in diverse situations, hierarchical and
non-hierarchical.

The SBeta2 family unifies and generalizes different proposals in the Bayesian
literature, and has numerous theoretical and practical advantages: it is flexible,
its members can be lighter, as heavy or heavier tailed as the half-Cauchy, and
different behaviors at the origin can be modeled. It has the reciprocality property,
i.e if the variance parameter is in the family the precision also is. It is easy to
simulate from, and can be embedded in a Gibbs sampling scheme. Short of not
being conjugate, it is also amazingly tractable: when coupled with a conditional
Cauchy prior for locations, the marginal prior for locations can be found explicitly
as proportional to known transcendental functions, and for integer values of the
hyperparameters an analytical closed form exists. Furthermore, for specific choices
of the hyperparameters, the marginal is found to be an explicit “horseshoe prior”,
which are known to have excellent theoretical and practical properties. To our
knowledge this is the first closed form horseshoe prior obtained. We also show
that for certain values of the hyperparameters the mixture of a Normal and a
Scaled Beta2 distribution also gives a closed form marginal.

Examples include robust normal and binomial hierarchical modeling and meta-
analysis, with real and simulated data.

Keywords: Scaled Beta2 distribution, prior for scale parameters, horseshoe prior,
intrinsic priors, divergence priors, reciprocality.

1 Introduction

The focus of this paper is to propose the Scaled Beta2 (SBeta2) family of distributions,

SBeta2(ψ|p, q, b) = Γ(p+ q)

Γ(p)Γ(q) · b ·
(ψb )

(p−1)

((ψb ) + 1)(p+q)
, for ψ > 0, b > 0, p > 0, q > 0 (1)

∗University of Puerto Rico, Rı́o Piedras Campus, maria.perez34@upr.edu
†University of Puerto Rico, Rı́o Piedras Campus, luis.pericchi@upr.edu
‡Universidad Nacional de Colombia Sede Medelĺın, iscramirezgu@unal.edu.co
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as a convenient family of prior distributions for scale parameters, both for informative
and quasi-non-informative scenarios, and for hierarchical and non-hierarchical models.
The intention is to provide an alternative to the use of the Inverted Gamma distribution,
and to show that the SBeta2 has a natural motivation, is flexible and tractable.

The SBeta2 is a comprehensive family that encompasses and expands several pre-
vious proposals. Two of the most noteworthy, in the context of random effects models,
are Gelman (2006) and Berger (2006). Gelman (2006) proposes the half-Cauchy and the
Uniform distributions for the between groups standard deviations. Berger (2006) pro-

poses using 1/
√
σ2 as prior for the between groups variance. We claim that the SBeta2

contains these proposals, exactly or approximately. Take the case of the half-Cauchy
for the standard deviation, where an application of the change of variables formula
leads to a SBeta2(1/2, 1/2, b) for the variance. On the other hand, the SBeta2(1/2, q, b),

for small q, say 0 < q ≤ 1/2 and large b is a useful approximation to 1/
√
σ2. Other

proposals are contained in Pericchi (2010) and Polson and Scott (2012), both putting
forward a SBeta2 but without explicit mention of scale. However, a more flexible family
is achieved including an adjustable scale, without which, for example, the distribution
may not approximate sufficiently well the Uniform distribution.

Certainly, other alternative families to the Gamma/Inverted-Gamma have been pro-
posed, for instance Griffin and Brown (2010) and Frühwirth-Schnatter and Wagner
(2010), among others. Nevertheless, we argue that the SBeta2 is a flexible family that
is able to model the advantages of the previous proposals, like heavy tails or bounded-
ness/unboundedness at the origin, etc. Besides it has additional advantages that will be
discussed in the sequel. It is no surprise that in Bayesian Statistics modeling and testing,
scattered particular cases of the SBeta2 or of the Beta2 distribution have appeared (like
Gelman’s half-Cauchy). These include: Bradlow et al. (2002), Scott and Berger (2006),
Liang et al. (2008), Maruyama and George (2011), Wang and Sun (2013) and Sparks
et al. (2013). Noteworthy is the appearance of particular members of the SBeta2 family
in Pericchi (2005) as intrinsic priors for testing the scale of an Exponential Law and in
Giron et al. (2006) as intrinsic priors for scales in the Linear Model. In Supplementary
Appendix 3 (Pérez et al., 2016) we show that in a normal model with known mean, the
SBeta2 distribution is the intrinsic prior of the scale parameter.

We justify our proposal of using the SBeta2 family for modeling scales based on a
combination of theoretical and practical considerations.

First of all, it has a natural motivation as a Gamma scaled mixture of a Gamma dis-
tribution as shown in Lemma 1. It has the property of reciprocality, i.e., if p(ψ) belongs
to the SBeta2 family, so does p(1/ψ), which is not a property of the Gamma/Inverted-
Gamma family (the half-Cauchy distribution proposed by Gelman to model standard
deviations also has this attractive property, and it is reassuring that this is a particular
case of our proposal as mentioned before). It is flexible enough for modeling a variety of
behaviors at the origin and at the tail, and for specific hyperparameters boundedness
at the origin and heavy right tail is obtained, as heavy or even heavier than the Cauchy
distribution.

Secondly, it is convenient practically: it can be simulated from in various ways (as a
Gamma scaled mixture of Gammas or as the scaled odds of a Beta distribution), and
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thus it can be easily embedded in a Gibbs sampler scheme. Also the SBeta2 family
is amenable for elicitation as one of its parameter controls the behavior at the origin,
another the right tail behavior and the scale can be assessed in a variety of ways, as
will be seen later in this work.

Thirdly a variety of analytical results spring from the SBeta2 family, that we sum-
marize here:

a) With conditional Normal priors for location and SBeta2 for the precision, the
marginal prior for location can be found in closed form for specific values of
hyperparameters. It is bounded at zero and heavy tailed.

b) When a SBeta2 prior for the scale is coupled with a conditional Cauchy prior for
locations, the marginal prior for locations can be found explicitly as proportional
to known transcendental functions, and for integer values of the hyperparameters
they are found in analytical closed forms. Furthermore, for specific choices of the
hyperparameters, the marginal is found to be an explicit horseshoe prior (Carvalho
et al., 2010) with a pole at the origin and heavy tail, leading to a sort of nearly
optimal choice as a prior for sparse locations. This seems to be the first explicit
horseshoe prior in the literature.

c) Again for a conditional Cauchy prior for location, if now the square of the scale is
modeled as a SBeta2, the marginal is no longer a horseshoe prior, but a general
closed form result is obtained. This strategy leads also to a very useful prior
distribution, called the Student-SBeta2 distribution (Fúquene et al., 2014).

It is important to emphasize that analytical results in cases (b) and (c), are obtained
for heavy tailed distributions for locations and in (a) for light tailed distributions.

This paper is organized as follows: in Section 2 we motivate the SBeta2 family
showing that the SBeta2 distribution can be obtained as a scale mixture of Gamma
distributions, we present some of its properties and we discuss how to use the SBeta2
distribution as a prior for variances and precisions. Section 3 deals with closed forms
for mixtures of SBeta2 and Cauchy, Student and Normal distributions. In Section 4 we
give examples to illustrate the advantages of the use of SBeta2 distributions as priors
for scale parameters. Finally, we summarize some conclusions about those advantages.

2 The SBeta2 distribution

2.1 Motivation

A simple and natural motivation of the SBeta2 springs from the robustification of hier-
archical models. As a simple example consider a balanced analysis of variance (ANOVA)
model with k groups, n observations by group and possibly different variances:

Xij = μi + εij , εij ∼ N(0, hi) (2)

where μi and hi refer to the mean and precision of group i, respectively, and N stands
for the Normal distribution.
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The usual second level in the hierarchy reads as

μi ∼ N(θ, h0), (3)

hi ∼ Gamma(p, b). (4)

This model is known to be “non-robust” in the sense that the amount of shrinkage may
be too heavy for an outlying observation. To reduce the excessive shrinkage, following
a suggestion that goes back to De Finetti (1961), a level of hierarchy is added to have
a scale mixture of Normals, replacing (3) by

μi ∼ N(θ, h0ρ1i), ρ1i ∼ Gamma(ν/2, ν/2). (5)

This effectively replaces the Normal by a Student distribution since

Studentν(μi|θ, 1/h0) =

∫
Normal(μi|θ, h0ρ1i) ·Gamma(ρ1i|ν2, ν/2)dρ1i.

Similarly, replacing (4) as

hi ∼ Gamma(p, b/ρ2i), ρ2i ∼ Gamma(q, 1),

yields the SBeta2 distribution as prior for the precisions hi. This, we prove in the sequel,
effectively replaces the Gamma by a scaled version of the Beta2 distribution, the Scaled
Beta2 distribution given in (1). This result, formalized in Lemma 1 below, describes an
effective way to generate SBeta2 random variables.

Lemma 1. The SBeta2 density is obtained as a Gamma mixture of Gamma densities
or Inverted Gamma densities as follows:

SBeta2(ψ|p, q, b) =
∫ ∞

0

Gamma(ψ|p, b
ρ
)Gamma(ρ|q, 1)dρ.

Similarly,

SBeta2(σ2|q, p, 1/b) =
∫

Inverse-Gamma(σ2|p, τ2) ·Gamma(τ2|q, b−1)dτ2.

Proof. See Supplementary Appendix 1.

In Section 4 we will present examples of the use of the SBeta2 in practical situations,
where it will be seen that the use of this distribution as prior for scale parameters
promotes robustness in hierarchical models and produces sensible analyses in diverse
settings.

2.2 Properties of the SBeta2

We now explore the properties of SBeta2 distribution that can be helpful for assessment
of the hyperparameters.
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For the SBeta2 distribution defined in (1),

E[ψ] =
p

q − 1
b when q > 1

V ar[ψ] =
p(p+ q − 1)

(q − 1)2(q − 2)
b2 when q > 2

It is also easy to see that if ψ ∼ SBeta2(p, q, b), then φ = 1
ψ ∼ SBeta2(q, p, 1

b ) (the

reciprocality property).

As we already discussed, the SBeta2 can be generated using Lemma 1, as a Gamma
scale mixture of Gamma distributions. Another easy way to generate ψ ∼ SBeta2(p, q, b)
random variables is as ψ = θ

(1−θ)b, where θ follows a Beta(p, q) distribution, that is, as

a scaled odds of Beta random variables.

Consider a distribution in a scale or location-scale family with unknown scale pa-
rameter σ. We suggest to specify the prior as σ2 ∼ SBeta2(p, q, b), or equivalently for
the reciprocal (precision), h = 1

σ2 ∼ SBeta2(q, p, 1
b ).

For selecting values for the hyperparameters p, q and b, the following properties can
be useful.

1. Behavior at zero:

fσ2(0) =

⎧⎪⎨
⎪⎩
∞ p < 1
q
b p = 1

0 p > 1

, fh(0) =

⎧⎪⎨
⎪⎩
∞ q < 1

pb q = 1

0 q > 1

2. When q ≤ 1, E(σ2) = ∞ Similarly, when p ≤ 1, E(h) = ∞.

3. Location of the mode:

mode(σ2) =

{
p−1
q+1 b p ≥ 1

0 Otherwise

mode(h) =

{
q−1
p+1

1
b q ≥ 1

0 Otherwise

4. When p = q, the median of the SBeta2 distribution is the scale parameter b. For
p = 1, the median turns out to be b · (21/q − 1).

5. If σ is half-Cauchy with scale b, then a direct application of the change of variable
formula shows that σ2 ∼ SBeta2(1/2, 1/2, b2).

2.3 Robustness of the SBeta2

One way to measure the thickness of the tails is to measure the index ρ of a regularly
varying density (Andrade and O’Hagan, 2006).
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Definition. The right-hand tail of a density f(y) is regularly varying with index ρ if

f(λy)

f(y)
→ λρ, as y → ∞ for all λ > 0.

Note that a Student-t distribution with ν degrees of freedom has index ρ = −(ν + 1).
Computation shows that the SBeta2(p, q, b) has ρ = −(q + 1), so the tail behavior is
totally defined by q. Thus for q = 1 we have a tail behavior of the same index as
a Cauchy distribution. More generally the tail index of a SBeta2(p, q, b) is that of a
Student-t with q degrees of freedom. On the other hand the behavior at the origin is
commanded by the value of the parameter p. For p > 1 the density function is zero at
the origin, and for p < 1 it is infinity at the origin. For p = 1 the density function is
bounded at the origin.

2.4 Some thoughts about elicitation

In general, we want to have heavy tails for a robust inference, but we don’t want to
give high weight to σ2 = 0. So, our suggestion for selecting the hyperparameters p,
q and b is taking 1/2 ≤ p ≤ 1 and 0 < q ≤ 1. Note however that other values of
(p, q) may be necessary, like q > 1, based on stability considerations in complex Markov
Chain Monte Carlo (MCMC) modeling (Pericchi et al., 2011). One way to assess b is
to fix it empirically as the median (or somehow higher than the median) or based on
subject matter knowledge. Another possibility is to assess probability statements like
P (ψ > a) = c for ψ ∼ SBeta2(p, q, b). This approach can be very useful since the
SBeta2 distribution can be regarded as the distribution of the scaled odds of a Beta
random variable. We then have P (ψ > a) = P (θ > a

(a+b) ) where θ ∼ Beta(p, q), which

can be easily solved using statistical software. Note that the p = q = 1 and p = q = 1
2

cases have a special standing regarding objective priors, as the first corresponds to a
Bayes–Laplace Uniform prior for θ and the second corresponds to the Jeffreys prior for
θ. There are several other possibilities for elicitation, for example by empirical Bayes
methods. We will return to the assessment in the examples.

3 Closed form results for mixtures with SBeta2
distribution

In this section, we show that the SBeta2 is amazingly tractable for Bayesian analysis,
and produces some interesting heavy tail distributions for locations. Here the SBeta2
will be used as a prior distribution of the precision of a Normal and the scale and
square scale of a Cauchy distribution (some results in this section were obtained using
Wolfram Alpha LLC., 2014).

3.1 Normal-Scaled Beta2 distribution prior

Let θ ∼ N(0, τ), i.e.

f(θ|τ) =
√
τ√
2π

exp

(
−1

2
τθ2

)
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where the precision τ follows a SBeta2(p, q, b) distribution. We use the representation of
the SBeta2 distribution as Gamma scale mixtures of Gamma distributions in Lemma 1
for calculating the marginal distribution of θ by changing the order of integration

π(θ|p, q, b) =

∫ ∞

0

∫ ∞

0

f(θ|τ) ·Gamma(τ |p, b/ρ)Gamma(ρ|q, 1)dτdρ,

The integrand with respect to τ simplifies to:∫ ∞

0

τp−1/2 exp

(
−τ

(
θ2

2
+

ρ

b

))
dτ =

Γ(p+ 1/2)(
θ2

2 + ρ
b

)(p+1/2)
.

and the integral becomes,

π(θ|p, q, b) = Γ(p+ 0.5)

Γ(p)Γ(q)
√
2πbp

∫ ∞

0

exp(−ρ) · ρp+q−1

(θ2/2 + ρ/b)(p+0.5)
dρ.

For the important particular case p = q = 1, the integral reduces to

π(θ|1, 1, b) = Γ(1.5)√
2π · b

∫ ∞

0

ρ

exp(ρ) · (θ2/2 + ρ/b)1.5
dρ

This last integral can be explicitly calculated, and the result is

π(θ|1, 1, b) = 1

2

√
b

2

[
2
√
πe

bθ2

2 (1 + bθ2)(1− Φ(
√
b|θ|))−

√
2b|θ|

]

We will call this the Normal-Scaled Beta2 distribution. It is a scale family with scale
1√
b
. The density is shown in Figure 1 for different values of b.

Figure 1: Normal-Scaled Beta2 density for different values of b (p = q = 1).
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It can be shown that tails of this distribution go to zero as O(θ−3). This implies
that this distribution has a finite mean, but does not have a finite second moment. Its
cumulative distribution function (CDF) can be calculated also in closed form,

Π(θ|1, 1, b) = 0.5 +

√
πb

2
θe

bθ2

2 (1− Φ(
√
bθ)), θ > 0

For θ < 0, symmetry can be used for finding the CDF.

3.2 Cauchy-Scaled Beta2 distribution: an explicit horseshoe
distribution

Now, instead of a normal, let θ be a Cauchy random variable with location parameter
0 and scale parameter τ , and assume τ ∼ SBeta2(p, q, b). Then, the joint distribution
of θ and τ is given by

π(θ, τ) =
1

πτ
(
1 +

(
θ
τ

)2) 1

Beta(p, q)

1

b

(
τ
b

)p−1(
τ
b + 1

)p+q

=
(b)q

πBeta(p, q)

τp

(τ2 + θ2)(b+ τ)p+q

The marginal distribution of θ can be calculated as

π(θ) =

∫ ∞

0

π(θ, τ)dτ

Note that when p and q are integers, the integrand is a rational function. For example,
if p = q = 1,

π(θ) =

∫ ∞

0

bτ

π(b+ τ)2 (θ2 + τ2)
dτ

=
b

π (b2 + θ2)
2

[
−
(
b2 + θ2 − πb|θ|

)
+ (b2 − θ2) (log(b)− log(|θ|))

]
Note that this density function depends on θ only through |θ|, and so it is clearly
symmetric around 0.

In this case, the cumulative distribution function also has a closed form, given by

Π(θ) =
2πθ2 − πb2 − θb log

[(
θ
b

)2]
2π(θ2 + b2)

, θ > 0

For θ < 0, symmetry can be used for finding the CDF.

The density functions of Cauchy-Scaled Beta2 variables for p = q = 1 and different
values of b are shown in Figure 2. Larger values of b are associated to lower areas around
the origin. This distribution has a pole at θ = 0 and flat tails, which is an example of
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Figure 2: Cauchy-Scaled Beta2 distribution for different values of b (p = q = 1).

a horseshoe prior (Carvalho et al., 2010). To the best of our knowledge, this is the first
horseshoe prior in explicit algebraic form.

Figure 3 compares densities for quartile matching (|q1| = q3 = 1) Normal, Cauchy,
Normal-SBeta2(p = q = 1) and Cauchy-Beta2 (p = q = 1) distributions. The heaviest
tails correspond to the Cauchy-SBeta2(1,1,1), while the Normal-SBeta2 tails are lighter
than those of the Cauchy.

Figure 3: Comparison of quartile matching (|q1| = q3 = 1) Normal, Cauchy, Normal-
SBeta2 (p = q = 1) and Cauchy-Beta2 (p = q = 1) distributions. The right plot shows
the behavior of the tails.

Other choices of the hyperparameters may lead to a closed form marginal but not
necessarily a horseshoe prior. For instance, for p = 2 and q = 1, we obtain
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π(θ) =

∫ ∞

0

b

πBeta(2, 1)

τ2

(τ2 + θ2)(b+ τ)3
dτ

=
b
(
(b2 − 3θ2)(b2 + θ2 − πb|θ|) + (θ4 − 3b2θ2) log

((
θ
b

)2))
π(b2 + θ2)3

.

This density does not have a pole at θ = 0. The corresponding CDF is

Π(θ) =
2πθ4 + 2bθ3 + πb2θ2 + 2b3θ + πb4 − bθ3 log

((
θ
b

)4)
2π (θ2 + b2)

2 , θ > 0

Again, symmetry can be used for calculating the CDF value when θ < 0.

3.3 Assigning a SBeta2 prior to the square of the scale: a general
result

As before, suppose that Cauchy or, more generally, Student-t distributions are assumed
for locations. What if instead of the scale, the square of the scale is assumed to be
SBeta2? For example,

π(θ|μ, τ, b) = 1

π
√
bτ

· [1 + (θ − μ)2

bτ2
]−1,

and
τ2 ∼ SBeta2(τ2|1, 1, 1/b).

In this case, the marginal for θ is:

π(θ) =
1

2
√
b · (1 + |θ−μ|√

b
)2

This is an interesting distribution, close to a Cauchy. It does not have a pole at zero,
so it is not a horseshoe prior.

In Fúquene et al. (2014) this distribution, called Student-t-Beta2, is studied and
applied in detail. There a general result for the marginal of the location for any p and q
is obtained in terms of the Hypergeometric Function, as summarized in Supplementary
Appendix 2.

4 Examples

Here we analyze three datasets found in literature and some simulated data. The first
dataset is the “8-schools example” presented in Gelman (2006), where it is shown that
the SBeta2 behaves sensibly in the sense that it does not promote very small variances
and large shrinkages. In the second example, we use data from Normand and Shahian
(2007) to illustrate that the SBeta2 promotes robustness in the hierarchical model. In the
third example we revisit the famous baseball dataset in Efron and Morris (1972) and we
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robustly predict the batting averages of 18 baseball players, protecting the exceptional
players from too much shrinkage to the mean (the so called “Clemente Problem”, Efron,
2010) and at the same time improving the mean squared error (MSE). Finally, we use
simulated data to compare the SBeta2 with the half-Cauchy proposed by Gelman for
the schools example and find that the SBeta2(1, 1, b) seems preferable in this settings.

4.1 A normal hierarchical model

In this section we will consider the normal hierarchical model described by Gelman
(2006) in the so called “8-schools example”. We wish to compare the changes in the
posterior distribution of the precision when using either the Inverse-Gamma or the
SBeta2 as prior distributions for the random effects variance.

Gelman works with a simple two-level normal model of data yij with group-level
effects αj :

yij ∼ N(μ+ αj , σ
2
y), i = 1, · · · , nj , j = 1, · · · , J

αj ∼ N(0, σ2
α), j = 1, · · · , J (6)

where the parameters α1, · · · , α8 represent the relative effects of Scholastic Aptitude
Test coaching programs in eight different schools, and σα stands for the between-school
standard deviations of these effects. The effects are measured in points within a range
between 200 and 800. The approximate average and standard deviation are 500 and 100
respectively. The model has three hyperparameters μ, σy, and σα. Here we will only
study the effect of the prior distribution for the variance of the random effects, σ2

α.

Gelman proposes a half-Cauchy(25) as prior distribution for σα, which corresponds
to a SBeta2(0.5, 0.5, 625) prior distribution for σ2

α. Therefore, for Bayesian estimation,
the model is fitted with three different prior distributions for σ2

α: SBeta2(1, 1, 625),
SBeta2(0.5, 0.5, 625) and Inverse-Gamma(0.001, 0.001).

Results in Figure 4 are based on 6000 iterations from a model fit using OpenBUGS
(Thomas et al., 2006), and correspond to the posterior distribution for σα obtained with
each of these three prior distributions .The left and middle histograms show the posterior
distributions for σα using priors SBeta2(0.5,0.5,625) and SBeta2(1,1,625), respectively.
We can observe that the range of values is mainly between 0 and 20 with a light tail
after this last value.

The histogram on the right shows the posterior distribution for the same parameter
using an Inverse-Gamma(0.001, 0.001) prior distribution. We can see that the range of
values for σα is concentrated in a short interval near 0 (0 to 5), and the posterior has
a sharp peak near zero. This is the anomalous behavior highlighted by Gelman (2006)
which is not present when the SBeta2 distributions are used as priors.

It can be seen that the SBeta2 distribution works properly when the analysis is
performed for all 8 schools. Gelman (2006) comments that some problems could arise
when the number of groups J is small because the data give little information about
the variance between groups. In the analysis of the schools example Gelman only in-
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Figure 4: Histograms of posterior simulations of the between-school standard deviation,
σα, from models with three different prior distribution: (i) SBeta2(0.5, 0.5, 625), (ii)
SBeta2(1, 1, 625) and (ii) Inverse-Gamma(0.001,0.001).

cludes data for the first three schools, and uses the uniform and the half-Cauchy as
prior distributions for σα. He concludes that the half-Cauchy gives good results in this
example with plausible posterior values for σα < 50. However, when a uniform prior
distribution is used, the posterior distribution for σα presents an extremely long right
tail with values for σα too high to be reasonable for this example, and therefore its use
could result in an “under-shrinking” of the estimates for the effects αj .

Figure 5 shows the histograms of the posterior distributions for σα with prior dis-
tributions SBeta2(0.5,0.5,625) and SBeta2(1,1,625) when only data from the first three
schools are used. We see that they present a range of plausible values for σα between
0 and 50; after this last value, the posterior densities decrease rapidly. Like the half-
Cauchy, the SBeta2 prior distribution with p = q = 1 has a good performance in this
example because it shows plausible values for σα without the presence of a heavy right
tail.

Figure 5: Histograms of posterior simulations of the between-school standard devia-
tion, σα, from models with two different prior distribution: (i) SBeta2(0.5,0.5,625), (ii)
SBeta2(1,1,50) and data for the first three schools.
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In summary, both the half-Cauchy(25) (SBeta2(0.5,0.5,625)) and the SBeta2(1,1,625)
produce sensible results for J = 3 schools and for J = 8 schools.

4.2 A tale of unwanted attraction, or how “näıve” hierarchical
Bayes pulls up perfect hospitals

In an application of Bayesian hierarchical models to hospital profiling, Normand and
Shahian (2007) analyze data for 30-day mortality following isolated coronary artery
bypass grafting (CABG) surgery in 13 non-governmental hospitals in Massachusetts,
USA. In their work, it can be seen that, unfortunately, random effects of hospitals with
no deaths are subject to large shrinkage with non-robust hierarchical models. This is
an instance of too much shrinkage: a perfect hospital (no deaths) is pulled strongly
towards the general mean regardless of its exceptional quality. The assumption of a
vague Inverse-Gamma produces a hierarchical model that does not predict outliers,
very bad or very good hospitals, and thus implies large corrections for outlying values.
In that sense the selected model is non-robust. Then we should change the assumptions
if a robust behavior is desired. Notice also that a robust model is fairer with exceptional
individuals: the amount of shrinkage is not constant, but depends on performance.

We revisit the data shown in Table 1 without using explanatory data (which is not
available). Additionally, we enlarge the sample size of one of the hospitals with no deaths
to the average size of all hospitals, as an alternative scenario to explore the differences
between different models.

We will focus on the probability of death for each hospital, θi, and its corresponding
log-odds, βi. We also calculate the predictive probability of 0 deaths for the following
100 patients for each hospital.

Hospital Patients Deaths
1 508 11
2 454 11
3 381 15
4 623 11
5 26 (350) 0
6 393 7
7 718 18
8 149 1
9 80 0

10 296 5
11 191 3
12 365 4
13 419 15

Table 1: 30-day mortality in 13 non-governmental hospitals following isolated CABG
surgery, Massachusetts, USA (Normand and Shahian, 2007). Hospital 5 was changed
from 26 patients to the approximate mean number of patients 350.
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We compare three models:

• Model 1: A non-robust Normal–Inverse-Gamma model

yi ∼ Bin(ni, θi)

βi ∼ N(μ, σ2)

μ ∼ N(0, 103)

σ2 ∼ Inverse-Gamma(0.001, 0.001)

where βi = log(θi/(1− θi)).

• Model 2: We substitute the Inverse-Gamma distribution by a SBeta2(1, 1, 1).

σ2 ∼ SBeta2(1, 1, 1)

• Model 3: A Student-t distribution with 2 degrees of freedom is used as a prior
for the log-odds instead of a Normal.

yi ∼ Bin(ni, θi)

βi ∼ t2(μ, σ
2)

μ ∼ N(0, 103)

σ2 ∼ SBeta2(1, 1, 1)

In Models 2 and 3, we choose a conventional SBeta2(1, 1, 1) as a plausible nearly objec-
tive model, since it is symmetric in the information of the scale and its reciprocal. We
may add that this choice also makes sense from an Empirical Bayes approach, since the
observed variance of the log-odds (from the modified hospital data) is around 0.8, close
to the assessed median of 1.

Figure 6 shows 95% posterior probability intervals for the log-odds and the prob-
abilities of death for each hospital, and the posterior probabilities of 0 deaths for 100
patients for each hospital are shown in Figure 7. For the fully robust Model 3, the in-
ference for the “perfect” hospital 5 is the most reasonable, followed by Model 2. The
assumption of a flat tail location, as the Cauchy (which is widely accepted as a more
robust model in a setting like this) is made even more robust by the assumption of a
Scaled Beta2 for the scale.

4.3 The Clemente problem

Efron and Morris (1972) obtained a sample of batting averages for 18 baseball players
for the 1970 season. They used the average obtained during the first 45 at bats for
predicting the batting average of each player for the rest of the season. The initial
assumption about the data is

Yi ∼
1

45
Bin(45, pi)
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Figure 6: 95% posterior probability intervals for the log-odds and the probabilities of
death for each hospital under the three models. Models 2 and 3 reduce the shrinkage of
the “perfect” hospital 5 (with no observed deaths) towards the mean.

Figure 7: Posterior probability of no deaths for 100 new patients. Note the differences
in the probabilities estimated for each model for hospital 5, in which no deaths were
observed.

where Yi is the batting average for the first 45 at bats, and pi depends on each player‘s
ability.

The batting average for the rest of the season, Ri, can be modeled as

Ri ∼
1

ni
Bin(ni, pi)

where ni is the number of at bats for player i during the remainder of the season.

Efron and Morris applied a variance stabilizing transformation to Yi,

Xi =
√
45 arcsin(2Yi − 1)

so that Xi ∼ N(μi, 1), with μi approximately equal to the transformed value of pi. In
the sequel, we will use this transformed variable.
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In his talk at the ‘09 Objective Bayes Conference June 2009, “The Future of Indirect
Evidence” Professor Bradley Efron exposed a fundamental problem: “The Clemente
Problem: How to protect atypical cases from too much indirect evidence?”. Professor
Efron is referring to the Puerto Rican sportsman Roberto Clemente, an outstanding
batter and human being, who had the highest batting average of the list of 18 players.
After the first 45 turns, Clemente had a score of 400 (40% of hits). Even though shrink-
ing to a general mean improves the overall prediction of the 18 batters, for Clemente
under the conjugate prior a batting average of 282 is predicted (see Table 2). The atyp-
ical Clemente was not protected from “too much of a good thing”, and his personal
prediction was very poor: he finished with a score of 346, much higher than predicted.
The problem lies in the fact that the usual method shrinks equally all players. This
problem extends beyond location parameters: formula (2.10) in Diaconis and Ylvisaker
(1979) shows that if the prior for an Exponential Family parameter is chosen in the
usual conjugate family its posterior mean is a linear combination of prior expectation
and arithmetic mean. This implies a serious lack of robustness, since the shrinkage rate
is constant regardless the conflict between prior expectations and sample means.

As an illustration assume that h is the precision parameter of Normal data with
known mean. Applying (2.3) in Diaconis and Ylvisaker (1979), the conjugate prior of
the precision is a Gamma distribution with prior location W0 and “prior sample size”
n0. It turns out that the posterior mean of the mean parameter W can be written as:

E(E(W )|Data) = W̄ −
(

n0

n0 + n

)
(W̄ −W0).

It is clear then that the rate of shrinkage n0

n0+n is constant, regardless the conflict W̄−W0.
So any Exponential Family parameter shares the same behavior when conjugate priors
are employed, regardless if the parameter is location, scale, etc. The goal, then, is a
model that shrinks less the exceptional, without inflating the mean square error of
prediction.

We fit the model

Xi ∼ N(μi, 1), i = 1, · · · , 18
μi ∼ Cauchy(M,σ)

M ∼ Cauchy(0, 103), σ2 ∼ SBeta2(p, q, b)

for different hyperparameters (p, q, b). We used one of the assessment strategies dis-
cussed in Section 2, selecting b such that P (σ2 > 1.5) = 0.1 (the value 1.5 was chosen
using the empirical variance for the transformed data, s2 = 1.116). Under this con-
dition, the values b = 0.17 for p = q = 1 and b = 0.038 for p = q = 1/2 were
elicited. The former prior leads to a reduction of MSE of 8.4% over the conjugate, while
the SBeta2(1/2,1/2,0.038) prior leads to a lesser reduction of 5%, so here again the
SBeta2(1,1,b) performed slightly superior than the half-Cauchy (though it can be ar-
gued that in both cases the shrinkage of Clemente is still excessive). However, assigning
higher values to b, as in a SBeta2(1,1,1), arguably leads to a satisfactory reduction in
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mean square error of almost 7% simultaneously with less shrinkage of the extreme val-
ues, Clemente and Alvis (see Table 2). It should be noted that the SBeta2 is somewhat
sensitive to the assessed values of the scale b. Also note that the improvement in the
overall mean squared error does not imply that all the individual predictions are better.

Predicted batting probabilities

Normal likelihood. Normal likelihood. Normal likelihood.
Structural Cauchy. Structural Cauchy. Structural Cauchy.

Player Observed Conjugate Cauchy prior for Cauchy prior for Cauchy prior for
season model common location. common location. common location.

SBeta2(1,1,0.17) SBeta2(0.5,0.5,0.038) SBeta2(1,1,1)
prior for squared prior for squared prior for squared
scale parameter scale parameter scale parameter

Clemente 0.346 0.2825 0.2974 0.2838 0.3066
Robinson 0.298 0.2797 0.2875 0.2775 0.2958
Howard 0.276 0.2765 0.2803 0.2731 0.2861

Johnstone 0.222 0.2733 0.2745 0.2697 0.2791
Berry 0.273 0.2701 0.2704 0.2675 0.2728

Spencer 0.270 0.2699 0.2701 0.2670 0.2733
Kessinger 0.263 0.2668 0.2665 0.2650 0.2683
Alvarado 0.210 0.2645 0.2641 0.2639 0.2643
Santo 0.269 0.2603 0.2599 0.2612 0.2587

Swoboda 0.230 0.2606 0.2602 0.2616 0.2593
Unser 0.264 0.2568 0.2567 0.2595 0.2546

Williams 0.256 0.2573 0.2570 0.2593 0.2548
Scott 0.303 0.2568 0.2566 0.2590 0.2541

Petrocelli 0.264 0.2566 0.2562 0.2590 0.2539
Rodriguez 0.226 0.2572 0.2569 0.2595 0.2545
Campaneris 0.285 0.2532 0.2520 0.2567 0.2488
Munson 0.316 0.2502 0.2465 0.2535 0.2402
Alvis 0.200 0.2476 0.2408 0.2483 0.2321

MSE(x103) 1.2126 1.1108 1.1519 1.1307

Table 2: Predicted values and mean squared error of prediction (MSE) for the batting
averages data in Efron and Morris (1972) using a conjugate model and three robust
models with SBeta2 priors for the squared scale parameter.

4.4 Simulation study

A simulation study was performed in order to analyze the performance of the SBeta2
as a prior distribution for scales in hierarchical models in different scenarios. Back in
the setting of the 8-schools example, we generated data according to the model in
equation (6). Values for the effects αj were fixed according with three scenarios: all
similar in magnitude, a few medium outliers and one large outlier. We simulated data
for J = 3, 4, 5, 6, 7, 8, 9 and 10. The value for σ2

y is known and we want to determine the
effect of the prior distribution of σ2

α on the estimation error of the effects αj . For each
fixed value of αj and σ2

y we generated 1000 samples from a normal distribution for the
error terms.

We fitted the model using five different prior distributions for σ2
α: SBeta2(1,1,625),

SBeta2(0.5,0.5,625), Inverse-Gamma(0.001,0.001), SBeta2(1,1,b) and SBeta2(0.5,0.5,b),
where values for b were assigned such that p(σ2

α >Var(αj)) = 0.5 (and therefore
b =Var(αj)). We carried out 10000 MCMC simulations with a burn in of 2000 for
each case.
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In order to study the estimation error we computed the global estimation error

G =

√∑J
j=1

∑1000
k=1 (αj − α̂kj)2

1000
,

where α̂kj is the posterior mean of αj calculated for simulated dataset k. Table 3 shows
the results for the first scenario, where all αj ’s are similar in magnitude. The values for
these effects were set within a range of ±0.5 with Var(αi) = 0.093, 0.067, 0.150, 0.135,
0.130, 0.156, 0.138, 0.178 for J from 3 to 10, respectively. We observe that for each J the
global estimation error is smaller when the model is fitted using SBeta2(1,1,Var(αj))
as prior distribution for σ2

α, followed by the fitting with SBeta2(0.5,0.5,Var(αj)). The
distributions that exhibit the largest errors are the SBeta2 with b = 625; this seems
reasonable since we are assigning a prior distribution with big scale parameter in a
situation where the effects are similar in magnitude, and therefore their variance is
small.

Prior distribution on σ2
α

J Inverse-Gamma SBeta2 SBeta2 SBeta2 SBeta2
(0.001,0.001) (0.5,0.5,625) (1,1,625) (0.5,0.5,Var(αj)) (1,1,Var(αj))

3 0.6521 1.1304 1.4502 0.5060 0.4574
4 0.6947 1.2017 1.6316 0.5266 0.4741
5 0.8856 1.2833 1.6934 0.8156 0.7855
6 0.9519 1.3288 1.7373 0.8818 0.8514
7 2.8659 3.4144 3.8001 0.9765 0.9453
8 3.4815 3.9480 4.2805 1.0964 1.0640
9 3.9462 4.4790 4.8496 1.1066 1.0797
10 3.1022 3.6381 4.0216 1.1333 1.1025

Table 3: Simulation study: Global estimation error G for the scenario in which all αj

have similar magnitude.

Table 4 shows the results for the second scenario: a few medium outliers. The ma-
jority of values for the effects were set within the range ±0.5, and a few in the range
±2 and ±3. One medium outlier was assigned for J = 3, 4, 5, two medium outliers for
J = 6, 7 and three medium outliers for J ≥ 8, with Var(αj) = 1.803, 1.200, 1.332, 2.647,
2.246, 2.876, 2.520, 2.299 for J from 3 to 10, respectively. The global estimation error
is smaller using SBeta2(1,1,Var(αj)) prior except in the case J = 10. For J ≥ 6 (with
more than one medium outlier) using the Inverse-Gamma prior leads to larger global
estimation errors.

Table 5 shows the results for the third scenario: one large outlier. Again the values for
all effects were set within a range ±0.5 except one, which was assigned an absolute value
greater than 5. The variance for the random effects is Var(αi) = 9.403, 6.650, 6.400,
5.180, 3.878, 4.039, 3.436, 3.290 for J from 3 to 10, respectively. The largest global error
corresponds to the Inverse-Gamma(0.001, 0.001). The values fitted with SBeta2 priors
exhibit similar global errors. However, when b = 625 the individual estimation errors
for those α’s within the range ±0.5 are large compared to the individual estimation
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Prior distribution on σ2
α

J Inverse-Gamma SBeta2 SBeta2 SBeta2 SBeta2
(0.001,0.001) (0.5,0.5,625) (1,1,625) (0.5,0.5,Var(αj)) (1,1,Var(αj))

3 1.9008 1.8538 1.9158 1.8347 1.7986
4 1.8966 1.9197 2.0588 1.8489 1.8202
5 2.1835 2.1581 2.2710 2.1134 2.0755
6 2.5672 2.3760 2.3671 2.4033 2.3188
7 2.6535 2.4811 2.4775 2.4979 2.4238
8 3.1622 2.9995 2.9761 3.0213 2.9523
9 3.3462 3.1590 3.1204 3.1930 3.1186
10 3.4352 3.2333 3.1895 3.2758 3.1949

Table 4: Simulation study: Global estimation error G for the scenario in which there
are few medium outliers.

error for the α with absolute value greater than 5. For instance, for J = 3 we fixed
αj = −0.3, 0.1, 5.2. When the model was fitted with SBeta2(1,1,625), the individual
estimation errors were 3.3086, 3.1203, 4.5850 for j = 1, 2 and 3 respectively, whereas
with the SBeta2(1,1,Var(αj)) these values were 2.4730, 2.3937, 6.5967. Therefore the
simulation study shows smaller individual estimation errors for the outliers when b is
large.

Prior distribution on σ2
α

J Inverse-Gamma SBeta2 SBeta2 SBeta2 SBeta2
(0.001,0.001) (0.5,0.5,625) (1,1,625) (0.5,0.5,Var(αj)) (1,1,Var(αj))

3 3.6400 3.3783 3.3187 3.4457 3.3858
4 3.5496 3.3040 3.2371 3.3694 3.2948
5 3.3458 3.2175 3.1934 3.2409 3.1962
6 3.5963 3.4181 3.3693 3.4566 3.3953
7 3.4577 3.3549 3.3463 3.3593 3.3154
8 3.8349 3.6049 3.5295 3.6620 3.5857
9 3.6869 3.5509 3.5244 3.5707 3.5177
10 3.9907 3.7542 3.6676 3.8117 3.7275

Table 5: Simulation study: Global estimation error G for the scenario with one large
outlier.

We calculated 95% highest posterior density intervals for the effects in each of the
simulations corresponding to the three scenarios. With these intervals we calculated the
coverage rate. When all effects are similar in magnitude the coverage rates are almost
equal regardless the prior employed.

For the second scenario (a few medium outliers) the coverage rates for medium out-
liers change with the prior, and they are smallest when the Inverse-Gamma(0.001,0.001)
is used. For example, Table 6 shows the coverage rates when J = 8, where αj =
−0.3, 0.1, 0.3,−0.2, 0.5, 2.5,−2.6, 2.8. It can be seen that when the effects are similar in
magnitude the coverage rates are almost equal but for α6, α7 and α8 the coverage rates
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are smaller. The biggest coverage rate for these three medium outliers is obtained with
the SBeta2(1,1,625) prior.

Prior distribution on σ2
α

j Inverse-Gamma SBeta2 SBeta2 SBeta2 SBeta2
(0.001,0.001) (0.5,0.5,625) (1,1,625) (0.5,0.5,V(α)) (1,1,V(α))

1 99.9 99.9 99.9 99.9 99.7
2 100 100 100 99.9 99.8
3 99.8 99.9 99.9 99.8 99.7
4 99.9 99.9 99.9 100 100
5 99.9 99.9 100 99.2 99.7
6 78.5 91.3 95.9 82.0 86.0
7 84.8 94.5 98.4 89.9 92.9
8 77.2 88.3 94.8 80.6 82.9

Table 6: Simulation study: Coverage rates for J = 8 in the scenario with a few medium
outliers.

Consider the case when J = 3 and the scenario is one large outlier. In this situation
we selected αj = -0.3, 0.1, and 5.2, as commented before. Table 7 shows that the
coverage rate for the large outlier obtained with any of the SBeta2 distributions as
prior on σ2

α is greater than the one obtained using the Inverse-Gamma(0.001,0.001).
Similar results are obtained for other values of J : the coverage rates are almost equal
when the effects are similar in magnitude and smaller when the model is fitted using the
Inverse-Gamma(0.001,0.001) prior. Even though the main intention in this subsection is

Prior distribution on σ2
α

j Inverse-Gamma SBeta2 SBeta2 SBeta2 SBeta2
(0.001,0.001) (0.5,0.5,625) (1,1,625) (0.5,0.5,V(α)) (1,1,V(α))

1 100 100 100 100 100
2 100 100 100 100 100
3 87.0 99.4 100 92.5 94.9

Table 7: Simulation study: Coverage rate for J = 3 in the scenario with one large outlier.

to compare SBeta2 with different parameters and Inverse-Gamma, it is to be expected
that assuming t-priors for the random effects would improve the robustness of the
methodology, as in the previous subsections.

5 Final remarks

In this article we put forward the idea of the Scaled Beta2 as a standard family for prior
distributions of scales for both hierarchical and non-hierarchical models. The Scaled
Beta2 distribution is naturally motivated, flexible and amazingly tractable. For spe-
cific values of hyperparameters, it leads to closed form results, and generalizes previous
proposals in the literature like a half-Cauchy for standard deviations. For ranges of
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hyperparameters, both flat tails and low probabilities of small scale values can simulta-
neously be achieved. In this manner, undesirable features like excessive shrinkage and
very low scale values can be avoided.

Supplementary Material

Supplementary Material of “The Scaled Beta2 Distribution as a Robust Prior for Scales”
(DOI: 10.1214/16-BA1015SUPP; .pdf).
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