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ADAPTIVE BERNSTEIN–VON MISES THEOREMS IN GAUSSIAN
WHITE NOISE1

BY KOLYAN RAY

Leiden University

We investigate Bernstein–von Mises theorems for adaptive nonparamet-
ric Bayesian procedures in the canonical Gaussian white noise model. We
consider both a Hilbert space and multiscale setting with applications in L2

and L∞, respectively. This provides a theoretical justification for plug-in pro-
cedures, for example the use of certain credible sets for sufficiently smooth
linear functionals. We use this general approach to construct optimal frequen-
tist confidence sets based on the posterior distribution. We also provide sim-
ulations to numerically illustrate our approach and obtain a visual represen-
tation of the geometries involved.

1. Introduction. A key aspect of statistical inference is uncertainty quantifi-
cation and the Bayesian approach to this problem is to use the posterior distribution
to generate a credible set, that is, a region of prescribed posterior probability (of-
ten 95%). This can be considered an advantage of the Bayesian approach since
Bayesian credible sets can be computed by simulation. In particular, the Bayesian
generates a number of posterior draws and then keeps a prescribed fraction of the
draws, discarding the remainder which are considered “extreme” in some sense.
From a frequentist perspective, key questions are whether such a method has a
theoretical justification and what is an effective rule for determining which draws
to discard. A natural approach is to characterize such draws using a geometric
notion, in particular by considering a minimal ball in some metric.

In finite dimensions, the Euclidean distance has a clear interpretation as the nat-
ural measure of size. However, in infinite dimensions such a notion is less clear-
cut: the L2 metric is the natural generalization of the Euclidean norm, but lacks a
clear visual interpretation, while L∞ can be easily visualized but is more difficult
to treat mathematically. From the Bayesian perspective of simulating credible sets,
the practitioner ultimately seeks a practical and effective rule for sorting through
posterior draws and such geometric interpretations can be viewed as somewhat ar-
tificial impositions. The aim of this article is therefore to study possible geometric
choices of credible sets that behave well from a frequentist asymptotic perspective.
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Consider data Y (n) arising from some probability distribution P
(n)
f , f ∈ F . We

place a prior distribution � on F and study the behaviour of the posterior distribu-
tion �(· | Y (n)) under the frequentist assumption Y (n) ∼ P

(n)
f0

for some nonrandom
true f0 ∈ F as the data size or quality n → ∞. From such a viewpoint, the the-
oretical justification for posterior based inference using any (Borel) credible set
in finite dimensions is provided by the Bernstein–von Mises (BvM) theorem (see
[30, 45]). This deep result establishes mild conditions on the prior under which the
posterior is approximately a normal distribution centered at an efficient estimator
of the true parameter. It thus provides a powerful tool to study the asymptotic be-
haviour of Bayesian procedures and justifies the use of Bayesian simulations for
uncertainty quantification.

A BvM in infinite-dimensions fails to hold in even very simple cases. Freedman
[18] showed that in the basic conjugate �2 sequence space setting with both Gaus-
sian priors and data, the BvM does not hold for �2-balls centered at the posterior
mean; see also the related contributions [16, 25, 29]. The resulting message is that
despite their intuitive interpretation, credible sets based on posterior draws using
an �2-based selection procedure do not behave as in classical parametric models.
Recently, Castillo and Nickl [11, 12] have established fully infinite-dimensional
BvMs by considering weaker topologies than the classical Lp spaces. Their fo-
cus lies on considering spaces which admit 1/

√
n-consistent estimators and where

Gaussian limits are possible, unlike Lp-type loss. Credible regions selected using
these different geometries are shown to behave well, generating asymptotically ex-
act frequentist confidence sets. In this paper, we explore this approach in practice
via both theoretical results for adaptive priors, as well as by numerical simulations.
We consider an empirical Bayes, a hierarchical Bayes and a multiscale Bayes ap-
proach.

This approach is numerically illustrated in Section 6, where adaptive credible
sets from various geometries are obtained by simulation. The main message of
these numerical examples is that simulating credible sets from these slightly dif-
ferent geometries yields sets that do not look particularly strange in practice, and
in fact often resemble more “classical” credible sets. Both approaches are method-
ologically similar; the only difference being the rule for discarding posterior draws.
From a theoretical point of view, the difference between the two approaches is far
more significant, with one yielding exact coverage statements at the expense of
unbounded diameter. It is however possible to improve upon the naive implemen-
tation of such sets to also obtain the optimal diameter (see Proposition 1 of [12] and
related results below). Modifying the geometry in such a way to obtain an exact
coverage statement therefore comes at little additional cost from a practitioner’s
perspective.

Nonparametric priors typically contain tuning or hyper parameters, and it is a
key challenge to study procedures that select these parameters automatically in a
data-driven manner. This avoids the need to make unreasonably strong prior as-
sumptions about the unknown parameter of interest, since incorrect calibration of
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the prior can lead to suboptimal performance (see, e.g., [27]). It therefore makes
sense to use an automatic procedure, unless a practitioner is particularly confident
that their prior correctly captures the fine details of the unknown parameter, such
as its level of smoothness or regularity. Adaptive procedures are widely used in
practice, with hyper parameters commonly selected using a hyperprior or an em-
pirical Bayes method. In the case of Gaussian white noise, a number of Bayesian
procedures have been shown to be rate adaptive over common smoothness classes
(e.g., [24, 26, 37]). Most such frequentist analyses restrict attention to obtaining
contraction rates and do not study coverage properties of credible sets. The focus
of this paper is therefore to investigate nonparametric BvMs for adaptive priors,
with the goal of studying the coverage properties of credible sets.

In the case of Gaussian white noise, there has been recent work [27, 29] cir-
cumventing the need for a BvM by explicitly studying the coverage properties of
certain specific credible sets. Of particular relevance is a nice recent paper by Sz-
abó et al. [43], where the authors use an empirical Bayes approach combined with
scaling up the radius of �2-balls to obtain adaptive confidence sets under a so-
called polished tail condition. Their approach relies on explicit prior computations
and provides an alternative to the more abstract point of view taken here. One of
our principal goals is exact coverage statements and this seems more difficult to
obtain using such an explicit approach. Since adaptive confidence sets do not exist
in full generality, we also require self-similarity conditions on the true parameter
to exclude certain “difficult” functions [6, 21, 23]. In particular, we shall consider
the procedure of [43] in Section 3.1 and obtain exact coverage statements under
the self-similarity condition introduced there.

We note other work dealing with BvM results in the nonparametric setting.
Leahu [29] has studied the impact of prior smoothness on the existence of BvM
theorems in the conjugate Gaussian sequence space model. Bickel and Kleijn [3],
Castillo [8], Rivoirard and Rousseau [41] and Castillo and Rousseau [13] pro-
vide sufficient conditions for BvMs for semiparametric functionals. For the case
of finite-dimensional posteriors with increasing dimension, see Ghosal [19] and
Bontemps [4] for the case of regression or Boucheron and Gassiat [5] for discrete
probability distributions.

Much of the approach taken here can equally be applied to other statistical set-
tings such as sparsity and inverse problems [38], but we restrict to the nonparamet-
ric regime for ease of exposition. Since our focus lies on BvM results and cover-
age statements and this changes little conceptually, we omit such generalizations
to maintain mathematical clarity.

2. Statistical setting.

2.1. Function spaces and the white noise model. We use the usual notation
Lp = Lp([0,1]) for p-times Lebesgue integrable functions and denote by �p the
usual sequence spaces. We consider the canonical white noise model, which is
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equivalent to the fixed design Gaussian regression model with known variance.
For f ∈ L2 = L2([0,1]), consider observing the trajectory:

(2.1) dY
(n)
t = f (t) dt + 1√

n
dBt , t ∈ [0,1],

where dB is a standard white noise. By considering the action of an orthonor-
mal basis {eλ}λ∈� on (2.1), it is statistically equivalent to consider the Gaussian
sequence space model:

(2.2) Y
(n)
λ ≡ Yλ = fλ + 1√

n
Zλ, λ ∈ �,

where the (Zλ)λ∈� are i.i.d. standard normal random variables and the unknown
parameter of interest f = (fλ)λ∈� is assumed to be in �2. We denote by Pf0 or
P0 the law of Y arising from (2.2) under the true function f0. In the following,
� will represent either a Fourier-type basis or a wavelet basis. In the �2-setting,
(2.2) can be interpreted purely in sequence form with � = N and we do not need
to associate to it a time index t ∈ [0,1].

In L∞, we consider a multiscale approach so that � = {(j, k) : j ≥ 0, k =
0, . . . ,2j − 1}. In particular, we consider an S-regular (S ≥ 0) wavelet basis of
L2([0,1]), {ψlk : l ≥ J0 − 1, k = 0, . . . ,2l − 1}, with J0 ∈ N. For notational sim-
plicity, denote the scaling function φ by the first wavelet ψ(J0−1)0. We consider
either periodized wavelets or boundary corrected wavelets (see [33] for more de-
tails). Moreover, in certain applications we require in addition that the wavelets
satisfy a localization property:

sup
x∈[0,1]

2J0−1∑
k=0

∣∣φJ0k(x)
∣∣ ≤ c(φ)2J0/2 < ∞,

(2.3)

sup
x∈[0,1]

2j−1∑
k=0

∣∣ψjk(x)
∣∣ ≤ c(ψ)2j/2 < ∞,

j ≥ J0 (see Section 8.3 in the Supplement [39] for more discussion). The sequence
model (2.2) corresponds to estimating the wavelet coefficients flk = 〈f,ψlk〉, for
all (l, k) ∈ �, since any function f ∈ L2 generates such a wavelet sequence. Con-
versely, any such sequence (flk) generates the wavelet series of a function (or
distribution if the sequence is not in �2)

∑
(l,k) flkψlk .

For s, δ ≥ 0, define the Sobolev spaces at the logarithmic level:

Hs,δ ≡ H
s,δ
2 :=

{
f ∈ �2 : ‖f ‖2

s,2,δ :=
∞∑

k=1

k2s(log k)−2δ|fk|2 < ∞
}
.

From this, we recover the usual definition of the Sobolev spaces Hs ≡ Hs
2 = H

s,0
2

and by duality we define for s > 0, H−s
2 := (Hs

2 )∗. By standard Hilbert space
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duality arguments, we can consider �2 as a subspace of H−s
2 and can similarly

define the logarithmic spaces for s < 0 and δ ≥ 0 using the above series definition.
In the �2-setting, we shall classify smoothness via the Sobolev hyper rectangles
for β ≥ 0:

Q(β,R) =
{
f ∈ �2 : sup

k≥1
k2β+1f 2

k ≤ R
}
.

In the L∞([0,1])-setting, we consider multiscale spaces: for a monotone in-
creasing sequence w = (wl)l≥1 with wl ≥ 1, define

M = M(w) =
{
x = (xlk) : ‖x‖M(w) := sup

l≥0

1

wl

max
k

|xlk| < ∞
}

(for further references to multiscale statistics see [12]). A separable closed sub-
space is obtained by considering the restriction:

M0 = M0(w) =
{
x ∈ M(w) : lim

l→∞
1

wl

max
k

|xlk| = 0
}
,

that is those (weighted) sequences in M(w) that converge to 0. Note that M con-
tains the space �2, since ‖x‖M ≤ ‖x‖�2 as wl ≥ 1. In this setting, we consider
norm-balls in the Besov spaces B

β∞∞([0,1]):
H(β,R) = {

f = (flk)(l,k)∈� : |flk| ≤ R2−l(β+1/2),∀(l, k) ∈ �
}
.

We recall that B
β∞∞([0,1]) = Cβ([0,1]), the classical Hölder (–Zygmund in the

case β ∈ N) spaces. For more details on these embeddings and identifications, see
[33].

Whether an �2-white noise defines a tight random element of M0(w) depends
on the weighting sequence (wl). Recall that we call a sequence (wl)l≥1 admissible
if wl/

√
l ↗ ∞ as l → ∞ [12]. Let Z = {Zλ = 〈Z,eλ〉 : λ ∈ �}, where Zλ ∼

N(0,1) i.i.d., denote the Gaussian white noise in (2.2). We have from [11, 12] that
for δ > 1/2 and (wl) an admissible sequence, Z defines a tight Gaussian Borel
random variable on H

−1/2,δ
2 and M0(w), respectively, which we denote Z. In

view of this tightness, we can consider (2.1) as a Gaussian shift model:

Y
(n) = f + 1√

n
Z,

where the above inequality is in the H
−1/2,δ
2 - or M0(w)-sense. Since

√
n(Y(n) −

f ) = Z in H
−1/2,δ
2 or M0(w), it immediately follows that Y(n) is an efficient

estimator of f in either norm.
Among the two classes {Hs,δ

2 }s∈R,δ≥0 and {M0(w)}w of spaces considered, one
can show that s = −1/2, δ > 1/2 and admissibility of w determine the minimal
spaces where the law of the �2-white noise Z is tight (see [11, 12] for further
discussion). We therefore focus attention on these spaces since they provide the
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threshold for which a weak convergence approach can work. For convenience, we
denote H ≡ H(δ) ≡ H

−1/2,δ
2 . We further denote the law of Z in H or M0(w) by

N as appropriate.

2.2. Weak Bernstein–von Mises phenomena. Due to the continuous embed-
dings �2 ⊂ H and �2 ⊂ M0(w), any Borel probability measure on �2 yields a tight
Borel probability measure on H and M0(w). Consider a prior � on �2 and let
�n = �(· | Y (n)) denote the posterior distribution based on data (2.2). For S a
vector space and z ∈ S, consider the map τz : S → S given by

τz : f �→ √
n(f − z).

Let �n ◦ τ−1
Y(n) denote the image measure of the posterior distribution [considered

as a measure on H or M0(w)] under the map τY(n) . Thus for any Borel set B

arising from these topologies,

�n ◦ τ−1
Y(n)(B) = �

(√
n
(
f −Y

(n)) ∈ B | Y (n)),
so that we can more intuitively write �n ◦ τ−1

Y(n) = L(
√

n(f −Y
(n)) | Y (n)), where

L(f | Y (n)) denotes the law of f under the posterior. For convenience, we metrize
the weak convergence of probability measures via the bounded Lipschitz metric
(defined in Section 8.4 in the Supplement [39]). Recalling that we denote by N
the law of the white noise Z in (2.2) as an element of S, we define the notion of
nonparametric BvM.

DEFINITION 1. Consider data generated from (2.2) under a fixed function f0
and denote by P0 the distribution of Y (n). Let βS be the bounded Lipschitz metric
for weak convergence of probability measures on S. We say that a prior � satisfies
a weak Bernstein–von Mises phenomenon in S if, as n → ∞,

E0βS

(
�n ◦ τ−1

Y(n) ,N
) = E0βS

(
L

(√
n
(
f −Y

(n)) | Y (n)),N ) → 0.

Here, S is taken to be one of H(δ) for δ > 1/2, H−s for s > 1/2 or M0(w) for
(wl)l≥1 an admissible sequence.

The weak BvM says that the (scaled and centered) posterior distribution asymp-
totically looks like an infinite-dimensional Gaussian distribution in some ‘weak’
sense, quantified via the bounded Lipschitz metric. Weak convergence in S implies
that these two probability measures are approximately equal on certain classes of
sets, whose boundaries behave smoothly with respect to the measure N (see Sec-
tions 1.1 and 4.1 of [11]).

2.3. Self-similarity. The study of adaptive BvM results naturally leads to the
topic of adaptive frequentist confidence sets. It is known that confidence sets with
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radius of optimal order over a class of submodels nested by regularity that also
possess honest coverage do not exist in full generality (see [23, 35] for recent
references). We therefore require additional assumptions on the parameters to be
estimated and so consider self-similar functions, whose regularity is similar at both
small and large scales. Such conditions have been considered in Giné and Nickl
[21], Hoffmann and Nickl [23] and Bull [6] and ensure that we remove those func-
tions whose norms (measuring smoothness) are difficult to estimate and which
statistically look smoother than they actually are. We firstly consider the �2-type
self-similarity assumption found in Szabó et al. [43].

DEFINITION 2. Fix an integer N0 ≥ 2 and parameters ρ > 1, ε ∈ (0,1). We
say that a function f ∈ Q(β,R) is self-similar if

�ρN�∑
k=N

f 2
k ≥ εRN−2β for all N ≥ N0.

We denote the class of self-similar elements of Q(β,R) by QSS(β,R, ε).

This condition says that each block (fN, . . . , f�ρN�) of consecutive components
contains at least a fixed fraction (in the �2-sense) of the size of a “typical” element
of Q(β,R), so that the signal looks similar at all frequency levels (see [34, 35, 43]
for further discussion). The parameters N0 and ρ affect the results of this article
through the sample size at which the asymptotic results take effect, that is, n → ∞
implicitly implies statements of the form “for n ≥ n0 large enough”, where n0
depends on N0 and ρ. For this reason, the impact of N0 and ρ is not explicitly
mentioned below and one may simply treat these constants as fixed (e.g., N0 = 2
and ρ = 2). The lower bound in Definition 2 can be slightly weakened to permit,
for example, logarithmic deviations from N−2β . However, since this results in
additional technicality whilst adding little extra insight, we do not pursue such a
generalization here. It is possible to consider a weaker self-similarity condition
using a strictly frequentist approach [35], though this has not been explored in the
Bayesian setting and it is unclear whether our approach extends in such a way.
Let Kj(f ) = ∑

k〈f,φjk〉φjk denote the wavelet projection at resolution level j . In
L∞, we consider Condition 3 of Giné and Nickl [21], which can only be slightly
relaxed [6].

DEFINITION 3. Fix a positive integer j0. We say that a function f ∈ H(β,R)

is self-similar if there exists a constant ε > 0 such that∥∥Kj(f ) − f
∥∥∞ ≥ ε2−jβ for all j ≥ j0.

We denote the class of self-similar elements of H(β,R) by HSS(β,R, ε).

In particular, since f ∈ H(β,R), we have that ‖Kj(f ) − f ‖∞ � 2−jβ for all
j ≥ j0. What we really require is that there is at least one significant coefficient at
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the level log2((n/ logn)1/(2β+1)) that the posterior distribution can detect. How-
ever, this level depends also on unknown constants in practice (see proof of Propo-
sition 4.5) and so we require a statement for all (sufficiently large) resolution levels
as in Definition 3. See Giné and Nickl [21] and also Bull [6] for further discussion
about this condition.

3. Bernstein–von Mises results.

3.1. Empirical and hierarchical Bayes in �2. We continue the frequentist anal-
ysis of the adaptive priors studied in [26, 42, 43] in �2. For α > 0, define the prod-
uct prior on the �2-coordinates by the product measure

�α =
∞⊗

k=1

N
(
0, k−2α−1)

,

so that the coordinates are independent. A draw from this distribution will be �α-
almost surely in all Sobolev spaces Hα′

2 for α′ < α. The posterior distribution
corresponding to �α is given by

(3.1) �α(· | Y) =
∞⊗

k=1

N

(
n

k2α+1 + n
Yk,

1

k2α+1 + n

)
.

If f0 ∈ Hβ and α = β , it has been shown [2, 7, 27] that the posterior contracts at
the minimax rate of convergence, while if α �= β , then strictly suboptimal rates are
achieved. Since the true smoothness β is generally unknown, two data-driven pro-
cedures have been considered in [26]. The empirical Bayes procedure consists of
selecting the smoothness parameter by using a likelihood-based approach. Namely,
we consider the estimate

(3.2) α̂n = argmax
α∈[0,an]

�n(α),

where an → ∞ is any sequence such that an = o(logn) as n → ∞ and

�n(α) = −1

2

∞∑
k=1

(
log

(
1 + n

k2α+1

)
− n2

k2α+1 + n
Y 2

k

)

is the marginal log-likelihood for α in the joint model (f,Y ) in the Bayesian setting
[relative to the infinite product measure

⊗∞
k=1 N(0,1)]. The quantity an is needed

to uniformly control the finite dimensional projections of the empirical Bayes pro-
cedure to establish a parametric BvM (Theorem 7.2). The posterior distribution is
defined via the plug-in procedure:

�α̂n
(· | Y) = �α(· | Y)|α=α̂n

.

If there exist multiple maxima to (3.2), then any of them can be selected.
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A fully Bayesian approach is to put a hyperprior on the parameter α. This yields
the hierarchical prior distribution:

�H =
∫ ∞

0
λ(α)�α dα,

where λ is a positive Lebesgue density on (0,∞) satisfying the following assump-
tion (Assumption 1 of [26]).

CONDITION 1. Assume that for every c1 > 0, there exists c2 ≥ 0, c3 ∈ R, with
c3 > 1 if c2 = 0 and c4 > 0 such that for α ≥ c1,

c−1
4 α−c3 exp(−c2α) ≤ λ(α) ≤ c4α

−c3 exp(−c2α).

The exponential, gamma and inverse gamma distributions satisfy Condition 1
for example. Knapik et al. [26] showed that both these procedures contract to the
true parameter adaptively at the (almost) minimax rate, uniformly over Sobolev
balls, and a similar result holds for Sobolev hyper rectangles. Both procedures
satisfy weak BvMs in the sense of Definition 1.

THEOREM 3.1. Consider the empirical Bayes procedure described above. For
every β,R > 0 and s > 1/2, we have

sup
f0∈Q(β,R)

E0βH−s

(
�α̂n

◦ τ−1
Y

,N
) → 0

as n → ∞. Moreover, for δ > 2 we have the (slightly) stronger convergence:

sup
f0∈QSS(β,R,ε)

E0βH(δ)

(
�α̂n

◦ τ−1
Y

,N
) → 0

as n → ∞.

THEOREM 3.2. Consider the hierarchical Bayes procedure described above,
where the prior density λ satisfies Condition 1. For every β,R > 0 and s > 1/2,
we have

sup
f0∈Q(β,R)

E0βH−s

(
�H

n ◦ τ−1
Y

,N
) → 0

as n → ∞. Moreover, for δ > 2 we have the (slightly) stronger convergence:

sup
f0∈QSS(β,R,ε)

E0βH(δ)

(
�H

n ◦ τ−1
Y

,N
) → 0

as n → ∞.

The requirement of self-similarity for a weak BvM in H(δ) could conceivably
be relaxed, but such an assumption is natural since it is anyway needed for the
construction of adaptive confidence sets in Section 4.1. It is not clear whether this
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is a fundamental limit or a technical artefact of the proof. The condition δ > 2 is
also required for technical reasons.

Whilst minimax optimality is clearly desirable from a theoretical frequentist
perspective, it may be too stringent a goal in our context. Using a purely Bayesian
point of view, we derive an analogous result to Doob’s almost sure consistency
result. Specifically, a weak BvM holds in H(δ) for prior draws, almost surely under
both the empirical Bayes and hierarchical priors. For this, it is sufficient to show
that prior draws are self-similar almost surely.

PROPOSITION 3.3. The parameter f0 is self-similar in the sense of Defini-
tion 2, �α-almost-surely for any α > 0. Consequently, �α̂n

and �H satisfy a weak
BvM in H(δ) for δ > 2, �α-a.s., α > 0, and �H -a.s., respectively.

In particular, f satisfies Definition 2 with smoothness α and parameters ρ > 1
and ε = ε(α,ρ,R) > 0 sufficiently small and random N0 sufficiently large, �α-
almost surely. As a simple corollary to Theorems 3.1 and 3.2, we have that the
rescaled posteriors merge weakly [with respect to weak convergence on H(δ)]
in the sense of Diaconis and Freedman [17]. By Proposition 2.1 of [36], we im-
mediately have that the unscaled posteriors merge weakly with respect to the �2-
topology since they are both consistent [26]. However, in the case of bounded Lip-
schitz functions (rather than the full case of continuous and bounded functions),
we can improve this result to obtain a rate of convergence.

COROLLARY 3.4. For every β,R > 0, s > 1/2 and δ > 2, we have

sup
f0∈Q(β,R)

E0βH−s

(
�H

n ◦ τ−1
Y

,�α̂n
◦ τ−1

Y

) → 0,

sup
f0∈QSS(β,R,ε)

E0βH(δ)

(
�H

n ◦ τ−1
Y

,�α̂n
◦ τ−1

Y

) → 0

as n → ∞. In particular, for S = H−s or H(δ) as above,

sup
u:‖u‖BL≤L

∣∣∣∣
∫
S
ud

(
�H

n − �α̂n

)∣∣∣∣ = oP0

(
L√
n

)
.

3.2. Slab and spike prior in L∞. Consider the slab and spike prior, whose
frequentist contraction rate has been analyzed in Castillo and van der Vaart [15],
Hoffmann et al. [24] and Castillo et al. [14]. The assumptions in [24] ensure that
prior draws are very sparse and only very few coefficients are fitted. We therefore
modify the prior slightly so that the prior automatically fits the first few coefficients
of the signal without any thresholding. This ensures that the posterior will have a
rough approximation of the signal before fitting wavelet coefficients more sparsely
at higher resolution levels. This makes sense from a practical point of view by pre-
venting overly sparse models and is in fact necessary from a theoretical perspective
(see Proposition 3.7).
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Let Jn = �logn/ log 2� be such that n/2 < 2Jn ≤ n and define some strictly
increasing sequence j0 = j0(n) → ∞ such that j0(n) < Jn. For the low resolutions
j ≤ j0(n), we fit a simple product prior where we draw the fjk’s independent from
a bounded density g that is strictly positive on R. For the middle resolution levels
j0(n) < j ≤ Jn, the fjk’s are drawn independently from the mixture

�j(dx) = (1 − wj,n)δ0(dx) + wj,ng(x) dx, n−K ≤ wj,n ≤ 2−j (1+θ),

for some K > 0 and θ > 1/2. All coefficients at levels j > Jn are set to 0. Since
this is a product prior, one can sample from the posterior by sampling from each
component separately (using either an MCMC scheme or explicit expressions de-
pending on the choice of density g). We have a weak BvM in the multiscale space
M0(w), where the rate at which the admissible sequence (wl) diverges depends
on the how many coefficients we automatically fit in the prior via the sequence
j0(n). Recall that a sequence (wl)l≥1 is admissible if wl/

√
l ↗ ∞.

THEOREM 3.5. Consider the slab and spike prior defined above with lower
threshold given by the strictly increasing sequence j0(n) → ∞. The posterior dis-
tribution satisfies a weak BvM in M0(w) in the sense of Definition 1, that is, for
every β,R > 0,

sup
f0∈H(β,R)

E0βM0(w)

(
�n ◦ τ−1

Y
,N

) → 0

as n → ∞, for any admissible sequence (wl) satisfying wj0(n)/
√

logn ↗ ∞.

Note that in the limiting case wl = √
l, we recover j0(n) � logn, so that the

prior automatically fits the same fixed fraction of the full 2Jn � n coefficients.
Since we consider only admissible sequences, the fraction of coefficients that the
prior fits automatically is asymptotically vanishing. An alternative way to consider
this result is in reverse: based on a desired rate in practice, we prescribe an ad-
missible sequence wl = √

lul , where ul is some divergent sequence, and then pick
j0(n) appropriately. Taking j0(n) to grow more slowly than any power of logn

means (wl) must grow faster than any power of l, resulting in a greater than log-
arithmic down-weighting of the wavelet coefficients in M(w). It may therefore
be more appropriate to take j0(n) a power of logn, which yields the following
specific case.

COROLLARY 3.6. Consider the slab and spike prior defined above with lower

threshold j0(n) � (logn)
1

2ε+1 for some ε > 0. Then it satisfies a weak BvM in
M0(w) in the sense of Definition 1, that is, for every β,R > 0,

sup
f0∈H(β,R)

E0βM0(w)

(
�n ◦ τ−1

Y
,N

) → 0

as n → ∞ for the admissible sequence wl = l1/2+εul , where ul is any (arbitrarily
slowly) diverging sequence.
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While the requirement to fit the first few coefficients of the prior is mild and of
practical use in nonparametrics, it is naturally of interest to study the behaviour of
the posterior distribution with full thresholding, that is, when j0(n) ≡ 0, which we
denote by �′. In general, however, the full posterior contracts to the truth at a rate
strictly slower than 1/

√
n in M(w), so that a

√
n-rescaling of the posterior cannot

converge weakly to a limit. This holds even for self-similar functions.

PROPOSITION 3.7. Let (wl) be any admissible sequence. Then for any β,R >

0, there exists ε = ε(β,R,ψ) > 0 and f0 ∈ HSS(β,R, ε) such that along some
subsequence (nm),

E0�
′(‖f −Y‖M(w) ≥ Mnmn−1/2

m | Y (nm)) → 1

for all Mn → ∞ sufficiently slowly. Consequently, for such an f0, a weak BvM in
M0(w) in the sense of Definition 1 cannot hold.

It is particularly relevant that Proposition 3.7 applies to self-similar parameters
since a major application of the weak BvM is the construction of adaptive credible
regions with good frequentist properties under self-similarity (see Proposition 4.5).
On the level of a

√
n-rescaling as in Definition 1, the rescaled posterior distribution

asymptotically puts vanishingly small probability mass on any given M(w)-ball
infinitely often. This occurs because the posterior selects nonzero coordinates by
thresholding at the level

√
logn/n rather than the required 1/

√
n (Lemma 1 of

[24]). The weighting sequence (wl) regularizes the extra
√

logn factor at high
frequencies, but does not do so at low frequencies. This is the reason that the
weighting sequence (wl) depends explicitly on the thresholding factor

√
logn in

Theorem 3.5.
It seems that using such an adaptive scheme on low frequencies of the signal

causes the weak BvM to fail. This prior closely resembles the frequentist practice
of wavelet thresholding, where such a phenomenon has also been observed. For
example, Giné and Nickl [20] require similar (though stronger) assumptions on the
number of coefficients that need to be fitted automatically to obtain a central limit
theorem for the distribution function of the hard thresholding wavelet estimator in
density estimation (Theorem 8 of [20]).

4. Applications.

4.1. Adaptive credible sets in �2. We propose credible sets from the hierarchi-
cal or empirical Bayes procedures, which we show are adaptive frequentist confi-
dence sets for self-similar parameters. We consider the natural Bayesian approach
of using the quantiles of the posterior distribution to obtain a credible set of pre-
scribed posterior probability. By considering sets whose geometry is amenable to
the space H(δ), the weak BvM implies that such credible sets are asymptotically
confidence sets.
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Recall that ‖f ‖2
H(δ) = ∑∞

k=1 k−1(logk)−2δf 2
k . For a given significance level

0 < γ < 1, consider the credible set:

(4.1) Cn = {
f : ‖f −Y‖H(δ) ≤ Rn/

√
n
}
,

where Rn = Rn(Y, γ ) is chosen such that �α̂n
(Cn|Y) = 1 − γ or �H(Cn|Y) =

1 − γ . Since the empirical and hierarchical Bayes procedures both satisfy a weak
BvM in H(δ), we have from Theorem 1 of [11] that in both cases

Pf0(f0 ∈ Cn) → 1 − γ and Rn = OP0(1)

as n → ∞, so that Cn is asymptotically an exact frequentist confidence set (of un-
bounded �2-diameter). We control the diameter of the set using either the estimator
α̂n or the posterior median as a smoothness estimate, and then use the standard fre-
quentist approach of undersmoothing. In the first case, consider

(4.2) C̃n = {
f : ‖f −Y‖H(δ) ≤ Rn/

√
n,‖f − f̂n‖Hα̂n−εn ≤ C

√
logn

}
,

where f̂n is the posterior mean, Rn is chosen as in Cn, εn (chosen possibly data
dependently) satisfies r1/(logn) ≤ εn ≤ (r2/ logn) ∧ (α̂n/2) for some 0 < r1 ≤
r2 ≤ ∞ and C > 1/r1. The undersmoothing by εn is necessary since the posterior
assigns probability one to Hα′

for α′ < α̂n, while probability zero to Hα̂n itself.
Geometrically, C̃n is the intersection of two �2-ellipsoids, Cn and an Hα̂n−εn -norm
ball. For a typical element f in C̃n, the size of the low frequency coordinates of f

are determined by Cn, while the smoothness condition in C̃n acts to regularize the
elements of Cn (which are typically not in �2) by shrinking the higher frequencies.

PROPOSITION 4.1. Let 0 < β1 ≤ β2 < ∞, R ≥ 1 and ε > 0. Then the confi-
dence set C̃n given in (4.2) satisfies

sup
f0∈QSS(β,R,ε)

β∈[β1,β2]

∣∣Pf0(f0 ∈ C̃n) − (1 − γ )
∣∣ → 0

as n → ∞. For every β ∈ [β1, β2], uniformly over f0 ∈ QSS(β,R, ε),

�α̂n
(C̃n | Y) = 1 − γ + OP0

(
n−C′n1/(4β+2))

for some C′ > 0 independent of β,R, ε,N0, ρ, while the �2-diameter satisfies for
δ > 2,

|C̃n|2 = OP0

(
n−β/(2β+1)(logn)(2δβ+1/2)/(2β+1)).

The logarithmic correction in the definition of H(δ) that is required for a weak
BvM causes the (logn)2δβ/(2β+1) penalty [which is O((logn)2δ) uniformly over
β ≥ 0]; this is the price required for using a plug-in approach in H(δ). The re-
maining (logn)1/(4β+2) factor arises due to the second constraint in C̃n, where the
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Hα̂n -radius must be taken sufficiently large to ensure C̃n has sufficient posterior
probability.

While the second constraint in (4.2) reduces the credibility below 1 − γ , Propo-
sition 4.1 shows that this credibility loss is very small. The Bayesian approach
takes care of this automatically since the posterior concentrates on a much more
regular set than �2. This is corroborated empirically by numerical evidence (see
Table 1), which shows that the credibility of the set C̃n rapidly approaches 1 − γ

as n increases.

REMARK 4.2. A naive interpretation of Cn yields a credible set that is far too
large, having unbounded �2-diameter, with the additional constraint in C̃n needed
to regularize the set. In actual fact, the posterior does this regularization automat-
ically with Cn being “almost optimal”. Proposition 4.1 could be rewritten for Cn

with exact credibility �α̂n
(Cn | Y) = 1 − γ and �2-diameter satisfying

�α̂n

(
f ∈ Cn : ‖f − f̂n‖2 ≤ Cn

− β
2β+1 (logn)

2δβ+1/2
2β+1 | Y )

= 1 − γ + OP0

(
n−C′n1/(4β+2))

,

for some C,C′ > 0. In view of this, the sets Cn and C̃n are essentially the same
from the point of view of the posterior, with Cn having exact credibility for finite
n and correct �2-diameter asymptotically and C̃n having the reverse. In particular,
the finite time credibility “gap” for either having too large radius in Cn or smaller
than 1 − γ credibility for C̃n is of the same size. Moreover, the above statement
holds without the need for a self-similarity assumption, which is possible since the
confidence set does not strictly have optimal diameter. The same notion also holds
for Cn arising from the hierarchical Bayes procedure.

REMARK 4.3. By Lemma 8.2 in the Supplement [39], the empirical Bayes
posterior mean f̂n satisfies ‖f̂n −Y‖H(δ) = oP0(1/

√
n) and so is an efficient esti-

mator of f0 in H(δ). Consequently, one can substitute Y with f̂n in the definitions
of Cn and C̃n.

Replacing the estimate α̂n with the median αM
n of the marginal posterior dis-

tribution λn(·|Y) yields a fully Bayesian analogue. To obtain the necessary un-
dersmoothing over a target range [β1, β2], we consider the shifted estimator
β̂n = αM

n − (C + 1)/ logn, where C(R,β2, ε, ρ) = maxβ1≤β≤β2 C(R,β, ε, ρ) is
the constant appearing in Lemma 8.7 in the Supplement [39] (which can be ex-
plicitly computed). Consider

(4.3) C̃′
n = {

f : ‖f −Y‖H ≤ Rn/
√

n,‖f − f̂n‖Hβ̂n
≤ Mn

√
logn

}
,

where f̂n is the posterior mean, Mn → ∞ grows more slowly than any polynomial
and Rn is chosen as in Cn. Taking Cn arising from the hierarchical Bayesian proce-
dure �H , C̃′

n is a “fully Bayesian” object. We have an analogue of Proposition 4.1.
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PROPOSITION 4.4. Let 0 < β1 ≤ β2 < ∞, R ≥ 1 and ε > 0. Then the confi-
dence set C̃′

n given in (4.3) satisfies

sup
f0∈QSS(β,R,ε)

β∈[β1,β2]

∣∣Pf0

(
f0 ∈ C̃′

n

) − (1 − γ )
∣∣ → 0

as n → ∞. For every β ∈ [β1, β2], uniformly over f0 ∈ QSS(β,R, ε),

�H (
C̃′

n | Y ) = 1 − γ + oP0(1),

while the �2-diameter satisfies for δ > 2,∣∣C̃′
n

∣∣
2 = OP0

(
n−β/(2β+1)(logn)(2δβ+1/2)/(2β+1)).

4.2. Adaptive credible bands in L∞. We provide a fully Bayesian construc-
tion of adaptive credible bands using the slab and spike prior. The posterior me-
dian f̃ = (f̃n,lk)(l,k)∈� (defined coordinate-wise) takes the form of a threshold-
ing estimator (cf. [1]), which we use to identify significant coefficients. This has
the advantage of both simplicity and interpretability and also provides a natural
Bayesian approach for this coefficient selection. Such an approach was used by
Kueh [28] to construct an asymptotically honest (i.e., uniform in the parameter
space) adaptive frequentist confidence set on the sphere using needlets. In that ar-
ticle, the coefficients are selected based on the empirical wavelet coefficients with
the thresholds selected conservatively using Bernstein’s inequality. In contrast, we
use a Bayesian approach to automatically select the thresholding quantile constants
that then yields exact coverage statements.

Let

(4.4) Dn = {
f : ‖f −Y‖M(w) ≤ Rn/

√
n
}
,

where Rn = Rn(Y, γ ) is chosen such that �(Dn | Y) = 1 − γ . We then define the
data driven width of our confidence band:

(4.5) σn,γ = σn,γ (Y ) = sup
x∈[0,1]

Jn∑
l=0

vn

√
logn

n

2l−1∑
k=0

1{f̃lk �=0}
∣∣ψlk(x)

∣∣,
where (vn) is any (possibly data-driven) sequence such that vn → ∞. Under a
local self-similarity type condition as in Kueh [28], one could possibly remove the
supremum in (4.5) to obtain a spatially adaptive procedure. However, we restrict
attention to more global self-similarity conditions here for simplicity. Since we
consider wavelets satisfying (2.3), we have

σn,γ ≤ C(ψ)vn

√
logn

n

Jn∑
l=0

2l/2 ≤ C′vn

√
logn < ∞ a.s.,
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for all n and γ ∈ (0,1). Let πmed denote the projection onto the nonzero coordi-
nates of the posterior median and in a slight abuse of notation set

πmed(Y )(x) =
Jn∑
l=0

2l−1∑
k=0

Ylk1{f̃lk �=0}ψlk(x),

where we recall Ylk = ∫ 1
0 ψlk(t) dY (t). Consider the set

(4.6) Dn = {
f : ‖f −Y‖M(w) ≤ Rn/

√
n,

∥∥f − πmed(Y )
∥∥∞ ≤ σn,γ (Y )

}
,

where Rn is as in (4.4). This involves a two-stage procedure: we firstly calculate
the required M(w)-radius Rn and then use the posterior median to select the co-
efficients deemed significant.

PROPOSITION 4.5. Let 0 < β1 ≤ β2 < ∞, R ≥ 1 and ε > 0. Consider the
slab and spike prior defined above with threshold j0(n) → ∞ and let (wl) be any
admissible sequence that satisfies wj0(n)/

√
logn ↗ ∞. Then the confidence set

Dn given in (4.6), using the choice (wl) and σn,γ (Y ) defined in (4.5) for vn → ∞,
satisfies

sup
f0∈HSS(β,R,ε)

β∈[β1,β2]

∣∣Pf0(f0 ∈ Dn) − (1 − γ )
∣∣ → 0

as n → ∞. For every β ∈ [β1, β2], uniformly over f0 ∈ HSS(β,R, ε),

�(Dn | Y) = 1 − γ + oP0(1),

while the L∞-diameter satisfies

|Dn|∞ = OP0

(
(n/ logn)−β/(2β+1)vn

)
.

Under self-similarity, Dn has radius equal to the minimax rate in L∞ up to
some factor vn that can be taken to diverge arbitrarily slowly, again mirroring
a frequentist undersmoothing penalty. The choice of the posterior median is for
simplicity and can be replaced by any other suitable thresholding procedure, for
example directly using the posterior mixing probabilities between the atom at zero
and the continuous density component.

One could also consider other alternatives to σn,γ that simultaneously control
the L∞-norm of the credible set whilst also preserving coverage and credibility.
A similar construction to the credible sets in Section 4.1 could also be pursued by
intersecting Dn with a B

β̂n

∞1-ball, where β̂n is a suitable estimate of the smoothness.
Alternatively, in view of Remark 4.2, one can also show that

�

(
f ∈ Dn : ‖f − Tn‖∞ ≤

(
wjn(β)√
jn(β)

n−β/(2β+1)(logn)(β+1)/(2β+1)

) ∣∣∣∣ Y

)

= 1 − γ + oP0(1),
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where Tn is an efficient estimator of f0 in M that is also rate-optimal in L∞
(e.g., (8.5) or (8.6) in the Supplement [39]) and 2jn ∼ (n logn)1/(2β+1). The factor
wjn(β)/

√
jn(β) can be made to diverge arbitrarily slowly by the prior choice of

j0(n).

5. Posterior independence of the credible sets. As shown above, the spaces
H(δ) = H

−1/2,δ
2 and M(w) yield credible sets with good frequentist properties.

However, given the different geometries proposed, it is of interest to compare them
to more classical credible sets. Consider the �2-ball studied in [18, 43] (though
without the blow-up factor of the latter)

(5.1) C�2
n = {

f : ‖f − f̂n‖2 ≤ Q̃n(α̂n, γ )
}
,

where Q̃n(α̂n, γ ) is selected such that �α̂n
(C

�2
n | Y) = 1 − γ . Since the poste-

rior variance of �α(· | Y) is independent of the data, the radius Q̃n(α̂n, γ ) de-
pends only on the data through α̂n. By Theorem 1 of [18], we have Q̃n(α, γ ) =
Qnn

−α/(2α+1), where Qn → Q > 0.
Numerical examples of C̃n and C

�2
n are displayed in Section 6. Given the simi-

larity of C̃n and C
�2
n in Figures 1 and 2, a natural question (voiced in [10, 34, 44]) is

to what extent these sets actually differ, both in theory and practice. From a purely
geometric point of view, these sets can be considered as infinite-dimensional el-
lipsoids with differing orientations. From a Bayesian perspective, an intriguing
question is to what degree the decision rules on which these credible sets are based
differ with respect to the posterior. For simplicity, we centre C̃n at the posterior
mean f̂n, which we can do by Remark 4.3.

THEOREM 5.1. Suppose an in (3.2) satisfies an ≤ logn/(6 logn logn). Then
the (1 − γ )-H(δ)-credible ball C̃n defined in (4.2) and the (1 − γ )-�2-credible
ball C

�2
n defined in (5.1) are asymptotically independent under the empirical Bayes

posterior, that is, as n → ∞,

�α̂n

(
C̃n ∩ C�2

n | Y ) = �α̂n
(C̃n | Y)�α̂n

(
C�2

n | Y ) + oP0(1) = (1 − γ )2 + oP0(1)

uniformly over f0 ∈Q(β,R).

The first equality above also holds with C̃n replaced by Cn or C
�2
n replaced by

the blown-up �2-credible ball studied in [43]. Moreover, the above statement also
holds for the hierarchical Bayes posterior with C̃n replaced by the (1 − γ )-H(δ)-
credible ball C̃ ′

n given in (4.3) and C
�2
n replaced by the corresponding hierarchical

Bayes �2-credible set.
Theorem 5.1 says that the Bayesian decision rules leading to the construction of

C̃n and C
�2
n are fundamentally unrelated—one contains asymptotically no infor-

mation about the other. Although we can conclude that C̃n and (blown-up) C
�2
n are
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frequentist confidence sets with similar properties, they express completely differ-
ent aspects of the posterior. Note that this is not simply an artefact of the prior
choice since the equivalent prior credible sets are not independent under the prior
despite its product structure. An alternative interpretation is to consider Bayesian
tests based on the credible regions, which have optimal frequentist properties. In
this context, the two tests screen different and unrelated features. While both of
these approaches are valid, both for the frequentist and the Bayesian, Theorem 5.1
says that neither of these constructions can be reduced to the other.

The H(δ)-credible sets are principally determined by the low frequencies (k ≤
kn, where kn → ∞ in the proof), whereas the �2-credible sets are driven by the
high frequencies (k > kn). The product structure of the posterior asymptotically
decouples these two regimes yielding the independence statement. In particular,
the H(δ)-norm down-weights the higher order frequencies enough that one is deal-
ing with a close to finite-dimensional model. Such a result is unlikely to hold for
arbitrary priors, unless there is some degree of posterior independence between
the frequency ranges driving the different credible sets (though less independence
than a full product posterior is necessary). The numerical simulations in Table 1
corroborate Theorem 5.1 very closely, indicating that this result provides a good
finite sample approximation to the posterior behaviour.

The posterior draws plotted in Section 6 are approximately drawn from the pos-
terior distribution conditioned to the respective credible sets. Corollary 5.2 quanti-
fies how close these draws are in terms of the total variation distance ‖ · ‖TV.

COROLLARY 5.2. Let �
C̃n

α̂n
(· | Y), �

C
�2
n

α̂n
(· | Y) denote the posterior distribu-

tion conditioned to the sets C̃n, C
�2
n , respectively. Then as n → ∞,

∥∥�C̃n

α̂n
(· | Y) − �

C
�2
n

α̂n
(· | Y)

∥∥
TV = γ + oP0(1).

PROOF. Each conditional distribution consists of the posterior distribution re-
stricted to the relevant credible set and normalized by the same factor (1 −γ ). The
two distributions are therefore identical on their intersection and so twice the total
variation distance equals

�α̂n
(C̃n ∩ (C

�2
n )c | Y)

�α̂n
(C̃n | Y)

+ �α̂n
(C̃c

n ∩ C
�2
n | Y)

�α̂n
(C

�2
n | Y)

= 2γ (1 − γ ) + oP0(1)

1 − γ
.

�

Turning to the L∞-setting, for mathematical convenience let us consider the
slightly stronger Besov norm ‖f ‖B0∞1

= ∑
l 2l/2 maxk |〈f,ψlk〉| as in Hoffmann

et al. [24]. This norm is closely related to the ‖ · ‖∞-norm via the Besov space
embbedings B0∞1 ⊂ L∞ ⊂ B0∞∞ (Chapter 4.3 of [22]). Define

(5.2) DL∞
n = {

f : ‖f − Tn‖B0∞1
≤ Qn(γ )

}
,
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where Tn = T
(2)
n is given by (8.6) in the Supplement [39] and is an efficient es-

timator of f0 in M that is also rate-optimal in L∞ and Qn(γ ) is selected such
that �(DL∞

n | Y) = 1 − γ . The choice of Tn is not essential, but it is convenient
to select an estimator that can simultaneously act as the centering for both Dn and
DL∞

n . We take the density g in � to be Gaussian to simplify certain computations.
Analogous results to those in H(δ) then hold.

THEOREM 5.3. Consider the slab and spike prior � with lower threshold
j0(n) → ∞ and let g be the density of the Gaussian distribution N(0, τ 2). Let
(wl) be any admissible sequence satisfying wj0(n)/

√
logn ↗ ∞ as n → ∞. Then

the (1 − γ )-M(w)-credible ball Dn defined in (4.6) and the (1 − γ )-L∞-credible
ball DL∞

n defined in (5.2) are asymptotically independent under the posterior, that
is, as n → ∞,

�
(
Dn ∩ DL∞

n | Y ) = �(Dn | Y)�
(
DL∞

n | Y ) + oP0(1) = (1 − γ )2 + oP0(1)

uniformly over f0 ∈H(β,R).

In particular the choice of j0(n) in Corollary 3.6 satisfies the conditions of Theo-
rem 5.3 since then wj0(n) � un

√
logn, where un can be made to diverge arbitrarily

slowly.

COROLLARY 5.4. Consider the same conditions as in Theorem 5.3 and let
�Dn(· | Y), �DL∞

n (· | Y) denote the posterior distribution conditioned to the sets
Dn, DL∞

n respectively. Then as n → ∞,

∥∥�Dn(· | Y) − �DL∞
n (· | Y)

∥∥
TV = γ + oP0(1).

Heuristics for an extension to density estimation. The proofs of Theorems 5.1
and 5.3 presented here rely on the independence of the coordinates in the Gaussian
white noise model. This model can be viewed as an idealized version of other
more concrete statistical models, being mathematically more tractable. In view of
the extension of the nonparametric BvM to density estimation in [12], let us briefly
discuss a heuristic of what we might expect in this setting.

Suppose we observe Y1, . . . , Yn i.i.d. observations from an unknown density
f0 on [0,1]. Assume that f0 is uniformly bounded away from 0 and that f0 ∈
Cβ([0,1]), where 1/2 < β ≤ 1. Consider a simple histogram prior �:

f = 2L
2L−1∑
k=0

hk1ILk
, ILk = (

k2−L, (k + 1)2−L]
, k ≥ 0,

where the hk are drawn from a D(1, . . . ,1)-Dirichlet distribution on the unit sim-
plex in R

2L
. We ignore adaptation issues and select L = Ln → ∞ based on the
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smoothness of f0. Such a prior has been shown to contract optimally in L∞ by
Castillo [9] and to satisfy a weak BvM in M0 by Castillo and Nickl [12].

Let (ψlk) denote the Haar wavelet basis on [0,1] and M the related multiscale
space for a suitable admissible sequence (wl). Further let πA denote the projection
onto the elements of the Haar wavelet basis with resolution level contained in A.
One can show that for suitable sequences jn,1, jn,2 → ∞ satisfying 2jn,1 � 2jn,2 ,

�
(
f : ‖f − Tn‖M ≤ Rn/

√
n,‖f − Tn‖∞ ≤ Q̄n | Y )

= �
(
f : ∥∥π≤jn,1(f − Tn)

∥∥
M ≤ (

Rn + o(1)
)
/
√

n,∥∥π≥jn,2(f − Tn)
∥∥∞ ≤ Q̄n + δn|Y ) + oP0(1),

where Tn is a suitable centering, Rn/
√

n and Q̄n are the (1 − γ )-quantiles of
the respective credible sets and δn is selected small enough to only change the
credibility of the latter set by oP0(1).

Using the conjugacy of the Dirichlet distribution with multinomial sampling, the
posterior distribution for (hk) is D(N1 + 1, . . . ,NL + 1), where Nk = |{Yi : Yi ∈
ILk}|. Observe that the law of flk = 〈f,ψlk〉 under the posterior depends princi-
pally on the observations falling within supp(ψlk) = [k2−l , (k+1)2−l]. Unlike the
Gaussian white noise model, there is dependence across the posterior wavelet co-
efficients due to the dependence within the Dirichlet distribution and the constraint
that the number of observations sums to n.

The ‖ · ‖M-norm in the above display is the weighted maximum of {|flk| : l ≤
jn,1}. If jn,1 does not grow too fast, this consists of relatively few “large sample”
averages. Heuristically, this term behaves like a central order statistic, being driven
by the average sample behaviour. On the contrary, the ‖ · ‖∞-term is determined
by the largest coefficients at each resolution level l ≥ jn,2. Since 2jn,1 � 2jn,2 ,
these can be seen to behave more like extreme order statistics, being the maximum
of many almost independent “small samples” (at least relative to the frequencies
l ≤ jn,1). Even though order statistics depend, by definition, on all observations,
central and extreme order statistics asymptotically depend on the observations in
orthogonal ways and become stochastically independent (cf. Chapter 21 of [45]).
One might therefore hope that the two norms in the previous display are asymp-
totically independent in the sense of Theorems 5.1 and 5.3.

An alternative way to understand why the wavelet coefficients at a given res-
olution level may be considered “almost independent” under the posterior is via
Poissonization. It is well known that density estimation is asymptotically equiv-
alent to Poisson intensity estimation [32, 40], where one observes a Poisson pro-
cess with intensity measure nf0. Equivalently, the Poisson experiment corresponds
to observing a Poisson random variable N with expectation n and then indepen-
dently of N observing Y1, . . . , YN i.i.d. with density f0. In this framework, the
dependence induced by the number of observations summing to n is removed,
meaning that the variables (N1, . . . ,NL) defined above are fully independent. The



ADAPTIVE NONPARAMETRIC BVMS 2531

FIG. 1. Empirical Bayes credible sets for the Fourier sine basis with the true curve (black) and

the empirical Bayes posterior mean (red). The left panels contain the �2 credible ball C
�2
n given in

(5.1) and the right panels contain the set C̃n given in (4.2). From top to bottom, n = 500,2000 and
α̂n = 1.29,1.01, with the right-hand side each having credibility 95%.

remaining dependence is due to the Dirichlet distribution and becomes negligible
as the number of bins Ln → ∞. Since this equivalence is asymptotic in nature,
one should expect such a heuristic to manifest itself also asymptotically.

6. Simulation example. We apply our approach in a numerical example, con-
sidering first the space H

−1/2,δ
2 . Consider the Fourier sine basis

ek(x) = √
2 sin(kπx), k = 1,2, . . . ,

and define the true function f0,k = 〈f0, ek〉2 = k−3/2 sin(k) so that the true smooth-
ness is β = 1. We consider realisations of the data (2.2) at levels n = 500 and 2000
and use the empirical Bayes posterior distribution. We plotted the true f0 (black),
the posterior mean (red) and an approximation to the credible sets (grey). To sim-
ulate the �2 credible balls C

�2
n given in (5.1), we sampled 2000 curves from the

posterior distribution and kept the 95% closest in the �2 sense to the posterior
mean and plotted them (grey). We performed the same approach to obtain the full
H(δ)-credible set Cn given in (4.1) and then plotted the full adaptive confidence
set C̃n given in (4.2) with C = 1 and εn = 1/ logn. We also present the approx-
imate credibility of C̃n by considering the fraction of the simulated curves from
the posterior that satisfy the extra constraint of C̃n that ‖f − f̂n‖Hα̂n−εn ≤ √

logn.
This is given in Figure 1.

While the true �2 and H(δ) credible balls are unbounded in L∞, the posterior
draws can be shown to be bounded in L∞ explaining the boundedness of the plots.
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TABLE 1
Table showing the average credibility of C̃n, the average credibility of the posterior draws falling in

both sets and the expected value of the latter (from Theorem 5.1)

n = 500
Chosen significance 0.95 0.90 0.85 0.80
Credibility of C̃n 0.9500 0.8999 0.8499 0.8000

Credibility of C̃n ∩ C
�2
n 0.9020 0.8102 0.7220 0.6406

Expected credibility of C̃n ∩ C
�2
n 0.9025 0.8100 0.7225 0.6400

n = 2000
Chosen significance 0.95 0.90 0.85 0.80
Credibility of C̃n 0.9500 0.9000 0.8500 0.8000

Credibility of C̃n ∩ C
�2
n 0.9025 0.8095 0.7226 0.6409

Expected credibility of C̃n ∩ C
�2
n 0.9025 0.8100 0.7225 0.6400

Sampling from the posterior (and thereby implicitly intersecting the sets C
�2
n and

C̃n with the posterior support) seems the natural approach for the Bayesian. In-
deed those elements that constitute the “roughest” or least regular elements of the
credible sets are not seen by the posterior, that is, they have little or no posterior
mass (see Lemma 8.3 in the Supplement [39]). The posterior contains significantly
more information than merely the �2 or H(δ) norm of the parameter of interest, as
can be seen by it assigning mass 1 to a strict subset of �2. For further discussion
on plotting such credible sets, see [10, 31, 44].

For a given set of 2000 posterior draws, we also computed the credibility of C̃n

at a chosen significance level and the credibility of the posterior draws falling in
both C̃n and C

�2
n . This latter quantity has value (1 − γ )2 + oP0(1) by Theorem 5.1.

We repeated this 20 times and the average values are presented in Table 1.
The posterior distribution appears to have some difficulty visually capturing the

resulting function at its peak. In fact, the credible sets do “cover the true function”,
but do so in an �2 rather than an L∞-sense. Indeed, any �2-type confidence ball
will be unresponsive to highly localized pointwise features since they occur on a
set of small Lebesgue measure (as in this case). Similar reasoning also explains
the performance of the posterior mean at this point. The posterior mean estimates
the Fourier coefficients of f0, and hence estimates the true function in an �2-sense
via its Fourier series.

In Section 5, it was shown that the two approaches behave very differently the-
oretically, and the numerical results in Table 1 match this theory very closely. It
appears that the two methods do indeed use different rejection criteria in practice
resulting in different selection outcomes. The visual similarity between the �2 and
H(δ)-credible balls in Figure 1 is therefore a result of the posterior draws them-
selves looking similar, rather than the methods performing identically.

We note that already by n = 500, C̃n has the correct credibility so that the high
frequency smoothness constraint is satisfied with posterior probability virtually
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FIG. 2. Empirical Bayes credible sets for the Volterra SVD basis with the true curve (black) and the
empirical Bayes posterior mean (red) for n = 1000 and α̂n = 1.07. The left and right panels contain

the �2 credible ball C
�2
n given in (5.1) and C̃n (credibility 95%) given in (4.2), respectively.

equal to one (cf. Proposition 4.1). C̃n is therefore an actual credible set for reason-
able (finite) sample sizes rather than a purely asymptotic credible set. The posterior
distribution already strongly regularizes the high frequencies so that the posterior
draws are very regular with high probability. This can be quantitatively seen by the
rapidly decaying variance term of the posterior distribution (3.1). This is indeed the
case in the simulation, where the credibility gap is negligible, thereby demonstrat-
ing that most of the posterior draws already satisfy the smoothness constraint in
C̃n.

We repeat the same simulation using the same true function f0,k = k−3/2 sin(k),
but with basis equal to the singular value decomposition (SVD) of the Volterra
operator (cf. [27]):

ek(x) = √
2 cos

(
(k − 1/2)πx

)
, k = 1,2, . . .

and plot this in Figure 2 for n = 1000. Unlike Figure 1, the resulting function
has no “spike” and so both credible sets have no trouble visually capturing the
true function (though one should remember that these are �2 rather than L∞ type
credible sets).

We now illustrate the multiscale approach using the slab and spike prior with
lower threshold j0(n) = √

logn, plotting the true function (solid black) and pos-
terior mean (red) at levels n = 200,500. We have used Haar wavelets, set g to be
N(0,1/2) and have taken prior weights wj,n = min(n−1,2−5.5j ), corresponding to
K = 1 and θ = 4.5. For n = 200 and 500, we have fitted one scaling function plus
28 − 1 = 255 and 29 − 1 = 511 wavelet coefficients respectively (i.e., 2Jn+1 − 1).
We again sampled 2000 curves from the posterior distribution and plotted the 95%
closest to the posterior mean in the M(w) sense (grey) to simulate Dn in (4.4). We
also used the posterior draws to generate a 95% credible band in L∞ by estimating
Q̄n(0.05) and then plotting DL∞

n in (5.2) (dashed black). Finally, we computed lo-
cal 95% credible intervals at every point x ∈ [0,1] and joined these to form a
credible band (dashed blue). This is given in Figure 3.

We see from Figure 3 that each posterior draw consists of a rough approxima-
tion of the signal via frequencies j ≤ j0(n) with a few “spikes” from the high
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FIG. 3. Slab and spike credible sets with the true curve (black), posterior mean (red), a 95% credi-
ble band in L∞ (dashed black), pointwise 95% credible intervals (dashed blue) and the set Dn given
in (4.4) (grey). We have n = 200,500, respectively.

frequencies; the rather unusual shape is a reflection of the prior choice. It is worth
noting that the posterior draws are bounded in L∞ since the posterior contracts rate
optimally to the truth in L∞ [24]. We see that the L∞ diameter of Dn is strictly
greater than that of the L∞-credible bands, though this only manifests itself in a
few places. The size of the L∞-bands is driven by the size of the spikes, which
are few in a number but occur in every posterior draw, resulting in seemingly very
wide credible bands.

On the contrary, the local credible intervals ignore the spikes since less than 5%
of the draws have a spike at any given point, resulting in much tighter bands. The
dashed blue lines in effect correspond to the 95% L∞-band from a prior fitting
exclusively the low frequencies j ≤ j0(n), which is a nonadaptive prior modelling
analytic smoothness. This dramatically oversmoothes the truth resulting in far too
narrow credible bands and is highly dangerous since it is known that oversmooth-
ing the truth can yield zero coverage [27, 29].
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SUPPLEMENTARY MATERIAL

Supplement to “Adaptive Bernstein–von Mises theorems in Gaussian white
noise” (DOI: 10.1214/16-AOS1533SUPP; .pdf). All proofs together with addi-
tional results are given in the Supplement [39].
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