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ON THE CONTRACTION PROPERTIES OF SOME
HIGH-DIMENSIONAL QUASI-POSTERIOR DISTRIBUTIONS

BY YVES A. ATCHADÉ1

University of Michigan

We study the contraction properties of a quasi-posterior distribution �̌n,d

obtained by combining a quasi-likelihood function and a sparsity inducing
prior distribution on R

d , as both n (the sample size), and d (the dimension of
the parameter) increase. We derive some general results that highlight a set
of sufficient conditions under which �̌n,d puts increasingly high probability
on sparse subsets of Rd , and contracts toward the true value of the parameter.
We apply these results to the analysis of logistic regression models, and bi-
nary graphical models, in high-dimensional settings. For the logistic regres-
sion model, we shows that for well-behaved design matrices, the posterior
distribution contracts at the rate O(

√
s� log(d)/n), where s� is the number of

nonzero components of the parameter. For the binary graphical model, un-
der some regularity conditions, we show that a quasi-posterior analog of the
neighborhood selection of [Ann. Statist. 34 (2006) 1436–1462] contracts in
the Frobenius norm at the rate O(

√
(p + S) log(p)/n), where p is the num-

ber of nodes, and S the number of edges of the true graph.

1. Introduction. Let Z(n) denote a sample space equipped with a reference
sigma-finite measure denoted dz. The upper script n represents the sample size.
Let Z be a Z(n)-valued random variable that we model as having distribution P

(n)
θ

given a parameter θ ∈ R
d . We assume that P(n)

θ has a density fn,θ : P(n)
θ (dz) =

fn,θ (z)dz. Let � be a prior distribution on R
d . The resulting posterior distribution

for learning the parameter θ is the random probability measure

A �→
∫
A fn,θ (Z)�(dθ)∫
Rd fn,θ (Z)�(dθ)

, A meas. ⊆ R
d .

In practice, many inference problems are best tackled using quasi-likelihood (or
pseudo-likelihood) functions. In the Bayesian framework, this leads to a quasi-
Bayesian inference. Let (θ, z) �→ qn,θ (z) denote a jointly measurable function such
that 0 <

∫
Rd qn,θ (z)�(dθ) < ∞, almost surely [dz]. Substituting qn,θ in place of
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fn,θ yields the quasi-posterior (QP) distribution

(1.1) �̌n,d(A|Z)
def=
∫
A qn,θ (Z)�(dθ)∫
Rd qn,θ (Z)�(dθ)

, A ⊆ R
d .

Although �̌n,d is not a posterior distribution in the usual sense, it possesses the
property that it is a probability distribution obtained by tilting a prior distribu-
tion using a likelihood-like function. Hence, to the extent that the quasi-likelihood
function θ �→ qn,θ (Z) contains information about the true value of the parame-
ter θ , one can expect the same from the quasi-posterior distribution (1.1), in which
case valid inferential procedures can be derived using �̌n,d . This idea is perhaps
best seen by noting that (1.1) is a solution of the minimization

min
μ��

[
−
∫
Rd

logqn,θ (Z)μ(dθ) + KL(μ|�)

]
,

where KL(μ|�)
def= ∫

Rd log(dμ/d�)dμ is the KL-divergence between μ and �,
and where the minimization is over all probability measures that are absolutely
continuous with respect to the prior �. We refer to [34] for more details (and in
particular to Proposition 5.1 of that paper for a proof of the above statement). The
implication of this result is that, under appropriate regularity conditions, one can
expect the QP distribution to concentrate around the maximizer of the function
θ �→ logqn,θ (Z), provided that the prior distribution does not prevent it. The goal
of this paper is to formalize this idea for a class of statistical models.

As pointed out to us by a referee, QP distributions are commonly used in the
PAC-Bayesian framework to aggregate estimators [1, 2, 14, 16, 26]. However,
in this literature the emphasis is typically on the estimators, not on the QP dis-
tributions themselves. An influential work on quasi-Bayesian procedures is [15],
which subsequently led to the development of quasi-Bayesian inference in semi-
parametric modeling, particularly models arising from moment and conditional
moment restrictions [20, 22, 24, 33]. Approximate Bayesian computation (ABC)
methods (see, e.g., [25] and the references therein) are also popular quasi-Bayesian
procedures.

The present paper is motivated by the idea that quasi-Bayesian inference holds
a great potential for dealing with high-dimensional statistical models. For some
of these models, a likelihood-based inference is intractable, and this has impeded
somewhat the applicability of the Bayesian framework in this area. However, M-
estimation procedures that maximizes various quasi/pseudo-likelihood functions
are often readily available. Using the quasi-Bayesian framework, these quasi-
likelihood functions can be easily employed to derive tractable quasi-Bayesian
procedures.

We study the behavior of the QP distribution (1.1) when the prior distribution
� is given by

(1.2) �(dθ) = ∑
δ∈�d

πδ�(dθ |δ),
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for a discrete distribution {πδ, δ ∈ �d} on �d
def= {0,1}d , and a sparsity inducing

prior �(dθ |δ) on R
d , that we build as follows. Given δ, the components of θ are

independent, and for 1 ≤ j ≤ d ,

(1.3) θj |δ ∼
{

Dirac(0), if δj = 0,

Laplace(ρ), if δj = 1,

where Dirac(0) is the Dirac measure on R with full mass at 0, and Laplace(ρ)

denotes the Laplace distribution with parameter ρ > 0. The marginal prior distri-
bution of θj implied by (1.3) belongs to the class of spike-and-slab priors [28].

We work under the assumption that Z ∼ P
(n)
θ�

for some θ� ∈ R
d . When d

is assumed fixed and n → ∞, it is known from the initial work of [15] that
�̌n,d concentrates around θ�, and is asymptotically Gaussian (when properly
scaled). Infinite-dimensional extensions of such results have recently been studied
[17, 20, 24]. The present paper focuses on the case where �̌n,d arises from a high-
dimensional parametric model with the sparsity inducing prior (1.2)–(1.3), and the
results that we derive substantially extend previous works by [12, 22]. More pre-
cisely, we derive a general result (Theorem 3) that highlights the key determinants
that control the convergence and convergence rate of �̌n,d toward θ�. The theorem
is obtained by combining ideas from [12] together with a general methodology for
studying high-dimensional M-estimators synthesized in [29], as well as an impor-
tant technical result by [21] on the existence of test functions.

We apply these results to the Bayesian analysis of high-dimensional logistic re-
gression models. We derive a nonasymptotic result (Theorem 4) that shows that for
large d , and appropriately large sample size n, the resulting posterior distribution
�̌n,d puts a high probability on sparse subsets of Rd , and contracts toward the true
value of the parameter θ� as n,d → ∞, at the rate

O

(√
s� log(d)

n

)
,

where s� = ‖θ�‖0. The constant in the big-O notation depends crucially on some
smallest restricted eigenvalues of the Fisher information matrix of the model.

We also apply the results to a quasi-Bayesian inference of high-dimensional bi-
nary graphical models. Discrete graphical models are known to pose significant
difficulties due to the intractable nature of the likelihood function. A very success-
ful frequentist approach to deal with large graphical models is the neighborhood
selection method of [27] initially proposed for Gaussian graphical models, and ex-
tended to the Ising model by [30]. We analyze a quasi-Bayesian version of neigh-
borhood selection applied to binary graphical models. We show that as n,p → ∞
(where p is the number of nodes in the graph), provided that n is sufficiently large,
the QP distribution obtained from neighborhood selection contracts toward the true
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model parameter θ� in the Frobenius norm at the rate

O

(√
(p + S) log(p)

n

)
,

where S is the number of edges in the graph defined by θ�. This convergence
rate is the same as in the Gaussian case with a full likelihood inference [8], and
compares very well with the best existing frequentist results. For instance, [32]
shows that the scaled g-Lasso version of neighborhood selection in the Gaussian
case converges at the rate O(s�

√
log(d)/n) in the spectral norm, where s� is the

maximum degree of the graph defined by θ�. In general, faster convergence rate
can be achieved if one is only interested in components of the matrix. To illustrate

this, we analyze the contraction of �̌n,d in the norm |||θ ||| def= maxj ‖θ·j‖2, where
θ·j is the j th column of θ . We show that in this norm, the QP distribution obtained
from neighborhood selection contracts toward θ� at the rate

O

(√
s� log(p)

n

)
,

where here s� is the maximum degree of the graph defined by the true parame-
ter θ�. Furthermore, the sample size n required for this result to hold is milder, and
comparable to the sample size requirement in simple high-dimensional logistic
regressions.

An important issue not addressed in this work is how to obtain Monte Carlo
samples from the QP distribution (1.1). It is well known that posterior and quasi-
posterior distributions built from discrete-continuous mixture priors as in (1.2)–
(1.3) are computational difficult to handle with standard Markov Chain Monte
Carlo algorithms. However, there has been some recent progress, including the
STMaLa of [31], or the Moreau approximation approach of the author developed
in [4]. We point the reader to these works for more details and some additional
references. Further discussion of computational methods can be found in [12].

The remainder of the paper is organized as follows. First, we close the Introduc-
tion with some notation that will be used throughout the paper. Section 2 develops
a general analysis of the QP distribution �̌n,d . The applications to logistic regres-
sion models and binary graphical models are discussed in Section 3. The proof of
Theorem 3 is presented in Section 5, while the remaining proofs are gathered in
the supplementary material [6].

1.1. Notation. For an integer d ≥ 1, we equip the Euclidean space R
d with its

usual Euclidean inner product 〈·, ·〉, associated norm ‖ · ‖2, and its Borel sigma-

algebra. We set �d
def= {0,1}d . We will also use the following norms on R

d :

‖θ‖1
def= ∑d

j=1 |θj |, ‖θ‖0
def= ∑d

j=1 1{|θj |>0}, and ‖θ‖∞ def= max1≤j≤d |θj |.
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For δ ∈ �d , μd,δ denotes the product measure on R
d defined as

μd,δ(dθ)
def=

d∏
j=1

νδj
(dθj ),

where ν0(dz) is the Dirac mass at 0, and ν1(dz) is the Lebesgue measure on R.
For θ, θ ′ ∈ R

d , θ · θ ′ ∈ R
d denotes the component-wise product of θ and θ ′:

(θ ·θ ′)j = θj θ
′
j , 1 ≤ j ≤ d . And for δ ∈ �d , we set δc def= 1−δ, that is, δc

j

def= 1−δj ,

1 ≤ j ≤ d . For θ ∈ R
d , the sparsity structure of θ is the element δ ∈ �d defined as

δj = 1{|θj |>0}, 1 ≤ j ≤ d .
Throughout the paper, e denotes the Euler number, and

(m
q

)
is the combinato-

rial number m!/(q!(m − q)!). For x ∈ R, the notation �x� represents the smallest
integer larger of equal to x, and sign(x) is the sign of x [sign(x) = 1 if x > 0,
sign(x) = −1 if x < 0, and sign(x) = 0 if x = 0]. Finally, for θ ∈ R

d , and A ⊂ R
d ,

θ + A
def= {θ + u,u ∈ A}.

2. Contraction properties of the quasi-posterior distribution �̌n,d . We
consider the QP distribution (1.1) on R

d , with the prior distribution (1.2)–(1.3).
Using the notation of Section 1.1, �̌n,d can be written as

(2.1) �̌n,d(dθ |Z) ∝ qn,θ (Z)
∑

δ∈�d

πδ

(
ρ

2

)‖δ‖0

e−ρ‖θ‖1μd,δ(dθ).

We are interesting in the contraction behavior of �̌n,d for large n,d . We take
the usual frequentist view of Bayesian procedures by assuming the following.

H1. There exists θ� ∈R
d such that Z ∼ P

(n)
θ�

(dz) = fn,θ�(z)dz.

We write E
(n) for the expectation operator with respect to P

(n)
θ�

(dz). We also
make the basic assumption that the quasi-likelihood function is log-concave and
smooth, and we use the notation ∇ logqn,u(z) to denote the derivative of the
map θ �→ logqn,θ (z) at u. The j th component of ∇ logqn,u(z) is written as
(∇ logqn,u(z))j .

H2. For all z ∈Z(n), the map θ �→ logqn,θ (z) is concave and differentiable.

REMARK 1. The assumption that the function θ �→ logqn,θ (z) is concave is
imposed mostly for simplicity, and is not crucial to derive the main result (The-
orem 3). In fact, this assumption is not used in Theorem 3(2). However, in the
application of Theorem 3, concavity is typically crucial to control the events En

that appear in the theorem.
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Following [12], we specify the prior {πδ, δ ∈ �d} as follows.

H3. For all δ ∈ �d , πδ = g‖δ‖0

( d
‖δ‖0

)−1
, for a discrete distribution {gs,0 ≤ s ≤

d}, for which there exist positive universal constants c1, c2, c3 ≥ c4 such that

(2.2)
c1

dc3
gs−1 ≤ gs ≤ c2

dc4
gs−1, s = 1, . . . , d.

REMARK 2. This assumption guarantees that the prior distribution concen-
trates on sparse subsets of Rd . Note that {gs} is the distribution of the number of
nonzero components produced by the prior. The assumption in (2.2) guarantees
that for d large enough so that c2

dc4 < 1, we have gs ≤ ( c2
dc4 )sg0, and the rate c2

dc4

gets smaller with d .
Castillo and Van der Vaart [13] has several examples of prior distributions that

satisfy H3. For instance if, for some hyper-parameter u > 1, q ∼ Beta(1, du), and
given q, we draw independently δj ∼ Ber(q), then the marginal distribution of δ in
this case satisfies H3, with c1 = 1/2, c2 = 1, c3 = u and c4 = u − 1.

We study the contraction properties of �̌n,d toward θ�. We borrow a strategy
developed mostly for the analysis of high-dimensional M-estimators, that consists
in identifying a “good” subset En of the sample space Z(n) on which the map θ �→
qn,θ (Z) has good curvature properties (see, e.g., [29] for an excellent presentation
of these ideas). Using this idea, the task at hand then boils down to controlling the
probability of the set En and showing that �̌n,d has good contraction properties
when Z ∈ En. To that end, and to shorten notation, we introduce the function

Ln,θ (z)
def= logqn,θ (z) − logqn,θ�(z)

− 〈∇ logqn,θ�(z), θ − θ�

〉
, θ ∈ R

d, z ∈ Z(n).

This function plays a key role in informing on the curvature of the objective func-
tion θ �→ logqn,θ (Z) around θ�. However, in high-dimensional settings, it is typi-
cally not realistic to assume that θ �→ logqn,θ (Z) has good curvature on the entire
parameter space R

d . As well explained in [29], one should look at restrictions of
Ln,θ (z) to interesting subsets of Rd .

We will use a rate function to express the curvature of θ �→ logqn,θ (Z).
Throughout the paper, a continuous function r : [0,∞) → [0,∞) is a rate function
if r is strictly increasing, r(0) = 0, and limx↓0 r(x)/x = 0. Given a rate function r,
and a ≥ 0, we define

(2.3) φr(a)
def= inf

{
x > 0 : r(z) ≥ az, for all z ≥ x

}
,

with the convention that inf∅ = +∞. The main example of a rate function
is r(x) = τx2, for some τ > 0 (for linear regression problems). However, the
examples below are related to logistic regression and the rate function r(x) =
τx2/(1 + bx) is used.
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A nonempty subset � of Rd is a cone if for all λ ≥ 0, and all x ∈ �, λx ∈ �. We
will say that a cone � is a split cone if u · x ∈ � for all x ∈ �, and all u ∈ {−1,1}d
(we recall that the notation u · x denotes the component-by-component product).
Split cones serve as generalizations of sparse subsets of Rd . The archetype exam-
ple of a split cone is the set of s-sparse elements: {θ ∈R

d : ‖θ‖0 ≤ s}. However, in
some problems, one might have to work with sparse elements with some additional
structure, and this motivates the introduction of the split cones. A particularly im-
portant example of a split cone is the set of elements of Rd with the same sparsity
structure as θ�:

(2.4) ��
def= {θ ∈ R

d : θj = 0 for all j s.t. θ�j = 0
}
.

Another important example of split cone that we will use is the set

N def=
{
θ ∈ R

d : θ �= 0, and
∑

j :δ�j=0

|θj | ≤ 7‖θ · δ�‖1

}
,

where δ� denote the sparsity structure of θ�: δ�j = 1{|θ�j |�=0}, 1 ≤ j ≤ d .
Given a rate function r, and a split cone � ⊆ R

d , we set

(2.5) Ěn,1(�, r)
def=
{
z ∈ Z(n) : for all θ ∈ θ� + �,Ln,θ (z) ≤ −1

2
r
(‖θ − θ�‖2

)}
.

Here, as in classical Bayesian asymptotics, in order to control the normalizing
constant of the quasi-posterior distribution, we need a lower bound on the function
θ �→ Ln,θ (z). Again, a restricted version will suffice. For L ≥ 0, we set

(2.6) Ên,1(�,L)
def=
{
z ∈ Z(n) : for all θ ∈ θ� + �,Ln,θ (z) ≥ −L

2
‖θ − θ�‖2

2

}
.

Finally, for λ > 0 we set

(2.7) En,0(�,λ)
def=
{
z ∈ Z(n) : sup

u∈�,‖u‖2=1

∣∣〈∇ logqn,θ�(z), u
〉∣∣≤ λ

2

}
.

The main idea behind these definitions is that on the event {Z ∈ Ên,1(�,L) ∩
Ěn,1(�, r)} the quasi-log-likelihod function θ �→ logqn,θ (Z) has very nice cur-
vature properties when restricted to the set θ� + �. The definition of En,0(�,λ)

implies that on the event {Z ∈ En,0(�,λ)}, θ� is close to the maximizer of the
map θ �→ logqn,θ (Z). Hence, the set En,0(�,λ) ∩ Ên,1(�,L) ∩ Ěn,1(�, r) is our
example of a “good set”, and on that set, we expect �̌n,d(·|Z) to have good
concentration properties around θ�. This is the substance of the next result. Be-
fore stating the main theorem, we introduce few more notation. For M > 0, let

Bd(�,M)
def= {θ ∈ θ� +�, s.t. ‖θ − θ�‖2 ≤ M}. For ε > 0, let D(ε,Bd(�,M)) de-

note the ε-packing number of the ball Bd(�,M), defined as the maximal number
of points in Bd(�,M) such that the ‖ · ‖2-distance between any pair of such points
is at least ε.
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THEOREM 3. Assume H1–H3, and set s�
def= ‖θ�‖0. Suppose that d is such that

dc4 ≥ 16c2
2. Let �̄ ⊇ �� be a split cone, L̄ ≥ 0, λ̄ ≥ 0, and a rate function r be such

that ε̄
def= φr(2λ̄) is finite:

1. Set En
def= En,0(R

d, ρ)∩ Ên,1(��, L̄)∩ Ěn,1(N , r). Then for any integer k ≥ 0,

E
(n)[�̌n,d

({
θ ∈R

d : ‖θ‖0 ≥ s� + k
}|Z)]≤ P

(n)[Z /∈ En]
(2.8)

+ 2ea
(

4 + 4L̄

ρ2

)s�
(

d

s�

)(
4c2

dc4

)k

,

where a = −1
2 infx>0[r(x) − 4ρ

√
s�x], if N �= ∅, and a = 0 if N =∅.

2. Set En
def= En,0(�̄, λ̄) ∩ Ên,1(��, L̄) ∩ Ěn,1(�̄, r). For any M0 > 2,

E
(n)[�̌n,d

({
θ ∈ θ� + �̄ : ‖θ − θ�‖2 > M0ε̄

}|Z)]
≤ P

(n)[Z /∈ En] +∑
j≥1

Dj e
− 1

8 r(
jM0 ε̄

2 )(2.9)

+ 2

(
d

s�

)(
dc3

c1

)s�
(

1 + L̄

ρ2

)s� ∑
j≥1

e− 1
8 r(

jM0 ε̄

2 )e3ρc0jM0ε̄,

where Dj
def= D(

jM0ε̄
2 ,Bd(�̄, (j + 1)M0ε̄)), and where

c0
def= sup

u∈�̄

sup
v∈�̄,‖v‖2=1

∣∣〈sign(u), v
〉∣∣.

PROOF. See Section 5.1. �

Theorem 3, Part (1) shows that for ρ, L̄ and r such that the event {Z ∈
En,0(R

d, ρ) ∩ Ên,1(��, L̄) ∩ Ěn,1(N , r)} has high probability, one can use the sec-
ond term on the right-hand side of (2.8) to establish that the concentration of the
prior on sparse subsets (as assumed in H3) is inherited by the quasi-posterior
distribution. In the logistic regression example below, we show that the term
ea(4 + 4L̄

ρ2 )s� is O(ecs� log(d)), for some constant c. And since
(d
s�

) ≤ es� log(d), it
follows that for such models the right-hand side of (2.8) becomes small for k of
the order of (c/c4)s�. The same is true for linear regression models [12].

Part (2) of the theorem shows that if λ̄, L̄, the split cone �̄ and the rate function r
are well chosen such that the event {Z ∈ En,0(�̄, λ̄) ∩ Ên,1(��, L̄) ∩ Ěn,1(�̄, r)}
has high probability, then the convergence rate of the quasi-posterior distribution

is controlled mainly by the series
∑

j e− 1
8 r(

jM0 ε̄

2 ), and its dependence on n,d . In
the examples below, we show how the terms on the right-hand side of (2.9) can be
handled.
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We note that Part (2) of the theorem controls only the probability of the event
{θ ∈ θ� +�̄ : ‖θ −θ�‖2 > M0ε̄} whereas in most applications we typically want the
probability of {θ ∈ R

d : ‖θ −θ�‖2 > M0ε̄}. As we will show in the examples below,
one can use Part (1) of the theorem to upper bound separately the probability of
the event {θ /∈ θ� + �̄}.

Finally, we point out that the upper bounds in (2.8) and (2.9) depends in general
on θ�, typically through L̄ and the rate function r. These terms essentially model
the curvature of θ �→ logqn,θ (Z) around θ�. Our setting thus differs from the linear
regression setting where the curvature of θ �→ logqn,θ (Z) is constant, and the re-
sulting posterior concentration bounds are uniform in θ� ([12], Theorems 1 and 2).

3. Sparse Bayesian logistic regression. As a first application, we study the
contraction behavior of a posterior distribution obtained from a high-dimensional
logistic regression model, for large values of the sample size n and the dimen-
sion d . Suppose that Z1, . . . ,Zn are independent 0-1 binary random variables and
we consider the model

P(Zi = 1) = e〈xi ,θ〉

1 + e〈xi ,θ〉 ,

for a parameter θ ∈ R
d , where xi ∈ R

d is a known vector of covariates. Writing
z = (z1, . . . , zn), the likelihood function is then

qn,θ (z) = exp

(
n∑

i=1

zi〈xi, θ〉 − g
(〈xi, θ〉)

)
,

where

g(x)
def= log

(
1 + ex), x ∈ R.

Using the prior distribution given in (1.2)–(1.3), we consider the posterior distri-
bution

�̌n,d(dθ |Z)
(3.1)

∝ exp

(
n∑

i=1

Zi〈xi, θ〉 − g
(〈xi, θ〉)

)∑
δ∈�

πδ

(
ρ

2

)‖δ‖1

e−ρ‖θ‖1μd,δ(dθ).

We make the following assumption that implies H1.

B1. Z1, . . . ,Zn are independent 0-1 binary random variables, and there exist
θ� ∈R

d , x1, . . . , xn ∈ R
d , such that

P(Zi = 1) = e〈xi ,θ�〉

1 + e〈xi ,θ�〉 , i = 1, . . . , n.
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Let X ∈ R
n×d denote the design matrix, where the ith row of X is given by the

transpose of xi . We shall write g′, and g(2) to denote the first and second derivatives
of g. Let W ∈ R

n×n be the diagonal matrix with ith diagonal entry given by

Wi = g(2)(〈xi, θ�〉), i = 1, . . . , n.

We define

κ1
def= inf

{
θ ′(X′WX)θ

n‖θ‖2
2

: θ ∈ R
d \ {0},∥∥θ · δc

�

∥∥
1 ≤ 7‖θ · δ�‖1

}
.

For s ∈ {1, . . . , d}, we define

κ̄1(s)
def= sup

{
θ ′(X′X)θ

n‖θ‖2
2

: 1 ≤ ‖θ‖0 ≤ s

}

and

κ1(s)
def= inf

{
θ ′(X′WX)θ

n‖θ‖2
2

: 1 ≤ ‖θ‖0 ≤ s

}
.

We choose the regularization parameter ρ in the prior distribution (1.3) as

(3.2) ρ
def= 4‖X‖∞

√
n log(d),

where ‖X‖∞ def= maxi,j |Xij |. We note that κ̄1(1) ≤ ‖X‖2∞, and κ1(s) ≤ κ̄1(1)/4,
for all s ≥ 1.

THEOREM 4. Assume B1 and H3. Choose ρ as in (3.2). Set s�
def= ‖θ�‖0,

(3.3) ζ
def= s� + 2

c4
+ 2

c4

(
1 + 64‖X‖2∞

κ1
+ κ̄(s�)

64‖X‖2∞(log(d))2 + log(4e)

log(d)

)
s�,

and s̄
def= �s� +ζ�. If κ

def= min(κ1, κ1(s̄)) > 0, then there exists a universal constant
A < ∞ such that for all d large enough, and

(3.4) n ≥ A‖X‖4∞
(

s�

κ

)2
log(d),

the following statements hold:

1.

E
(n)[�̌n,d

({
θ ∈R

d : ‖θ‖0 ≥ ζ
}|Z)]≤ 4

d
.

2. There exists a finite constant M0 > 2 (that depends only on the constants in
H3), such that

E
(n)

[
�̌n,d

({
θ ∈ R

d : ‖θ − θ�‖2 >
M0‖X‖∞

κ1(s̄)

√
s̄ log(d)

n

}∣∣∣Z)]≤ 12

d
.
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PROOF. See Section 1 of the supplementation material [6]. �

If the dimension d is large, then

ζ ≈ s� + 2

c4
+ 2

c4

(
1 + 64‖X‖2∞

κ1

)
s�.

Therefore, for design matrices X for which the restricted eigenvalues κ1 and κ1(s̄)

of the matrix n−1X′WX are not too small, Theorem 4 implies that most of the
probability mass of the posterior distribution is on sparse subsets of Rd , and the

rate of convergence of the posterior distribution (3.1) is O(

√
s� log(d)

n
). The fre-

quentist �1-penalized M-estimator for logistic regression has been analyzed by
[29] (assuming a random design matrix X), and [23] (assuming a deterministic de-
sign matrix X), and is known to converge at the same rate, and under assumptions
that are similar to those imposed above. Technically, our approach is closer to [23].
The approach of [29] leads to slightly better conditions on the sample size n [they
require n to increase linearly in s�, not quadratically, as in (3.4)], at the expense
of more structure on the design matrix (X is assumed to have i.i.d. rows from a
sub-Gaussian distribution and positive definite covariance).

REMARK 5. As pointed out by a referee, one can use the convergence rate in
Theorem 4, Part (2) with an argument used in [13], Theorem 2.2 to derive a bound
on the convergence rate in the �q -norm for q ∈ (0,2]:

E
(n)

[
�̌n,d

({
θ ∈ R

d : ‖θ − θ�‖q >
M0‖X‖∞(s̄)

1
q

κ1(s̄)

√
log(d)

n

}∣∣∣Z)]≤ 16

d
.

This follows from the fact that, for any r > 0,{
θ ∈R

d : ‖θ − θ�‖q > r
}

⊆ {θ ∈ R
d : ‖θ − θ�‖q > r,‖θ‖0 ≤ ζ

}∪ {θ ∈ R
d : ‖θ‖0 > ζ

}
,

and by Hölder’s inequality, for θ ∈ R
d such that ‖θ‖0 ≤ ζ , ‖θ − θ�‖0 ≤ s̄, and

‖θ − θ�‖q ≤ ‖θ − θ�‖2(s̄)
1
q
− 1

2 .

Obviously, the same argument can be used with respect to the general bound in
Theorem 3, but the resulting bound would be more complicated.

REMARK 6. It is interesting to observe that the contraction result given in
Theorem 4, Part (2) holds, not in spite of the large dimension d , but because d is
large. In other words, the result should be viewed as a form of concentration of
measure phenomenon for �̌n,d as d → ∞. In particular, Theorem 4 should not
be applied to a fixed-dimension case in an attempt to recover standard Bayesian
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contraction results (fixed d , n → ∞). Indeed, note that for d fixed, the prior dis-
tribution � in (1.2)–(1.3) with ρ as in (3.2) converges weakly to a point-mass at 0
as n → ∞, which is not a good behavior of a prior in fixed-dimensional settings.
However, with more appropriate prior assumptions, the argument in the proof of
Theorem 3 can be easily modified to derive convergence rate results that would be
applicable to the fixed-dimensional setting. We refer to [18] (and the references
therein) for a good presentation of finite-dimensional Bayesian asymptotics.

4. Quasi-Bayesian inference of large binary graphical models. As another
example, we consider the Bayesian analysis of high-dimensional binary graphical
models (sometimes called Ising models). Let Mp be the space of real-valued p×p

symmetric matrices. For θ ∈ Mp , let fθ be the probability mass function defined
on {0,1}p by

fθ (x1, . . . , xp)
(4.1)

= 1

Zθ

exp

( p∑
j=1

θjjxj +∑
i<j

θij xixj

)
, xj ∈ {0,1},1 ≤ j ≤ p,

where Zθ is the normalizing constant. We consider the problem of estimating θ

under a sparsity assumption, from a matrix Z ∈ R
n×p where each row of Z is an

independent realization from fθ� for some sparse θ� ∈ Mp . This problem has gen-
erated some literature in recent years ([3, 7, 9, 19, 30] and the references therein),
all in the frequentist framework.

The Bayesian estimation of θ is significantly more challenging because the nor-
malizing constant Zθ are typically intractable, and this leads to posterior distribu-
tions that are doubly intractable. In the frequentist literature cited above, the pre-
ferred approach for estimating θ is via penalized pseudo-likelihood maximization,
which nicely side-steps the intractable normalizing constants issue. The quasi-
Bayesian framework developed in this work can be used to combine these pseudo-
likelihood functions with a prior distribution to produce quasi-Bayesian posterior
distributions.

The most commonly used pseudo-likelihood function is obtained by taking the
product of all the conditional densities in (4.1). This is an idea that goes back at
least to [11]. Combined with a prior distribution � on Mp , this approach readily
yields a quasi-posterior distribution on Mp that falls in the framework presented
above. Note, however, that when p is large, say p ≥ 500, the space Mp has dimen-
sion bigger than 105, and MCMC sampling from this quasi-posterior distribution
becomes a daunting and time consuming task. One interesting idea is to break the
symmetry and to consider the quasi-likelihood:

(4.2) qn,θ (Z) =
p∏

j=1

n∏
i=1

exp(Zij (θjj +∑k �=j θkjZik))

1 + exp(θjj +∑k �=j θkjZik)
, θ ∈R

p×p.
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Notice that the only difference between q̄n,θ and qn,θ is that the symmetry con-
straint in θ is relaxed, that is, the parameter space of the map θ �→ qn,θ (Z) is
R

p×p , not Mp . However this difference has a huge impact since now qn,θ (Z) fac-
torizes along the columns of θ . As a result, maximizing a penalized version of (4.2)
is equivalent to solving p independent logistic regression (assuming a separable
penalty), and this can be done efficiently in a parallel computing environment.
This pseudo-likelihood approach was popularized by the influential paper [27] in
the Gaussian case, and extended to the Ising model by [30]. In a recent work [5],
the author extended this idea to the Bayesian analysis of large Gaussian graphical
models, and analyzed the contraction of the resulting quasi-posterior distribution
using Theorem 3. Here, we extend the method to the Ising model.

Throughout this section, if θ ∈ R
p×p , θ·j ∈ R

p denotes the j th column of θ . In
view of the discussion above, and for a discrete probability distribution {πδ, δ ∈
�p} on �p , and ρ > 0, we consider the quasi-posterior �̌n,d on R

p×p given by

�̌n,d(dθ |Z) ∝ qn,θ (Z)

p∏
j=1

∑
δ∈�p

πδ

(
ρ

2

)‖δ‖0

e−ρ‖θ·j‖1μp,δ(dθ·j )

(4.3)

=
p∏

j=1

�̌n,d,j (dθ·j |Z),

where �̌n,d,j (·|Z) is the probability measure on R
p given by

�̌n,d,j (du|Z) ∝
n∏

i=1

exp(Zij (uj +∑k �=j ukZik))

1 + exp(uj +∑k �=j ukZik)

× ∑
δ∈�p

πδ

(
ρ

2

)‖δ‖0

e−ρ‖u‖1μp,δ(du).

REMARK 7. One of the limitations of the approach is that the distribution
�̌n,d does not necessarily produce symmetric matrices. However, because of the
contraction properties discussed below, typical realizations of �̌n,d will be close
to be symmetric. Furthermore, from a practical viewpoint, one can easily remedy
a broken symmetry using various symmetrization rules as suggested for instance
in [27].

We make the following assumptions.

C1. The rows of Z ∈ R
n×p are independent {0,1}p-valued random variables

with common probability mass function fθ� , for some θ� ∈ Mp .

We define

s�j
def= ‖θ�·j‖0, and s�

def= max
1≤j≤p

s�j .
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Hence, s� is the maximum degree of the undirected graph encoded by θ�. The
sparsity structure of θ� is the matrix δ� ∈ {0,1}p×p defined as δ�,jk = 1{|θ�jk |>0}.
For X ∼ fθ� , and 1 ≤ j ≤ p, we define

X(j)
def= (X1, . . . ,Xj−1,1,Xj+1, . . . ,Xp) ∈ R

p,

(viewed as a column vector), and

H(j) def= E
[
g(2)(〈θ�·j ,X(j)〉)X(j)X

′
(j)

]
.

We set

κ2(s)
def= inf

1≤j≤p
inf
{
u′H(j)u

‖u‖2
2

, u ∈ R
p \ {0},‖u‖0 ≤ s

}
and

(4.4)

κ2
def= inf

1≤j≤p
inf
{
u′H(j)u

‖u‖2
2

, u ∈ R
p \ {0}, ∑

k:δ�kj �=0

|uk| ≤ 7
∑

k:δ�kj=0

|uk|
}
.

REMARK 8. It is easy to verify that

∇(2) log

[
n∏

i=1

exp(Zij (uj +∑k �=j ukZik))

1 + exp(uj +∑k �=j ukZik)

]
= −

n∑
i=1

g(2)(〈u,Zi(j)〉)Zi(j)Z
′
i(j),

where Zi(j) = (Zi1, . . . ,Zi,j−1,1,Zi,j+1, . . . ,Zip). Hence, −nH(j) is the Fisher
information matrix in the conditional model that regress the j th column of Z on
the remaining. The quantities κ2(s) and κ2 are (the minimum over j of) restricted
smallest eigenvalues of these information matrices. We will work under the as-
sumption that κ2(s) > 0 and κ2 > 0, for some well-chosen s. Similar assumptions
are made in most work on high-dimensional discrete graphical models [3, 9, 30].
Although these assumptions are very natural in this context, to the best of our
knowledge there does not seem to exist any easy way of checking them for a given
parameter value θ�.

We will take the prior parameter ρ as

(4.5) ρ = 24
√

n log(p).

In order to apply Theorem 3, we view R
p×p as R

d , with d = p2, equipped

with the Frobenius norm ‖θ‖F
def= √

Tr(θ ′θ), and inner product 〈θ,ϑ〉F
def= Tr(θ ′ϑ),

where Tr(θ) denotes the trace of the matrix θ . Throughout this section, the norm
‖ · ‖2 always denotes the Euclidean norm on R

p . We will work with split cones of
the form {θ ∈ R

p×p : ‖θ·j‖0 ≤ sj ,1 ≤ j ≤ p}.
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THEOREM 9. Consider the quasi-posterior distribution (4.3). Suppose that
C1 holds, the prior {πδ, δ ∈ �p} satisfies H3 (with d replaced by p), and ρ is
given by (4.5). For 1 ≤ j ≤ p, set

(4.6) ζj
def= s�j + 4

c4
+ 2

c4

(
1 + 128

κ2
+ s�j

64(log(p))2 + log(4e)

log(p)

)
s�j ,

s̄j
def= �s�j + ζj� and s̄

def= max1≤j≤p s̄j . If κ
def= min(κ2, κ2(s̄)) > 0, then there exist

universal finite positive constants A1,A2 such that for all p large enough and

(4.7) n ≥ A1

(
1

κ

p∑
j=1

s̄j

)2

log(p),

the following statements hold:

1.

E
(n)[�̌n,d

({
θ ∈R

p×p : ‖θ·j‖0 > ζj , for some j
}|Z)]≤ e−A2n + 4

p
.

2. There exists a finite constant M0 > 2 (that depends on the constants in H3),
such that

E
(n)

[
�̌n,d

({
θ ∈ R

d×d : ‖θ − θ�‖F >
M0

κ2(s̄)

√√√√√
( p∑

j=1

s̄j

)
log(p)

n

}∣∣∣Z
)]

≤ 2e−A2n + 12

p
.

PROOF. See Section 2 of the supplementation material [6]. �

If p and n are large while κ remains bounded away from zero, Theorem 9,
Part (1) implies that the quasi-posterior distribution �̌n,d puts high probability on
matrices of Rd×d with the same sparsity pattern as θ�, and Theorem 9, Part (2)
implies that in this case, the rate of convergence in the Frobenius norm is of order

O

(√
(p + S) log(p)

n

)
,

where S
def= ∑p

j=1 s�j is twice the number of nonzero components of θ�. As we
show next, faster convergence rate is possible if one is only interested in compo-
nents of θ . We consider the norm∣∣∣∣|θ |∣∣∣∣ def= max

1≤j≤p
‖θ·j‖2, θ ∈ R

p×p.
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THEOREM 10. Under the assumptions of Theorem 9, if κ > 0, then there exist
finite universal constants A1,A2, and a finite constant M0 > 2 (that depends only
on the constants in H3) such that for all p large enough, and for

n ≥ A1

(
s̄

κ(s̄)

)2
log(p),

E
(n)

[
�̌n,d

({
θ ∈ R

d×d : |||θ − θ�||| > M0

κ2(s̄)

√
s̄ log(p)

n

}∣∣∣Z)]≤ 2e−A2n + 12

p
.

PROOF. See Section 2 of the supplementation material [6]. �

5. Proofs.

5.1. Proof of Theorem 3. To improve readability, we split the proof in three
parts. The first part deals with the normalizing constant of the quasi-posterior dis-
tribution, the second part deals with the existence of test functions, and the proof
of the theorem itself is given in the third part.

5.1.1. On the normalizing constant of the quasi-posterior distribution. The
next lemma provides a lower bound on the normalizing constant of the quasi-
posterior distribution (2.1), following an approach initially developed by [12].

LEMMA 11. Assume H1–H2. Fix L ≥ 0, and a split cone � ⊇ ��. For all
z ∈ Ên,1(�,L),

(5.1)
∫
Rd

qn,θ (z)

qn,θ�(z)
�(dθ) ≥ πδ�

(
ρ2

L + ρ2

)s�

e−ρ‖θ�‖1 .

PROOF. Using the definition of the prior �, we have

(5.2)
∫
Rd

qn,θ (z)

qn,θ�(z)
�(dθ) ≥ πδ�

(
ρ

2

)s� ∫
θ�+��

qn,θ (z)

qn,θ�(z)
e−ρ‖θ‖1μd,δ�(dθ).

For z ∈ Ên,1(�,L), and θ ∈ θ� + �� ⊆ θ� + �,

logqn,θ (z) − logqn,θ�(z) ≥ 〈∇ logqn,θ�(z), θ − θ�

〉− L

2
‖θ − θ�‖2

2.

Setting ϑ = ∇ logqn,θ�(z), (5.2) then gives∫
Rd

qn,θ (z)

qn,θ�(z)
�(dθ) ≥ πδ�

(
ρ

2

)s�

e−ρ‖θ�‖1

(5.3)
×
∫
θ�+��

e〈ϑ,θ−θ�〉−L
2 ‖θ−θ�‖2

2e−ρ‖θ−θ�‖1μd,δ�(dθ).
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We note that the support of the measure μd,θ� is �� = θ� + ��. Using this and the
change of variable θ = θ� + z, we see that the integral on the right-hand size of
(5.3) is ∫

Rd
e〈ϑ,z〉−L

2 ‖z‖2
2−ρ‖z‖1μd,δ�(dz).

By Jensen’s inequality,

∫
Rd

e〈ϑ,z〉 e−L
2 ‖z‖2

2−ρ‖z‖1∫
Rd e−L

2 ‖u‖2
2−ρ‖u‖1μd,δ�(du)

μd,δ�(dz)

≥ exp
(∫

R

〈ϑ, z〉 e−L
2 ‖z‖2

2−ρ‖z‖1∫
Rd e−L

2 ‖u‖2
2−ρ‖u‖1μd,δ�(du)

μd,δ�(dz)

)
= 1.

Using this, and going back to (5.2) we conclude that

∫
Rd

qn,θ (z)

qn,θ�(z)
�(dθ) ≥ πδ�

(
ρ

2

)s�

e−ρ‖θ�‖1

∫
Rd

e−L
2 ‖u‖2

2−ρ‖u‖1μd,δ�(du).

Now note that∫
Rd

e−L
2 ‖u‖2

2−ρ‖u‖1μd,δ�(du) =
(∫

R

e−ρ|z|−L
2 z2

dz

)s�

.

It is easy to calculate that for a ≥ 0, b > 0

(5.4)
∫
R

e− a
2 u2−b|u| du = 2√

a

1 − �( b√
a
)

φ( b√
a
)

,

where φ is the density of the standard normal distribution, and � its c.d.f. The for-
mula continues to hold by continuity at a = 0. The ratio (1 − �(z))/φ(z) (known
as Mills’ ratio), satisfies

(5.5)
z

1 + z2 ≤ 2

z + √
z2 + 4

≤ 1 − �(z)

φ(z)
≤ 4

3z + √
z2 + 8

, z ≥ 0;

see, for instance, [10], Theorem 2.3 for a proof. We use this inequality and (5.4) to
conclude that ∫

R

e−ρ|z|−L
2 z2

dz ≥ 2ρ

L + ρ2 ,

and the lemma follows easily. �
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5.1.2. On the existence of test functions. In this paragraph, we establish the
existence of test functions to test the density fn,θ� against some mis-specified al-
ternatives Qn,θ defined below. The result is based on Lemma 6.1 of [21], that we
shall recall first for completeness. For any two integrable nonnegative functions
q1, q2 on Z(n), and for α ∈ (0,1), the Hellinger transform Hα(q1, q2) is defined as

Hα(q1, q2)
def=
∫
Z(n)

qα
1 (z)q1−α

2 (z)dz.

Here, we work with the case α = 1/2, and set H(q1, q2)
def= H1/2(q1, q2).

LEMMA 12 ([21], Lemma 6.1). Let p be a probability density function on
Z(n) and Q a class of nonnegative integrable functions on Z(n). Then

(5.6) inf
φ

sup
q∈Q

[∫
Z(n)

φ(z)p(z)dz +
∫
Z(n)

(
1 − φ(z)

)
q(z)dz

]
≤ sup

q∈conv(Q)

H(p, q),

where conv(Q) is the convex hull of Q, and the infimum in (5.6) is taken over all
test functions, that is, all measurable functions φ : Z(n) → [0,1]. Furthermore,
there exists a test function φ that attains the infimum.

To derive the test function for our quasi-likelihood setting, we will also need the
following easy result.

LEMMA 13. Fix λ ≥ 0, a split cone �, and a rate function r such that φr(2λ)

is finite. For any θ ∈ θ� + � such that ‖θ − θ�‖2 ≥ φr(2λ), we have

qn,θ (z)

qn,θ�(z)
≤ e− 1

4 r(‖θ−θ�‖2), z ∈ En,0(�,λ) ∩ Ěn,1(�, r).

PROOF. For all z ∈Z(n), and θ ∈ R
d , we have

qn,θ (z)

qn,θ�(z)
= exp

[〈∇ logqn,θ�(z), θ − θ�

〉+Ln,θ (z)
]
.

By the definition of Ěn,1(�, r), for θ ∈ θ� + � and z ∈ Ěn,1(�, r), we have
Ln,θ (z) ≤ −1

2 r(‖θ −θ�‖2). And by the definition of En,0(�,λ), for z ∈ En,0(�,λ),
and θ ∈ θ� + �, we have

∣∣〈∇ logqn,θ�(z), θ − θ�

〉∣∣≤ λ

2
‖θ − θ�‖2.

Hence, for z ∈ En,0(�,λ) ∩ Ěn,1(�, r), and θ ∈ θ� + �,

(5.7)
qn,θ (z)

qn,θ�(z)
≤ exp

[
λ

2
‖θ − θ�‖2 − 1

2
r
(‖θ − θ�‖2

)]
.
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If in addition ‖θ − θ�‖2 ≥ φr(2λ), then from the properties of the rate function r,
we have 2λ‖θ − θ�‖2 − r(‖θ − θ�‖2) ≤ 0, and the result follows. �

Our main result on the existence of test functions follows. We recall that for
M > 0, and a split cone �, Bd(�,M)

def= {θ ∈ θ� + � : s.t. ‖θ − θ�‖2 ≤ M}, and
for ε > 0, D(ε,Bd(�,M)) denotes the ε-packing number of Bd(�,M) in the norm
‖ · ‖2.

LEMMA 14. Fix λ ≥ 0, a split cone �, and a rate function r such that ε̃
def=

φr(2λ) is finite. Set Ēn
def= En,0(�,λ) ∩ Ěn,1(�, r). For θ ∈ R

d , define the function

(5.8) Qn,θ (z)
def= 1Ēn

(z)
qn,θ (z)

qn,θ�(z)
fn,θ�(z), z ∈Z(n).

For any M > 2, there exists a measurable function φ :Z(n) → [0,1] such that

E
(n)(φ(Z)

)≤∑
j≥1

Dj e
− 1

8 r( jMε̃
2 ),

where Dj
def= D(

jMε̃
2 ,Bd(�, (j + 1)Mε̃)). Furthermore, for all j ≥ 1, all θ ∈ θ� +

� such that ‖θ − θ�‖2 > jMε̃,∫
Z(n)

(
1 − φ(z)

)
Qn,θ (z)dz ≤ e− 1

8 r( jMε̃
2 ).

PROOF. First notice that the function z �→ Qn,θ (z) is integrable for all θ ∈
θ� + �. Indeed, using (5.7) for any such θ , and for z ∈ Ēn: qn,θ (z)

qn,θ� (z)
≤ exp(λ

2‖θ −
θ�‖2). Hence,∫

Z(n)
Qn,θ (z)dz =

∫
Ēn

qn,θ (z)

qn,θ�(z)
fn,θ�(z)dz ≤ e

λ
2 ‖θ−θ�‖2 .

Now fix ε > 2ε̃ [where ε̃ = φr(2λ)], and fix θ ∈ θ� +� such that ‖θ − θ�‖2 > ε.

Set Pθ
def= {Qn,u : u ∈ θ� + � and ‖u − θ‖2 ≤ ε/2}, and let conv(Pθ ) denote the

convex hull of the set Pθ . By Lemma 12 applied with p = fn,θ� , and Q =Pθ , there
exists a measurable function φθ : Z(n) → [0,1] such that

E
(n)[φθ(Z)

]≤ sup
Q∈conv(Pθ )

H(fn,θ�,Q) and

(5.9)
sup

Q∈Pθ

∫
Z(n)

(
1 − φθ(z)

)
Q(z)dz ≤ sup

Q∈conv(Pθ )

H(fn,θ�,Q).

Any Q ∈ conv(Pθ ) can be written as a finite convex combination Q =∑j αjQn,uj

where αj ≥ 0,
∑

j αj = 1, u ∈ θ� + �, and ‖uj − θ‖2 ≤ ε/2. However, since
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‖θ − θ�‖2 > ε, and ‖uj − θ‖2 ≤ ε/2, we see that ‖uj − θ�‖2 > ε/2 > ε̃. Hence,
using Lemma 13 and the definition of the Hellinger transform, we have

H(fn,θ�,Q) =
∫
Z(n)

√√√√∑
j

αj 1Ēn
(z)

qn,uj
(z)

qn,θ�(z)
fn,θ�(z)dz ≤

√∑
j

αj e
− 1

4 r(‖uj−θ�‖2).

Hence, (5.9) becomes

E
(n)[φθ(Z)

]≤ e− 1
8 r( ε

2 ) and
(5.10)

sup
Q∈Pθ

∫
Z(n)

(
1 − φθ(z)

)
Q(z)dz ≤ e− 1

8 r( ε
2 ).

Now, given M > 2, we write {θ ∈ θ� + � : ‖θ − θ�‖2 > Mε̃} = ⋃j≥1 B(j),
where

B(j) = {θ ∈ θ� + �, s.t. jMε̃ < ‖θ − θ�‖2 ≤ (j + 1)Mε̃
}
.

For each j ≥ 1, let Sj be a maximal (jMε̃/2)-separated points in B(j). For each
j for which B(j) �=∅, and each point θk ∈ Sj we can construct a test function φθk

as above, with ε = jMε̃. Then we set

φ = sup
j≥1

max
θk∈Sj

φθk
,

where the supremum in j is over the indexes for which B(j) �= ∅. Now, any θ ∈
θ� + � such that ‖θ − θ�‖2 > jMε̃ will be within iMε̃/2 of a point θk in Si for
some i ≥ j . Hence, by (5.10), for any such θ ,∫

Z(n)

(
1 − φ(z)

)
Qn,θ (z)dz

≤
∫
Z(n)

(
1 − φθk

(z)
)
Qn,θ (z)dz ≤ e− 1

8 r( jMε̃
2 ).

Notice that the size of Sj is upper bounded by Dj . Using this and (5.10), we get

E
(n)[φ(Z)

]≤∑
j≥1

Dj e
− 1

8 r( jMε̃
2 ),

which proves the lemma. �

5.1.3. Proof of Theorem 3, Part (1). For integer k ≥ 0, let Ak
def= {θ ∈ R

d :
‖θ‖0 ≥ s� + k}. We have

E
(n)(�̌n,d(Ak|Z)

)≤ P
(n)(Z /∈ En) + T ,
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where T = E
(n)[1En(Z)

∫
Ak

qn,θ (Z)

qn,θ� (Z)
�(dθ)∫

Rd
qn,θ (Z)

qn,θ� (Z)
�(dθ)

]. We use Lemma 11, and Fubini’s theorem

to write

T ≤ 1

πδ�

(
1 + L̄

ρ2

)s�

eρ‖θ�‖1E
(n)

[
1En(Z)

∫
Ak

qn,θ (Z)

qn,θ�(Z)
�(dθ)

]

= 1

πδ�

(
1 + L̄

ρ2

)s�

(5.11)

× ∑
δ∈�d

πδ

(
ρ

2

)‖δ‖0
∫
Ak

E
(n)

[
1En(Z)

qn,θ (Z)

qn,θ�(Z)

e−ρ‖θ‖1

e−ρ‖θ�‖1

]
μd,δ(dθ).

We need to control the expectation on the right-hand side of (5.11). First, note that
En,0(R

d, ρ) = {z ∈ Z(n) : ‖∇ logqn,θ�(z)‖∞ ≤ ρ
2 }. With this in mind, we see that

z ∈ En ⊆ En,0(R
d, ρ), and θ ∈ R

d , we have

qn,θ (z)

qn,θ�(z)
= exp

[〈∇ logqn,θ�(z), θ − θ�

〉+Ln,θ (z)
]

≤ exp
[
ρ

2
‖θ − θ�‖1 +Ln,θ (z)

]
.

Setting B(θ)
def= ρ

2 ‖θ − θ�‖1 + ρ(‖θ�‖1 − ‖θ‖1), it follows that for all θ ∈ R
d ,

(5.12) E
(n)

[
1En(Z)

qn,θ (Z)

qn,θ�(Z)

e−ρ‖θ‖1

e−ρ‖θ�‖1

]
≤ eB(θ)

E
(n)[1En(Z) exp

(
Ln,θ (Z)

)]
.

We then write

‖θ�‖1 + 1

2
‖θ − θ�‖1 = ‖θ�‖1 + 1

2

∥∥θ · δc
�

∥∥
1 + 1

2

∥∥(θ − θ�) · δ�

∥∥
1

(5.13)

≤ ‖θ‖1 − 1

2

∥∥θ · δc
�

∥∥
1 + 3

2

∥∥(θ − θ�) · δ�

∥∥
1.

Using this bound in the expression of B(θ) shows that if θ /∈ θ� +N , then we have

B(θ) ≤ −ρ

2

∥∥θ · δc
�

∥∥
1 + 3ρ

2

∥∥(θ − θ�) · δ�

∥∥
1

(5.14)
≤ −ρ

4
‖θ − θ�‖1.

This bound together with the fact that the expectation on the right-hand side
of (5.12) is always smaller or equal to 1 (which follows from the concaveness
assumption) show that when θ /∈ θ� +N ,

E
(n)

[
1En(Z)

qn,θ (Z)

qn,θ�(Z)

e−ρ‖θ‖1

e−ρ‖θ�‖1

]
≤ e− ρ

4 ‖θ−θ�‖1 .
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Now, consider the case where N �= ∅, and θ − θ� ∈ N . In that case, the definition
of the set Ěn,1(N , r) and (5.12) yield

E
(n)

[
1En(Z)

qn,θ (Z)

qn,θ�(Z)

e−ρ‖θ‖1

e−ρ‖θ�‖1

]
≤ eB(θ)− 1

2 r(‖θ−θ�‖2).

From (5.14),

B(θ) − 1

2
r
(‖θ − θ�‖2

)≤ −ρ

2
‖θ − θ�‖1 + 2ρ

∥∥(θ − θ�) · δ�

∥∥
1 − 1

2
r
(‖θ − θ�‖2

)
and

2ρ
∥∥(θ − θ�) · δ�

∥∥
1 − 1

2
r
(‖θ − θ�‖2

)≤ 2ρ
√

s�‖θ − θ�‖2 − 1

2
r
(‖θ − θ�‖2

)

≤ −1

2

[
r
(‖θ − θ�‖2

)− 4ρ
√

s�‖θ − θ�‖2
]

≤ −1

2
inf
x>0

[
r(x) − 4ρs1/2

� x
]
.

Therefore, when θ �= θ�, and θ ∈ θ� +N , we have

E
(n)

[
1En(Z)

qn,θ (Z)

qn,θ�(Z)

e−ρ‖θ‖1

e−ρ‖θ�‖1

]
≤ eae− ρ

2 ‖θ−θ�‖1,

where a = −1
2 infx>0[r(x) − 4ρs

1/2
� x]. Note that a > 0, since limx↓0 r(x)/x = 0.

In view of these calculations and (5.11), we conclude that

T ≤ ea
(

1 + L̄

ρ2

)s� 1

πδ�

∑
δ∈�d

πδ

(
ρ

2

)‖δ‖0
∫
Ak

e− ρ
4 ‖θ−θ�‖1μd,δ(dθ).

Note that μd,δ(Ak) = 0 if ‖δ‖0 < s� + k, and(
ρ

2

)‖δ‖0
∫
Rd

e− ρ
4 ‖θ−θ�‖1μd,δ(dθ) ≤

(
ρ

2

)‖δ‖0
(∫

R

e− ρ
4 |z| dz

)‖δ‖0 = 4‖δ‖0 .

Therefore,

T ≤ ea
(

1 + L̄

ρ2

)s� 1

πδ�

∑
δ:‖δ‖0≥s�+k

πδ4‖δ‖0 .

Using H3,

1

πδ�

∑
δ:‖δ‖0≥s�+k

πδ4‖δ‖0 =
(d
s�

)
gs�

d∑
j=s�+k

4j gj ≤
(d
s�

)
gs�

d∑
j=s�+k

4j

(
c2

dc4

)j−s�

gs�

=
(

d

s�

)
4s�

d∑
j=s�+k

(
4c2

dc4

)j−s�

.

For d large enough so that 4c2
dc4 < 1, we have

∑d
j=s�+k(

4c2
dc4 )j−s� ≤ 2( 4c2

dc4 )k , which
proves the stated bound.
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5.1.4. Proof of Theorem 3, Part (2). Define U(ε̄)
def= {θ ∈ θ� + �̄ : ‖θ −θ�‖2 >

M0ε̄}. We apply Lemma 14 with λ = λ̄, � = �̄, the rate function r and with M =
M0 > 2. Notice ε̄ = φr(2λ̄) is called ε̃ in Lemma 14. By Lemma 14, there exists a
measurable functions φ : Z(n) → [0,1] such that

(5.15) E
(n)[φ(Z)

]≤∑
j≥1

Dj e
− 1

8 r(
jM0 ε̄

2 ),

where Dj
def= D(

jM0ε̄
2 ,Bd(�̄, (j + 1)M0ε̄)). Using the test function φ, we have

�̌n,d

(
U(ε̄)|Z)≤ φ(Z) + (1 − φ(Z)

)
�̌n,d

(
U(ε̄)|Z).

In view of (5.15), it remains only to control the expectation of (1 − φ(Z)) ×
�̌n,d(U(ε̄)|Z). To do so, we set Ēn

def= En,0(�̄, λ̄) ∩ Ěn,1(�̄, r), so that En ⊆
Ēn ∩ Ên,1(�̄, L̄), and use Lemma 11 and Fubini’s theorem to write

E
(n)[(1 − φ(Z)

)
�̌n,d

(
U(ε̄)|Z)]

= E
(n)

[(
1 − φ(Z)

)∫U(ε̄)
qn,θ (Z)

qn,θ� (Z)
�(dθ)∫ qn,θ (Z)

qn,θ� (Z)
�(dθ)

]
(5.16)

≤ P
(n)(Z /∈ En) + 1

πδ�

(
1 + L̄

ρ2

)s�

eρ‖θ�‖1

×
∫
U(ε̄)

E
(n)

[
1Ēn

(Z)
(
1 − φ(Z)

) qn,θ (Z)

qn,θ�(Z)

]
�(dθ).

We split U(ε̄) as U(ε̄) =⋃j≥1 B(j), where

B(j) = {θ ∈ θ� + �̄ s.t. jM0ε̄ < ‖θ − θ�‖2 ≤ (1 + j)M0ε̄
}
.

Therefore, and using the notation of Lemma 14, the integral in (5.16) is∫
U1(ε̄)

E
(n)

[
1Ēn

(Z)
(
1 − φ(Z)

) qn,θ (Z)

qn,θ�(Z)

]
�(dθ)

=∑
j≥1

∫
B(j)

[∫
Z(n)

(
1 − φ(z)

)
Qn,θ (z)dz

]
�(dθ) ≤∑

j≥1

e− 1
8 r(

jM0 ε̄

2 )�
(
B(j)

)
.

From the prior �, we have

eρ‖θ�‖1�
(
B(j)

)= ∑
δ∈�d

πδ

(
ρ

2

)‖δ‖0
∫

B(j)
eρ(‖θ�‖1−‖θ‖1)μd,δ(dθ)

and for θ ∈ B(j),

ρ
(‖θ�‖1 − ‖θ‖1

)≤ ρ‖θ − θ�‖1

≤ −ρ

2
‖θ − θ�‖1 + 3

2
ρ‖θ − θ�‖1
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≤ −ρ

2
‖θ − θ�‖1 + 3

2
ρc0‖θ − θ�‖2

≤ −ρ

2
‖θ − θ�‖1 + 3ρc0jM0ε̄,

where c0 = supu∈�̄ supv∈�̄,‖v‖2=1 |〈sign(u), v〉|. Hence,

eρ‖θ�‖1�
(
B(j)

) ≤ e3ρc0jM0ε̄
∑

δ∈�d

πδ

(
ρ

2

)‖δ‖0
∫

B(j)
e− ρ

2 ‖θ−θ�‖1μd,δ(dθ)

≤ e3ρc0jM0ε̄
∑

δ∈�d

πδ

(
ρ

2

)‖δ‖0
(∫

R

e− ρ
2 |z| dz

)‖δ‖0

= e3ρc0jM0ε̄
∑

δ∈�d

πδ2‖δ‖0 .

Therefore, the second term on the right-hand side of (5.16) is upper bounded by

1

πδ�

(∑
δ∈�d

πδ2‖δ‖0

)(
1 + L̄

ρ2

)s�∑
k≥1

e− 1
8 r(

kM0 ε̄

2 )e3ρc0kM0ε̄ .

As in Part (1), using H3 and for dc4 ≥ 4c2,

π−1
δ�

∑
δ∈�d

πδ2‖δ‖0 =
(d
s�

)
gs�

d∑
j=0

2j gj ≤
(d
s�

)
gs�

g0

d∑
j=0

(
2c2

dc4

)j

≤ 2

(
d

s�

)
g0

gs�

≤ 2

(
d

s�

)(
dc3

c1

)s�

.

This completes the proof.
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