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BAYESIAN POISSON CALCULUS FOR LATENT
FEATURE MODELING VIA GENERALIZED

INDIAN BUFFET PROCESS PRIORS
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Statistical latent feature models, such as latent factor models, are mod-
els where each observation is associated with a vector of latent features.
A general problem is how to select the number/types of features, and related
quantities. In Bayesian statistical machine learning, one seeks (nonparamet-
ric) models where one can learn such quantities in the presence of observed
data. The Indian Buffet Process (IBP), devised by Griffiths and Ghahramani
(2005), generates a (sparse) latent binary matrix with columns representing a
potentially unbounded number of features and where each row corresponds
to an individual or object. Its generative scheme is cast in terms of customers
entering sequentially an Indian Buffet restaurant and selecting previously
sampled dishes as well as new dishes. Dishes correspond to latent features
shared by individuals. The IBP has been applied to a wide range of statistical
problems. Recent works have demonstrated the utility of generalizations to
nonbinary matrices. The purpose of this work is to describe a unified mech-
anism for construction, Bayesian analysis, and practical sampling of broad
generalizations of the IBP that generate (sparse) matrices with general en-
tries. An adaptation of the Poisson partition calculus is employed to handle
the complexities, including combinatorial aspects, of these models. Our work
reveals a spike and slab characterization, and also presents a general frame-
work for multivariate extensions. We close by highlighting a multivariate IBP
with condiments, and the role of a stable-Beta Dirichlet multivariate prior.

1. Introduction. Statistical models involving latent random variables play a
fundamental role in numerous applications across a wide variety of disciplines.
Parametric latent models often impose various constraints that can be violated
when faced with new observations. While model selection is a standard problem,
the need for more flexible models is particularly true for modern data sets such
as those arising in genetics or internet based data for social networks, etc. For
example, in a mixture model one may wish to specify the number, say D, of com-
ponents, corresponding to classes or groups. This may be infeasible in dynamic en-
vironments such as the internet, where new groups (websites) (for instance, social
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networks) are frequently being formed. As another example, in an online recom-
mendation system one may want to specify the dimension, again call this D, of the
feature vector corresponding to relevant attributes of users. It has been noted that
it is particularly hard to realistically pre-choose features for such data sets which
focus on attributes of individuals rather than objects, as naturally the potential fea-
tures of human beings are unlimited.

Bayesian Machine Learning (ML), takes the position that rather than imposing
rigid parametric constraints one can learn the structural features of these mod-
els through observations. The main task is to first specify a suitable probabilistic
model (a nonparametric prior distribution) which explains, perhaps naively, how
the data arises. That is to say a description of the generative process. Learning
occurs in the presence of observed data and is essentially equivalent to the notion
of updating the prior distribution to obtain the posterior distribution, and hence to
obtain better predictive models using observed data. In the examples mentioned
above, one seeks Bayesian nonparametric models that allow one to learn respec-
tively the number of classes or the number of features by replacing models with
fixed D with one that has potentially an unbounded number of classes or features.
Naturally, other information such as class membership, size, and values associ-
ated with such classes are desired. Similarly, one wants to know statistics such
as feature labels and values and the most common features shared by observa-
tions. In the parlance of [12, 15, 39], mixture models are examples of latent class
models. Latent class models are models where each observation is associated with
one class or group. In the presence of n observations, a natural way of assigning
groups is to think of priors on random partitions of the integers {1, . . . , n}. Latent
feature models, with examples described above and in [12, 15, 39], are statisti-
cal models where each observation is associated with a possibly infinite, albeit
sparse, vector of features. Broadly speaking Bayesian nonparametric latent feature
models employ prior distributions over (sparse) matrices, with an infinite number
of columns representing feature labels that are learned, and corresponding latent
entries. Each row say i = 1, . . . ,M , represents the features and their values pos-
sessed by an individual or object i. Note that since there are a number of ways
that one can use these processes to record entries in a matrix, it is perhaps more
formal to say that these schemes induce priors over equivalence classes of ma-
trices. Structurally, combinatorially, latent class models and latent feature models
require different constructions for tractable priors/generative processes. A thor-
ough discussion about these differences in relation to Chinese restaurant processes
and basic Indian Buffet models that generate random matrices with binary entries
is given in [5].

1.1. Objectives and outline. Our interest in this paper is to present a unified
approach for construction, implementation, and (posterior) analysis of Bayesian
nonparametric latent feature models which can be seen as broad generalizations of
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the Indian Buffet Process (IBP). Specifically, Sections 2 to 4 will focus on mod-
els that generate nonbinary matrix entries. This covers, and substantially extends
results, for the known cases involving Bernoulli, Poisson and negative-binomial
distributed entries. We, for the first time show how to handle entries based on con-
tinuous distributions. Section 5 will show how to extend IBP models to a multivari-
ate setting. An adaptation of the Poisson Partition Calculus (PPC), developed by
the author in [23, 25] suitable for nonparametric Latent Class models, is employed
to handle the otherwise challenging and not well understood infinite-dimensional
and combinatorial aspects of the Latent Feature models we shall discuss. Distinct
from the few existing statistical analyses in the literature, we (1) treat the case
where entries are general random variables. (2) Starting in Section 2.1, we high-
light a dependent spike and slab characterization which reveals feature specific
Bayesian parametric (spike/slab) models based on improper priors and demon-
strates how the matrix values affect feature selection. (3) In Section 3.1, relevant
to the description of marginal processes and more tractable descriptions of gener-
ative processes, we introduce infinite sequences of random pairs ((Hi,Xi)) which
facilitate wider practical implementation. (4) We close by constructing and analyz-
ing general classes of multivariate processes. In Sections 5.2 and 5.3, we describe
an Indian buffet process with condiments, and the role of a stable-Beta Dirichlet
multivariate prior. Our work allows the user to focus on the practical implementa-
tion and development of flexible models for a wide range of statistical applications,
rather than being limited by complexities generally arising from the use of discrete
random measures, which naturally involve nontrivial combinatorial components.
We first describe details for the original IBP process.

1.2. The Indian Buffet Process (IBP). The basic Indian buffet process, say
IBP(θ) process, for θ > 0, was ingeniously formulated by Griffiths and Ghahra-
mani [12, 15, 16] whereby a (sparse) random binary matrix is formed with (ω̃k, k =
1, . . .) distinct features or attributes labeling an unbounded number of columns,
and M rows, where each row i represents the attributes/features/preferences pos-
sessed by a single individual (or object) by entering 1 in the (i, k) entry if the
feature ω̃k is possessed and 0, otherwise. The matrix, with random binary en-
tries (bi,k), naturally indicates what features are shared among individuals. The
generative process to describe this is cast in terms of individual customers se-
quentially entering an Indian buffet restaurant whereby the first customer selects
a Poisson(θ) number of dishes. Subsequently, after M customers have chosen K

distinct dishes, customer M + 1 chooses one of the K already sampled dishes
(indicating that customer shares features already exhibited by the M previous cus-
tomers) according to the most popular dishes already sampled, specifically with
probability m�/(M + 1), where m� := m�,M denotes the number of the M cus-
tomers who have already sampled dish �. (Note here that the probabilities do not
necessarily add to 1.) Additionally, the customer chooses new dishes according to
a Poisson(θ/(M + 1)) distribution. The precise label for a feature is drawn from
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a common i.i.d. distribution B0 over some abstract Polish space �. In the gener-
ative process, a new feature label is drawn when a new dish is selected, leading
to (ω1, . . . ,ωK) distinct feature labels for the first M customers. It is important to
note that Griffiths and Ghahramani derived this scheme based on a limiting argu-
ment where one first starts with an M by D binary matrix with conditionally inde-
pendent entries (bi,k) where, for each fixed (i, k), bi,k|pk are i.i.d. Bernoulli(pk)

random variables and the pk , for k = 1, . . . ,D, are modeled as i.i.d. Beta(θ/D,1)

variables. The IBP(θ) scheme arises by taking the limit as D → ∞. Note a two-
parameter extension of the IBP is described in [12].

A key insight was made by Thibaux and Jordan [50], which connected this
generative process with a formal Bayesian nonparametric framework where
Z1, . . . ,ZM |μ are modeled as i.i.d. (latent) Bernoulli processes with base mea-
sure μ that is selected to have a modified version of Hjort’s [18] Beta process prior
distribution where for the IBP the atoms (ω̃k) of μ are i.i.d. B0. The generative
process is given by the distribution of ZM+1|Z1, . . . ,ZM . In other words, the ba-
sic IBP(θ) generates a random matrix with entries (bi,k), where conditioned on
the collection (pk), bi,k are independent Bernoulli (pk) variables. The (pk) are the
points of a Poisson random measure with mean intensity ρ(s) = θs−1

I{0<s<1}. It
follows that, conditional on μ, one can represent each Zi = ∑∞

k=1 bi,kδω̃k
and

the Beta process μ = ∑∞
k=1 pkδω̃k

. Thibaux and Jordan use the conjugacy re-
sult of Hjort [18], as described in Kim [31], to obtain the posterior distribu-
tion of μ|Z1, . . . ,ZM in the case where μ is a two-parameter Beta process with
ρ(s) = θs−1(1 − s)β−1

I{0<s<1}, for β > 0. This then leads to a description of
ZM+1|Z1, . . . ,ZM . Teh and Görür [48] describe an important three parameter ex-
tension of the Beta process, which they call a stable-Beta process, specified by

(1.1) ρα,β(s) = θs−α−1(1 − s)β+α−1
I{0<s<1},

for β > −α and 0 ≤ α < 1. Here, we will say μ is a stable-Beta process with
parameters (α,β; θ). Unlike the Beta process, this extension allows for power law
behavior in terms of the total number of dishes (features) tried by M customers
and the number of customers trying each dish. Building on the work of [48, 50]
provide analogous posterior results for this case, using the results of [31].

REMARK 1.1. The Beta processes, with B0((0,∞)) = ∞, was developed in
Hjort [18] as a prior for cumulative hazard rates arising in nonparametric Bayesian
survival analysis. See also Kim [31] and the related work of Doksum [10] on neu-
tral to the right processes.

REMARK 1.2. As was noted, the original IBP(θ) process is defined by (pk)

which are the points of a Poisson random measure with mean intensity ρ(s) =
θs−1

I{0<s<1}. While the corresponding process μ can be viewed as a special case
of a Beta process, it has a longer history in regards to its connection to the scale
invariant process and Dickman distribution as can be found in [2] and references
therein. Some aspects of this, as it relates to the IBP, are discussed in [28].
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REMARK 1.3. The use of the stable-Beta process in [48], similar to the role of
the Pitman–Yor process [20, 43, 46], illustrates the need for more general choices
of ρ which do not lead to conjugate models. A more general version of the stable-
Beta process, known as an extended beta process, was first discussed by Kim and
Lee [33] in a survival analysis context. See [13, 26] for more choices for ρ.

1.3. Statistical utility. The IBP, and its generalizations, represent an exciting
class of models well suited to handle high dimensional problems now common in
this information age. One main function is to allow for models with potentially an
unbounded number of features thus alleviating issues related to model selection.
As mentioned in [12, 15, 16], the IBP can be used in a variety of ways when viewed
as a common generator for a potentially vast number of latent feature model
whereby the observed variables, say Y, have conditional likelihoods of the general
form g(Y|Z), where Z := (Z1, . . . ,ZM). MCMC can then be applied utilizing the
explicit form of the distribution of ZM+1|Z1, . . . ,ZM , say p(ZM+1|Z1, . . . ,ZM).
For instance, one may calculate the distribution of ZM+1|Y,Z1, . . . ,ZM which is
proportional to g(Y|Z)p(ZM+1|Z1, . . . ,ZM). A model incorporating μ, requires
the calculation of μ|Y using the distribution of μ|Z and Z|Y. Ghahramani et al.
[12] and [15, 16] note applications for choice models, modeling protein interac-
tions, independent components analysis and sparse factor analysis, among others.

A particular class of latent feature models are latent factor models whereby each
observation, say Yi := (Yi,1, . . . , Yi,q), for i = 1, . . . ,M is postulated to arise from
the following model:

Yi,j =
D∑

k=1

Ai,kηj,k + εi,j ,

where, for each i, (Ai,1, . . . ,Ai,D) is a vector of the values of D latent features
associated with Yi , {ηj,k} is a matrix of unknown factor loadings and εi,j are
modeled typically as zero mean normal random variables. One of the issues here
is the choice of D. In order to alleviate this, Knowles and Ghahramani [34] (see
also [41, 47]) propose a nonparametric Bayesian extension of factor analysis by
using the IBP to induce a sparse matrix with entries

(1.2) Ai,k := bi,kA
′
i,k

for i = 1, . . . ,M and k = 1, . . . ,∞. The A′
i,k are taken to be independent normal

variables with mean 0 and having common variance for each fixed k. As another
example, Miller, Griffiths and Jordan [39] describe a nonarametric latent feature
relational model which in its simplest form can be described as follows: for indi-
viduals i and j , Yi,j is a binary link which is 1 if there is a link (relation) between i

and j and 0 otherwise. Using the IBP, one can practically describe the distribution
of Yi,j given Z and a latent weight matrix (A′

k,k′) as

P
(
Yi,j = 1|Z,

(
A′

k,k′
)) = 1

1 + exp(−∑
k,k′ bi,kbj,k′A′

k.k′)
.
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Note one may replace the sigmoidal function 1/(1+ e−x) with a more general link
function. The expression above only depends on the nonzero entries corresponding
to the cases where bi,k = 1 and bj,k′ = 1, indicating that individuals i and j possess
features k and k′, respectively. Z is determined by the IBP which again allows one
to learn the number of features rather than facing the impractical problem of pre-
selecting the number of features. The relational models described in Hoff, Raftery
and Handcock [19] are a precursor to the work of [39]. Other applications and
aspects of the IBP are articulated in, for instance, [5, 7, 11, 12, 14–16, 30, 42, 48,
50], and for placement in a wider context, see [40]. See [4] for a generalization
of the IBP with asymptotic results. Hybrid versions of the IBP for topic modeling
have also been proposed in [1, 52].

2. Nonbinary generalizations-spike and slab IBP priors. The IBP gener-
ates binary random matrices (bi,k) based on the usage of conditionally indepen-
dent Bernoulli random variables. Generally latent feature models may require the
generation of (sparse) random matrices with entries indicating feature values or as
a special case repeated usage of features. This suggests the need for generaliza-
tions of the IBP to nonparametric processes which generate (sparse) matrices with
nonbinary entries. Of note in the current literature are models employing Pois-
son and negative-binomial random variables as described in, for instance, [6, 17,
49–51, 53, 54]. These are generally coupled with gamma and beta process priors,
respectively. These works demonstrate the desirability of IBP-type models which
allow for more flexible latent feature values and discuss applications to, for in-
stance, Poisson matrix factorization and admixture modeling. Using the theory of
marked Poisson point processes, we describe the generalization of the IBP that in-
cludes the models already mentioned above. Simply replace the ((bi,k,pk)) with
more general variables ((Ai,k, τk)) where conditional on (τk), the collection (Ai,k)

are independent random variables with, for each fixed k, distribution denoted as
GA(da|τk). The collection (τk) are the points of a Poisson random measure with
more general Lévy density ρ(s|ω), not restricted to [0,1] and possibly depending
on ω, which reflects dependence on the distribution of the (ω̃k), B0, on a space �.
Formally, we choose ρ to satisfy

∫ ∞
0 min(s,1)ρ(s|ω)ds < ∞. Since B0 is a finite

measure, this condition ensures that the total mass μ(�) is an infinitely divisible
random variable that is finite almost surely (see page 5 of [45]). However, we al-
low both infinite activity models corresponding to

∫ ∞
0 ρ(s|ω)ds = ∞ and finite

activity/compound models where
∫ ∞

0 ρ(s|ω)ds = c(ω) < ∞. In the latter case,
ρ(s|ω)/c(ω) is a proper density. For each i, ((Ai,k), τk, ω̃k) are the points of a Pois-
son random measure with mean intensity, GA(da|s)ρ(s|ω)dsB0(dω). Further-
more, we require that Ai,k can take on the value zero with positive probability. So
relative to GA(·|s), write πA(s) = P(A �= 0|s), and hence 1−πA(s) = P(A = 0|s).
We require the condition that πA(s) satisfies

(2.1) ϕ :=
∫
�

∫ ∞
0

πA(s)ρ(s|ω)dsB0(dω) < ∞.
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REMARK 2.1. The condition (2.1) is not true for arbitrary πA(s). If for exam-
ple one chooses πA(s) = (1 − e−s), then ϕ < ∞. However, if πA(s) = e−s , then
generally ϕ = ∞, unless ρ is a finite measure. Condition (2.1) is satisfied if πA(s)

behaves like a cumulative distribution function.

The general construction is now

(2.2) Zi =
∞∑

k=1

Ai,kδω̃k
and μ =

∞∑
k=1

τkδω̃k
.

Here, key to our exposition, it is important to note that μ can always be repre-
sented as μ(dω) = ∫ ∞

0 sN(ds, dω), where N = ∑∞
k=1 δτk,ω̃k

is a Poisson random
measure with mean intensity E[N(ds, dω)] = ρ(s|ω)dsB0(dω) := ν(ds, dω).

DEFINITION 2.1. We say that N is PRM(ρB0), or more generally PRM(ν)

and also write P(dN |ν), when discussing calculations. μ is by construction a com-
pletely random measure and we shall specify its law by saying μ is CRM(ρB0),
or CRM(ν). Using this, we shall say that Z1, . . . ,ZM |μ are i.i.d. IBP(GA|μ),
if they have the specifications in (2.2) and call the marginal distribution of Zi

IBP(A,ρB0) or equivalently IBP(A, ν).

2.1. Spike and slab viewpoint for feature selection. Notice that one can always
represent Ai,k = bi,kA

′
i,k , where bi,k are Bernoulli variables and A′

i,k is a general
random variable that is not necessarily independent of bi,k . This evokes the notion
of generalized spike and slab type prior distributions (see for instance Ishwaran and
Rao [22]) within the different context of variable selection, where here we mean a
two-point mixture model made of a general distribution G̃A′ (a generalized slab),
not taking mass at zero, and a degenerate distribution at 0 (a spike). That is,

GA(dy|s) = πA(s)G̃A′(dy|s) + [
1 − πA(s)

]
δ0(dy).

The specification of ρ(s|ω) induces a collection of improper priors, on s, in a man-
ner that shall be clarified by our analysis. Naturally, one has in the Bernoulli case
that A′ = 1. In the Poisson case of [51] where Ai,k is Poisson(rλk), it follows that
bi,k|λk is Bernoulli(1−e−rλk ) and A′

i,k|λk has (conditional) distribution G̃A′(·|λk)

specified by

(2.3) P
(
A′

i,k = a|λk

) = P(Ai,k = a|bi,k = 1, λk) = raλa
ke−rλk

a!(1 − e−rλk )
,

for a = 1,2, . . . , and further depending on λk , where the Lévy density ρ(λk|ωk)

is a mixing measure. In general, and in contrast to (1.2), since the distributions of
(bi,k,A

′
i,k) depend on common parameters where ρ acts as a mixing measure, the

slab values, (A′
i,k), will play a direct role, within an IBP-type selection scheme, in

terms of how future customers will select existing features/dishes. It is known for
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the Poisson and negative-binomial models appearing in the literature that larger
entries, corresponding to popularity, increase the chance of selection. However, as
we shall show, in general the effects are distribution specific and do not necessarily
follow this simple rule. A more challenging example that we shall discuss in detail
later and has not appeared in the literature, is where the A′|λ is specified to be
a Normal(η,1/λ) random variable and the spike is determined by πA(λ) = (1 −
e−λ), which is the same as in the Poisson-IBP model.

2.2. Preliminaries on posterior distributions and sequential generative sche-
mes. Now that we have provided constructions for general (A,ρ), we now turn to
the task of obtaining posterior quantities that hold for any such choices. Although
our models are more general, they share many of the pertinent structures that arise
in the Bernoulli case. As such, we follow quite closely the lucid discussion given
in Teh and Görür [48], Sections 3.1 and 3.2. Specifically, as noted by those authors,
practical implementation and understanding of these processes requires a tractable
description of the posterior distribution of μ|Z1, . . . ,ZM , or N |Z1, . . . ,ZM , and
the predictive distribution of ZM+1|Z1, . . . ,ZM . The latter is crucial for describ-
ing the IBP-type generative schemes for selecting features. Since these are discrete
processes, the description involves a significant combinatorial component related
to shared features. Following [48], Section 3.1, let (ω1, . . . ,ωK) be the K unique
atoms among the (Z1, . . . ,ZM), where ω� has been selected m� times. Notice that
all relevant quantities depend on M , so, for instance, we could write K = KM

and m� := m�,M , however, unless otherwise indicated we will generally suppress
this additional notation. For the Bernoulli cases, the counts (m1, . . . ,mK) suffice,
however, we will need to appropriately index the relevant (A′

i,�) variables. At the
most basic level, this involves (random) sets indicating which individuals possess
features (ω1, . . . ,ωK), that is B̃ := {B1, . . . ,BK} where, B� := {i : Zi(ω�) �= 0},
with respective sizes m� := |B�|, for � = 1, . . . ,K . As we have alluded to, the
values of the nonzero (Ai,k) play a significant role in terms of how new cus-
tomers will choose existing dishes/features, as such we introduce the value sets
A� = {A′

i,� : i ∈ B�}. The methods in [23, 25], will be adjusted to accommodate
these structures to provide a unified framework in the form of a Bayesian Poisson
calculus for latent feature models. Furthermore, it is important to note that addi-
tional work is required to describe the general distribution of ZM+1|Z1, . . . ,ZM ,
in this general setting. This is done in Section 3.1.

2.2.1. Some existing results. As we mentioned previously, subject to some
variations, the cases treated explicitly involve essentially three choices for GA, that
is Bernoulli, negative binomial and Poisson distributions. Explicit results for the
Bernoulli and negative-binomial cases are limited to the choice of ρ = ρα,β given
in (1.1), that is, for μ a stable-Beta process. We do note that for the Bernoulli case,
one can perhaps deduce the form of results for general ρ by reading carefully the
exposition in [48] and otherwise applying [31]. However, this is not true for the
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negative-binomial case, where current results are based on more involved special-
ized arguments. For the Poisson case, some results are given for only the choice
of ρ(s) = θs−1e−s , s > 0, which corresponds to the case where μ is a Gamma
process. Hence, for instance, results are not known for the case of μ being a gen-
eralized gamma process which is not a conjugate prior. This choice of μ exhibits
power law properties for the Poisson case similar to [48]. More details for the cases
above can be found in [6, 17, 49–51, 53, 54]. We will discuss these cases for gen-
eral ρ in Section 4. In addition, relevant to the Bernoulli case, there is a related
class of models considered by [9], where explicit details for a generalized gamma
prior has been given. See [25, 26] for the analysis of various models, in different
contexts, employing Beta, generalized gamma and other processes.

3. General posterior and marginal distributions. We now describe the for-
mal pertinent posterior quantities for understanding and implementing the various
generalized Indian buffet schemes. The results are obtained by an adapted ver-
sion of the original partition based PPC to a Poisson Latent Feature Calculus that
can now handle the appropriate combinatorial structure for latent feature mod-
els. Specifically, for our purposes here we will need two ingredients of the PPC
that can be found as Propositions 2.1 and 2.2 in James [25], pages 6–8 (see also
[23], pages 7–8). These represent direct extensions of updating mechanisms for the
Dirichlet and gamma processes employed in [36–38] and also [21, 24]. Similar to
the PPC, our adapted version allows one to obtain intricate combinatorial expres-
sions without combinatorial arguments and does not rely on any particular specifi-
cation of ρ. Formal details of these derivations are provided in the Appendix.

Now, define ρj (s|ω) = [1 − πA(s)]jρ(s|ω) for j = 0,1,2, . . . . Hence, ρ0(s|
ω) := ρ(s|ω). Define for k = 1,2, . . . ,

(3.1) ϕk :=
∫
�

∫ ∞
0

πA(s)ρk−1(s|ω)dsB0(dω).

Throughout, for each M , we use, νM(ds, dω) := ρM(s|ω)B0(dω)ds, where
ρM(s|ω) = [1 − πA(s)]Mρ(s|ω). Note that ρM depends on πA and so will dif-
fer over various models. Since it should be clear from context, we shall suppress
this dependence within the notation.

PROPOSITION 3.1. Let (J�,ω�) for � = 1, . . . ,K denote the K := KM unique
points among ((τk, ω̃k)) picked from the Poisson random measure N , based on the
conditionally i.i.d. processes (Z1, . . . ,ZM). Then one can write the joint distri-
bution of ((Z1, . . . ,ZM), (J1, . . . , JK)), where (J1, . . . , JK) are the unique jumps
picked from μ, with arguments (s1, . . . , sK),

(3.2)

[
M∏

k=1

e−ϕk

]
K∏

�=1

Sspike×slab(s�|A�)ρ(s�|ω�)B0(dω�),
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where, for A� = {A′
i,� : i ∈ B�},

(3.3) Sspike×slab(s|A�) = [
1 − πA(s)

]M−m�π
m�

A (s)
∏
i∈B�

G̃A′(dai,�|s).

Hence, applying Bayes rule, the (J�)|(Zi) are conditionally independent with den-
sity,

(3.4) P�,M(J� ∈ ds) = Sspike×slab(s|A�)ρ(s|ω�)ds∫ ∞
0 Sspike×slab(t |A�)ρ(t |ω�)dt

and the joint marginal distribution of (Z1, . . . ,ZM), denoted as P(Z1, . . . ,ZM),
is

(3.5)

[
M∏

k=1

e−ϕk

]
K∏

�=1

[∫ ∞
0

Sspike×slab(t |A�)ρ(t |ω�)dt

]
B0(dω�).

REMARK 3.1. One may compare our general expression for P(Z1, . . . ,ZM),
with the special case of Teh and Görür [48], equation (10), in the Bernoulli setting.
See also their ensuing remarks in regards to [15], equation (4). More details are
given in Section 4.

We now describe the posterior distribution of N and μ given (Z1, . . . ,ZM).

THEOREM 3.1. Suppose that Z1, . . . ,ZM |μ are i.i.d. IBP(GA|μ), μ is
CRM(ρB0):

(i) Then the posterior distribution of N |Z1, . . . ,ZM is equivalent to the dis-
tribution of NM + ∑K

�=1 δJ�,ω�
where NM is PRM(ρMB0) and the distribution of

the conditionally independent (J�) is given by (3.4).
(ii) The posterior distribution of μ|Z1, . . . ,ZM is equivalent to the distribution

of μM + ∑K
�=1 J�δω�

where μM is CRM(ρMB0).
(iii) Note that (ω1, . . . ,ωK), and K , appearing in the expressions above, are

known fixed values from (Z1, . . . ,ZM).

This immediately leads to the next result.

PROPOSITION 3.2. Suppose that Z1, . . . ,ZM,ZM+1|μ are i.i.d. IBP(GA|μ),
where μ is CRM(ρB0). Then results (i) or (ii) in Theorem 3.1, shows that the
distribution of ZM+1|Z1, . . . ,ZM is equivalent to the distribution of

Z̃M+1 +
K∑

�=1

AM+1,�δω�
,

where Z̃M+1 is IBP(A,ρMB0), and each AM+1,�|J� = s has distribution
GA(da|s), and the marginal distribution of J� is specified by (3.4). That is to
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say AM+1,� has the distribution
∫ ∞

0 GA(dy|s)P�,M(ds), which can be expressed
as

E
[(

1 − πA(J�)
)]

δ0(dy) +E
[
πA(J�)

]∫ ∞
0 πA(s)G̃A′(dy|s)P�,M(ds)

E[πA(J�)] ,

where πA(s)P�,M(ds)/E[πA(J�)] is the distribution of J�|Z1, . . . ,ZM,

bM+1,� = 1. (ω�) are the already chosen features.

3.1. Describing the marginal distribution of Z via a method of decomposi-
tions. The results above provide a general framework to describe generative pro-
cesses analogous to the Indian buffet sequential latent feature selection scheme.
What remains is to describe the marginal distributions of Z1 ∼ IBP(A,ρB0),
for arbitrary (A,ρ). Substituting ρ with ρM then leads to the representation of
Z̃M+1 ∼ IBP(A,ρMB0), which consists of features/atoms (ω̃k)/(ω1, . . . ,ωK) that
have not been selected from (Z1, . . . ,ZM). That is to say, features not possessed
by the first M customers. We now describe the marginal distribution of Z utilizing
an infinite sequence of i.i.d. pairs of variables ((Hi,Xi)).

PROPOSITION 3.3. Let Z|μ be IBP(GA|μ) where μ is a CRM(ρB0) with
ρ(s) a homogeneous Lévy density such that ϕ := ∫ ∞

0 πA(s)ρ(s) ds < ∞. Then Z is
said to have an IBP(A,ρB0) marginal distribution, where there exists a sequence
of i.i.d. pairs ((Hi,Xi)), which we refer to as an IBP(A,ρ) sequence, such that

Z
d=

ξ(ϕ)∑
i=1

Xiδω̃i
,

where ξ(ϕ) is a Poisson random variable, with mean ϕ, independent of ((Hi,Xi),

ω̃i). The random variables (ω̃i) are i.i.d. B0. The collection of pairs ((Hi,Xi)),
have the following distributional properties:

(i) Xi |Hi = s has distribution, not depending on ρ,

G̃A′(da|s) = I{a �=0}GA(da|s)
πA(s)

,

which is equivalent to the conditional (slab) distribution of A|A �= 0 under
GA(·|s), and Hi has marginal density:

PHi
(ds) = πA(s)ρ(s) ds

ϕ
.

(ii) The marginal distribution of Xi is equivalent to the distribution of
Ai |bi = 1,

P(Xi ∈ da) =
∫ ∞

0
G̃A′(da|s)PHi

(ds) = I{a �=0}
∫ ∞

0 GA(da|s)ρ(s) ds

ϕ
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and the distribution of Hi |Xi = a is given by

P(Hi ∈ ds|Xi = a) = GA′(da|s)PHi
(ds)∫ ∞

0 GA′(da|v)PHi
(dv)

.

(iii) If ρ(s) is replaced by ρ(s|ω), then replace ρ(s) in the above expressions
with ρ(s|ω̃i) to obtain results for ((Hi,Xi))|(ω̃i).

PROOF. Since Z := Z1
d= ∑∞

k=1 Akδω̃k
is composed of (Ak, τk, ω̃k) the theory

of marked Poisson point processes tells us that the unconditional Laplace func-
tional of Z(f ) = ∑∞

k=1 Akf (ωk) is given by E[e−Z(f )] = e−�(f ), where

(3.6) �(f ) =
∫
�

∫
R

(
1 − e−af (ω))I{a �=0}QA(da|ω)B0(dω),

where QA(da|ω) = [∫ ∞
0 GA(da|s)ρ(s|ω)ds], and the distribution of the Ak

is determined by the measure Ia �=0QA(da|ω). This is clear since at a = 0,
(1 − e−af (ω)) is zero. It follows from (2.1), that ϕ(ω) = ∫ ∞

0 πA(s)ρ(s|ω)ds <

∞ which is the total mass of the measure Ia �=0QA(da|ω). This, along with
the representation (3.6) establishes that Z is a compound Poisson process
as described where Ak|ω̃k are independent with distribution Q̃A(da|ω̃k) =
I{a �=0}QA(da|ω̃k)/ϕ(ω̃k). Augmenting this expression reveals a joint distribution
proportional to I{a �=0}GA(da|s)ρ(s|ω)ds, concluding the result. �

3.2. Generalized Indian Buffet Processes: The sequential generative process
for IBP(A,ρB0). We can now use Theorem 3.1 and Propositions 3.2 and 3.3 to
describe the sequential generative process for IBP(A,ρB0), in the homogeneous
case. That is to say how to sample from Z1, and subsequently ZM+1|Z1, . . . ,ZM .
Since under GA every matrix entry value for a feature can take a wider range of
values, one needs to give this a proper interpretation. This is mostly left to the
reader, but here we shall naively say that a customer gives a scoring to that dish.
At any rate, we use the basic IBP metaphor of people sequentially entering an
Indian buffet restaurant. Set K̃i = Poisson(ϕi) for i = 1,2, . . . , hence K := KM =∑M

i=1 K̃i :

1. Customer 1 selects dishes according to a Poisson(ϕ1) distribution and gives
them scores according to ((Hi,Xi)) following an IBP(A,ρB0) sequence. This
is done precisely as follows:

(i) Draw a Poisson(ϕ1) = K̃1 number of variables.
(ii) Draw ((ω1,H1), . . . (ωK̃1

,H
K̃1

)) i.i.d. from B0 and the distribution for
Hi , PHi

(ds) = πA(s)ρ(s) ds/ϕ1.
(iii) Draw Xi |Hi following G̃A′(da|Hi), for i = 1, . . . , K̃1. If it is straight-

forward to sample directly from the marginal distribution of Xi , then one may
bypass sampling Hi . These values may be set to A′

1,� for � = 1, . . . , K̃1.
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2. After M customers have chosen collectively � = 1, . . . ,K distinct dishes, and
assigned their scores {A′

i,� : i ∈ B�}, customer M + 1 selects each dish ω�,
� = 1, . . . ,K , and assigns respective scores, according to the distribution of
AM+1,�, where AM+1,�|J� has conditional distribution GA(da|J�), in particular
the chance that AM+1,�|J� takes the value zero is 1 − πA(J�). The distribution
of (J�) is specified in (3.4).

3. Customer M + 1 also chooses and scores new dishes according to a IBP(A,

ρMB0) process Z̃M+1. This follows the same scheme as customer 1 with
ρM(s) = [1 − πA(s)]Mρ(s) in place of ρ. Specifically, a Poisson(ϕM+1) =
K̃M+1 number of new dishes are chosen and scores are assigned according to
((Hi,Xi)) following an IBP(A,ρM) sequence. For accounting purposes, one
may index the new K̃M+1 selected features and corresponding scores (Xi) as
(ω�,A

′
M+1,�) for � = KM + 1, . . . ,KM+1.

4. Notice that P(K̃k = 0) = P(ξ(ϕk) = 0) = e−ϕk , for k = 1,2, . . . .

4. Examples. We now first present details for the cases where A is Bernoulli,
Poisson and negative binomial, with respect to general choices for homogeneous ρ.
We then present details for a normal model in Section 4.4. The choice of a gener-
alized gamma prior is highlighted in the Poisson and normal cases.

4.1. Bernoulli(p). In the simplest case A|p is Bernoulli(p), where πA(p) =
p and A′ = 1. It follows that Sspike×slab(p|A�) = (1 − p)M−m�pm� . For generic
ρ, J� has density proportional to (1 − p)M−m�pm�ρ(p) and ϕk = ∫ 1

0 p(1 −
p)k−1ρ(p)dp. ρM(p) = (1 − p)Mρ(p) which determines NM , μM . For a pre-
viously chosen feature, ω�, the distribution of AM+1,� is Bernoulli(E[J�]) where

E[J�] =
∫ 1

0 (1 − p)M−m�pm�+1ρ(p)dp∫ 1
0 (1 − p)M−m�pm�ρ(p)dp

,

which is the chance customer M + 1 has the existing feature ω� shared by m� out
of the M previous customers. The customer will also choose Poisson(ϕM+1) new
dishes, where since A′ = 1 the scores (Xi) are always 1. In order to see how to use
our results to recover the known cases in the literature we look at the case of the
stable-Beta process as in [48]. That is μ is a stable-Beta process with parameters
(α,β; θ), with ρ(s) = ρα,β(s) specified in (1.1). It follows that μM is also a stable-
Beta process now with parameters (α,M + β; θ), and the corresponding jumps
are such that J� is a Beta(m� − α,M − m� + β + α) random variable. Hence,
E[J�] = (m� − α)/(M + β).

4.2. Poisson(rλ). We now look at the case where A|λ is a Poisson(rλ) ran-
dom variable. When μ is specified to be a gamma process by taking ρ(λ) =
θλ−1e−rλ this coincides with the Poisson-Gamma model considered by [49, 51].
This is related to a Poisson-Gamma model of Lo [36] where posterior conjugacy
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was established. Here, πA(λ) = (1 − e−rλ) and the slab distribution of A′|λ, and
hence Xi |Hi = λ, is specified by (2.3). It follows that

Sspike×slab(λ|A�) = rc�,M∏
i∈B�

A′
i,�!

λc�,M e−λMr,

where c�,M = ∑
i∈B�

A′
i,�. For a general ρ, J� has density proportional to

λc�,M e−λMrρ(λ). For sampling new dishes, it follows that

(4.1) ϕk := φr,k =
∫ ∞

0

(
1 − e−ry)

e−(k−1)ryρ(y) dy.

Additionally, ρj (λ) = e−jrλρ(λ), j = 0,1,2, . . . . For a previously chosen feature,
ω�, the distribution of AM+1,�|J� is Poisson(rJ�), hence the conditional probabil-
ity of bM+1,� = 1|J� is (1 − e−rJ�). It follows that

E
[(

1 − e−rJ�
)] =

∫ ∞
0 (1 − e−rλ)e−λMrλc�,M ρ(λ) dλ∫ ∞

0 e−λMrλc�,M ρ(λ) dλ

is the probability of choosing an existing dish ω�. Now for ((Hi,Xi)) following a
IBP(Poisson(rλ), ρM) sequence, it follows for customer M + 1:

(4.2) P(Hi ∈ dλ) = (1 − e−rλ)e−λMrρ(λ) dλ

φr,M+1

and the marginal of Xi is

P(Xi = j) =
∫ ∞

0 rjλj e
−rλ(M+1)

ρ(λ)dλ

j !φr,M+1
, j = 1,2, . . . .

For customer 1, setting M = 0, it is easy to check that φr,1E[Xi] = r
∫ ∞

0 λρ(λ)dλ

which may not be finite.

REMARK 4.1. Note that the general ((Hi,Xi)) IBP(Poisson(rλ), ρ) sequence
appears in Pitman [44], Section 3, in a very different context, where also the stable
case is highlighted.

4.2.1. Calculations for the IBP-Poisson-generalized gamma model. We say
that μ is a generalized gamma process with law denoted as GG(α, rζ ; θ) if

ρ(λ) = θ

�(1 − α)
λ−α−1e−rζλ for 0 < λ < ∞,

for θ > 0, and the ranges 0 < α < 1, ζ ≥ 0, or α ≤ 0 and ζ > 0. When α = 0, this is
the case of the gamma process. When α = −κ < 0, this results in a class of gamma
compound Poisson processes. The posterior distribution of μ|Z1, . . . ,ZM is equiv-
alent in distribution to μM + ∑K

�=1 J�δω�
where μM is a GG(α, r(M + ζ ); θ) and



2030 L. F. JAMES

the corresponding jumps satisfy G�
d= r(ζ + M)J� are conditionally independent

Gamma(c�,M − α,1) variables. AM+1,� is Poisson(G�/(M + ζ )), hence it has a
negative-binomial distribution with parameters (c�,M − α,1/(M + 1 + ζ )). This
implies that customer M +1 will sample a dish ω� that has been sampled by m� out
of M previous customers who have assigned a total score of c�,M , with probability

1 −
[

M + ζ

M + ζ + 1

]c�,M−α

.

This shows for the Poisson model that dishes/features having larger scores c�,M

have a larger chance of being selected by future customers. Customer M + 1
chooses a Poisson(φr,M+1) number of new dishes where in this case, φr,M+1 =
θψ̃α,r (M + ζ ) defined as

ψ̃α,r (M + ζ )

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

rα

α

[
(M + 1 + ζ )α − (M + ζ )α

]
, if 0 < α < 1, ζ ≥ 0,

log
(
1 + 1/(M + ζ )

)
, if α = 0, ζ > 0,

rκ

κ

[
(M + ζ )−κ − (M + 1 + ζ )−κ ]

, if α = −κ < 0, ζ > 0.

(4.3)

Now for customer M + 1, ((Hi,Xi)) are specified as follows: rHi
d= �α,M+ζ ,

where �α,M+ζ is a random variable with density

f�α,M+ζ
(λ)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

α(1 − e−λ)λ−α−1e−λ(M+ζ )

�(1 − α)[(M + 1 + ζ )α − (M + ζ )α] , if 0 < α < 1, ζ ≥ 0,

(1 − e−λ)λ−1e−λ(M+ζ )

log(1 + 1/(M + ζ ))
, if α = 0, ζ > 0,

(1 − e−λ)λκ−1e−λ(M+ζ )

�(κ)[(M + ζ )−κ − (M + 1 + ζ )−κ ] , if α = −κ < 0, ζ > 0.

(4.4)

Integrating the slab distribution of A′|λ, specified by (2.3), with respect to these
densities leads to the marginal distribution of Xi , for j = 1,2, . . . ,

P(Xi = j)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(M + 1 + ζ )α−j

[(M + 1 + ζ )α − (M + ζ )α]
α�(j − α)

j !�(1 − α)
, if 0 < α < 1, ζ ≥ 0,

(M + 1 + ζ )−j

j log(1 + 1/(M + ζ ))
, if α = 0, ζ > 0,

(M + 1 + ζ )−(κ+j)

[(M + ζ )−κ − (M + 1 + ζ )−κ ]
�(j + κ)

j !�(κ)
, if α = −κ < 0,

ζ > 0.

(4.5)
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REMARK 4.2. The random variables with densities (4.4) are easy to sample
as they can be represented as simple scale mixtures of gamma random variables.
These variables appear in various places. See [29], Section 3, for further details.
For M + ζ = 0 and 0 < α < 1, the distribution in (4.5) is sometimes referred to as
Sibuya’s distribution, and has an infinite mean.

4.3. Negative-Binomial(r,p). In the case where A|p is negative-binomial
(r,p), denoted as NB(r,p),

P(A = a|p) =
(
a + r − 1

a

)
pa(1 − p)r, a = 0,1, . . . .

It follows that πA(p) = 1 − (1 − p)r , and A′ has a discrete slab distribution G̃A′ ,
specified for a = 1,2, . . . by

(4.6) P
(
A′ = a|p) = P(Xi = a|Hi = p) =

(a+r−1
a

)
pa(1 − p)r

1 − (1 − p)r
.

It follows that

Sspike×slab(p|A�) = (1 − p)Mrpc�,M
∏
i∈B�

(
A′

i,� + r − 1

A′
i,�

)
,

where c�,M = ∑
i∈B�

A′
i,�. Furthermore, ρM(p|ω) = (1 − p)Mrρ(p|ω), which im-

plies that each J� has density proportional to (1 − p)Mrpc�,M ρ(p|ω�). These facts
lead immediately to the specification of the distributions of NM , μM and the pos-
terior distributions of N and μ.

We now give the results for describing ZM+1|Z1, . . . ,ZM , and hence a gener-
ative scheme for negative-binomial IBP models based on any choice for ρ. For
a previously chosen dish/feature, ω�, the distribution of AM+1,�|J� is NB(r, J�),
hence the conditional probability of bM+1,� = 1|J� is 1 − [1 − J�]r . It follows that

E
[
1 − (1 − J�)

r ] =
∫ 1

0 [1 − (1 − p)r ](1 − p)Mrpc�,M ρ(p)dp∫ 1
0 (1 − p)Mrpc�,M ρ(p)dp

,

is the probability that customer M + 1 chooses dish ω� that has been previously
selected by m� customers who have given a total score of c�,M .

We now describe a mapping which relates some properties of IBP-Poisson
models with the IBP-negative binomial model. Let ρ̃ denote a Lévy density on
(0,∞) defined by ρ on [0,1] by the transformation λ = − log(1 −p). Specifically
ρ̃(λ) := e−λρ(1 − e−λ). Then ϕk := φr,k , and is equivalent to

(4.7)
∫ 1

0

[
1 − (1 − p)r

]
(1 − p)(k−1)rρ(dp) =

∫ ∞
0

(
1 − e−ry)

e−(k−1)ryρ̃(dy).

See [13, 26] for this identity. This means that customer M + 1 will sample a
Poisson(φr,M+1) number of dishes, which is the same under a IBP-Poisson model
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specified by ρ̃. Now for ((Hi,Xi)) following a IBP(NB(r,p), ρM) sequence, it
follows for customer M + 1:

(4.8) P(Hi ∈ dp) = [1 − (1 − p)r ](1 − p)Mrρ(p)dp

φr,M+1

and the distribution of Xi |Hi is specified by (4.6). Hence, the marginal of Xi is

P(Xi = a) =
(a+r−1

a

) ∫ 1
0 pa(1 − p)(M+1)rρ(p)dp

φr,M+1
, a = 1,2, . . . ,

and also Hi |Xi = a is proportional to pa(1 − p)(M+1)rρ(p). If H̃i is determined
by an IBP(Poisson(rλ), ρ̃M) sequence, it follows that Hi

d= (1−e−H̃i ). This equiv-
alence and the identity (4.7) are based on the correspondence between the spike
probabilities. There is no equivalence in terms of quantities involving slab vari-
ables, such as (Xi) and (J�). We will demonstrate this again in our next examples
involving normal random variables. By setting M = 0, one can check that for cus-
tomer 1,

(4.9) E[Xi] = r
∫ 1

0 p(1 − p)−1ρ(p)dp

φr,1
,

which is certainly not always finite. A fact that seems not to have been noticed in
the literature is that this happens for the commonly used range of the parameters
for the Beta/stable-Beta process. Note that if Z1 ∼ IBP(NB(r,p), ρB0) then one
obtains E[Z1(�)] = φr,1E[X1]. Using (4.9), and the stable-Beta process specifica-
tion, ρα,β(p) = θp−α−1(1 − p)β+α−1, gives

E
[
Z1(�)

] = θr

∫ 1

0
p−α(1 − p)

β+α−2
dp.

So it follows that if β ≤ 1 −α then E[Z1(�)] = ∞. This still means that customer
1 selects a Poisson (φr,1), number of dishes, but in these cases gives very high
scores to each dish, which is reflected by E[X1] = ∞.

The posterior distribution of μ|Z1, . . . ,ZM under the case where μ is a stable-
Beta process with parameters (α,β; θ), with ρα,β , was established through some
rather involved arguments in [6], see also [8]. Our results can be used to obtain this
as follows, since ρM(s) = ρα,β+Mr(s) it follows that μM is a stable-Beta process
with parameters (α,Mr +β; θ), and the (J�) are independent Beta(c�,M −α,Mr +
β + α). When α = 0, that is to say when μ is a Beta process, Heaukulani and
Roy [17] describe the explicit generative scheme in this case. Moreover, they give
the representation of Z showing that the marginal distributions of the (Xi) have
digamma distributions. Decompositions involving the corresponding Hi are not
noted. See also [53, 54]. Outside of the Beta process case the results we have
established are new. One may use, for instance, a generalized gamma process,
GG(α, rζ ; θ) by employing the change of variable p = 1 − e−λ. Calculations for
this are very similar to our next example which we now describe.
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4.4. Example: Calculations for spike and slab normal distributions. In the
previous examples where GA is based on classic discrete distributions, (binomial,
Poisson, negative-binomial), it is perhaps natural to think in terms of A rather than
in terms of their spike, 1 − πA, and their slab components A′. In general, it makes
sense to think of modeling via the decomposition (πA,A′) to construct particular
distributions A. The purpose of this section is to demonstrate how to obtain cal-
culations for a particularly challenging dependent model involving a continuous
distribution for A′. Specifically, here bi,k,A

′
i,k|λk are conditionally independent

such that bi,k is Bernoulli(1 − e−λk ) and A′
i,k|λk is a Normal(ηk,1/λk) random

variable with density φ(y|ηk, λk) =
√

λk√
2π

e− λk
2 (y−ηk)

2
.

REMARK 4.3. While this model bears some similarities to [34], and can in
principle be used in similar situations, it has not been treated in the literature.
Note also that P(A �= 0|λ) := πA(λ) = (1 − e−λ) depends on the variance pa-
rameter (1/λ). This indicates that previously chosen latent features, say ω�, with
highly varied values about their mean η� [representing uncertainty reflected by∑

i∈B�
(A′

i,� − η�)
2], are less likely to be chosen by new customers.

REMARK 4.4. We do not concern ourselves with how to deal with the (ηk).
These may be fixed, estimated externally to the Poisson random measure by
Bayesian parametric priors, or modeled as points of a Poisson random measure
which arises as a special case of Section 5.

The challenge for this model in terms of tractability is to find a suitable ρ(λ)

to deal with terms depending on (1 − e−λ)φ(y|η,λ). Note that since πA(λ) =
(1 − e−λ) is the same as the IBP-Poisson case with r = 1, it follows that customer
M + 1 will select a Poisson(φ1,M+1) new dishes. Furthermore, the distribution of
the (Hi), NM , μM are the same as in the Poisson setting. The difference is reflected
in the specification of the normal distribution of the slab variable A′, which affects
((Xi), (J�), (Ai,�)).

Based on a sample of size M ,

Sspike×slab(λ|A�) = e−(M−m�)λ
(
1 − e−λ)m�

(
λ

2π

)m�
2

e− λ
2
∑

i∈B�
(A′

i,�−η�)
2

.

This leads to a general expression for the joint distribution of (J�),Z1, . . . ,ZM ,
sans the unique values (ω1, . . . ,ωK),[

M∏
k=1

e−ϕk

]
K∏

�=1

e−(M−m�)λ�
(
1 − e−λ�

)m�

(
λ�

2π

)m�
2

e− λ�
2

∑
i∈B�

(A′
i,�−η�)

2

ρ(λ�).

Here, as in the IBP-Poisson case we choose μ to be a GG(α, ζ ; θ) process.
It follows that for μ|Z1, . . . ,ZM , μM is GG(α, ζ + M; θ) just as in the IBP-
Poisson case. Furthermore, ϕM+1 = θψ̃α,1(M + ζ ) defined in (4.3). Hence, cus-
tomers select new dishes as in the IBP-Poisson case. With respect to the values
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((Hi,Xi)) for customer M + 1 one should think in terms of (H�,X�)|η�, for
� = KM + 1, . . . ,KM+1 where the relevant indices correspond to the K̃M+1 newly

selected dishes. Here, the H�
d= �α,M+ζ , specified by (4.4), and hence are eas-

ily sampled. The corresponding X�|H�,η� are Normal(η�,1/H�) variables. The
density of X�|η� takes the form:

(4.10)
�(3

2 − α)

�(1 − α)

ψ̃
α− 1

2 ,1(M + ζ + 1
2(y − η�)

2)
√

2πψ̃α,1(M + ζ )
for − ∞ < y < ∞.

When α = 1/2, (4.10) specializes to

log(1 + 1
M+ζ+ 1

2 (y−η�)
2 )

23/2π [√(M + 1 + ζ ) − √
M + ζ ] .

In the IBP sequential selection scheme, one sets the X� = A′
M+1,� for � = KM +

1, . . . ,KM+1.
Customer M +1 chooses among the K := KM existing dishes using the follow-

ing results. For m� = |B�| > 1, the density of J� is now:

(4.11) fJ�
(λ) := e−(S�,M−m�)λ(1 − e−λ)

m�
λ

m�
2 −α−1

�(m�/2 − α)
∑m�

j=0

(m�

j

)[S�,M − j ]α−m�/2(−1)m�−j
,

where S�,M = M + ζ + 1
2

∑
i∈B�

(A′
i,� − η�)

2.

REMARK 4.5. The form of the normalizing constant arises from the binomial
expansion (1 − e−λ)

m� = ∑m�

j=0

(m�

j

)
e−λ(m�−j)(−1)m�−j , and Laplace transforms

of gamma distributions.

When m� > 1, it is easiest to sample from the distribution of AM+1,�|J� which
is equivalent to bM+1,�A

′
M+1,�|J�, where bM+1,� is Bernoulli((1 − e−Jl )), and

A′
M+1,�|J� is Normal(η�,1/J�), where J� is sampled from fJ�

(λ) given in (4.11).
However, for completeness, it follows that the probability of selecting a previously
selected dish ω� is P(bM+1,� = 1|m� > 1) = E[(1 − e−Jl )], given by

∑m�+1
j=0

(m�+1
j

)[S�,M + 1 − j ]α−m�/2(−1)m�+1−j

∑m�

j=0

(m�

j

)[S�,M − j ]α−m�/2(−1)m�−j
.

The density of AM+1,�|bM+1,� = 1, m� > 1 can be expressed as

�(m�+1
2 − α)

∑m�+1
j=0

(m�+1
j

)[S�,M + 1 − j + 1
2(y − η�)

2]α−m�+1
2 (−1)m�+1−j

�(m�/2 − α)
∑m�+1

j=0

(m�+1
j

)[S�,M + 1 − j ]α−m�/2(−1)m�+1−j
.
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When m� = 1, J�
d= �α−1/2,S�,M−1. It follows in this case the chance that customer

M + 1 chooses the existing dish ω�, which has been selected by only one of the M

previous customers, is

P(bM+1,� = 1|m� = 1) := P(AM+1,� �= 0|m� = 1) = 1 − ψ̃α−1/2(S�,M)

ψ̃α−1/2(S�,M − 1)
.

The density of J�|AM+1,� �= 0, m� = 1 is

ψ̃α−1/2(S�,M − 1)(1 − e−λ)f�α−1/2,S�,M−1(λ)

[ψ̃α−1/2(S�,M − 1) − ψ̃α−1/2(S�,M)] .

Integrating φ(y|η�, λ) over λ with respect to this density leads to the density of
AM+1,�|AM+1,� �= 0, m� = 1,

�(1 − α)
∑2

j=0
(2
j

)[S�,M + 1 − j + 1
2(y − η�)

2]α−1
(−1)2−j

√
2π [ψ̃α−1/2(S�,M − 1) − ψ̃α−1/2(S�,M)] .

This is an unfamiliar density, however again one can sample this much more easily
using the fact that the conditional distribution of AM+1,�|J�,AM+1,� �= 0,m� = 1
is Normal(η�,1/J�).

5. Constrained Multivariate Priors and IBP generalizations. Possible
multivariate extensions of the generalized IBP presents new challenges in terms
of construction of processes, selection of multivariate versions of μ, their analysis
and interpretations. In this section, we will show how to do this in great gener-
ality. This, similar to our results for the univariate case, allows one to focus on
modeling issues and interpretations that arise in a more intricate multidimensional
setting rather than be encumbered by the calculus of random measures. Since the
joint distributions are similar in form to the univariate cases, the arguments we
employed previously carry over to this setting in a rather transparent fashion. We
present results for a very general multivariate setting and then specialize these to a
simple multinomial setting. We also discuss the case of multivariate CRMs which
have suitable constraints to handle, for instance, multinomial extensions of the
IBP.

Let us first say a few words about multivariate Lévy processes with posi-
tive jumps. For xq = (x1, x2, . . . , xq), let ρq(xq) denote a sigma-finite function
concentrated on R

q
+/{0} then following Barndorff-Nielsen, Pedersen and Sato

[3], Proposition 3.1, there exists a multivariate CRM μ0 := (μj , j = 1, . . . , q)

with jumps specified by ρq if
∫
R

q
+ min(x·,1)ρq(x) dx < ∞, where x· = ∑q

j=1 xj .
We shall assume a common base measure B0(dω) representing again fea-
tures. So it follows that one can write μj = ∑∞

k=1 τj,kδω̃k
. Furthermore, μ· =∑q

j=1 μj = ∑∞
k=1 τ·,kδω̃k

, for τ·,k = ∑q
j=1 τj,k . The multivariate CRM μ0 is
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constructed from N a Poisson random measure on (R
q
+,�) with mean inten-

sity E[N(dxq, dω)] = ν(dxq, dω) = ρq(dxq |ω)B0(dω), and can be represented
as N := ∑∞

k=1 δτ̃q,k,ω̃k
, where τ̃q,k = (τ1,k, . . . , τq,k). Hence, for j = 1, . . . , q ,

μj(dω) := ∫
R

q
+ hj (xq)N(dxq, dω), where hj (xq) = xj . We use the notation

ρq(dxq |ω) := ρq(xq |ω)dxq . In order to extend definitions to R
q , choose ρq such

that ρq({0}) = 0, and
∫
Rq min(|x·|,1)ρq(x) dx < ∞.

REMARK 5.1. Within the IBP context, the points xq will generally relate to
the possible parameter values of a distribution, for instance, a multinomial dis-
tribution. As such, these points will often take values in a constrained sub-space
of Rq . A challenge is to construct random measures such that their prior and pos-
terior distributions have points that take values in the same constrained subspace
of Rq , with probability one. We will illustrate this for a multivariate IBP based on
a simple multinomial distribution.

5.1. A general multivariate IBP process. Let now A0 := (A1, . . . ,Aυ), for
υ a positive integer not necessarily equal to q , denote a random vector tak-
ing values in A ⊆ R

υ , with conditional distribution GA0(·|sq), where sq ∈ R
q ,

and such that 1 − πAo(sq) := P(A1 = 0, . . . ,Aυ = 0|sq) > 0. We require that
ϕ := ∫

�

∫
Rq πA0(sq)ρq(dsq |ω)B0(dω) < ∞. One can decompose A0 in terms of

a Bernoulli (πA0(sq)) spike variable and a generalized multivariate slab vector
A′

0 := (A′
1, . . . ,A

′
υ), with distribution:

G̃A′
0
(da0|sq) =

[
I{a0 /∈ 0}GA0(da0|sq)

πA0(sq)

]
.

This means that at least one of the components of A′
0 is nonzero with probability

one. Then we can define a vector valued process Z
(i)
0 := (Z

(i)
1 , . . . ,Z

(i)
υ ), where

Z
(i)
j = ∑∞

k=1 A
(i)
j,kδω̃k

, and Z
(i)· = ∑υ

j=1 Z
(i)
j = ∑∞

k=1 A
(i)
·,kδω̃k

, where conditional

on μ0 := (μ1, . . .μq), for each fixed (i, k), A
(i)
0,k := (A

(i)
1,k, . . . ,A

(i)
υ,k) is indepen-

dent GA0(·|sq,k), where sq,k = (s1,k, . . . , sq,k) are vector valued points of a PRM

with intensity ρq(·|ω). We say that Z
(1)
0 , . . . ,Z

(M)
0 |μ0 are i.i.d. IBP(GA0 |μ0). Let

Jq,� = (J1,�, . . . , Jq,�) denote a random vector of latent jumps that have been

picked from N , along with ω�, with arguments sq,�. Set B� := {i : Z
(i)
0 (ω�) =

A
(i)
0,� /∈ 0}, and denote the arguments of A

(i)
0,j as a(i)

0,j . Despite the extension to the
multivariate setting, the form of the likelihood structure shares many similarities
with the univariate case and one may conclude that the relevant joint distribution
of (Jq,�), (Z

(1)
0 , . . . ,Z

(M)
0 ) is given by

(5.1)

[
M∏

k=1

e−ϕk

]
K∏

�=1

Sspike×slab(sq,�|A0,�)ρq(sq,�|ω�)B0(dω�),
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where now, for A0,� = {A′(i)
0,� : i ∈ B�},

(5.2) Sspike×slab(sq |A0,�) = [
1 − πA0(sq)

]M−m�π
m�

A0
(sq)

∏
i∈B�

G̃A′
0

(
da(i)

0,�|sq

)
,

νM(dsq,ω) = [1 − πA0(sq)]Mρq(dsq |ω)B0(dω) := ρq,M(dsq |ω)B0(dω), and for
k = 1,2, . . . ; ϕk = ∫

�

∫
Rq πA0(sq)ρq,k−1(dsq |ω)B0(dω). We now summarize the

results.

PROPOSITION 5.1. Suppose that Z
(1)
0 , . . . ,Z

(M)
0 |μ0 are i.i.d. IBP(GA0 |μ0),

where μ0 is a multivariate CRM(ρqB0):

(i) Then it follows that the posterior distribution of N |(Z(1)
0 , . . . ,Z

(M)
0 ) is

equivalent to the distribution of NM +∑K
�=1 δJq,�,ω�

, where NM is a PRM(ρq,MB0)

and the vector Jq,� = (J1,�, . . . , Jq,�) has joint density, with argument sq,�, propor-
tional to Sspike×slab(sq,�|A0,�)ρq(sq,�|ω�) described in (5.2).

(ii) Let μ0,M = (μ1,M, . . . ,μq,M) denote a multivariate CRM(ρq,MB0), then

the posterior distribution of μ0|Z(1)
0 , . . . ,Z

(M)
0 , is equivalent to that of a mul-

tivariate process whose j th component is equivalent in distribution to μj,M +∑K
�=1 Jj,�δω�

.

(iii) The corresponding distribution of ZM+1
0 |(Z(1)

0 , . . . ,Z
(M)
0 ) can be repre-

sented in terms of Z̃
(M+1)
0 := (Z̃

(M+1)
1 , . . . , Z̃

(M+1)
υ ), which is determined by

the points of NM , call it an IBP(A0, ρq.MB0) vector, and � = 1, . . . ,K vectors

(A
(�)
0,M+1), where for each fixed �, A

(M+1)
0,� |Jq,� = sq has distribution GA0(·|sq).

In other words component-wise Z
(M+1)
0 can be represented in distribution as

Z̃
(M+1)
j + ∑K

�=1 A
(M+1)
j,� δω�

, where A
(M+1)
j,� is the j th component of A

(M+1)
0,� .

We close with a generalization of Proposition 3.3, which can be used to sample
Z̃

(M+1)
0 by replacing the general ρq below with ρq,M .

PROPOSITION 5.2. Let Z0 = (Z1, . . . ,Zυ) have an IBP(A0, ρqB0) distribu-
tion, where it is assumed that ρq is homogeneous. If ϕ := ∫

Rq πA0(sq)ρq(dsq) <

∞, then for j = 1, . . . , υ , Zj
d= ∑ξ(ϕ)

k=1 Xj,kδω̃k
where (ω̃k) are i.i.d. B0, X0,k :=

(X1,k, . . .Xυ,k) are i.i.d. across k, and independent of ξ(ϕ), a Poisson random
variable with mean ϕ. Furthermore, setting H0,k = (H1,k, . . .Hq,k), there are the
i.i.d. pairs ((H0,k,X0,k)) with slab distribution:

P(X0,k ∈ da0|H0,k = sq) = G̃A′
0
(da0|sq) =

[
I{a0 /∈ 0}GA0(da0|sq)

πA0(sq)

]

and P(H0,k ∈ dsq) = πA0(sq)ρq(dsq)/ϕ. Replace ρq(dsq) with ρq(dsq |ω) to ob-
tain the in-homogeneous case.
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The proof proceeds in the same manner as the univariate case using the charac-
teristic functional of

∑υ
j=1 tjZj (f ), for general tj .

REMARK 5.2. The multivariate IBP generative schemes proceed in the
same fashion as described in Section 3.2 with ((H0,i ,X0,i)) playing the role of
((Hi,Xi)). The in-homogeneous scheme just involves ((H0,�,X0,�))|(w�).

5.2. The simple multinomial case: Indian Buffet Process with a condiment.
For q = 1,2, . . . consider the vector of probabilities pq = (p1, . . . , pq) taking
values in the simplex Sq = {sq : sj > 0, s· = ∑q

j=1 sj < 1}. A basic multivariate

model is the case where A0 has a simple multinomial (1,pq,1 − ∑q
i=1 pi) :=

M(1,pq) distribution, with probability mass function:

P(A1 = a1, . . . ,Aq = aq |pq) =
[ q∏

j=1

p
aj

j

]
(1 − p·)1−∑q

k=1 ak ,

where at most one of the terms in a0 := (a1, . . . , aq) is one and the others
are 0. It follows that A· := ∑q

j=1 Aj has a Bernoulli(
∑q

j=1 pj ) distribution. The
spike is determined by 1 − πA0(pq) = (1 − p·) and the multivariate slab dis-
tribution G̃A′

0
(·|pq) is a simple multinomial with probability mass function, for

a· := ∑q
i=1 ai ,

(5.3) P
(
A′

1 = a1, . . . ,A
′
q = aq |pq

) = I{a·=1}
q∏

j=1

(
pj∑q
i=1 pi

)aj

,

which is the distribution of A0|A· = 1. Now for the matrix entries for each
fixed (i, k), A

(i)
0,k|pq,k is a M(1,pq,k) vector. It follows that A

(i)
·,k := ∑q

j=1 A
(i)
j,k

is Bernoulli(
∑q

j=1 pj,k), and A
(i)
0,k|A(i)

·,k = 1 has distribution G̃A′
0
(·|pq,k) specified

by (5.3). Hence, Z
(i)· = ∑υ

j=1 Z
(i)
j = ∑∞

k=1 A
(i)
·,kδω̃k

, is a Bernoulli(
∑q

j=1 pj )- IBP

process based on the univariate CRM μ· = ∑∞
k=1[

∑q
j=1 pj,k]δω̃k

. The points of μ·
are specified by ρ defined by ρq through the transformation p = p· = ∑q

j=1 pj .
Each nonzero entry in the matrix contains a vector of length q where one entry
takes the value 1 and the other entries in the vector take the value 0. This can
perhaps be interpreted as the case where a particular feature or topic is selected
and then further segmented into one of q categories. The q categories could re-
fer to geographic regions, colors, genres, etc. Returning to the culinary metaphor,
this could be described in terms of a customer selecting a certain dish but along
with that choosing one particular condiment to go along with that dish. Perhaps
a mango chutney or simply salt. This means that 2 or more individuals may have
selected the same dish (have the same basic trait) but might differ in terms of
the accompanying condiment. Notice that there is the following decomposition:
B� = ⋃q

j=1 Bj,�, where Bj,� = {i : Z(i)
j (ω�) := A

(i)
j,� = 1}.
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We now show how our results lead to a formal execution in this case. First,
ρq,M(pq |ω) = (1 − p·)Mρq(pq |ω) and

Sspike×slab(pq,�|A0,�) =
[ q∏

j=1

[pj,�]mj,�

]
(1 − p·,�)M−m�,

where in a sample of size M , mj,� = |Bj,�| and m� = ∑q
j=1 mj,�

These facts determine the distributions of NM , μ0,M and Z̃
(M+1)
0 , and the ran-

dom vectors Jq,� = (J1,�, . . . , Jq,�). Marginally, for each �, A
(M+1)
0,� is M(1, rq,�),

where rq,� = (r1,�, . . . , rq,�) is defined for k = 1, . . . , q , as rk,� = E[Jk,�]. Hence,

A
(M+1)
·,� = ∑q

j=1 A
(M+1)
j,� is Bernoulli(

∑q
j=1 rj,�), and given A

(M+1)
·,� = 1, A

(M+1)
0,�

becomes a simple multinomial distribution G̃A′
0
(·|uq,�) specified by (5.3) where

uq,� = (u1,�, . . . , uq,�) with uj,� = rj,�/
∑q

k=1 rk,�.

Since Z
(i)· = ∑q

j=1 Z
(i)
j is a Bernoulli process, it is evident that customers

choose new dishes, ω�, according to the Indian buffet process arising in the
univariate case. Specifically, via the transformation p = ∑q

j=1 pj , one has for

k = 1,2, . . . , ϕk = ∑q
j=1

∫
Sq

pjρq,k−1(dpq) = ∫ 1
0 p(1 − p)k−1ρ(dp). In addition,

customer M + 1 chooses new dishes and accompanying condiments according to
Z̃

(M+1)
0 , where for each k, X0,k := (X1,k, . . . ,Xq,k) given H0.k = (p1, . . . , pq),

has distribution G̃A′
0
(·|pq) specified by (5.3). H0,k is a random vector with joint

density [∑q
j=1 pj ]ρq,M(p1, . . . , pq)/ϕM+1. Hence, X0,k is marginally a simple

multinomial with probability mass function I{∑q
i=1 xi=1}

∏q
j=1 π

xj

j,k , where πj,k =
E[Hj,k/H·,k] for j = 1, . . . , q . That is to say given each new dish chosen, ωk ,
customer M + 1 selects with it the j th of q possible condiments with probability
πj,k . Customer M +1 also will possibly choose a previously selected dish ω�, with
probability

∑q
j=1 rj,� and given this will choose one of q condiments, say j , (pos-

sibly different than what has previously been chosen by others) with probability
uj,�. That is to say according to a multinomial(1, (r1,�, . . . , rq,�)) distribution. The
customer will do this for each of the � = 1, . . . ,K previously selected dishes.

5.3. Multinomial case: Stable-Beta-Dirichlet process priors. One of the tasks
in the multivariate case is to find convenient priors for μ0 = (μ1, . . . ,μq) such that
both its prior and posterior jump values are confined to a constrained space such as
Sq , with probability one. Kim, James and Weissbach [32] show, within a different
data context but generally applicable, that this is not true if the components μj ,
j = 1, . . . , q are specified to be independent.

In the simple multinomial case, we now show how the class of Beta-Dirichlet
priors introduced in [32] leads to explicit results while maintaining values in Sq .
We introduce a slight modification of this model which allows for power-law be-
havior in the sense of Teh and Görür [48]. Specify μ0 to be a stable-Beta-Dirichlet
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process with parameters (α,β + α;γ1, . . . , γq; θ) by setting

(5.4) ρq(pq) = θ�(
∑q

j=1 γj )∏q
j=1 �(γj )

p
−α−∑q

j=1 γj

· (1 − p·)β+α−1
q∏

j=1

p
γj−1
j I{0<p·<1},

for 0 ≤ α < 1, β > −α, θ > 0 and γj > 0 for j = 1, . . . , q . When α = 0, this is
the Beta-Dirichlet process given in [32]. Making the change of variable s = p·, it
is easy to check that μ· = ∑q

j=1 μj is a stable-Beta process in the sense of [48]

with Lévy density ρ(s) = θs−α−1(1 − s)β+α−1. It follows that for each �, Jq,� =
(J1,�, . . . , Jq,�) is such that

∑q
j=1 Jj,� has a Beta(m� −α,M +β +α −m�) distri-

bution just as the univariate case. Furthermore, Dq,� := (D1,�, . . . ,Dq,�), where
Dj,� = Jj,�/

∑q
k=1 Jk,� is independent of

∑q
k=1 Jk,� and is a Dirichlet(m1,� +

γ1, . . . ,mq,� +γq) vector. In addition, μ0,M is a stable-Beta-Dirichlet process with
parameters (α,M + β + α;γ1, . . . , γq; θ).

Hence, customer M + 1 chooses an existing dish ω� and accompanying condi-
ment j with probability:

rj,� = mj,� + γj

m� + ∑q
k=1 γk

× m� − α

M + β
.

For Z̃
(M+1)
0 , it follows that for j = 1, . . . , q , Z̃

(M+1)
j

d= ∑ξ(ϕM+1)

k=1 Xj,kδω̃k
, where

ϕM+1 = θ

∫ 1

0
s1−α−1(1 − s)M+β+α−1 ds = θ�(1 − α)�(M + β + α)

�(M + β + 1)

and for each k, X0,k = (X1,k, . . . ,Xq,k) is a simple multinomial with probability
mass function:

(5.5) I{∑q
i=1 xi=1}

q∏
j=1

(
γj∑q
i=1 γi

)xj

.

Thus, customer M + 1 chooses a Poisson(ϕM+1) number of new dishes exactly as
in the univariate case and also for each new dish chosen selects a single condiment
j with probability γj/

∑q
i=1 γi , for j = 1, . . . , q .

REMARK 5.3. It follows that for each (M,k), H0,k is marginally a Beta-
Dirichlet random vector with parameters (1 − α,M + β + α;γ1, . . . , γq). This
means that H·,k := ∑q

j=1 Hj,k is a Beta(1 − α,M + β + α) random variable and
the vector (D1,k, . . . ,Dq,k), for Dj,k = Hj,k/H·,k , is Dirichlet(γ1, . . . , γq), which
leads to (5.5).

REMARK 5.4. Our analysis allows for feature specific specifications for
(q, (γj )) by replacing them with (q(ω), (γj (ω))) in (5.4). For selected features,
one now uses (q(ω�), (γj (ω�))) in the calculations. This does not alter ϕM+1. See
also the recent work of [35] for an application of the Beta-Dricihet prior in a mul-
tivariate feature model setting.
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APPENDIX: POSTERIOR ANALYSIS OF GENERALIZED INDIAN
BUFFET PROCESSES

We will now apply Propositions 2.1 and 2.2 of James [25], pages 6–8 (see also
[23], pages 7–8), to provide a formal derivation of the results in Propositions 3.1,
3.2 and Theorem 3.1. The result for Proposition 5.1 follows by similar arguments.

Let (J�,ω�) for � = 1, . . . ,K denote the K := KM unique points among
((τk, ω̃k)) picked from the Poisson random measure N , based on the condition-
ally i.i.d. processes (Z1, . . . ,ZM). Then one can write the joint distribution of
((Z1, . . . ,ZM), (J1, . . . , JK),N), where (J1, . . . , JK) are the unique jumps picked
from μ with arguments (s1, . . . , sK), as

(A.1) e−N(fM)P(dN |ν)

K∏
�=1

N(ds�, dω�)
∏
i∈B�

[
πA(s�)G̃A′(dai,�|s�)

1 − πA(s�)

]
,

where fM(s,ω) = −M log(1 − πA(s)), and hence N(fM) = −M
∑∞

k=1 log(1 −
πA(τk)). Similar to the main text, for j = 0,1,2, . . . . define νj (ds, dω) =
e−fj (s,ω)ν(ds, dω) = [1 − πA(s)]jρ(s|ω)B0(dω)ds. Now applying the exponen-
tial change of measure result in Proposition 2.1 of James [25], it follows that

e−N(fM)P(dN |ν) = P(dN |νM)e−�(fM),

where E[e−N(fM)] = e−�(fM), and

(A.2) �(fM) =
∫
�

∫ ∞
0

(
1 − [

1 − πA(s)
]M)

ρ(s|ω)dsB0(dω).

Now since the pairs (s�,ω�) are distinct for � = 1, . . . ,K , an application of Propo-
sition 2.2 in James [25] leads to the equivalence:

P(dN |νM)

K∏
�=1

N(ds�, dω�) = P(dN |νM, s,ω)

K∏
�=1

νM(ds�, dω�),

where νM(ds�, dω�) = [1 − πA(s�)]Mρ(s�|ω�)B0(dω�) ds�, and P(dN |νM, s,ω)

denotes the distribution of the random measure NM +∑K
�=1 δs�,ω�

, where NM has a
PRM(νM) distribution. Combining these results leads to an equivalent expression
for (A.1), which reveals the relevant posterior and marginal quantities:

(A.3) P(dN |νM, s,ω)e−�(fM)
K∏

�=1

Sspike×slab(s�|A�)ρ(s�|ω�)B0(dω�),

where, for A� = {A′
i,� : i ∈ B�},

Sspike×slab(s|A�) = [
1 − πA(s)

]M−m�π
m�

A (s)
∏
i∈B�

G̃A′(dai,�|s).
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It remains to obtain an equivalent form of �(fM) in (A.2). Recall that ρj (s|ω) =
[1 − πA(s)]jρ(s|ω) for j = 0,1,2, . . . . Hence, ρ0(s|ω) := ρ(s|ω). Define for k =
1,2, . . . ,

(A.4) ϕk :=
∫
�

∫ ∞
0

πA(s)ρk−1(s|ω)dsB0(dω).

Noting the expressions in (A.2) and (A.4), it follows that ϕ1 = �(f1), and it is not
difficult to see that

�(fM) =
M∑

k=1

ϕk, hence e−�(fM) =
M∏

k=1

e−ϕk .

Substituting this expression in (A.3), leads to our final form of the joint distri-
bution:

P(dN |νM, s,ω)

[
M∏

k=1

e−ϕk

]
K∏

�=1

Sspike×slab(s�|A�)ρ(s�|ω�)B0(dω�).

Integrating out N , leads to Proposition 3.1, and then Proposition 3.2 and Theo-
rem 3.1 follow from applications of Bayes’ rule. Note in the multivariate setting
of Section 5, similar to (A.1), it follows that the joint distribution of N , (Jq,�),

(Z
(1)
0 , . . . ,Z

(M)
0 ) can be expressed as

e−N(fM)P(dN |ν)

K∏
�=1

N(dsq,�, dω�)
∏
i∈B�

[πA0(sq,�)G̃A′
0
(da(i)

0,�|sq,�)

1 − πA0(sq,�)

]
,

where now B� := {i : Z(i)
0 (ω�) = A

(i)
0,� /∈ 0} and fM(sq,ω) = −M log[1−πA0(sq)].

It is evident that arguments similar to the univariate case lead to Proposition 5.1.
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