The Annals of Statistics

2017, Vol. 45, No. 5, 1951-1987

DOI: 10.1214/16-A0S1515

© Institute of Mathematical Statistics, 2017

MINIMAX ESTIMATION OF A FUNCTIONAL ON A STRUCTURED
HIGH-DIMENSIONAL MODEL!'

BY JAMES M. ROBINS*, LINGLING LI", RAJARSHI MUKHERJEE?,
ERIC TCHETGEN TCHETGEN* AND AAD VAN DER VAARTS

Harvard T. H. Chan School of Public Health,* Sanofi Genzyme,T
Stanford University* and Universiteit Leiden’

We introduce a new method of estimation of parameters in semipara-
metric and nonparametric models. The method employs U -statistics that are
based on higher-order influence functions of the parameter of interest, which
extend ordinary linear influence functions, and represent higher derivatives of
this parameter. For parameters for which the representation cannot be perfect
the method often leads to a bias-variance trade-off, and results in estimators
that converge at a slower than /n-rate. In a number of examples, the resulting
rate can be shown to be optimal. We are particularly interested in estimating
parameters in models with a nuisance parameter of high dimension or low
regularity, where the parameter of interest cannot be estimated at /n-rate,
but we also consider efficient /n-estimation using novel nonlinear estima-
tors. The general approach is applied in detail to the example of estimating a
mean response when the response is not always observed.

1. Introduction. Let X, X5, ..., X,, be a random sample from a density p
relative to a measure p on a sample space (X, A). It is known that p belongs to
a collection P of densities, and the problem is to estimate the value x(p) of a
functional x : P — R. Our main interest is in the situation of a semiparametric or
nonparametric model, where P is infinite dimensional, and especially in the case
when the model is described through parameters of low regularity. In this case, the
parameter y (p) may not be estimable at the “usual” \/n-rate.

In low-dimensional semiparametric models, estimating equations have been
found a good strategy for constructing estimators [2, 30, 36]. In our present setting,
it will be more convenient to consider one-step versions of such estimators, which
take the form

(1.1) )zn:X(ﬁn)'i‘PnXﬁn,
for p, an initial estimator for p and x — x,(x) a given measurable function, for
each p € P, and P, f shorthand notation for n~! Y f(XD).
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One possible choice in (1.1) is x, = 0, leading to the plug-in estimator x (p,).
However, unless the initial estimator p, possesses special properties, this choice
is typically suboptimal. Better functions x, can be constructed by consideration
of the tangent space of the model. To see this, we write [with P x5 shorthand for

S xp(x)dP(x)]
(1.2) Xn = x(P) =[x (Pn) = x(P) + Pxp,] + ®n — P)xp,-

Because it is properly centered, we may expect the sequence /n(P, — P)x;, to
tend in distribution to a mean-zero normal distribution. The term between square
brackets on the right-hand side of (1.2), which we shall refer to as the bias term,
depends on the initial estimator p,, and it would be natural to construct the func-
tion x, such that this term does not contribute to the limit distribution, or at least
is not dominating the expression. Thus, we would like to choose this function such
that the “bias term” is no bigger than of the order Op(n~!/?). A good choice is
to ensure that the term P x5 acts as minus the first derivative of the functional x
in the “direction” p, — p. Functions x — x,(x) with this property are known as
influence functions in semiparametric theory [2, 5, 13, 19, 31], go back to the von
Mises calculus due to [38], and play an important role in robust statistics [9, 11],
or [36], Chapter 20.

For an influence function, we may expect that the “bias term” is quadratic in the
error d(py, p), for an appropriate distance d. In that case, it is certainly negligible
as soon as this error is of order op(n~1/4). Such a “no-bias” condition is well
known in semiparametric theory (e.g., condition (25.52) in [36] or (11) in [17]).
However, typically it requires that the model P be “not too big.” For instance,
a regression or density function on d-dimensional space can be estimated at rate
n~ /4% if it is a-priori known to have at least d /2 derivatives [indeed o/ (2 + d) >
1/4 if o > d/2]. The purpose of this paper is to develop estimation procedures
for the case that no estimators exist that attain a Op (n~'/%) rate of convergence.
The estimator (1.1) is then suboptimal, because it fails to make a proper trade-off
between “bias” and “variance”: the two terms in (1.2) have different magnitudes.
Our strategy is to replace the linear term [P, x, by a general U -statistic Uy x,, for
an appropriate m-dimensional influence function (xi, ..., xn) = Xp(X1,..., Xm),
chosen using a type of von Mises expansion of p — x(p). Here, the order m is
adapted to the size of the model P and the type of functional to be estimated.

Unfortunately, “exact” higher-order influence functions turn out to exist only
for special functionals y. To treat general functionals y, we approximate these by
simpler functionals, or use approximate influence functions. The rate of the result-
ing estimator is then determined by a trade-off between bias and variance terms.
It may still be of order 1/4/n, but it is typically slower. In the former case, sur-
prisingly, one may obtain semiparametric efficiency by estimators whose variance
is determined by the linear term, but whose bias is corrected using higher-order
influence functions. The latter case will be of more interest.
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The conclusion that the “bias term” in (1.2) is quadratic in the estimation er-
ror d(py, p) is based on a worst case analysis. First, there exist a large number
of models and functionals of interest that permit a first-order influence function
that is unbiased in the nuisance parameter. (e.g., adaptive models as considered in
[1], models allowing a sufficient statistic for the nuisance parameter as in [34, 35],
mixture models as considered in [16, 21, 32], and convex-linear models in survival
analysis). In such models, there is no need for higher-order influence functions.
Second, the analysis does not take special, structural properties of the initial esti-
mators p, into account. An alternative approach would be to study the bias of a
particular estimator in detail, and adapt the influence function to this special esti-
mator. The strategy in this paper is not to use such special properties and focus on
influence functions that work with general initial estimators p,.

The motivation for our new estimators stems from studies in epidemiology and
econometrics that include covariates whose influence on an outcome of interest
cannot be reliably modeled by a simple model. These covariates may themselves
not be of interest, but are included in the analysis to adjust the analysis for possible
bias. For instance, the mechanism that describes why certain data is missing is in
terms of conditional probabilities given several covariates, but the functional form
of this dependence is unknown. Or, to permit a causal interpretation in an obser-
vational study one conditions on a set of covariates to control for confounding, but
the form of the dependence on the confounding variables is unknown. One may
hypothesize in such situations that the functional dependence on a set of (continu-
ous) covariates is smooth (e.g., d /2 times differentiable in the case of d covariates),
or even linear. Then the usual estimators will be accurate [at order O p(n_l/ 2)] if
the hypothesis is true, but they will be badly biased in the other case. In particu-
lar, the usual normal-theory based confidence intervals may be totally misleading:
they will be both too narrow and wrongly located. The methods in this paper yield
estimators with (typically) wider corresponding confidence intervals, but they are
correct under weaker assumptions.

The mathematical contributions of the paper are to provide a heuristic for con-
structing minimax estimators in semiparametric models, and to apply this to a
concrete model, which is a template for a number of other models (see [23, 33]).
The methods connect to earlier work [10, 18] on the estimation of functionals on
nonparametric models, but differ by our focus on functionals that are defined in
terms of the structure of a semiparametric model. This requires an analysis of the
inverse map from the density of the observations to the parameters, in terms of
the semiparametric tangent spaces of the models. Our second-order estimators are
related to work on quadratic functionals, or functionals that are well approximated
by quadratic functionals, as in [3, 4, 6-8, 12, 14, 15]. While we place the construc-
tion of minimax estimators for these special functionals in a wider framework, our
focus differs by going beyond quadratic estimators and to consider semiparametric
models.
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Our mathematical results are in part conditional on a scale of regularity param-
eters. We hope to discuss adaptation to these parameters in future work.

General heuristics of our construction are given in Section 4. Sections 5-9 are
devoted to constructing new estimators for the mean response effect in missing
data problems. The latter are introduced in Section 3, so that they can serve as il-
lustration to the general heuristics in Section 4. In Section S11 (in the supplement
[22]), we briefly discuss other problems, including estimating a density at a point,
where already first-order influence functions do not exist and our heuristics natu-
rally lead to projection estimators, and estimating a quadratic functional, where our
approach produces standard estimators from the literature in a natural way. Sec-
tion 10 (partly in the supplement [22]) collects technical proofs. Sections S12, S13
and S14 (in the supplement [22]) discuss three key concepts of the paper: influ-
ence functions, projections and U -statistics. Numbers referring to the supplement
are preceded by the symbol “S.”

2. Notation. Let U, denote the empirical U -statistic measure, viewed as an
operator on functions. For given m < n and a function f : X" — R on the sample
space, this is defined by

1
Ul’lf=n(n_1)(n_m+1) ZZZ f(Xi]’Xiz,...,Xim).

I<iy#ir#Fim=<n

We do not let the order m show up in the notation U, f. This is unnecessary, as the
notation is consistent in the following sense: if a function f : X' — R of [ < m
arguments is considered a function of i arguments that is constant in its last m — [
arguments, then the right-hand side of the preceding display is well defined and is
exactly the corresponding U -statistic of order /. In particular, U, f is the empirical
distribution P, applied to f if f: X — R depends on only one argument.

We write P"U, f = P™ f for the expectation of U, f if X1,..., X, are dis-
tributed according to the probability measure P, and for the expectation of f un-
der the product measure P™ of m copies of P. We also use this operator notation
for the expectations of statistics in general. If the distribution of the observations
is given by a density p, then we use P as the measure corresponding to p, and use
the preceding notations likewise. Finally, U,, — P denotes the centered U -statistic
empirical measure, defined by (U, — P™)f =U,f — P™ f, for any integrable
function f.

We call f degenerate relative to P if [ f(xy,...,x,)dP(x;) =0 for every i
and every (x; : j #1i), and we call f symmetricif f(x1,..., x,) is invariant under
permutation of the arguments x1, ..., x;,. Given an arbitrary measurable function
f: X" — R, we can form a function that is degenerate relative to P by subtracting
the orthogonal projection in Lo (P™) onto the functions of at most m — 1 variables.
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This degenerate function can be written in the form (e.g., [36], Lemma 11.11)
(Dp f)(X1, ..., Xm)

(2.1)
= > D"MEpf(X1,..., Xm)|X; i € A),

where the sum is over all subsets A of {1, ..., m}, including the empty set. Here,
the conditional expectation E[ f (X1, ..., X;»)|X; : i € I] is understood to be the
unconditional expectation E f (X1, ..., X,;) = P™ f. If the function f is symmet-
ric, then so is the function Dp f.

Given two functions g, h : X — R, we write g x h for the function (x, y)
g(x)h(y). More generally, given m functions g1, ..., g, we write g1 X -+ X g
for the tensor product of these functions. Such product functions are degenerate iff
all functions in the product have mean zero.

A kernel operator K : L, (X, A, u) — L.(X, A, n) takes the form (K f)(x) =
[ K (x,y)f(y)du(y) for some measurable function K : ¥?> — R. We shall abuse
notation in denoting the operator K and the kernel K with the same symbol:
K = K. A (weighted) projection on a finite-dimensional space is a kernel oper-
ator. We discuss such projections in Section S13.

The set of measurable functions whose rth absolute power is p-integrable is
denoted L,(w), with norm || - ||, or || - ||, if the measure is clear; or also as
L,(w) with norm || - ||, if w is a density relative to a given dominating measure.
For r = oo the notation || - || refers to the uniform norm.

3. Estimating the mean response in missing data models. In this section,
we introduce our main example, which will be used as a running example in the
next section. We also summarize the results obtained for this example in the re-
mainder of the paper.

Suppose that a typical observation is distributed as X = (Y A, A, Z), for Y and
A taking values in the two-point set {0, 1} and conditionally independent given Z.

This model is standard in biostatistical applications, with ¥ an “outcome” or
“response variable,” which is observed only if the indicator A takes the value 1.
The covariate Z is chosen such that it contains all information on the dependence
between the response and the missingness indicator A, thus making the response
missing at random. Alternatively, we think of Y as a “counterfactual” outcome
if a treatment were given (A = 1) and estimate (half) the treatment effect under
the assumption of no unmeasured confounders. (The results also apply without
the “missing-at-random” assumption, but with a different interpretation; see Re-
mark 3.1.)

The model can be parameterized by the marginal density f of Z (relative to
some dominating measure v) and the probabilities b(z) = P(Y = 1|Z = z) and
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a(z) " '=P(A=1|Z=2). (Using a for the inverse probability simplifies later for-
mulas.) Alternatively, the model can be parameterized by the pair (a, b) and the
function g = f/a, which is the conditional density of Z given A =1, up to the
norming factor P(A = 1). Thus, the density p of an observation X is described
by the triplet (a, b, f), or equivalently the triplet (a, b, g). For simplicity of nota-
tion, we write p instead of p, p, r OF py p, ¢, With the implicit understanding that a
generic p corresponds one-to-one to a generic (a, b, f) or (a, b, g).
We wish to estimate the mean response EY = Eb(Z), that is, the functional

X(P)=/bfdv=/abgdv.

Estimators that are /n-consistent and asymptotically efficient in the semiparamet-
ric sense have been constructed using a variety of methods (e.g., [26, 27], or see
Section 5), but only if a or b, or both, parameters are restricted to sufficiently small
regularity classes. For instance, if the covariate Z ranges over a compact, convex
subset Z of R?, then the mentioned papers provide ,/7-consistent estimators un-
der the assumption that a and b belong to Holder classes C*(Z) and C B(2) with
o and B large enough that

o B 1
+ > -
2+d  28+4+d 2
(See, e.g., Section 2.7.1 in [37] for the definition of Holder classes.) For moderate

to large dimensions d, this is a restrictive requirement. In the sequel, we consider
estimation for arbitrarily small & and .

(3.1)

3.1. Summary of results. Throughout we assume that the parameters a, b and
g are contained in Holder spaces C*(Z2), CP(2) and CY(Z) of functions on a
compact, convex domain in R?. We derive two types of results:

(a) In Section 8, we show that a \/n-rate is attainable by using a higher-order
influence function (of order determined by y) as long as
a+pB - d ‘

2 — 4
This condition is strictly weaker than the condition (3.1) under which the linear
estimator attains a ,/n-rate. Thus, even in the 4/n-situation higher-order estimating
equations may yield estimators that are applicable in a wider range of models. For
instance, in the case that @ = g the cut-off (3.1) arises for « = 8 > d/2, whereas
(3.2) reducestoa =B > d /4.

(b) We consider minimax estimation in the case (o 4+ 8)/2 < d/4, when the
rate becomes slower than 1/4/n. It is shown in [25] that even if g = f/a were
known, then the minimax rate for a and b ranging over balls in the Holder classes
C%(Z) and CP(Z) cannot be faster than n~(2¢+28)/Qa+2+d) Tn Section 9, we
show that this rate is attainable if g is known, and also if g is unknown, but is

(3.2)
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a-priori known to belong to a Holder class CY (Z) for sufficiently large y, as given
by (9.11). (Heuristic arguments, not discussed in this paper, appear to indicate that

for smaller y the minimax rate is slower than n~(2¢+28)/Ca+2p+d)

We start by discussing the first- and second-order estimators in Sections 5 and 6,
where the first is merely a summary of well-known facts, but the second already
contains some key elements of the new approach of the present paper. The preced-
ing results (a) and (b) are next obtained in Sections 8 [/n-rate if (a + B)/2 > d /4]
and 9 [slower rate if (@ + f)/2 < d /4], using the higher-order influence functions
of an approximate functional, which is defined in the intermediate Section 7. In
the next section, we discuss the general heuristics of our approach.

ASSUMPTION 3.1.  We assume throughout that the functions 1/a,b, g and
their preliminary estimators 1/a, b, ¢ are bounded away from their extremes: 0
and 1 for the first two, and 0 and oo for the third.

REMARK 3.1. The assumption that the responses are “missing at random
(MAR)” is used to identify the mean response functional. Without this assumption,
the results of the paper are still valid, but concern the functional [ b(z) f (z) dz,
in which b1(z) = E(Y|A =1, Z = 7) has taken the place of b(z) = E(Y|Z = 2),
two functions that are identical under MAR. This follows from the fact that the
likelihoods of X = (Y A, A, Z) without or with assuming MAR take exactly the
same form, as given in (4.5), but with b replaced by b;. After this replacement, all
results go through. However, the functional [ b;(z) f(z)dz has the interpretation
of the mean response only when MAR holds.

4. General heuristics. Our basic estimator has the form (1.1) except that we
replace the linear term by a general U -statistic. Given measurable functions y, :
X™ — R, for a fixed order m, we consider estimators x, of y (p) of the type

4.1) )zn:X(ﬁn)‘i‘UnXﬁn-

The initial estimators p, are thought to have a certain (optimal) convergence rate
d(pn, p) — 0, but need not possess (further) special properties. Throughout we
shall treat these estimators as being based on an independent sample of observa-
tions, so that p, and U, in (4.1) are independent. This takes away technical com-
plications, and allows us to focus on rates of estimation in full generality. (A simple
way to avoid the resulting asymmetry would be to swap the two samples, calculate
the estimator a second time and take the average.)

4.1. Influence functions. The key is to find suitable “influence functions” .
A decomposition of type (1.2) for the estimator (4.1) yields

(4.2) Xn — x(P)=[x(Pn) — x(P)+ P" x5,]1+ (Up — P™) x5,
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This suggests to construct the influence functions such that —P™ x; represents
the first m terms of the Taylor expansion of x (p,) — x (p). We shall translate this
requirement into a manageable form, and next work it out in detail for the missing
data problem.

First, the requirement implies that the influence function used in (4.1) must be
unbiased:

(4.3) P"y,=0.

Next, to operationalize a “Taylor expansion” on the (infinite-dimensional) “mani-
fold” P we employ “smooth” submodels # — p;. These are defined as maps from
a neighborhood of 0 € R to P that pass through p at t =0 (i.e., pg = p) such
that the derivatives in the following exist. For a large model, there will be many
such submodels, approaching p from various “directions.” Given a collection of
submodels, we determine yx, such that, for each submodel 7 = p;,

d’ dJ

— = —_—— Pm s '=1,...,m.
dtJ |t:0X (o) dtJ 1=0 Xpi /

The subscript |t = 0 on the differential quotients means “derivative evaluated at
t =0, that is, at p = pg. A slight strengthening is to impose this condition “ev-
erywhere” on the path, that is, the jth derivative of t — x(p;) at ¢ is the jth
derivative of h > —P/" x,, ., at h =0, for every t. (Here, P; is the measure cor-
responding to the density p, and P/" f the expectation of a function f under the
m-fold product of these measures.) If the map (s, ) = PJ" x, is smooth, then the
latter implies [cf. Lemma S12.1 applied with x = f and g(s, 1) = —P/" x,]
d’ d’ m ,
(4.4) W‘IZOX(pt)_Wlt:()PI Xp, ]—1,...,m.

Relative to the previous formula the subscript ¢ on the right-hand side has changed
places, and the negative sign has disappeared. This is similar to the “Bartlett equal-
ities” familiar from manipulating expectations of scores and their higher deriva-
tives. We take this equation together with unbiasedness as the defining property.
Thus, a measurable function y, : X — R is said to be an mth order influence
function at p of the functional p — y(p) relative to a given collection of one-
dimensional submodels ¢ +— p; (with pg = p) if it satisfies (4.3) and (4.4), for
every submodel under consideration.

Equation (4.4) implies a Taylor expansion of # — x(p;) at t = 0 of order m,
but in addition requires that the derivatives of this map can be represented as ex-
pectations involving a function x . The latter is made operational by requiring the
derivatives to be identical to those of the map ¢ — P/" x,, which automatically
have the desired representation. The representation as an expectation is essential
for the construction of estimators. For exploiting derivatives up to the mth order,
groups of m observations can be used to match the expectation P™; this leads to
U -statistics of order m.
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It is also essential that the expectation is relative to the law of the observations
X1, ..., Xy Inastructured model, such as the missing data problem, the law P, of
the observations depends on a parameter 1 and the functional of interest is a quan-
tity ¥ (n) defined in term of 5. Then the representation requires to represent the
derivative of the map n — () as an expectation relative to P,. An expansion of
just n — 1 (n) without reference to the data distribution is not sufficient. Express-
ing the derivates in P, implicitly utilizes the inverse map P, > n, but by directly
defining the influence function by (4.4) we sidestep an expansion of n +— ¥ (n)
and explicit inversion of the latter map.

We allow that there may be more than one influence function. In particular, we
do not require x, in (4.4) to be symmetric in its arguments, although a given influ-
ence function can always be symmetrized without loss of generality. Furthermore,
as the collection of paths ¢ — p; is restricted by the model, which may be smaller
than the set of all possible densities on the sample space, certain projections of an
influence function may also be influence functions.

EXAMPLE 4.1 (Classical U-statistic). The mean functional x (p) =E,U, f =
PKf of a kth order U-statistic has mth order influence function given by
Xp(X1s oo Xm) = f(x1, .00, x0) — Pkf, for every m > k. Alternatively, the sym-
metrized version U,, f — P¥ f of this function is also an influence function. This
example connects to classical U-statistic theory, and may serve to gain some in-
sight in the definition, but our interest in influence functions will go in a different
direction.

In the preceding claim, we did not specify the set of paths ¢ — p;. In fact,
the claim is true for the nonparametric model and all reasonable paths. The claim
follows trivially from the fact that t — x (p;) = Ptk f has the same derivatives as
t— P"y,=P"f— Pkf = P,kf — Pk £, where in the last equality we use that
m > k. (The jth derivative for j > k vanishes.)

For 1 <m < k, one can verify, with more effort, that the orthogonal projection in
Lo(P%) of f on the subspace of functions of m variables is an influence function.

EXAMPLE 4.2 (Missing data, paths). The missing data model introduced in
Section 3 is parameterized by the parameter triplet (a, b, f). The likelihood of a
typical observation X = (YA, A, Z) can be seen to take the form

*5) 0= 1@ b<Z>)”)A(1 : )I_A

2 Pab A= a(Z) azy)
Submodels are naturally constructed as t = pq, p,, f,, for given curves t — a,
t — b; and t — f; in the respective parameter spaces.

In view of Assumption 3.1 paths of the form a; = a + ta and b; = b + tb, for
given bounded, measurable functions a, b : Z — R are valid curves in the param-
eter space, at least for ¢ in a neighborhood of 0. We may restrict the perturbations
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a and b to be sufficiently smooth to ensure that these paths also belong to the
appropriate Holder spaces.

It is convenient to define the perturbation of the marginal density slightly dif-
ferently in the form f; = f(1 + #§). For a given bounded function § : Z — R with
[ffdv =0, and sufficiently small |¢|, each f; is indeed a probability density.
The advantage of defining the perturbation by ff instead of f is simply that in
the present form f = d/dt,—log f; can be interpreted as the score function of the
model  — f;.

These paths are usually enough to identify influence functions. By slightly
changing the definitions, one might also allow nonbounded functions as “direc-
tions” of the perturbations.

4.2. Relation to semiparametric theory and tangent spaces. In semiparamet-
ric theory (e.g., [2, 19, 31, 35]), influence functions are described through inner
products with score functions. We do not follow this route here, but make the con-
nection in this section. Scores give a way of rewriting (4.4), which will be useful
mainly for first-order influence functions.

For a sufficiently regular submodel ¢ +— p; equation (4.4) for m = 1 can be
written in the form

d d
4.6 — =—  Pyx,=P ,
(4.6) dl|t:OX(pt) dt 1= ' Xp xp8)

where g = (d/dt);=op:/p is the score function of the model t — p; at t = 0.
A function x, satisfying (4.6) is exactly what is called an influence function in
semiparametric theory. The linear span of all scores attached some submodel ¢ —
p; is called the tangent space of the model at p and an influence function is an
element of Ly(p) whose inner products with the elements of the tangent space
represent the derivative of the functional in the sense of (4.6) ([36], page 363 or [2,
19, 31, 35)).

EXAMPLE 4.3 (Missing data, score functions). To obtain the score functions
at t = 0 of the one-dimensional submodels ¢ — p; := pq, p,, f, induced by paths
of the form a; =a + ta, by =b +tb, and f; = f(1 + ¢f), for given measurable
functions a, b, f: Z — R (where [ffdv =0), we substitute these paths in the
right-hand side of equation (4.5) for the likelihood, take the logarithm, and differ-
entiate at r = (. If we insert the perturbations for the three parameters separately,
keeping the other parameters fixed, we obtain what could be called “partial score
functions” given by

B¢ (X)——M (2)
R TPA TP 177 R
Bhb(X) = AX D) 7y bescore,

b(Z)(1 —b)(Z)~
BJf(X)=§(Z),  f-score.
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The scores are deliberately written in a form suggesting operators By, Bﬁ’,, B};
working on the three directions g, b, §. These are called score operators in semi-
parametric theory, and their direct sum is the overall score operator, which we
write as B),. Thus, B,(a, b, f)(X) is defined as the sum of the three left sides of
the preceding equation. )

We claim that the first-order influence function of the functional x : p,p, r —
[ bf dv is given by

4.7) XD (X) = Aa(Z)(Y — b(2)) + b(Z) — x(p).

To prove this well-known fact, it suffices to verify that this function satisfies, for
every path t — p; as described previously,

d )

—  x(p) =Ep[x, (X)Bp(a, b, H(X)].

dt =0
This follows by straightforward calculations, where it suffices to verify the equa-
tion for each of the three perturbations separately. For instance, for a perturbation
of only the parameter a, the left-hand side of the display is clearly zero, as the
functional does not depend on a. The right-hand side with b = f = 0 reduces to

Ep[xl(,l)(X) B;’,g(X)], which can be seen to be zero from the fact that Aa(Z) — 1
and Y — b(Z) are uncorrelated given Z. The validity of the display for the two
other types of scores can be verified similarly.
The advantage of choosing a an inverse probability is clear from the form of the
(random part of the) influence function (4.7), which is bilinear in (a, b).
Computing (approximate) higher-order influence functions for this model is a
main achievement of this paper. Expressions are given later on.

For m > 1, equation (4.4) can be expanded similarly in terms of inner products
of the influence function with score functions, but “higher-order score functions”
arise next to ordinary score functions. Here, we do not follow this route, but have
defined an higher-order influence function through (4.4), and leave the alternative
route to other papers. Suitable higher-order tangent spaces are discussed in [23]
(also see [33]), using score functions as defined in [39]. A discussion of second-
order scores and tangent spaces can be found in [24]. Second-order tangent spaces
are also discussed in [20], from a different point of view of and with the purpose
of defining higher-order efficiency of estimators. Higher-order efficient estimators
attain the first-order efficiency bound (the “asymptotic Cramér—Rao bound”) and
also optimize certain lower-order terms in their distribution or risk. In the present
paper, we are interested in first-order efficiency, measured mostly by the conver-
gence rate, which in the most interesting cases is slower than /7, and not in re-
finements of the first-order behavior.
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4.3. Computing the influence function. Equation (4.4) involves multiple
derivatives and many paths and is not easy to solve for x,. For actual compu-
tation of an influence function, it is usually easier to derive higher-order influence
functions as influence functions of lower-order ones.

To describe this operation, we need to decompose the influence function y, or
rather its symmetrized version in degenerate functions. Any mth order, zero-mean
U -statistic can be decomposed as the sum of m degenerate U -statistics of orders
1,2,...,m, by way of its Hoeffding decomposition. In the present situation, we
can write

Unxp =Unx, 1)—i- U X(2)+ + U x(m),
where X(J ). X/ S Risa degenerate kernel of j arguments, defined uniquely as
a projection of y, [cf. [29] and (2.1)]. Since x, is a function of m arguments,
for m = n the left-hand side evaluates to the symmetrization of the function yx,
and it is equal to x, if x, is already permutation symmetric in its arguments. The

functions on the right-hand side are similarly symmetric, and the equation can be

read as a decomposition of the symmetrized version of x, into symmetrizations

()

of certain degenerate functions X(j ). Suitable (symmetric) functions x "’ in this

decomposition can be found by the following algorithm:

[1] Letx; = xp )(xl) be a first-order influence function of the functional p —

x(p).
[2] Let x; X(j )(xl, ..., X;j) be a first-order influence function of the func-

t10na1p+—>x(1 1)(xl,.. ,Xj—1),foreach xy,...,x;j_y,and j =2,...,m.

[3] Let X(j )= D P X(] ) be the degenerate part of X(j ) relative to P, as defined
in (2.1).

See Lemma S12.2 for a proof. Thus, higher-order influence functions are con-
structed as first-order influence functions of 1nﬂuence functions. Somewhat abus-
ing language we shall refer to the function Xp ) also as a “jth-order influence
function.” The overall order m will be fixed at a suitable value; for simplicity, we

do not let this show up in the notation .

The starting influence function X( ) in step [1] may be any first-order influence

function [thus satisfying (4.4) for m = 1, or alternatively a function y, that satis-
fies (4.6) for every score g]; it does not have to possess mean zero, or be an element
of the first-order tangent space. A similar remark applies to the (first-order) influ-
ence functions found in step [2]. It is only in step [3] that we make the influence
functions degenerate.

EXAMPLE 4.4 (Missing data, higher-order scores). The second-order score
function for the missing data problem is computed as a derivative of the first-order
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score function (4.7) in Section 6. As will be explained momentarily the result (6.3)
is actually only a partial second-order score function.
Higher-order score functions are computed in Sections 8 and 9.

4.4. Bias-variance trade-off. Because it is centered, the ‘“‘variance part”
in (4.2), the variable (U, — P™)y,, should not change noticeably if we replace
Pn by p, and be of the same order as (U, — P™)x,. For a fixed square-integrable
function y,, the latter centered U -statistic is well known to be of order O p (n=1/%),
and asymptotically normal if suitably scaled. A completely successful representa-
tion of the “bias” R, = x(pu) — x(p) + P™ x5, in (4.2) would lead to an error
R, = Op(d(py, p)m+1), which becomes smaller with increasing order m. Were
this achievable for any m, then a \/n-estimator would exist no matter how slow the
convergence rate d(p,, p) of the initial estimator. Not surprisingly, in many cases
of interest this ideal situation is not real. This is due to the nonexistence of influ-
ence functions that can exactly represent the Taylor expansion of x (p,) — x (p).

In general, we have to content ourselves with a partial representation. Next to a
first bias in the form of the remainder term R,, of order O p (d(py, p)mH), we then
also incur a “representation bias.” The latter bias can be made arbitrarily small by
choice of the influence function, but only at the cost of increasing its variance. We
thus obtain a trade-off between a variance and two biases. This typically results in a
variance that is larger than 1/n, and a rate of convergence that is slower than 1/4/n,
although sometimes a nontrivial bias correction is possible without increasing the
variance.

EXAMPLE 4.5 (Missing data, variance and bias terms). The missing data
problem is parameterized by the triple (a, b, g), and hence the preliminary esti-
mator p is constructed from estimates a and b and g of these parameters.

The remainder bias R,, of the estimator for m = 1 is given in (5.1). It is bounded
by |la — al2 ||l; — b||2, and hence is quadratic in the preliminary estimator, as ex-
pected. There is no representation bias at this order. The variance of the linear
estimator is of order 1/n. If the preliminary estimators can be constructed so that
the product |la — a||2||l; — b||2 is of lower or equal order than 1/n, then the esti-
mator is rate-optimal. Otherwise a higher-order estimator is preferable.

The bias and variance terms of the estimator for m = 2 are given in Theorem 6.1.
The remainder bias R, is of the order ||@ — al,||b — b|llg — gllr, cubic in the
preliminary estimator, while the representation bias is of the order the product
of the remainders after projecting a — a and b — b onto a linear space chosen
by the statistician. The dimension k of this space determines the variance of the
estimator, adding a contribution of the order k/n?. Following the statement of the
theorem, it is shown how the variance can be traded off versus the two biases. It
is concluded that in case the remainder bias of order ||a — a|, ||13 —blllg — gl
actively determines the outcome of this trade-off, then an estimator of still higher
order than m = 2 is preferable.
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For higher-orders m > 2, the remainder bias decreases to ||a —a||, ||l; —b| g —
g ||’r"_1 , but the representation bias becomes increasingly complex. A discussion is
deferred to Sections 8§ and 9.

4.5. Approximate functionals. An attractive method to find approximating in-
fluence functions is to compute exact influence functions for an approximate func-
tional. Because smooth functionals on finite-dimensional models typically possess
influence functions to any order, projections on finite-dimensional models may
deliver such approximations.

A simple approximation would be x(p) for a given map p > p mapping
the model P onto a suitable “smaller” model P (typically a submodel P C P).
A closer approximation can be obtained by also including a derivative term. Con-
sider the functional ¥ : P — R defined by, for a given map p — p,

(4.8) Z(p)=x(P) + Px§.

[A complete notation would be p(p); the right-hand side depends on p at three
places.] By the definition of an influence function the term —P X( ) acts as the
first-order Taylor expansion of x (p) — x (p). Consequently, we may expect that

(4.9) 1X(p) — x(p)| = 0(d(p, p)?).

This ought to be true for any “projection” p — p. If we choose the projection such
that, for any path ¢ — py,

d - )
4.10 — Pox~’) =0,
(4.10) dl\t:O(X(pt)—i_ 0Xp, )

then the functional p — X (p) will be locally (around pg) equivalent to the func-
tional p — x (po)+ Px %) (which depends on p in only one place, pg being fixed)
in the sense that the first-order influence functions are the same. The first-order in-
fluence function of the latter (linear) functional at pg is equal to x l%), and hence
for a projection satisfying (4.10) the first-order influence function of the functional
p = X(p) will be

~ 1
4.11) 7= x5

In words, this means that the influence function of the approximating functional ¥
satisfying (4.8) and (4.10) at p is obtained by substituting p for p in the influence
function of the original functional.

This is relevant when obtaining higher-order influence functions. As these are
recursive derivatives of the first-order influence function (see [1]-[3] in Sec-
tion 4.1), the preceding display shows that we must compute influence functions
of

(1
p'—>xp)(x)
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that is, we “differentiate on the model P2 If the latter model is sufficiently simple,
for instance finite-dimensional, then exact higher-order influence functions of the
functional p — X (p) ought to exist. We can use these as approximate influence
functions of p — x(p).

EXAMPLE 4.6 (Missing data, approximate functional). In the missing data
problem, the density p corresponds one-to-one to a triplet of parameters (a, b, g),
and hence the projection p > p can be described as projections of the parameters.
We leave g invariant, and map a and b onto a finite-dimensional affine space, as
follows.

We fix a given finite-dimensional subspace L of Ly(v) that has good approxi-
mation properties for our model classes, the Holder spaces C*(Z) and C B(2), for
instance constructed from a wavelet basis. For fixed functions a, a, 1;, b:Z—>RT,
we now let & and b be the functions such that (@ — @) /a and (b —b) /b are the or-
thogonal projections of the functions (¢ — a)/a and (b — 5) /bonto L in Ly(abg).
Finally, we define the map p — p by correspondence to (a, b, g) — (@, g, 2).

In Section 7, we shall see that the orthogonal projections follow (4.10), while
the concrete form of (4.9) is valid in that

2 b—b
abgdv f ’

o 2 a—a
’/abgdv—/abgdv 5/’
a b

This approximation error can be made arbitrarily small by making the space L
large enough. In that case, the approximate functional p +— [ ab, g dv is close to the
parameter of interest, and we may focus instead on estimating this functional. The
advantage is that by construction this depends only on finitely many unknowns, for
example, the coefficients of (@ — a)/a and (5 — 13) /b in a basis of L. Higher-order
influence functions exist to any order.

The bias-variance trade-off of Section 4.4 arises as the approximation error must
be traded off against the “variance of estimating the coefficients” as well as against
the remainder of using an mth-order estimator.

2

abgdv.

5. First-order estimator. The first-order estimator (1.1) is well studied for
the missing data problem. The first-order influence function is given in (4.7), where
Xp =X ,(,1). As it depends on the parameter (a, b, f) only through a and b, prelim-
inary estimators a and b suffice.

The “first-order bias” of this estimator, the first term in (1.2), can explicitly be

computed as

X(P) = 1 (p) + P’ =Bp[(Aa(2) = 1)(Y = b(2)) +b(2)] - [ bf av
5.1)
=—f@—m@—mym
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In agreement with the heuristics given in Sections 1 and 4, this bias is quadratic in
the errors of the initial estimator.

Actually, the form of the bias term is special in that square estimation errors
(@ —a)? and (b b)? of the two initial estimators @ and b do not arise, but only the
product (d —a) (b—b) of their errors. This property, termed “double robustness” in
[30], makes that for first-order inference it suffices that one of the two parameters
be estimated well. A prior assumption that the parameters a and b are o and
regular, respectively, would allow estimation errors of the orders n~%/2+4) and
n—B/@B+d) Tf the product of these rates is O (n—1/2), then the bias term matches
the variance. This leads to the (unnecessarily restrictive) condition (3.1).

If the preliminary estimators a@ and b are solely selected for having small errors
la —al|l and ||13 —b]| (e.g., minimax in the L>-norm), then it is hard to see why (5.1)
would be small unless the product ||a — al| ||l; — b|| of the errors is small. Special
estimators might exploit that the bias is an integral, in which cancellation of errors
could occur. As we do not wish to use special estimators, our approach will be to
replace the linear estimating equation by a higher-order one, leading to an analogue
of (5.1) that is a cubic or higher-order polynomial of the estimation errors.

As noted the marginal density f (or g) does not enter into the first-order influ-
ence function (4.7). Even though the functional depends on f (or g), a rate on the
initial estimator of this function is not needed for the construction of the first-order
estimator. This will be different at higher orders.

6. Second-order estimator. In this section, we derive a second-order influ-
ence function for the missing data problem, and analyze the risk of the corre-
sponding estimator. This estimator is minimax if (o + 8)/2 > d /4 and

y >1/\ 200+ 28 o B
2y+d — 2 d+2a+28 2a+d 28+d

In the other case, higher-order estimators have smaller risk, as shown in Sections
8-9. However, it is worth while to treat the second-order estimator separately, as
its construction exemplifies essential elements, without involving technicalities at-
tached to the higher-order estimators.

To find a second-order influence function we follow the strategy [1]-[3] of
Section 4.1, and try and find a function X : X2 — R such that, for every x| =
(y1a1,ai, z1), and all directions g, b, §,

(6.1)

2t poolih G0 X (POl =Ep g (61, X2) By (@, b. P (X2).

Here, the expectation E;, on the right-hand side is relative to the variable X» only,
with x; fixed. This equatlon expresses that xo — x, ) (x1, xp) 1s a first-order in-

fluence function of p — x, )(xl) + x(p), for fixed x1. On the left-hand side we
added the “constant” x (p;) to the first-order influence function (giving another
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first-order influence function) to facilitate the computations. This is justified as the
strategy [1]-[3] works with any influence function. In view of (4.7) and the defi-
nitions of the paths t +— a 4+ ta, t +—> b+ tb and  — f(1 + ¢§), this leads to the
equation B

ai(y1 — b(z1))a(z1) — (ara(z1) — 1)b(z1)

(6.2) @
- Epo (.X], XZ)BP(E7 §7 i)(XZ)

Unfortunately, no function x ,(,2) that solves this equation for every (a, b, §) exists.
To see this note that for the special triplets with b = j = 0, the requirement can be
written in the form

X1, Xa) 1= Ava(Za) ]
a(Z3).
ai(y1 — b(z1)) a(Zz)(a — 1)(Z3)

The right-hand side of the equation can be written as [ K (z1, z2)a(z2) d F (z2), for
K (z1, Z») the conditional expectation of the function in square brackets given Z».
Thus, it is the image of a under the kernel operator with kernel K. If the equation
were true for any g, then this kernel operator would work as the identity operator.
However, on infinite-dimensional domains the identity operator is not given by a
kernel. (Its kernel would be a “Dirac function on the diagonal.”)

Therefore, we have to be satisfied with an influence function that gives a
partial representation only. In particular, a projection onto a finite-dimensional
linear space possesses a kernel, and acts as the identity on this linear space.
A “large” linear space gives representation in “many” directions. By reducing
the expectation in (6.2) to an integral relative to the marginal distribution of Z,,
we can use an orthogonal projection IT, : Ly(g) — L2(g) onto a subspace L of
L>(g). Writing also IT,, for its kernel, and letting S>/ denote the symmetrization
(h(X1, X2) + h(X2, X1))/2 of a function i : X> — R, we define

6.3) x5 (X1, X2) = =28[A1(Y1 — b(ZD)1,(Z1. Z2)(A2a(Z2) — 1)].

g(zozEp[

LEMMA 6.1. For Xl(,z) defined by (6.3) with I1, the kernel of an orthogonal
projection I1, : Ly(g) — L2(g) onto a subspace L C L»(g), equation (6.2) is
satisfied for every path t > p; corresponding to directions (a, b, ) such thata € L
and b e L.

PROOF. By definition, E(A|Z) = (1/a)(Z) and E(Y|Z) = b(Z). Also
var(Aa(Z)|Z) = a(Z) — 1 and var(Y|Z) = b(Z)(1 — b)(Z). By direct compu-
tation using these identities, we find that for the influence function (6.3) the right
side of (6.2) reduces to

ai(y1 —b(z)pa(z1) — (ara(zr) — 1), B(z1).

Thus, (6.2) holds for every (a, b, ) such that TI,a=gaand I1,b=5b. [
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Together with the first-order influence function (4.7) the influence function (6.3)
defines the (approximate) influence function y, = x [(,1) + % X I()z)‘ For an initial esti-
mator p based on independent observations, we now construct the estimator (4.1),

that is,
. « 1 2
(6.4) fn = X (P) + Bax + S Unxs”.

Unlike the first-order influence function, the second-order influence function does
depend on the density f of the covariates, or rather the function g = f/a [through
the kernel I1,, which is defined relative to L>(g)], and hence the estimator (6.4)
involves a preliminary estimator of g. As a consequence, the quality of the estima-
tor of the functional y depends on the precision by which g [as part of the plug-in
p=(a, b, £)] can be estimated. The intuitive reason is that the bias (5.1) depends
on g, and it can only be made smaller by estimating it.

Let B, and var, denote conditional expectations given the observations used to
construct p, let || - ||, be the norm of L,(g), and let ||IT||, denote the norm of an
operator IT: L,(g) — L,(g).

THEOREM 6.1. The estimator X, given in (6.4) with influence functions x 1(71)

and x ;2) defined by (4.7) and (6.3), for I1, the kernel of an orthogonal projection
in Lo(g) onto a k-dimensional linear subspace, satisfies, for r > 2 [with r/(r —

2)=oc0ifr=2],
Epfcn —x(p)=O0p(ITplI T3l lla - all |b—b|,1& - gllr/r—2)
+0p(|( —Tp)a—a)|,| (I =TT (B = b)),

S — O (1 n k )

var =0Up\|— — ).

The two terms in the bias result from having to estimate p in the second-order
influence function (giving “third-order bias”) and using an approximate influence

function (leaving the remainders I — IT,, after projection), respectively. The terms

1/n and k/n? in the variance appear as the variances of U, x ,(,1) and U, X,(,Z), the

second being a degenerate second-order U -statistic [giving 1/n?, see (S14.1)] with
a kernel of variance k.

The proof of the theorem is deferred to Section 10.1.

Assume now that the range space of the projections IT, can be chosen such that,
for some constant C,

1 o/d 1 B/d
6.5) ||a—npa||zsc<E) , ||b—npb||zsc(;) .

Furthermore, assume that there exist estimators & and b and g that achieve conver-
gence rates n~%/2etd)  p,=B/CE+d) and p=v/Cv+d  respectively, in L,(g) and
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L,/—2)(g), uniformly over these a-priori models and a model for g (e.g., for
r = 3), and that the preceding displays also hold for a and b. These assumptions
are satisfied if the unknown functions a and b are “regular” of orders & and 8 on
a compact subset of R4 (see, e.g., [28]). Then the estimator x, of Theorem 6.1
attains the square rate of convergence

1\ 20/ QoAd)+2B/2B+d)+2y /2y +d) I\NQe+28)/d |k
(6.6) ( ) v( )

k

We shall see in the next section that the first of the four terms in this maximum can
be made smaller by choosing an influence function of order higher than 2, while
the other three terms arise at any order. This motivates to determine a “second-
order ‘optimal”’ value of k by balancing the second, third and fourth terms. We
next would use the second-order estimator if y is large enough so that the first
term is negligible relative to the other terms.

For (¢ + B)/2 = d /4, we can choose kK = n and the resulting rate [the square
root of (6.6)] is n—1/2 provided that (6.1) holds. The latter condition is certainly
satils/ged under the sufficient condition (3.1) for the linear estimator to yield rate
n .

More interestingly, for (o 4+ B)/2 < d/4 we choose k ~ n>d/(d+22+28) and ob-
tain the rate, provided that (6.1) holds,

—Qa+2B)/[d+2a+28)

V-V .
n I’l2

This rate is slower than n~!/2, but better than the rate n~%/Ga+d)—B/2B+d) gop_
tained by the linear estimator. In [25], this rate is shown to be the fastest possible
in the minimax sense, for the model in which a and b range over balls in C%(Z)
and CP(Z), and g being known.

In both cases, the second-order estimator is better than the linear estimator,
but minimax only for sufficiently large . This motivates to consider higher-order
estimators.

7. Approximate functional. Even though the functional of interest does not
possess an exact second-order influence function, we might proceed to higher or-
ders by differentiating the approximate second-order influence function 1(,2) given
in (6.3), and balancing the various terms obtained. However, the formulas are much
more transparent if we compute exact higher-order influence functions of an ap-
proximating functional instead. In this section, we first define a suitable functional
and next compute its influence functions.

Following the heuristics of Section 4.5, we define an approximate functional by
equation (4.8), using a particular projection p — p of the parameters. We choose
this projection to map the parameters @ and b onto finite-dimensional models and
leave the parameter g unaltered: p is mapped into an element p of the approximat-
ing model, or equivalently a triplet (a, b, g) into a triplet (a, b, g) in the approx-
imating model for the three parameters (where g is unaltered). [Even though this
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is not evident in the notation, the projection is joint in the three parameters: the
induced maps (a, b, g) — d and (a, b, g) — b do not reduce to maps a — d and
b— 5, but & and b depend on the full triplet (a, b, g).]

As “model” for (a, b) we consider the product of two affine linear spaces

(7.1) (G6+4alL) x (b+bL),

for a given finite-dimensional subspace L of L, (v) and fixed functions a, a, l;, b:
Z — R that are bounded away from zero and infinity. (Later the functions a
and b are taken equal to the preliminary estimators; one choice for the other
functions is ¢ = b = 1.) The pair (a, b) of projections are defined as elements
of the model (7.1) satisfying equation (4.10). In view of (5.1), for any path
Py <> (a;, by, g) = (@ +tal,b+1bl', g), for given [, € L,

~ 1 ~ ~
0D a0+ Puf) = x(p) ~ [@+1al = a5+ b1~ b)gv.
Equation (4.10) requires that the derivative of this expression with respect to 7 at
t = 0 vanishes. Thus, the functions @ and » must be chosen to satisfy the set of
stationary equations, for every /,1’ € L,

(1.3) ozfﬁ—amnmv=f<a_a—“_“y@@du 'eL,

a a

- b—b b—b
04)(L:fgw—bmdu=/<—;———Z—y@gdm lelL.

Because the functions (@ — a)/a and (5 — l;) /b are required to be in L, the second
way of writing these equations shows that the latter two functions are the orthogo-
nal projections of the functions (a — a)/a and (b — l;) /bonto L in Ly(abg).

As explained in Section 4.5, as it satisfies (4.10) the projection (a, b, g) —
(@, b, g) renders the first-order influence function of the approximate functional
X equal to the first-order influence function of y evaluated at the projection. Fur-
thermore, the difference between x and X is quadratic in the distance between p
and p [see (4.9)]. The following theorem summarizes the preceding and verifies
these properties in the present concrete situation.

THEOREM 7.1. For given measurable functions a, a, b, b: Z — Rwitha and
b bounded away from zero and infinity, define a map (a, b, g) — (@, b, g) by letting
(@—a)/aand (b— l;)/Q be the orthogonal projections of (a — a)/a and (b — l;)/Q
in Ly(abg) onto a closed subspace L. Let p correspond to (d, b, g) and define
X(p)=x(p)+ PXI(;I). Then ¥ has influence function

(7.5) X (X) = AUZ)(Y = b(2)) +b(Z) — x (D).
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Furthermore, for g = abg,

b—b
(I —-Mp)—

- a—a
}x(p)—x(p)ISH(l—Hp)T 5

2,8 2,8

PROOF. The formula for the influence function agrees with the combination
of equations (4.11) and (4.7), and can also be verified directly. In view of (4.8) and
(5.1),

() — x(p) = —/(5 —a)® - bygdv.

We rewrite the right-hand side as an integral relative to g dv, and next apply the
Cauchy-Schwarz inequality. Finally, we note that (@ — a)/a = (@ — a)/a — (a —
a)/a= (I —Tl,)((a —a)/a), and similarly for b. [

The approximation error X (p) — x(p) can be rendered arbitrarily small by
choosing the space L large enough. Of course, we choose L to be appropriate
relative to a-priori assumptions on the functions a and b. If these functions are
known to belong to Holder classes, then L can for instance be chosen as the linear
span of the first k basis elements of a suitable orthonormal wavelet basis of Ly (v).

To compute higher-order influence functions of ), we recursively determine
influence functions of influence functions, according to the algorithm [1]-[3] in
Section 4.3, starting with the influence function of p — )?él)(xl) + x(p), for a
fixed x;. We defer the details of this derivation to Section S10.5, and summarize
the result in the following theorem.

To simplify notation, define

Y = A(Y - b(2))a(2),

(7.6) A= (Aa(2) - 1)b(2),
A =Aa(2)b(Z).
These are the generic variables; indexed versions Y;, A;, A;, ... are defined by

adding an index to every variable in the equalities. With this notation and with
a = b = 1, the second-order influence function (6.3) at p = p can be written as
the symmetrization of —2?11'1 »(Z1, Zg)gz. This function was derived in an ad-
hoc manner as an approximate or partial influence function of x, but it is also the
exact influence function of . The higher-order influence functions of X possess
an equally attractive form.

THEOREM 7.2. An mth-order influence function )’(,(,m) evaluated at (X4, ...,
Xm) of the functional X defined in Theorem 7.1 is the degenerate [in Ly (p)] part
of the variable

(=)~ 1A T 2 Ay T2 3 A3TI3 444 X -+ X Ay 1 Tl 1. Vi
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Here, I1; j is the kernel of the orthogonal projection in Ly(abg) onto L, evaluated
at (Z;, Zj).

To obtain the degenerate part of the variable in the preceding lemma, we apply
the general formula (2.1) together with Lemma S10.2. Assertions (i) and (ii) of
the latter lemma show that the variable is already degenerate relative to X and
X, while assertion (iii) shows that integrating out the variable X; for 1 <i <m
simply collapses I1;_1;A;Il; ;41 into IT;_ ;41. For instance, with §,, denoting
symmetrization of a function of m variables,

(2)(X1 X2) = —285[A 111 275],

FD (X1, X2, X3) = 68314111 24, T 373 — AT, 573),
(7.7)
XSV (X1, X2, X3, Xa) = —2484[A1 111 24,115 3A5T13 474

— A1y 3A5T13 4Ys — A1T1 245110 4 Ya + ATy 4Ya].

As shown on the left, but not on the right of the equations, these quantities depend
on the unknown parameter p = (a, b, g). In the right sides, the variables Yi and Zi
depend on p through b and @, and hence are not observable variables. Furthermore,
the kernels I1; ; depend on g as they are orthogonal projections in Ly (abg).

8. Parametric rate [(« + 8)/2 > d/4]. In this section, we show that the
parameter x(p) is estimable at 1/./n-rate provided the average smoothness
(o + B)/2 is at least d /4. We achieve this using the estimator

5 . 1 1
(8.1) Xn=x(P)+Un (x(')+2 Do — ;,"”)

with the influence functions X(J ) those of the approximate functional X in Sec-

tion 7: they are given in Theorems 7.1 and 7.2 for j =1, and j =2,...,m, re-
spectively. [Because the map p — p maps p into itself, the influence function for
j =1 in the display is also the first-order influence function (7.5) of of x, when
evaluated at p = p.]

We assume that the projections IT, and I1; map Lg(abg) to Ly(abg), for every
s € [r/(r — 1), r], with uniformly bounded norms. [For r = 2, this entails only
s = 2; in this case we define r/(r — 2) = 00.]

THEOREM 8.1.  The estimator (8.1), with I1, a kernel of an orthogonal pro-
Jection in Lo (abg) satisfying (S13.1) with sup, I1,,(x, x) S k, satisfies, for a con-
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stant ¢ that depends on || p/ plloo only, and r > 2,

Ep)A(n_X(p) (”a_a” ||b bl g — g”(m Dr/Gr— 2))

b—b
0<H(I—H I,)——
— Tk

b
(’}

The first term in the bias is of the order 1 + 1+ (m — 1) =m + 1, as to be
expected for an estimator based on an mth order influence function; the second
term is due to estimating ) rather than y; it is independent of m, and the same as

in Theorem 6.1 if @ = b = 1. The bound on the variance can roughly be understood
~0)

)

var, X, <

||M§

in that each of the degenerate U -statistics U, X X;
order k'~ /nJ.

For «-, B- and y-regular parameters a, b, g on a d-dimensional domain the
range space of the projections IT, can be chosen so that (6.5) holds and such

in (8.1) contributes a term of

that there exist estimators 4, b, g of a, b, g, with the first two taking values in
this range space, with convergence rates n~%/e+d) 5 =B/2B+d) ang p—v/Cr+d)
Then the second term in the bias (with a = b = 1) is of order (1/ k)o/d+h/d 1f
(a + B)/2 > d/4 and we choose k = n, then this is of order 1/4/n. For k = n, the
standard deviation of the resulting estimator is also of the order 1/,/n, while the
first term in the bias can be made arbitrarily small by choosing a sufficiently large
order m. Specifically, the estimator y, attains a 4/n-rate of convergence as soon as

(82) m—lz(l_ « B )(2y+d>‘
2 2a+d 26+d)\ y

For any y > 0, there exists an order m that satisfies this, and hence the parameter
is 4/n-estimable as soon as (o + 8)/2 > d /4.

More ambitiously, we may aim at attaining the parametric rate for every y > 0,
without a-priori knowledge of y. This can be achieved if (o + B8)/2 > d/4 by
using orders m = m, that increase to infinity with the sample size. In this case, the
estimator can also be shown to be asymptotically efficient in the semiparametric
sense.

THEOREM 8.2. If (o 4+ B)/2 > d /4, then the estimator (8.1), with m = logn
and T1,, a kernel of an orthogonal projection in Ly(abg) on a k = n/(logn)?-
dimensional space satisfying (6.5) and (S13.1) with sup, I1,(x, x) < k, based on

preliminary estimators a, b, g that attain rates (logn/n)~%/ 26+d) pelative to the
uniform norm, satisfies

~ ~ P
Vi (Fn = x(p) = BaX5D) = 0.
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An estimator that is asymptotically linear in the first-order efficient influence
function, as in the theorem, is asymptotically optimal in terms of the local asymp-
totic minimax and convolution theorems (see, e.g., [36], Chapter 25). The present
estimator X, actually looses its efficiency by splitting the sample in a part used
to construct the preliminary estimators and a part to form P,. This can be easily
remedied by crossing over the two parts of the split, and taking the average of the
two estimators so obtained. By the theorem, these are both asymptotically linear
in their sample, and hence their average is asymptotically linear in the full sample
and asymptotically efficient.

The proofs of the theorems are deferred to Section 10.2.

9. Minimax rate at lower smoothness [(« + 8)/2 < d/4]. If the average a-
priori smoothness (o + B)/2 of the functions a and b falls below d/4, then the
functional y cannot be estimated any more at the parametric rate [25]. The estima-
tor (8.1) of Theorem 8.1 can still be used and, with its bias and variance as given
in the theorem properly balanced, attains a certain rate of convergence, faster than
the current state-of-the-art linear estimators. However, in this section we present
an estimator that is always better, and attains the minimax rate of convergence
n~(Qet2P)/Qa+2p+d) proyvided that the parameter g is sufficiently regular.

This estimator takes the same general form

1_0

)

©.1) n=x(P) + U, (;7,2” + 5

as the estimator (8.1), but the influence functions x ,(,J ) for J = 3 will be different.
The idea is to “cut out” certain terms from the influence functions in (8.1) in order
to decrease the variance, but without increasing the bias. For clarity, we first con-
sider the third-order estimator, and next extend to the general mth order. To attain
the minimax rate the order m must be fixed to a large enough value so that the
first term in the bias given in Theorem 8.1 is no larger than n~(+28)/Ca+2p+d)
(Apart from added complexity, there is no loss in choosing m larger than needed.)
The third-order kernel )?1(,3) in (7.7) is the symmetrization of the variable

6A1(1,(Z1, Z2) A1 (22, Z3) — T1,(Z1, Z3))Y3.

Here, I1, is the kernel of an orthogonal projection in L>(abg) onto a k-
dimensional linear space, which we may view as the sum of k projections on
one-dimensional spaces. The quantity k> in the order O(k?/n>) of the vari-
ance in Theorem 8.1 for m = 3 arises as the number of terms in the product
I1,(Z1, Z2)Ay11,(Z>, Z3) of the two k-dimensional projection kernels. It turns
out that this order can be reduced without increasing the bias by cutting out “prod-
ucts of projections on higher base elements.”
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To make this precise, we partition the projection space in blocks, and decompose
the two projections in the influence function over the blocks:

R S

ke ke lorly

9.2) m,=>Y my% o, =y
r=0 s=0

Here, Hl(,,m’”] is the projection on the subspace spanned by base elements with in-
dex in intervals (m,n],and 1 =k_| <kg <k <---<kgrp=kand1=1_1 <y <
[{ <--- <lg =k are suitable partitions of the set {1, ..., k}. (“Full” partitions in
singleton sets would make the construction conceptual simpler, but a small num-
ber of blocks will be needed in our proofs.) The product of the two kernels now
becomes a double sum, from which we retain only terms with small values of
(r, s). The improved third-order influence function is, with as before S3 denoting
symmetrization,

ky—1,kr] Io_1,ls
XX X0, X3) =683 Y30 Ay Tz, 24,11 (25, 73)
(r,$):r+s<D
Vr=0vs=0

9.3
9.3) r VL1, ke Al

~ 1 (21, Z3)T5].

The negative term in the display is the conditional expectation given Z1, Z3 of the
leading term, and maintains the degeneracy of the kernel.

For the decomposition (9.2) to be valid, the subspaces corresponding to the
blocks must be orthogonal in Ly(abg). We may achieve this by starting with a
standard basis ey, €2, ..., with good approximation properties for a target model,
and next replacing this by an orthonormal basis in L, (abg) by the Gram—Schmidt
procedure. For a bounded g, the approximation properties will be preserved.

The grids are defined by

9.4) koy=1, k, ~n2"e, r=0,...,R,
(9.5) I =1, Iy ~n2'/P, s=0,....8,

where R and S are chosen such that kg ~ [g ~ k (note that kg = Iy = n). In these
definitions, the notation ~ means “equal up to a fixed multiple” [needed to allow
that k. and /; are (dyadic) integers]. For ease of notation, let [ =[_{ for s < —1,
and [y =g fors > §.

The grids kg < k; <--- <kgand [y <I; < --- < [g partition the integers n, n +
l,...,kin R and S groups. As k‘rxlé5 =2"t5p®*+B for every r,s > 0, the cut-off
r 45 < D in (9.3) is delimited by the “hyperbola” i% j# ~ 2Pn @+f in the space
of indices (i, j) € {1, ..., k}* of base elements used in the two kernels, with only
the pairs below the hyperbola retained (see Figure 1). The intuition behind this
hyperbolic cut-off is the product form of the bias (5.1): a higher-order correction
on the estimator of a may combine with a lower-order correction on b, and vice
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Kl

F1G. 1. Both axis carry the indices of the basis functions spanning the projection space L, and
point in the plane refers to a product of two projections. Products of projections on pairs of basis
functions in the shaded area are included in the third-order influence function. The step function
refers to the partitions of the indices as in (9.2).

versa, to give an overall correction of the desired order. The overall bias is smaller
if the cut-off D is chosen larger, but then more terms are included in the estimator
and the variance will be bigger.

Before deriving an optimal value of D, we introduce the mth-order estima-
tor for general m > 3. Again we take the estimator of Theorem 8.1 as starting
point, but modify the higher-order influence functions )?I(,] ), for j =4,...,m, sim-
ilar and in addition to the modification of the third-order influence function. For
given j, the former influence function is given in Theorem 7.2 (with m of the
theorem taken equal to j), and is based on a product of j — 1 projection kernels.
We modify this in two steps. For each of the j — 2 contiguous pairs of kernels
[(1st, 2nd), (2nd, 3rd), ..., ((j — 2)th, (j — 1)th)], we form a new kernel by trun-
cating the pair at the hyperbola as described previously for the third-order kernel,
and truncating all other kernels at n. Next the modified jth-order kernel is the
sum of the resulting j — 2 kernels. More formally, the modified jth-order kernel
is equal to

j—2
9.6) XX X =3 x XL X)),
i=1
where x ,(,j ’i)(X 1,...,Xj) is the symmetrized, degenerate [relative to L(p)] part
of the variable, fori =1, ..., j — 2, written in the notation of Theorem 8.1,
DTN, x A I A,
(kr—1,kr] (Us—1.1s] (0,n]
X [ >0 Wi Ai+1Hi+1,i+2]Az‘+2Hi+2,i+3 X o
(r,s):r+s<D
Vr=0vs=0
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For j = 3, there is only one pair of kernels, and the construction reduces to the
modification (9.3) as discussed previously.

We assume that the projections Hg,o’” and l'[g)’” map Ls(abg) to Ls(abg), for
every s € [r/(r — 1), r], with uniformly bounded norms.

THEOREM 9.1. The estimator (9.1) for m > 3 with the influence functions
)’Z,(,]) (/) given in (7.5) and (7.7) for j = 1,2, respectively, and in (9.6) for
Jj =3, and with HE,O’” kernels of orthogonal projections in Ly(abg) satisfying
(S13.1) with sup,, H;O’l] (x,x) <1, satisfies, forr > 2 [andr/(r —2) =00 ifr =2],

and xp

Epfin = x(p) = O(la — all; 16— bl 11§ - gls:")

j— b—b
of|(1 - n@HEZ=2L} (1 — A >
+o(fu-mp=2=] o -me=g],
K O\ (d—a
o> |1 — m&h (—)
* <;H( P ) a r
b—b
» <,_nso,n>-r])(_) -4l
p Q - =2
e e R
a lr p b ’
Kk D2@YpP
Vﬁrpf(nN— —2 -

A proof of the theorem is presented in Sections 10.3 and S10.4.

The first two terms in the bias are the same as in Theorem 8.1; the third and
fourth terms are the price paid for cutting out terms from the influence function.
The benefit is a reduced variance. We shall show that the boundary parameter D
can be chosen such that the third term in the variance (resulting from the third and
higher-order parts of the influence function) is not bigger than the second term,
while the increase in bias is negligible.

Assume that the functions a and b and their estimates are known to belong to
models that are well approximated by the base functions ej, e2, ... in the sense
that, for p € {p, p}, and every value [ in one of the two grids (9.4)—(9.5),

o=\ < (l)a/d
b—b 1\/d
_ 170,11 i <=
on () ()
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Then the second term in the bias is of the order (1/ k)“/ d+B/d a5 in Theorem 8.1,
which is smaller than the minimax rate n~(2¢+28)/Qa+28+d) f4p

(99) k ~ n2d/(20{+2/3+d).

With this choice of k, the upper bound on the variance is of the square minimax
rate n~ @48/ Qat+2+d) if D is chosen to satisfy

(9.10) 2GVPP b n(d—20=2p)/(d+2a+2p)
logn

Furthermore, under (9.9) the numbers R, S of grid points are of the order logn.
In the third term of the bias, we apply assumptions (9.7)—(9.8) and the identity

k‘r"_llg_, ~ n®tB2D which results from (9.4)—(9.5), to see that the third term of
the bias is of order

R/

a/d 1 B/d A 1 1/d A
Z(m) ( ) ”g‘g”’/<f—2>SR<W> 12— gllryir—2).

r=1 Ip—r

If the convergence rate of g is n~¥/¥+4) then, for the choice of D given in
(9.10), this can (by a calculation) seen to be of smaller order than the minimax rate
n~(Qet+2P)/Qa+2p+d) if 1, is large enough that

©.11) y >(oz\/,3)<d—2a—2,3).
2y +d d d+20+2p

The fourth term in the bias can by a similar analysis be seen to be of the order

1 a/d 1 B/d ) 5
R(;) (;) 18 — &llGn—2)r/(r—2)-

Again this is smaller than the minimax rate if y satisfies assumption (9.11).
Finally, if the convergence rates of @ and b are n~%/?¢+4) and n=B/CA+d then
the first term in the upper bound of the bias is of the order

( 1 )a/(2a+d)+/3/(2ﬁ+d)+(m—l)y/(2y+d)

n

We choose m large enough so that this is of smaller order than the preceding terms.
In particular, we can choose it so that this is smaller than the minimax rate.

We summarize this in the following corollary, which is the most advanced result
of the paper.

COROLLARY 9.1. If (9.7)—(9.11) hold, and HE,O’I] are kernels of orthogonal
projections in Ly(abg) satisfying (S13.1) with sup, H;O’l] (x,x) <1, then the mth-
order estimator with the kernels (9.6) for j > 3 and sufficiently large m and suit-
able initial estimators, attains the rate n~ 22 +28)/Qa+2B+d) for ostimating x (p).
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10. Proofs.

10.1. Proof of Theorem 6.1. Write IT and IT for I » and I, respectively, for

both the kernels and the corresponding projection operators, and drop p also in E »
and var,. From (5.1) and (6.3), we have

E)zn - X(P)
=— /(& —a)(b—b)gdv —EA|(Y] — b(Z)))(A2d(Z2) — )T1(Z1, Z2)

:—/(&—a)(é—b)gdu+//[(&—a) x (b—b)](g x &)Tdv x v.

The double integral on the far right with IT replaced by IT can be written as the
single integral [(a — a)H(I; —b)gdv, for l'I(I; — b) the image of b — b under
the projection I1. Added to the first integral on the right this gives — [(a —a)(I —
(b —b) g dv, which is bounded in absolute value by the second term in the upper
bound for the bias.

Replacement of 1 by IT in the double integral gives a difference

//[(&—a)x(ls—b)]gxg(f[—l'[)dvxv

:/(& —a)<f[<(1;—b)§> - H(B—b)>gdu

ﬁ((é —b)ﬁ) (b —b)
8

<lla —all

Ne/aNd,
r7g

by Holder’s inequality, for a conjugate pair (r, s). Considering 11 as the projection
in Ly(g) with weight 1, and IT as the weighted projection in L,(g) with weight
function w = g/g, we can apply Lemma S13.7(i) [with ¢ =s/r and rp =5 /(s —
2)] to see that this is bounded in absolute value by

la — alls Tl g Il 5116 — Blls g b — 1lly/s—2). WIS

Because w is assumed bounded away from 0 and infinity, this is of the same order
as the first term in the upper bound on the bias (if r replaces s).

Because the function X}g])
U, X}gl) is of the order O (1/n). Thus, for the variance bound it suffices to consider

is uniformly bounded, the (conditional) variance of

the (conditional) variance of U, X,(;Q)- In view of Lemma S14.1 and (S14.1), this is
bounded above by a multiple of

pP 2. 2)\2
n —
(o l5lL) ey = o+

p

2\ a2 @2
poo) <2> P0G
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The variables A(Y — b(Z)) and (Aa(Z) — 1) are uniformly bounded. Hence, the
last term on the right i 1s bounded above by a multiple of n=2 [ Hz(g X g)dv X v,
which is equal to k/n?, by Lemma S13.3.

10.2. Proof of Theorems 8.1 and 8.2.  Let Aand Y be A and Y asin (7.6) with
a and b in their definitions replaced by a and / b. Because & and b are projected onto
themselves under the map (a, b, g) — (@, b g)_(see Theorem 7.1), we actually
obtain the same variables by replacing @ and b by a and b, respectively: A=
(Aa(Z) — 1)b(Z) and Y = AY — b(Z))a(Z) Furthermore, let IT and I1 denote
the operators IT, and I1; , respectively, and IT; ; and l'[,, j their kernels evaluated
at (Z;, Z J').

By explicit calculations,

10.1) X)) +E, 7 = x(p) = - /(a —a)(b—bygdv=EA T, 2> — R,

for R defined by
N a—a b—
i[5
a 1%

The variable R is bounded by the second term in the expression for E P Xn — x(p)
in the statement of the theorem. We next show by induction on m that

b
)@gdv.

~(m)

1 A
R+x(p)+Ex“)+ + Ex —x(p)

(10.2) = (—D)"'EA(IT— H)l,zéz(ﬁ — Moz x---
X Am_l(ﬁ - 1_[)m—l,mi}m
The analysis of the bias can then be concluded by showing that the right side of

(10.2) is of the order as the first term given in the theorem.

Equation (10.1) and the definition of ¥ ~( ) readily show that identity (10.2) is
true for m = 2. We proceed to general m by induction. Relative to its value for m

the left side receives for (m + 1) the extra term E X(mH) /(m 4+ 1)!, which is equal
to (—1)™ times EA11'I1,2A21'I2,3 X o0 X Amnm’m+1?m+1 minus a sum of terms

resulting from projections of this leading term. This extra term without the factor
(=1)™ (but including the projections) can be written [cf. (7.7) and (2.1)]

m—l m — 1 A R R R ;
(103) > ; EA 1T 2451103 X - X Ay i Tlp—im—i1 Ym—i+1(—=1)".
i=0

To prove the induction hypothesis for m + 1, it suffices to show that this is equal
to

EA (T — )1 2A,(TT = )3 X - X Ay (X1 = T 1. Vi

(10.4) A . R .
+EA1(H - H)l,ZAZ(H - H)2,3 XX Am(n - H)m,m+lYm+l~
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To achieve this, we expand the two terms of the precedmg display into sums of

expressions of the form, with each K (’J) | equal to I, j.j+1 or Il j1q and [ the
number of j for which the first alternative is true,

(10.5) B = (—~1)""EA KD AKX x Ay KU B,

m—1,m

and of the same form with m + 1 replacing m for the second term of (10.4). As the
notation suggests the expression in (10.5) depends on / (and m, but this is fixed),
but not on which K are equal to IT or I1. To see this, we use that IT is a projection
onto L in Ly (abg), so that [ 1 2y (z2)(abg)(z2) dv(z2) = y (z1) for every y €L;
and IT is also a projection onto L, so that as a function of one argument l'I1 2 18
contained in L. This observation yields the identities, for K equal to Ior I,

Bz, M1 jA;jKjj1 =Kj1j+1 =Bz, Kj1 ;AT ji1.
This allows to reduce (10.5) to
B = (—D)""BA T 0 A T3 X - x AT 41 Vi [>1,
By = (—1)"'EA|IT; 1 Y>.

Thus, after expanding the two terms of (10.4) in the quantities B;, and simplifying
these quantities, we can write their sum (10.4)

(Bo — Bo) +’:§ ((’?) - (’” ; 1)) Bi(=1)" + B,,.

The difference of the binomial coefficients is ("; 1) The expression is equal to

(10.3), as claimed. This completes the proof of (10.2).
Next, we bound the right-hand side of (10.2), by taking the expectation in turn
with respect to X, X;y—1, ..., X1. For My multiplication by the function w =

g/8,
b b
By, (= Dpo1m m—(nMA—n)( . )(zmo.

Next, for any function h andi =m — 1, m —2,..., 2,
Bx, (I — )1, A;h(Z) = ((IMy, — IDR(Z;_y).

Combining these equations, we can write the right-hand side of (10.2) in the form

R[S T ) P

We bound this by first applying Holder’s inequality, with conjugate pair (z,¢)
with T equal to r as in the statement of the theorem, and next Lemma S13.7(iii),
with IT and IT viewed as weighted orthogonal projections in L, (abg) with weights
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1 and w, respectively, and r =t(m — 1)/im+t—3), p=m+1t—3)/(t —2)
andg=(m+t—3)/(m—1),sothatrp =(m — 1)t/(r —2) and rg =7 (and m
of the lemma taken equal to the present m minus 1).

To bound the (conditional) variance of x,, we use Lemma S14.1 to see that

2j25 .. .
] =N

G 7

because X(’ ) is degenerate under P.The variable )?(j )(X 1,..., X;)/j!is the sym-

A

P" (U, %) <2j|1 Y <[
nX[; ) <2j(1+ 5 ( nXﬁ ) +

13

o0

metrization of the projection of A1 I 124, ITj 1 Y onto the degenerate vari-
ables. Because the second moment of a mean of (arbltrary) random variables is
bounded above by the maximum of the second moments of the terms, we can ig-
nore the symmetrization, while the projection decreases the second moment. This
shows that

U 5i7U02 < picA L 2 '
WPJ(X;%J) < PIATT Ay Ty ;¥ )2 Ski™
by Lemma S13.4 and the assumption that the kernels are bounded by k on the

diagonal.

We complete the proof of Theorem 8.1 by bounding the square of x, — x (p)
by Z;”:l 2/ (U, )?;j ) /iN?Y j 27/, The extra factor 2/ can be incorporated in the
constant ¢ in the theorem.

For the proof of Theorem 8.2, it clearly suffices to show that

By — x(p) = Ba7 ") 5 0,

Vﬁrp\/ﬁ()?n —x(p) — nX[(yl)) — 0.

Because an influence function is centered at mean zero, the first is simply /7 times
the bias of x,. By Theorem 8.1, the bias is of the order

log n\ @/ Qatd)+B/QB+d)rty m=D)/Qy+d) 1\ (@t+B)/d
(=) +()
n k
The first term is trivially o(n~1?), as m,, — oo. In the second, we write (o +
B)/d = r/2, where r > 1 by assumption, and see that it is o(n~'/?), since
kn=Y" - oo.

To handle the variance, we split the estimator x, in its linear and higher-order
terms. The sum of the variances of the U-statistics of orders 2 to m in ¥, is
bounded by the sum of the terms j > 2 in Theorem 8.1, that is,

i Jk/ ! 1%(2@)1 1c2]f
p— n :

e]
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by the inequalities ( ) > (n/2)7/j!, for j <n/2,and j! < (j/e)/ /], by Stirling’s
approximation with bound The expression in brackets is bounded by 2ckm/n <
1/logn, for m ~ logn and k ~ n/(logn)?. Thus, the sum tends to zero by domi—
nated convergence. Finally, the linear term in ¥, gives the contribution

Varl’\/ﬁ( I’lX(‘l) - X(P) - nXl(,l)) = Var(XE ) Xl(yl))-

From the explicit expression (4.7) for the first-order influence function [or (7.5) in
the case of p, which gives an identical function], this is seen to tend to zero by the
dominated convergence theorem.

10.3. Proof of Theorem 9.1 for m = 3. The theorem asserts that the bias of the
estimator X, is equal to the sum of four terms, the first two of which also arise in
the bias of the estimator considered in Theorem 8.1. Therefore, we can prove the
assertion on the bias by showing that the expected values of the current estimator
Xxn (for m = 3) and the estimator in Theorem 8.1 differ by less than the additional
bias terms in Theorem 9.1.

The two estimators differ only in their third-order influence functions, where
the present estimator retains only the terms in the double sum (9.3) with r =0,
s =0, orr+s < D. Thus, the difference of the expectations of the two estimators
is equal to

ZZEPAI[ﬁ(kr_l,kr](Zl’ ZZ)Azf[(ls—le](Zz’ Z3)
r4+s>D
r,s>1

itk (7, 7]y

The expectation Ep refers to the variable (X, X», X3) for fixed values of the
preliminary samples, which are indicated in the “hat” symbols on Ay, Y3 and
the kernels, and hence is an integral relative to the density (x1,x2,x3)
p(x1)p(x2) p(x3). If we replace p(xz) in this density by p(x;), then the inte-
gral will be zero, as the kernel is degenerate under P. Thus, we may integrate
agamst (x1,x2,x3) > p(xl)(p P)(x2) p(x3). In that case, the projection term
All'[(k’ 1Vls—1:kr N ](Z L Z3)Y3 integrates to zero, as it does not depend on Xz and
[(p — p)(x2)du(xz) =0, and hence can be dropped. Next, we condition A1 and
)?3 on Z1, Z>, Z3 and write the preceding display in the form

»IE

r+s>D
r,s>1

L enfike1kd o)

x =151 (75, Z3)

(Z3)d/0(21)d(,0 P)(22) dp(z3),
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for p and p the measures defined by dp = abgdv and dp = abg dv. The double
sum can be rewritten as the sum over r running from 1 to R and over s from
D —r +1to S, which gives the equivalent representation, with the x referring to
“tensor products” as explained in Section 2,

R ) .
— b—>b\  » .

Z/(a ? 1x >(H(k"’k’] x T1Uo=rKy d(p x (p — p) x p).
a

r=1 =

b

We write [1*r—1-kr] = [Tke—1.K] _ [1kr k] and next arrive at the difference of two
expressions of the type, with k. = k,_1 and k| = k,, respectively,

R . - :
— b—>b\ A

> /(a L x1x T)(H(k”k] x 1= d (o x (0 = §) x p).

r=1 =

a

If the measure of integration were p X (p — p) x p (with p instead of p), then
we could perform the integrals on z; and z3 and next apply Holder’s inequality to
bound the resulting expression in absolute value by

£kl (5’ - a) - (b - b)
a

b
where the norms are those of Ly(abg), which are equivalent to those of Ly (v), by
assumption. We can write y (g - ﬁ(o’k](l — 12[(0,1]) and use the assumed bound-
edness of 101 as an operator on L,(abg) to bound this by the third term in the
bias.

Replacing p x (p—p) X p by p x (p— p) X p can be achieved by writing the first
and last occurrence of p as p = p + (p — p) and expanding the resulting expression
on the + signs into four terms. One of these has the measure p x (o — p) x p. The
other three terms have two or three occurrences of p — p, and can be bounded
by the first term in the bias (with m = 3). This is argued precisely under (S10.9)
below.

Because the first- and second-order influence functions are equal to those of

the estimator considered in Theorem 8.1, the (conditional) variances of U, Zlgj ) for

R

2

r=1

&1
g

r r r/(r—2)7

j = 1,2 can be seen to be of the orders O(1/n) and O (k/n?), respectively, by the
same proof. By Lemma S14.1 the variance for j = 3 is bounded by [see (S14.1)]

p 6 3)\2
o1+ P
5l (Unxs")

—

R 2
S @ ’ (Z A1k 7z, 75) A, 110D (75, Zs)Y3) ,
3 r=0

where I}, =Ip_, Vv n. After bounding out A% and 1?32, we write the squared sum
as a double sum. From the fact that the projections f1k—1k1 are orthogonal for
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different r, it follows that the off-diagonal terms of the double sum vanish (the
expectation with respect to X is zero). Thus the preceding display is bounded
above by a multiple of

1 R A A A / 2
— 2 P2y, 25) 4110125, Z3)).
r=0

By Lemmas S13.4 and S13.3 and the assumption that sup, 1104z, 2) <, this is
bounded by a multiple of

1 & 1 R
l’l_3 Z(kr - kr—l)l/[)_r =< I’l_3 <nk + Z(kr - kr—l)(lD—r + n))
r=0

r=I1

By 9.4), ky —kr—1 = (1 —2"%k, <k, = n2"/® for r > 1. On substituting this
in the display, and noting that /p_, =0 if r > D, we see that this is bounded
k/n? 4 2P/@VD/B |y if o # B and bounded by k/n? + D2P/* /n if o = B.

SUPPLEMENTARY MATERIAL

Supplement to “Minimax estimation of a functional on a structured high-
dimensional model” (DOI: 10.1214/16-AOS1515SUPP; .pdf). The remainder of
the paper is given in the supplement.
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