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REJOINDER:
“INFLUENTIAL FEATURES PCA FOR HIGH

DIMENSIONAL CLUSTERING”

BY JIASHUN JIN AND WANJIE WANG

Carnegie Mellon University and National University of Singapore

“Screen first and estimate next” is a popular strategy for attacking many high di-
mensional problems. While the methods may vary from occurrence to occurrence,
the high level ideas are all similar; below are some examples.

• Screen and Clean. Consider the variable selection problem where we have a
large number of variables but most of them are 0. We may first screen out many
variables and then focus on the small fraction of surviving variables. Success has
been shown in, for example, Fan and Lv (2008), Jin, Zhang and Zhang (2014),
Wasserman and Roeder (2009).

• Screen and Classify. Consider a classification problem where we have a large
number of measured features but most of them are useless for the classification
decision. We may first screen out many of them and use only the surviving
ones for classification. Success has been shown in, for example, Donoho and
Jin (2008), Efron (2009), Tibshirani et al. (2002).

Compared to popular penalization methods, the “screen first and estimate next”
approach is usually computationally faster and sometimes easier to tune [e.g.,
Donoho and Jin (2008)]. It may also have the optimality that penalization methods
do not have [e.g., Jin, Zhang and Zhang (2014), Ke, Jin and Fan (2014)]. Of course,
we can always combine two approaches by applying some penalization methods
to the post-screening data.

IF-PCA in our paper is one more example of the “screen first, estimate next”
strategy: we first screen with the Kolmogorov–Smirnov (KS) statistic, and then
cluster with the classical PCA. To set the threshold in the screening step, we use
Efron’s null correction and (Tukey’s) Higher Criticism.

The focus of our paper is to find a balance between precise mathematical theory
and practical feasibility, and to develop easy-to-use and yet effective methods that
have minimum gaps between theory and real applications.

We would like to thank all the discussants for their very thoughtful and stimu-
lating comments. Below are our responses.
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TABLE 1
Clustering error rates of IF-PCA-HCT, COSA, and sparse k-means (S-kmeans)

Brn Brst Cln Leuk Lung1 Lung2 Lymp Prst SRB Su

IF-PCA-HCT 0.262 0.406 0.403 0.069 0.033 0.217 0.065 0.382 0.444 0.333
COSA 0.405 0.359 0.408 0.167 0.011 0.350 371 0.412 0.587 0.328
S-kmeans 0.286 0.442 0.468 0.278 0.116 0.448 0.387 0.422 0.556 0.477

1. Comparison with sparse clustering methods. Arias-Castro and Verzelen
and Nadler pointed out several interesting literature works on sparse clustering,
including COSA [Friedman and Meulman (2004)] and sparse k-means [Witten
and Tibshirani (2010)] [see also Dash et al. (2002), DeSarbo et al. (1984), He,
Cai and Niyogi (2005)]. These methods use a feature selection step implicitly or
explicitly and are related to IF-PCA on a high level. It is of interest to compare
COSA and sparse k-means with IF-PCA-HCT using the 10 microarray data sets
studied in our paper (all data sets are normalized before we apply each of these
methods). COSA has one tuning parameter, which we set “ideally” using the pa-
rameter in {0.05,0.10, . . . ,0.5} that has the minimum clustering errors. Sparse
k-means has a built-in step for selecting tuning parameters. The results are in Ta-
ble 1, where IF-PCA-HCT has the lowest error rates for 7 of the data sets. We also
find IF-PCA-HCT is computationally faster than COSA and sparse k-means.

We have also conducted a small-scale simulation study, using the same setting
as in Experiment 1 of our paper, except for p = 4000 and gσ = U(0.5,2) (so the
feature variances range from 0.5 to 2). The data are normalized before implemen-
tations and the tuning parameter of COSA is taken to be 0.2 [as recommended
by Friedman and Meulman (2004)]. The results are in Table 2, suggesting that
IF-PCA-HCT outperforms the other two methods, especially when the signals are
relatively strong.

2. Correlation screening. Nadler proposes an interesting screening strategy
called CorrIF, which evaluates the feature significances using the row-wise max-
imums of the empirical covariance matrix (excluding the diagonals). The strategy
is more ambitious than the screening step of IF-PCA, and under the model in our
paper, CorrIF is more efficient than IF-PCA in terms of screening: the critical order

TABLE 2
Clustering error rates of IF-PCA-HCT (left), COSA (middle), and Sparse k-means (right). The

parameter r calibrates the signal strength (see Experiment 1 for details)

r = 0.20 r = 0.35 r = 0.50 r = 0.65

(0.265,0.444,0.330) (0.202,441,0.287) (0.132,0.438,0.216) (0.127,0.435,0.237)
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TABLE 3
Clustering error rates of IF-PCA-HCT and CorrIF-PCA

Brn Brst Cln Leuk Lung1 Lung2 Lymp Prst SRB Su

IF-PCA-HCT 0.262 0.406 0.403 0.069 0.033 0.217 0.065 0.382 0.444 0.333
CorrIF-PCA 0.476 0.438 0.484 0.264 0.122 0.434 0.226 0.422 0.540 0.489

of the feature strengths required for the success of CorrIF is (log(p)/n)1/4, while
that for IF-PCA is of (log(p)/n)1/6.

However, the success of CorrIF relies on the assumption that covariance matrix
� in (1.2) is diagonal. When � is not diagonal, CorrIF faces challenges: when the
(i, j)th entry of the empirical covariance matrix is large, it could be (recall that we
call a feature useful if the contrast mean is nonzero):

• either that both features (i and j ) are useful,
• or that both features are useless but they are highly correlated.

We realize that in gene microarray data, many features are highly correlated. In
such a difficult setting, it is preferable to use a marginal screening strategy, which
is more conservative, but less vulnerable to the correlations.

This partially explains why (as reported by Nadler) CorrIF is successful for
some simulated data, but not quite so for some of the microarray data sets. The
point was further confirmed by our numerical study, where we compare IF-PCA-
HCT with CorrIF-PCA using all the 10 microarray data sets. CorrIF-PCA has one
tuning parameter α (see page 2 of Nadler’s discussion) and the recommended value
is α = 1/p. However, for the Brain data set, no feature is selected if we take α =
1/p, so we raise α slightly to log(p)/p [for all other 9 data sets, there is only
a negligible difference if we use α = log(p)/p instead of α = 1/p, both in the
number of selected features and in the clustering error rates]. For most of the data
sets, IF-PCA screens out most of the features, but CorrIF-PCA only screens out
less than half of the features. See Table 3 for the comparison of clustering error
rates.

Note also that if we decide to use a marginal screening strategy, then our pro-
posed approach is the right choice, and (log(p)/n)1/6 is the right order of critical
signal strength required for success, because the diagonals of noise covariance ma-
trix � are unknown and unequal.

In summary, we think CorrIF is a very nice idea, and in some cases, it may yield
better screening results. It would be great to further develop the method so it can
be more efficient in clustering microarray data sets. To do so, we may need to (a)
extend the model to a more complicated form, (b) extend Efron’s null correction
idea to CorrIF, and (c) adapt the idea of threshold choice by Higher Criticism to
the CorrIF. We very much hope to see interesting developments along these lines.
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3. Minimax optimality. Several discussants, especially Stepanova and Tsy-
bakov, have very interesting comments on the minimax optimality and the crit-
ical signal strength required for successful clustering. We wish to clarify that,
if the diagonals of the covariance matrix � in (1.2) are unequal and unknown,
then marginal χ2-screening may not work satisfactorily. Also, in this case, the
order of the critical signal strength is (log(p)/n)1/6 if we limit our attention to
marginal screening methods (e.g., the KS screening method). In cases where the
diagonals are equal (since we have already assumed � is diagonal, the assumption
of equal diagonals means that � is proportional to the identity matrix), marginal
χ2-screening works (as kindly pointed out by Stepanova and Tsybakov) and the
critical signal strength is of the order (log(p)/n)1/4. In this case, the minimax op-
timality was studied in several recent papers, including Arias-Castro and Verzelen
(2014), Collier, Comminges and Tsybakov (2015).

The clustering problem is closely related to two other problems.

• Global testing. When we can reliably test whether the sample vectors X1,X2,

. . . ,Xn are generated i.i.d. from N(0,�), or generated from the model (1.1)–
(1.2) in our paper.

• Signal recovery. When we can reliably estimate the contrast mean vectors
μ1,μ2, . . . ,μK [see (1.3) of our paper].

In a companion paper Jin, Ke and Wang (2015a), we have considered all three
problems in the case where � is the identity matrix. For each of them, we have
found an interesting phase transition. Compared to the classical framework on min-
imax optimality, the phase transition can be viewed as a new (but closely related)
criterion for assessing optimality. These results, we think, provide a more satisfac-
tory answer to Stepanova and Tsybakov’s question on the critical signal strength
and optimality in general.

4. Robustness of the KS-screening method. Nadler, Verzelen, and Arias-
Castro raised the concern that, when the noise is non-Gaussian or heavy-tailed, the
KS screening may face challenges. This is a very interesting point, and we have
already tried hard to alleviate the non-Gaussian effects.

For example, out of many possible statistics, we choose the KS statistic for
screening. For each feature, the KS statistic is defined as the maximum devia-
tion between the empirical CDF of the normalized data samples and the CDF of
N(0,1). The maximum deviation is usually assumed near the barycenter of the dis-
tribution, and is reasonably far away from the tail. For this reason, the KS statistic
is relatively robust to non-Gaussianity.

Efron’s null correction also helps alleviate the non-Gaussian effects. To see the
point, we use a small numerical experiment where we fix (p, θ) = (20,000,1/2)

and a distribution F , and let n = pθ ≈ 141 as in the paper. For each 1 ≤ j ≤ p, we

generate samples Xi(j)
i.i.d.∼ F , independent for different i, and compute ψn,j and
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TABLE 4
Comparison of the empirical means and standard deviations (SD) of {ψn,j }pj=1 for different noise

distribution F

Distribution F N(0,1) t5(0) t10(0) t15(0) t20(0)

Mean/SD 0.622/0.146 0.874/0.250 0.689/0.172 0.656/0.158 0.643/0.146

ψ∗
n,j according to (1.6) and (1.7) in the paper; these are the KS-scores with and

without Efron’s null correction, respectively.
We take F to be N(0,1) and the central t-distribution tν(0) with ν =

5,10,15,20. Table 4 compares the empirical means and standard deviations of
{ψn,j }pj=1 for different F , and there is a noticeable difference for the case of
F = N(0,1) and the case of F = tν(0), especially for relatively small ν.

However, the non-Gaussian effects can be largely alleviated if we use Efron’s
null correction. Figure 1 compares the pp-plots for the case with and with-
out Efron’s null correction [left: F = t5(0); right: F = t20(0)]. For each j , the
P -values of ψn,j and ψ∗

n,j are computed using 2 × 106 simulated KS-scores ψn,j

and ψ∗
n,j with F = N(0,1), respectively. With Efron’s null correction, the pp-

plot are almost a straight line, suggesting that the non-Gaussian effect is largely
alleviated.

Alternatively, one might choose a nonparametric approach for screening (e.g.,
the uni-modality test [Chan and Hall (2010), Hartigan and Hartigan (1985)]). How-
ever, as Arias-Castro and Verzelen pointed out, while these methods may be more
robust, they are clearly inferior in the normal (or approximately normal) settings
considered in the paper.

Arias-Castro and Verzelen have also made an interesting observation that, if
the null distribution and the alternative distribution have matching moments in

FIG. 1. Comparison of pp-plot for the case with (red) and without (blue) Efron’s null correction.
F = tν (0) with ν = 5 (left) and 20 (right).
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the order of 1,2, . . . , (d − 1) for some integer d > 1, then the detection power of
the KS statistic is asymptotically equivalent to that of the test based on the dth
empirical moment. However, as Arias-Castro and Verzelen kindly point out, it is
preferable to use the KS statistic instead of a moment-based statistic, for in the
former, it is not required to know d . In this sense, the KS statistic is adaptive to
the unknown degree of matching moments between the null distribution and the
alternative distribution. We note that the above observation by Arias-Castro and
Verzelen is right and is justified in our paper (Appendix B [Jin and Wang (2015)]).

5. Connection to SpetralGem and variants of the PCA step. We thank
Arias-Castro and Verzelen for pointing out the subtle difference between Spec-
tralGem and classical PCA. We agree that for the method we quoted as “Spec-
tralGEM”, it is more appropriate to call it “classical PCA.” We now comment on
SpectralGEM with more details.

Recall that W ∈ R
n,p denotes the normalized data matrix. Let A = WW ′

and let A∗ be the matrix defined by A∗(i, j) = √
max{A(i, j),0}, 1 ≤ i, j ≤ n.

SpectralGem is basically the classical PCA algorithm (with some small differ-
ences, of course) applied to the symmetric normalized Laplacian matrix In −
D−1/2A∗D−1/2 corresponding to A∗, where D is a diagonal matrix defined by
D(i, i) = ∑n

j=1 A∗(i, j), 1 ≤ i ≤ n; see Lee, Luca and Roeder (2010). Note that
SpectralGem is originally proposed for low-dimensional case so a feature selection
step is not required.

Alternatively, we may define A differently. One such example is to write
W ′ = [W1,W2, . . . ,Wn] and let A be the similarity matrix defined by A(i, i) = 0,
and A(i, j) = exp(−‖Wi − Wj‖2/(2σ 2)), 1 ≤ i, j ≤ n, where σ > 0 is a tuning
parameter. We then apply the classical PCA to the symmetric normalized Lapla-
cian matrix associated with A. This is basically the method proposed by Ng et al.
(2002).

In our PCA step, if we replace the classical PCA by any of these methods (the
IF-step remains unchanged), then we have a variant of the IF-PCA. However, our
experience suggests that the success of IF-PCA depends more on the success of the
IF-step, so it is unclear how much differences we may have if we use a different
procedure in our post-screening clustering step. It would be very interesting to
explore this in the future.

6. Comparison with sparse PCA. Cai and Zhang proposes an alternative
“screen first, clustering next” approach where they first use a screening method
to obtain an initial estimate of the principal subspace V̂0 (see Cai and Zhang for
details), and then cluster by applying a sparse PCA approach to a matrix Y con-
structed from the data matrix and V̂0. Moreover:

• with elegant theory and careful analysis, they show that the algorithm leads to
satisfactory clustering results, if we construct V̂0 by applying the regular SVD

to the post-screening data matrix Ŵ Ŝ obtained in the PCA-1 step of IF-PCA.
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TABLE 5
Comparison of clustering error rates by IF-PCA, sPCA(N) and sPCA(U)

Brn Brst Cln Leuk Lung1 Lung2 Lymp Prst SRB Su

IF-PCA-HCT 0.262 0.406 0.403 0.069 0.033 0.217 0.065 0.382 0.444 0.333
sPCA(U) 0.221 0.440 0.261 0.032 0.083 0.276 0.016 0.422 0.508 0.484
sPCA(N) 0.502 0.411 0.417 0.040 0.006 0.352 0.026 0.422 0.422 0.477

• They also show that the algorithm leads to satisfactory results on six of the data
sets in our paper (they do not study the other four data sets).

Cai and Zhang’s results are very interesting and encouraging, both in theory and
in applications. Their study supports one of our points aforementioned: we can al-
ways combine the screening step of IF-PCA with some other clustering approaches
to form a new two-step method.

Table 5 compares IF-PCA-HCT with Cai and Zhang’s sparse PCA (sPCA) ap-
proach with the 10 microarray data sets. Since both procedures are random, the
error rates reported here are the average over 30 independent repetitions, so the
numbers may be slightly different from that in Cai and Zhang’s discussion, which
are based on one repetition. The randomness of IF-PCA is due to the k-means
algorithm in the PCA step, and the randomness of sPCA is due to an add-on ran-
dom matrix the algorithm uses. For the 10 data sets we investigate, the standard
deviations of the error rates of sPCA are about a few tens times larger than that of
IF-PCA.

For IF-PCA-HCT, the data are normalized before implementation. For sPCA,
the data may be normalized [sPCA(N)] (and we use the same screening method
as in IF-PCA) or un-normalized [sPCA(U)] (where we use the χ2-screening pro-
posed by Cai and Zhang). From a practical viewpoint, it is usually preferable to
normalize the data before implementation, so sPCA(N) is a more reasonable ap-
proach compared to sPCA(U).

As IF-PCA-HCT and sPCA(N) use the same screening step, their performances
are more or less similar. This supports one of our points: in many cases, it is more
critical to have an effective screening step than an effective post-screening clus-
tering step: with a successful screening step, the difference between one (post-
screening method) and another may be insignificant.

There are several other reasons why we choose to use classical PCA in our
(post-screening) clustering step: it is conceptually simple and easy to use, mem-
ory efficient, computationally relatively fast, and does not require tuning (once
K is given). The simplicity of classical PCA also allows us to derive an optimal
threshold choice approach using the Higher Criticism [how to set the threshold
in a data-driven fashion is a hard but very interesting problem; see, for example,
Donoho and Jin (2009), Fan, Jin and Yao (2013)].
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In summary, Cai and Zhang show that combining our IF-step with their sparse
PCA gives rise to promising new approaches, and support their approaches with
encouraging numerical results and elegant theory. Their study also suggests that
IF-PCA is an adaptive two-step method, where we can modify either the IF-step or
the PCA-step, depending on the situations. It would be very interesting to further
investigate such an idea in the future.

7. Some comments on higher criticism thresholding. Recall that in HCT,
we define a HC function by

HCp,j =
√

p(j/p − π(j))√
max{√n(j/p) − π(j),0} + (j/p)

, 1 ≤ j ≤ p,

and retain the first ĵ features with smallest P -values, where

ĵ = argmax
{1≤j≤p/2,π(j)>log(p)/p}

HCp,j .

Stepanova and Tsybakov have a few questions on HCT. First, they asked
whether we should add an absolute sign in the numerator of HCp,j . For a typi-
cal gene microarray data, the empirical distribution of the KS scores has two no-
ticeable features: (a) the center of the distribution does not match well with its
theoretical counterpart, and (b) near the right tail of the distribution, there is a
small bump (many times noticeable) which we believe to be corresponding to use-
ful features. When we apply Efron’s null correction, the HC scores HCp,j may be
negative for many j , but the corresponding features are usually those with large
P -values, where the negativity is due to the error in Efron’s null correction, not
because these features are significant. A significant feature, however, will have a
large and positive HC score HCp,j . See Figure 2, where the HCp,j are positive
for relatively small j (corresponding to significant features), and are negative for
many large j (corresponding to non-significant features). If we add an absolute
sign to the numerator of HCp,j , then the HC function reaches its maximum at a
relatively large j and thus provides a threshold choice that is much lower than
desired. For this reason, we should not add an absolute sign as suggested.

FIG. 2. Plot of HCp,j versus j/p (red line: ĵ /p), 1 ≤ j ≤ p/10. Data: Lung Cancer (1).
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Second, they asked the rationale of the HC function, where we think there is
possible misunderstanding. They thought the remark in Section 1.3 “only arrives
to the conclusion that the function HCp(t) is monotone between the adjacent dis-
continuities.” However, the remark concludes that HCT approximately maximizes
the post-selection signal-to-noise ratio s̃nr(t) and so is optimal, and the HC func-
tion is carefully designed to approximate s̃nr(t). For example, in the denominator
of HCp,j , that we take the maximum over

√
n((j/p) − π(j)) and 0 is not because

we want to use a regularization, but rather because we wish to use the denominator
of HCp,j to approximate that of s̃nr(t). We understand that the current explanation
on s̃nr(t) can be more detailed, but as we mentioned in the paper, a full explanation
is rather lengthy so we deter it to Jin, Ke and Wang (2015b).

Last, they asked a few questions about the constraint π(j) > log(p)/p. The con-
straint is not required for both our theoretical study and for the analysis of most
of our date sets (out of 10 microarray data sets, the results remain the same for all
except the Lymphoma data if we remove such a constraint).

On the other hand, for some data sets (e.g., the Lymphoma data), it could happen
that HCp,j reaches the maximum at a very small j , and so our method ends up
selecting very few features. This is not desirable for our experience suggests that
we usually should select a few tens or a few hundreds of features (for clustering).
This is why we impose such a constraint, with which we avoid to select fewer than
log(p) (approximately) features.

For asymptotic theory, we could either remove such a constraint, or replace the
term log(p)/p by 5 log(p)/p or log2(p)/p. For practice, it is preferable to stick
to log(p)/p; otherwise, our range of interest may fail to include the optimal j ,
simply because 5 log(p) and log2(p) are too large for a typical p [e.g., log(p) ≈ 9,
5 log(p) ≈ 46 and log2(p) ≈ 85 if p = 10,000].

Note that in all the simulations and real data analysis, we choose log(p)/p as
the threshold in the constraint before we implement IF-PCA, and have never used
the data to tune such a threshold.

The constraint is very different from those in Donoho and Jin (2004) because
the version of HC there is different from the version we have here, and because
two papers have very different goals.

In principle, we can remove the constraint by adding some penalty in the de-
nominator, however, choosing an appropriate penalty term requires very delicate
analysis. We leave the study along this line to the future.

8. Threshold choice by controlling the (feature)-FDR. Benjamini and
Hochberg’s False Discovery Rate (FDR) control method [Benjamini and Hochberg
(1995)] is a popular approach to threshold choice. Fixing an FDR control parame-
ter 0 < q < 1, let π(1) < π(2) < · · · < π(p) be the sorted P -values as in Section 1.3,
and let k = kFDR be the largest integer such that π(k) ≤ q(k/p). The FDR thresh-
old is the critical value for the KS-score to which the corresponding P -value is
π(kFDR).
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TABLE 6
Comparison of the clustering error rates by IF-PCA-HCT and IF-PCA-FDR

Brn Brst Cln Leuk Lung1 Lung2 Lymp Prst SRB Su

IF-PCA-HCT 0.262 0.406 0.403 0.069 0.033 0.217 0.065 0.382 0.444 0.333
IF-PCA-FDR 0.119 0.323 0.371 0.278 0.116 0.222 0.194 0.412 0.286 0.333

In our forthcoming manuscript Jin, Ke and Wang (2015b) [see also Donoho and
Jin (2008), Donoho and Jin (2009), where we discuss the threshold choice in the
context of classification], we find that the optimal FDR-control parameter q for IF-
PCA (i.e., the q that yields the lowest clustering error rates for IF-PCA) critically
depends on the rarity and strengths of the useful features.

• When the useful features are rare/weak, the optimal FDR control parameter q

satisfies that (1 − q) tends to 0 algebraically fast as p → ∞.
• When the useful features are rare/strong, the optimal q tends to 0 algebraically

fast as p → ∞.
• When the useful features are rare but moderately strong, the q may be bounded

away from both 0 and 1.

In practice, all three cases can happen, and how to select the optimal q is a chal-
lenging problem. Therefore, the FDR approach is basically transforming the prob-
lem of selecting the best threshold (which is a tuning parameter) to the problem
of selecting the best q (which is also a tuning parameter), but does not solve the
problem of finding a way to set a threshold optimally and in a data-driven fashion.

Following the suggestion by Arias-Castro and Vezelen, we consider a variant of
IF-PCA-HCT where we replace the HCT approach by the FDR approach above,
and call the later by IF-PCA-FDR. Table 6 compares two methods with the 10
microarray data sets, where the FDR control parameter q is ideally selected using
a grid search in {0.01,0.02, . . . ,0.99}. The results suggest that, even if we se-
lect q ideally using a rather refined grid search, IF-PCA-FDR still underperforms
IF-PCA-HCT for about six of the data sets. These suggest that, in practice, it is
usually hard to pin down the ideal FDR control parameter q , so the FDR approach
may face challenges.

9. Connection to classification by Fisher’s LDA. Cai and Zhang have some
very interesting comments on the connection between the clustering problem and
the (two-class) classification problem in the setting where the contrast mean vector
is sparse and the samples from two classes share the same covariance matrix � that
is not diagonal.

The (two-class) classification problem has been considered in our recent work
Fan, Jin and Yao (2013), Hall and Jin (2010), Huang, Jin and Yao (2016) where
we adapt Fisher’s LDA to the high dimensional setting, assuming �−1 is sparse
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[also see related works in Efron (2009), Fan, Feng and Tong (2012), Donoho and
Jin (2008, 2009), Hall, Pittelkow and Ghosh (2008), Jin (2009), Tibshirani et al.
(2002)].

• In Fan, Jin and Yao (2013), we studied the case where � is known. We learned
that, to adapt Fisher’s LDA to such a high dimensional setting, it is desirable to
do feature selection. We also learned that an appropriate way to do feature selec-
tion is as follows: (a) use the training sample to obtain a z-score for each feature,
(b) transform the z-scores using the Innovated Transformation [proposed in Hall
and Jin (2010) in the context of Innovated Higher Criticism], and (c) apply the
feature selection to the transformed z-vector. See details therein.

• In Huang, Jin and Yao (2016), we further considered the case where � is un-
known and proposed Partial Correlation Screening (PCS) as a new approach to
estimating �−1. The estimated matrix is then combined with the method in Fan,
Jin and Yao (2013) to form a trained classifier.

• We also learned in Donoho and Jin (2008), Donoho and Jin (2009) that when
the useful features are rare and weak, it may be impossible to identify all use-
ful features, but is still possible to have successful classification. However, for
optimal classification, we usually need to tolerate many false positives in our
feature selection.

However, clustering when � is not diagonal is a more difficult problem, since the
class labels are unknown: when two features are strongly correlated, it is hard to
tell whether some of these features are useful, or that both features are useless but
they are strongly correlated; see Section 2 of the Rejoinder.

Our finding is consistent with the points by Cai and Zhang, especially in that �

plays an important role in feature selection.
Section 2 of Cai and Zhang also mentions that IF-PCA is specifically designed

for the case where the noise covariance matrix � is diagonal, and that assuming
� is diagonal is essential for the success of IF-PCA. We would like to clarify
that this is not true. Indeed, IF-PCA is successfully applied to 10 microarray data
sets, where the measured features are highly correlated. The assumption that � is
diagonal is mostly for simplicity in the presentation of our theoretical results, and
can be largely relaxed.

10. Future directions. The discussants have many stimulating comments that
are worthy of further study. We now discuss some of them.

In our theoretical study, we have assumed that (a) the sample noise is Gaussian,
(b) samples in different classes share the same (noise) covariance matrix, (c) the
covariance matrix is diagonal. While these assumptions may not hold for the mi-
croarray data, IF-PCA provides some encouraging clustering results. This suggests
that IF-PCA may continue to work well in settings that are much broader than that
considered in our theoretical study.
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On the other hand, as several discussants pointed out, we may improve the
screening step by incorporating the correlation structure. Successes have been
shown in signal detection [e.g., Hall and Jin (2010)] and in classification [e.g.,
Fan, Jin and Yao (2013)], but how to extend ideas therein to clustering remains a
challenging problem.

A closely related problem is how to estimate the correlation structures, which is
also very challenging because the class labels are unknown.

Cai and Zhang propose to combine our screening step with some of their sparse
PCA approaches for a new clustering method, and present very interesting results.
Given the recent interests on sparse PCA, it would be very interesting to study the
connection between IF-PCA and sparse PCA.

The correlation screening by Nadler is a very interesting idea. In some cases
(e.g., the noise covariance matrix is diagonal), the method seems to have advan-
tages both in theory and in simulations. Unfortunately, when we apply the method
to the microarray data, the results are relatively unsatisfactory. It is worthy to fur-
ther study the idea of correlation screening, presumably with a more complex
model than that in this paper.

Nadler also points out, it would be of great interest to study how to extend some
of our ideas to the problem of semi-supervised learning, where out of many mea-
sured samples, most of them are unlabeled, while a few of them are labeled. The
problem can be viewed as a hybrid of the classification problem and the cluster-
ing problem, so maybe both ideas in classification and those in clustering can be
helpful.

A tribute to Peter G. Hall. We are saddened to know that Peter G. Hall, a
monumental figure in statistics, probability and applied mathematics, and a legend
of our time, has recently passed away (January 9, 2016). For over a decade, Pe-
ter Hall has been a great source of inspiration to the first author. Hall’s work on
classification and clustering [Chan and Hall (2010), Hall, Jin and Miller (2014),
Hall, Pittelkow and Ghosh (2008)], on Higher Criticism [Delaigle and Hall (2009),
Delaigle, Hall and Jin (2011), Hall and Jin (2008, 2010)], and on cosmology and
astronomy [Bennett et al. (2012)] are closely related to the current paper.
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