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PETER HALL, FUNCTIONAL DATA ANALYSIS
AND RANDOM OBJECTS

BY HANS-GEORG MÜLLER1,2

University of California, Davis

Functional data analysis has become a major branch of nonparametric
statistics and is a fast evolving field. Peter Hall has made fundamental contri-
butions to this area and its theoretical underpinnings. He wrote more than 25
papers in functional data analysis between 1998 and 2016 and from 2005 on
was a tenured faculty member with a 25% appointment in the Department of
Statistics at the University of California, Davis. This article describes aspects
of his appointment and academic life in Davis and also some of his major
results in functional data analysis, along with a brief history of this area. It
concludes with an outlook on new types of functional data and an emerging
field of “random objects” that subsumes functional data analysis as it deals
with more complex data structures.

1. Introduction: Peter Hall in Davis. This article highlights Peter Hall’s
contributions to functional data analysis and elucidates their scientific context. This
introductory section is devoted to Peter’s time as a tenured faculty member at the
University of California, Davis.

Peter Hall visited the then Division of Statistics at the University of Califor-
nia, Davis, a number of times before he accepted a faculty position. Several fac-
ulty became friends with him over the years, which might have contributed to his
eventual decision to join the Davis faculty. One of these visits in Davis, perhaps
the first longer one, took place in June 1989. It was part of an early recruitment
effort by then Division of Statistics chair and Associate Dean George Roussas. Pe-
ter’s visit coincided with a lecture series on Stochastic Curve Estimation, which
was given by Murray Rosenblatt (UC San Diego) in the framework of a NSF-
CBMS Regional Conference in Davis, with lecture notes published two years later
[Rosenblatt (1991)]. Peter was not ready to consider an appointment at Davis at
that time, and even though he was being recruited by several prominent Statistics
departments in the U.S., he decided to stay at the Australian National University.

More extensive visits of Peter were arranged for Fall 2003 and Spring 2004
(see Figure 1), upon the initiative of department chair Jane-Ling Wang and af-
ter the Division of Statistics had been converted into a Department of Statistics
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FIG. 1. Peter Hall in his office at UC Davis, while visiting in the Fall of 2003. He joined the
Department of Statistics as a tenured faculty member with a 25% appointment in 2005. Photo taken
by Jane-Ling Wang.

in 2000. This focused recruitment effort was continued by the next department
chair, Rudy Beran, and eventually proved successful: In 2005, Peter joined the
department as a tenured faculty member at the rank of Distinguished Professor.
The arrangement was for a 25% level appointment, which suited Peter well. He
was not ready to move away from his native Australia to which he remained
strongly attached [Delaigle and Wand (2016)] throughout his life, both culturally
and through his family, especially his wife Jeannie Hall, who had high profile
posts in the Australian federal government that included Deputy Official Secretary
to the Governor-General of Australia; Parliamentary Liaison Officer for the House
of Representatives of the Parliament of Australia; Senior Adviser of the Cabinet
Secretariat in the Department of the Prime Minister and Cabinet.

The 25% appointment had the advantage for Peter to give him a steady, even if
periodic, presence in the U.S.; he found it beneficial to have exposure to the U.S.
statistics enterprise. A downside was that because of the part-time appointment he
had to forgo many of the regular faculty benefits. He liked the weather in Davis,
which he felt matched well with Canberra, and also the Davis faculty colleagues
and the location on the West Coast. As UC Davis operates on the quarter sys-
tem, Peter was in Davis every Spring quarter from April to June. He would teach
two quarter courses every second year, an upper division introductory probability
course with a large enrollment and an advanced graduate course on the bootstrap,
which was always well attended.

Peter typically would complete all course preparations such as syllabus, home-
work assignments, exams and lecture notes in a single weekend before teaching
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started so that he would only need to lecture and hold his office hours for the rest
of the quarter. This would be impossible to do for most faculty, but Peter pulled
it off due to his extremely fast mental processing and intense focus on his work.
His unique focus and ability also led to his extraordinary productivity reflected in
more than 600 publications, with most of them in the top journals of statistics and
many of them highly cited.

Peter was well liked by his students. The uneven preparedness of some of the
undergraduate students never fazed him. Occasionally, over lunch he would bring
up teaching topics, such as how to answer nonroutine questions in the office hours
for which one does not know the answer off-hand. We agreed a good method was
to check online on the spot and thereby teach students how to effectively find an-
swers on their own. Lunch was always a time for Peter to relax, which nevertheless
included discussing research. It was always pleasant and stimulating for me to con-
verse with him in the student cafeteria (the UC Davis Silo) and in hindsight it was
a great privilege. The topics that interested Peter included of course statistics but
ranged far beyond. Lunch conversations that I remember were on topics such as
why a density does not exist in function space, or what drives research progress in
statistics—Peter attributed the latter to technological changes outside of the con-
trol of statistics that lead to new types of data and then to demand for appropriate
data analytic and statistical tools.

Favorite topics for Peter that were unrelated to statistics were aircraft, piloting
and airline travel, a vast field, in which he was extremely knowledgable; economics
and the economy, in which he was very interested; political developments, espe-
cially in the English-speaking world; photography, trains, especially nonelectric
locomotives and how to best take pictures of them. Our lunch table conversations
were facilitated by our common interests, including Peter’s professed disinterest in
sports events [Delaigle and Wand (2016)], while he would enjoy discussing func-
tional data analysis challenges arising from longitudinal sports statistics.

In addition to teaching, Peter also took his other faculty obligations very seri-
ously and was an excellent departmental citizen. When he was around in Davis and
a faculty meeting was scheduled, he would always attend it for the whole duration
and his advice and input at the meetings were invaluable. During 2012–2015 when
I was department chair, I became aware of how beneficial his presence was to at-
tenuate divisions in the faculty and to arrive at better decisions. He also had very
good relations with the Dean and helped to promote our department. Peter was
very kind and gentle to those around him and was much liked not only by the fac-
ulty but also by our department staff. He would always had research support from
NSF while he was in Davis, which he primarily used to support graduate students.

As Peter was keenly aware that the developments in theory and methodology of
statistics are primarily driven by new types of data, to keep fully informed about
new developments made it particularly important for him to travel frequently and
also enticed him to collaborate with many other researchers. In his earlier years in
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Davis, he used to take one day off for an excursion to one of the railroad muse-
ums in the neighborhood, Napa Valley, Muir Woods or Point Reyes, which would
be joined by his wife, Jeannie, but more recently he was less inclined to go on
such trips, and seemed to intensify his working habit, if that was even possible.
Peter’s focus on his work was legendary and he was the hardest working scientist
many of us will ever encounter. Equally legendary was his mind-boggling speed
in working out complex arguments and expansions, which enabled him to produce
complex results in a short time and in printer-ready form, sometimes even while he
was juggling back and forth between several demanding tasks that he completed
simultaneously.

Peter was honored through many awards and prizes; he received the highest
honors our field bestows. Two local Davis events stand out: One was a confer-
ence in 2012 that was held on the occasion of his 60th birthday. This conference
featured an excellent scientific program with leading statisticians as speakers and
was well attended. It showcased the vibrancy and continuing relevance of the top-
ics Peter worked on, including high-dimensional statistics, errors-in-variables and
functional data analysis. Another major event during Peter’s tenure at Davis was
his election in 2013 as Foreign Associate of the National Academy of Sciences
(USA). This is of course a rarified and very high honor for a statistician, especially
a non-U.S. citizen. We had a small celebration in the department (see Figure 2),
which was attended by the Dean. Indeed, Peter had been the first faculty in the

FIG. 2. Peter cutting the cake at the celebration for his election as a Foreign Associate of the
National Academy of Sciences (USA) in April 2013 in the lounge of the Statistics Department in
Davis. Photo taken by Pete Scully.
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FIG. 3. Peter’s orphaned bicycle in Davis.

Division of Mathematical and Physical Sciences at UC Davis who was elected to
the Academy while being on the faculty.

A feature of Davis that Peter particularly enjoyed was that he could get around
town and campus efficiently with his bicycle and there was no need for a car. As
Jeannie Hall reports, “Peter had his bike light and lock in his backpack all the
time, not just when he went to Davis, because he was afraid of forgetting to take
them when he did go to Davis. And he always kept the bike inside the apartment
and kept it well maintained while he was in Davis” (Figure 3). When he was not
in Davis, it was stored in our garage. While Peter found bicycling relaxing, his
main hobby was photography, and he was well known for the artistic quality of
his photos of landscapes, cityscapes and especially of trains. When he was once
uncharacteristically stymied with a difficult proof, he came to my office with the
request to show him a location where he could photograph trains. So we went with
our bicycles along dirt roads criss-crossing the vast UC Davis experimental fields
until we came to a spot right next to the railroad tracks near Putah Creek outside
of Davis that met Peter’s scrutiny. Peter would then spend hours there waiting for
trains to pass by, where he was most interested in the huge transcontinental freight
trains and their various Diesel locomotives (he was slightly irritated that the trains
were not following an advertised schedule).

Peter’s contributions to the Statistics department at UC Davis are immeasur-
able, and he contributed in many ways to make the UC Davis Statistics department
a better department, not just by lending his prestige and name to the department
and through his active contributions, but also simply through his regular presence
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and his unmatched generosity toward colleagues and students. When Peter passed
away far too early at the age of 64 on 9 January 2016 in Melbourne, Australia, we
lost an eminent scientist, foremost leader of nonparametric statistics, beloved col-
league and outstanding departmental citizen. We will miss Peter. In his honor, the
department has named the positions offered through its visiting Assistant Professor
program as Hall Assistant Professors and the UC Davis Statistics conference series
that is organized by the department annually will be dedicated to Peter’s memory
and will be known as the Peter Hall Conference.

2. A brief history of functional data analysis. This section contains a very
brief and incomplete history of functional data analysis (FDA) to set the stage
for Peter’s entry into the field in 1998. The data atoms of FDA are random func-
tions, and FDA deals with samples of such random functions. A distinctive fea-
ture of functional data is that they are infinite dimensional from the outset and
often considered as Hilbert space valued data, in contrast to other data types en-
countered in statistics (even in the large p, small n frameworks the data are still
finite-dimensional for each n). This means that tools for dimension reduction are
essential. A common approach are expansions of the random functions into ba-
sis functions, which then can be truncated at a suitably large number of included
terms. An example is the eigenbasis expansion and associated functional principal
component analysis, which has gained a prominent place in the field, due to its
theoretical attractiveness and good practical performance. Current challenges and
potential future directions of FDA are briefly surveyed in Section 4.

The origins of FDA can be found in early papers on the decomposition of
square integrable stochastic processes into series expansions to obtain a repre-
sentation in the Hilbert space L2. Specifically, in their respective Ph.D. theses,
Karhunen and Grenander [Grenander (1950), Karhunen (1946)] proposed the con-
cept of expanding a square integrable stochastic process X into its eigencompo-
nents. With mean functions μ(t) = EX(t), consider centered processes and vari-
ables Xc(t) = X(t)−μ(t), the covariance function C(s, t) = cov(X(s),X(t)) and
the auto-covariance operator of the process X,

A(g) =
∫
T

C(s, t)g(s) ds for g ∈ L2(T ).(2.1)

Under mild conditions, this linear operator is a trace class and, therefore, compact
Hilbert–Schmidt operator. By Mercer’s theorem, C(s, t) = ∑∞

j=1 λjφj (s)φj (t),
where (λj ,φj ) are the eigenvalues and eigenfunctions of the operator A, and the
φj form an orthonormal basis, the eigenbasis.

Grenander emphasized Gaussian (and also Poisson) processes and in a side re-
mark introduced the functional linear model in the Gaussian context in an im-
plicit form, which for Y ∈ R and X ∈ L2(T ) postulates that there is a function
β ∈ L2(T ) such that E(Y c|X) = ∫

T Xc(t)β(t) dt . Grenander framed this as an out
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of domain prediction problem, and in his analysis made use of the representation
of X in the eigenbasis,

Xc(t) =
∞∑

j=1

ξjφj (t),(2.2)

known as the Karhunen–Loève representation of X.
If X and Y are jointly Gaussian random processes on an interval [0,1], there

exists a square integrable function β on [0,1] × [0,1] such that

E
(
Y c(t)|X) =

∫
Xc(s)β(s, t) ds,(2.3)

a model that can be viewed as an extension to the functional case of the simple
linear regression model that one has for bivariate normal data, with X,Y ∈ R,
where E(Y c|X) = βXc [Ramsay and Dalzell (1991)]. A simpler version of this
model with scalar response Y is the above Grenander regression,

E
(
Y c|X) =

∫
Xc(s)β(s) ds.(2.4)

The idea to expand random curves in a suitable basis with random coefficients
in more practical statistical settings seems to have appeared for the first time in
Rao (1958) and Tucker (1958), in a somewhat rudimentary form. More rigorous
ideas about functional principal component analysis and the asymptotic distribu-
tion of the eigenvalues appeared in Kleffe (1973), which is, for example, cited in
the comprehensive Ph.D. thesis by Dauxois and Pousse (1976) with subsequent
publication Dauxois, Pousse and Romain (1982). This thesis laid the groundwork
for theoretical analysis of estimators for the case where the random trajectories
X1, . . . ,Xn that form a sample of realized trajectories of the underlying process
X are assumed to be fully observed, and it introduced perturbation theory as an
important tool to study corresponding estimators [Kato (1995)].

It is not surprising that functional data as observed in practice hardly ever con-
sist of completely observed functions and at best are observed on a dense grid,
often with measurement errors, and at worst with sparse measurements, which in-
troduces additional challenges. There were also early hints of limitations of linear
methods due to the presence of time warping, that is, random distortions of the
time axis, which led to the curve registration or alignment problem.

There are two “classical” challenges for theoretical analysis in FDA. The first
challenge is that the compactness of the operator A in (2.1) implies that A is
not invertible. This corresponds to an inverse problem, which affects, for exam-
ple the estimation of the regression function β in model (2.3), where one would
like to be able to obtain the least squares solution, which however is not fea-
sible. For example, considering the regression model (2.3), define CXY (s, t) =
cov(X(s), Y (t)) and the linear operator R : L2 × L2 → L2 × L2 by Rβ(s, t) =∫

CXY (s,w)β(w, t) dw. Then a “functional normal equation” takes the form [He,
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Müller and Wang (2000)] CXY = Rβ for β ∈ L2(IX × IX). Since R as a compact
operator is not invertible, this cannot be directly solved. Popular approaches to this
inverse problem are to use truncated expansions of X and β for which the equa-
tion is solvable, or to regularize β , adopting a version of Tikhonov regularization,
which is most often implemented by penalized splines.

The second challenge is a consequence of the fact that the integral operator A

in (2.1) is actually not known and must be estimated through an estimate Ĉ of
the covariance kernel C. This is the realm of perturbation theory, which provides
tools to use bounds between Ĉ and C to infer bounds between estimated and true
eigenvalues/eigenfunctions. So establishing asymptotic limit theory for the eigen-
components typically requires to derive the convergence of estimated mean and
covariance functions in a desirable metric, and then to apply perturbation argu-
ments to obtain convergence of the eigencomponents.

The most commonly used perturbation argument is encapsulated in Lemma 4.3
of Bosq (2000), which is a direct extension of corresponding multivariate results to
the functional case [Hsing and Eubank (2015)]. If one has two covariance kernels
C and C̃, with respective eigenvalues and eigenfunctions (λk,φk), (λ̃k, φ̃k), k ≥ 1,
then this perturbation result yields the bounds

|λk − λ̃k| ≤ ‖C − C̃‖, ‖φk − φ̃k‖ ≤ 2
√

2δ−1
k ‖C − C̃‖,(2.5)

where the norms correspond to the respective L2 norms and δk is defined by
δ1 = λ1 − λ2, δk = minj≤k(λj−1 − λj , λj − λj+1), k ≥ 2. Peter worked on both
of the above challenges, deriving his own perturbation results and using these to
make seminal contributions to functional linear regression and functional principal
component analysis.

The work by Dauxois and Pousse marked the beginning of the French school
of FDA or statistics in Hilbert space, with key researchers located in Toulouse.
These pioneers were very productive over the years [Bosq (2000), Ferraty and
Vieu (2006)] and developed basic theory, then became increasingly interested in
applied methods and data analysis and hosted visitors that included Peter Hall more
recently and Jim Ramsay earlier. Jim Ramsey coined the name “Functional Data
Analysis” and has been a tireless promoter of this area [Ramsay and Silverman
(2005)].

A smaller group of early researchers can be characterized as the Zürich–
Heidelberg school which was applications and computing oriented at its inception.
Its leader was Theo Gasser with inspirations from Peter Huber, prominent mem-
bers included Wolfgang Härdle and Alois Kneip and it started out with smoothing
methods in the late 1970s and early 1980s, with a peak of activity in the 1980s
and 1990s. Early focus areas included derivatives, nonparametric estimation of
growth curves [Gasser et al. (1984)] and time warping, with an emphasis on the
landmark method and shape-invariant modeling [Gasser et al. (1984), Kneip and
Gasser (1992)].
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In addition, there were some other early pioneers with high impact in this area,
including Bernard Silverman and John Rice [Rice and Silverman (1991), Rice and
Wu (2001)], with several others making seminal contributions [Castro, Lawton
and Sylvestre (1986), Staniswalis and Lee (1998)]. In addition to work that laid
the foundations of linear modeling in FDA through functional principal compo-
nents and the functional linear model and then nonlinear time warping, another
line of early work addressed issues of functional correlation [Leurgans, Moyeed
and Silverman (1993)]. Additional review of developments in FDA can be found
in Wang, Chiou and Müller (2016).

When Peter Hall became interested in this area, his first paper was actually co-
authored with Theo Gasser and Brett Presnell [Gasser, Hall and Presnell (1998)],
while some of his last work in this area was joint with prominent representatives of
the French-Toulouse school, Fréderic Ferraty and Philippe Vieu [Ferraty, Hall and
Vieu (2010)]. Peter’s collaborations with key researchers in FDA exposed him to a
large variety of challenges that he enjoyed to address. Peter was a problem solver
par excellence.

3. Peter Hall’s contributions to functional data analysis. Peter worked on
an incredible number of different problems in diverse areas including point pro-
cesses, time series, extreme values, quantification of the roughness of surfaces and
small area estimation, among others, with an emphasis on nonparametric methods.
Apart from his early work on martingales and convergence of sums of random
variables [Hall and Heyde (1980)] that was directly related to his Master’s thesis
at the Australian National University (advisor: Chris Heyde) and Ph.D. thesis at the
University of Oxford (advisor: John Kingman), the areas of his earlier work that
were particularly relevant for his contributions to functional data analysis (FDA)
included: (1) The Bootstrap, where Peter made several early pioneering contri-
butions to the theory; see Chen (2016). This was the area where he established
his reputation as a top researcher. He also wrote one of the first papers to apply
bootstrap to functional data. (2) Smoothing methods, where Peter’s contributions
were very broad, with particularly influential papers on the asymptotics of error
measures, boundary problems, error variance estimation, and bandwidth choice
for kernel type smoothers in nonparametric density estimation and nonparametric
regression; see Cheng and Fan (2016). He employed various smoothing methods
and utilized their properties in his work in FDA. (3) High-dimensional statistics,
where Peter published an influential early article on the near-normality of random
projections; see Samworth (2016). (4) Deconvolution and errors in variables, an
area on which Peter worked throughout his career, including some of his very last
papers; see Delaigle (2016).

His previous work in areas related to FDA provided Peter with a toolbox that
allowed him to address some of the toughest theory problems in FDA. His primary
motivation to work in this area was that this new type of data posed theoretical
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challenges that he found intriguing [Delaigle and Wand (2016)]. Peter worked pri-
marily on problems that were within the realm of his formidable toolkit, and would
often approach those aspects of a problem for which his tools were directly appli-
cable. The theory challenges of FDA fitted him particularly well, as they often
require complex expansions, in which Peter was an unsurpassed master. FDA also
draws on tools from smoothing, functional analysis and stochastic processes, all
areas in which he had accumulated vast expertise in the course of his previous
research.

Peter’s work in FDA was carried out jointly in collaboration with various co-
authors, where Peter typically was the driving force of the mathematical devel-
opments and proofs. He pioneered a deeper theoretical understanding of existing
techniques such as functional principal component analysis, functional regression
and classification and also introduced seminal new concepts such as perfect clas-
sification that arise for functional data. His work in FDA alone would have been
sufficient for a distinguished career. Peter’s specific contributions to FDA can be
clustered into three areas, as follows.

3.1. Estimation of densities and modes in function space. The nonexistence
of a density w.r.t. Lebesgue measure in the function space L2 had been previously
attributed to the insufficient size of the small ball probabilities, which prevents the
existence of a Radon–Nikodym derivative [Li and Linde (1999)]. Trying to esti-
mate such a nonexisting density would seem like a fool’s errand. Not so for Peter
and his co-authors, who boldly went ahead in Gasser, Hall and Presnell (1998) and
simply redefined the problem to find density and modes for a finite-dimensional
approximation of the functional data,

X(t) ≈
p∑

j=1

ζjψj (t)(3.1)

for a suitable basis ψj . Once one replaces the functions X by their finite-
dimensional approximations, the density problem is essentially reduced to finding
the density of the finite-dimensional vector of coefficients ζj , j = 1, . . . , p.

Of course, if p is larger than 3 there would still be a curse of dimensionality
for nonparametric density estimation, so this method would still not be straight-
forward to deploy. The main purpose of Peter’s work was to find the mode of the
random distribution with a suitable algorithm, with a view toward finding a “typi-
cal” value for the distribution and toward clustering of functional data. Clustering
of functional data has since become a popular area of research in FDA [Chiou and
Li (2008)] that Peter revisited 14 years after this initial contribution [Delaigle, Hall
and Bathia (2012)].

The mode finding problem was revisited in Hall and Heckman (2002), where the
emphasis was on a mode climbing algorithm similar to a mean update algorithm
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for functional data. The authors also introduced a version of a kernel density esti-
mator based on replacing differences in the kernel arguments by a general distance
in function space, f̂ (x) = αn

∑n
i=1 K(d(x,Xi)/h) for a multiplier αn, a distance

d in L2 and a bandwidth h and derived the consistency of the mode climbing al-
gorithm.

The density problem made yet another appearance in Peter’s work. In Delaigle
and Hall (2010), complex arguments are used to show that the finite approximation
approach in Gasser, Hall and Presnell (1998) can be refined by replacing the fixed
basis functions ψj by eigenfunctions φj of the underlying processes X, more pre-
cisely by estimated eigenfunctions. Then a finite approximation to the density (the
“surrogate density”) can be expressed in terms of the estimated functional principal
component scores. The crux of this argument is that the densities must be estimated
from estimated scores, and the critical step is to show that when substituting the
functional principal component scores by their estimates one still obtains consis-
tent density estimates. To prove this warranted a separate paper [Delaigle and Hall
(2011)].

Overall, the construction of densities for functional data still remains a chal-
lenge. Various possible approaches invite further investigation. Since the full L2

space does not admit the notion of a usual density, one approach to this problem
is to restrict consideration to statistically sensible subspaces of L2 that keep the
infinite dimensionality intact and at the same time provide interpretable and mean-
ingful representations of the functional elements.

3.2. Theory of functional principal components. The year 2006 saw a burst
of activity from Peter in regard to FDA, with an emphasis on functional principal
component analysis; it was his annus mirabilis in FDA. He published four papers
on this topic, two in the Journal of the Royal Statistical Society Series B and two
in the The Annals of Statistics. The properties of estimates of the eigenvalues and
eigenfunctions of the operator A in (2.1) are derived by perturbation theory, which
relies on expansions of the estimated eigencomponents around their targets. Two
main expansions have been used: One that is grounded in expansions of resolvent
operators [Dauxois and Pousse (1976)] and a second more popular approach that
makes use of the more direct bounds in equation (2.5) [Bosq (2000)]. Given Peter’s
ingenuity to develop complex higher order expansions, it is not surprising that he
took up the challenge to develop more advanced expansions. He chose the direct
approach with a parallel development to (2.5) A key paper is Hall and Hosseini-
Nasab (2006), which is highly cited and has a focus on higher order expansions for
perturbations. In this paper, it is shown that the spacings of the eigenvalues have a
first-order effect on eigenfunction estimation and a second-order effect on eigen-
vector estimation. These results are then used to derive inference for eigenvalues
and eigenfunctions by bootstrapping. This is likely the first systematic study of
using bootstrap methods for functional data.
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These developments were instrumental for a follow-up paper [Hall, Müller and
Wang (2006)], where the results of Hall and Hosseini-Nasab (2006) and Yao,
Müller and Wang (2005) were extended to systematically compare the estimation
of eigenvalues and eigenfunctions for two sampling scenarios: a classical scenario
with fully observed functional data and a second longitudinal scenario, where one
only has a sparse number of measurements per curve that are taken at random lo-
cations and are contaminated by noise. It is shown that eigenvalue estimation is not
as sensitive to the design as eigenfunction estimation is, where the latter has a non-
parametric convergence rate in the sparse and a parametric convergence rate in the
fully observed case. The transition from the sparse to the dense scenario gives rise
to a change in the asymptotic behavior. When the order of the number of sampled
measurements per random function is larger than n−1/4, where the sample size of
the functional data is n, this behavior is first-order equivalent to that of completely
observed functional data. This was the first time a phase transition was observed
to occur in the sampling schemes of functional data, with the discovery of addi-
tional phase transitions to follow later [Cai and Yuan (2011)]. The influence of
the sparsity of designs on functional principal component analysis also motivated
other recent work [Li and Hsing (2010), Zhang and Wang (2016)].

It is sometimes of interest to assume that functional data are of finite dimen-
sionality and then the question arises how to determine the correct dimension.
This question was studied by Peter for the difficult situation where one has ad-
ditional noise and discrete measurements of the functional data in Hall and Vial
(2006a), where some asymptotically motivated criteria were proposed. Another
question that has consequences for the interpretation of FPCA is to determine the
structure of the eigenfunctions, and especially their shape properties. Here espe-
cially, extrema in the eigenfunctions that indicate points where increased variabil-
ity occurs are of interest and Peter studied the properties of corresponding em-
pirical estimates in Hall and Vial (2006b), including bootstrap methods to assess
their strength. These results also make use of the perturbation results of Hall and
Hosseini-Nasab (2006).

Another version of functional principal component analysis for a different data
type, where one has repeatedly observed data of generalized non-Gaussian type for
each subject, was developed in Hall, Müller and Yao (2008). The main feature of
this approach was the combination of a latent Gaussian process that generates the
observed data with an independent random mechanism that, given the trajectory
value, generates an actual observation. For example, if an observation at time t is
Bernoulli(p), the value of p = p(t) = exp(X(t))/[1 + exp(X(t))] corresponds to
the expit of the value of the smooth random trajectory X(t) at t , and a Bernoulli
response sampled at time t would be obtained by an independent Bernoulli(p) ex-
periment with p = p(t). This approach was developed in the framework of sparse
data with few observations per subject and shown to produce estimates for the
principal component scores that can serve as random effects in further statistical
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analysis. An additional feature was a result on projecting covariance surfaces ob-
tained by smoothing onto L2 projections that only contain positive eigenvalues,
yielding positive definite symmetric surfaces.

3.3. Functional regression, classification and related topics. The methodol-
ogy used by Peter in these core areas of FDA was primarily based on functional
principal component analysis, where he skillfully deployed the expertise he had
gained by working on the projects described in the previous subsection. His first
two papers on functional regression models concerned model (2.4) with scalar
response and pioneered the study of exact convergence rates in the framework
of this model. In the high-impact paper Cai and Hall (2006), the emphasis was
not on properties of estimates of the regression parameter function as in previous
work [Cardot, Ferraty and Sarda (1999)], but rather on estimates of the predictor
η = ∫

β(t)X(t) dt , which turns out to be an easier problem in the sense that one
can obtain faster rates of convergence, due to the smoothing effect of the integral.
In the paper, it was shown that undersmoothing of estimators of the parameter
function β can lead to rates of convergence for estimates of η as fast as n−1/2, that
is, parametric rates, under certain assumptions. In many situations, the rate was
shown to be nonparametric, with exact rates determined by the interplay between
the eigenvalue decay rate of the auto-covariance operator (2.1) of the predictor
process X, the smoothness of β , as measured by the decay rate of its coefficients
in the eigenbasis and the smoothness of X, as measured by the decay rate of its
functional principal component scores.

Convergence rates of estimates of the regression function β itself were derived
in Hall and Horowitz (2007). The techniques used are similar to those in Cai and
Hall (2006), invoking similar smoothness conditions on the auto-covariance op-
erators and the function β to obtain optimal rates. Peter considered a weighted
least squares version of fitting model (2.4) in subsequent work [Delaigle, Hall and
Apanasovich (2009)] and studied the number of principal components one should
include for principal component based implementations of model (2.4) [Hall and
Yang (2010)]. He analyzed an extension of the functional linear model to a more
general single index model with possibly multiple indices in Chen, Hall and Müller
(2011). In one of his last papers in FDA, Peter revisited the functional linear model
(2.4) and derived asymptotic results for the domain selection problem and also
studied its identifiability [Hall and Hooker (2016)]. In this important but difficult
problem, one seeks to determine the best subinterval of the domain of X, in the
sense that linear regression with the selected subinterval as predictor domain pro-
vides the best linear predictor η in dependence on the selected domain. This prob-
lem is related to the historical functional linear model [Malfait and Ramsay (2003)]
and extends history versions of functional varying coefficient models [Şentürk and
Müller (2010)].

Sometimes it is of interest to quantify the change of a response when a pre-
dictor changes, where the rate of change corresponds to the derivative of the re-
sponse with respect to the predictor. This problem is nonstandard when predictors
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are random functions; it was addressed in Hall, Müller and Yao (2009), where
asymptotic properties for a kernel-based method were studied. Since this method
involves functional predictors in a nonparametric model, it is subject to a serious
curse of dimensionality. An additive version that breaks the problem down into a
series of one-dimensional additive predictors was devised later [Müller and Yao
(2010)]. This methodology provides a practical illustration of Gâteaux derivatives
and can be used for gradient based optimization if one aims to determine the shape
of predictor trajectories for which a response is maximized.

While many of Peter’s papers in FDA were based on fully observed functional
data, there are some notable exceptions. The effect of smoothing on discretely
sampled functional data when the goal is a two sample test was studied in Hall
and Van Keilegom (2007). In this paper, it is shown that it is best to use the
same smoothing parameter across all random curves for maximizing power, and
asymptotic characterizations of situations where the smoothing step is negligible
are provided. A goodness-of-fit test for the null hypothesis that the observed ran-
dom trajectories follow a parametric model was proposed in Bugni et al. (2009).
The alternatives are nonparametric and this testing problem was illustrated with
interesting applications in econometrics. Peter revisited the smoothing problem
for discretely sampled data later [Carroll, Delaigle and Hall (2013)]. The simple
smoothing rules advocated in Hall and Van Keilegom (2007) were found not to
apply to functional classification. Instead, fairly complex relations between the
degree of smoothing and classification results were discovered.

When one has completely observed functional predictors, it is often of interest
to reduce the burden of recording the entire function, as is required in model (2.4).
Instead, one would like to find critical points within the predictor domain so that a
resulting multivariate linear model that only uses the observations at the selected
predictor points provides a good approximation to the fitting of the entire func-
tional linear model. This challenge is motivated by applications in chemometrics
and led to a promising approach proposed in Ferraty, Hall and Vieu (2010). This
work employs boosting methods that had been developed in prior work for func-
tional data [Ferraty and Vieu (2009)] and has many possible ramifications [Ji and
Müller (2016), Kneip, Poss and Sarda (2016)].

Another popular method in chemometrics is partial least squares for regres-
sion, where instead of maximizing the correlation between the responses and a
linear combination of the predictors one aims at maximizing the covariance. This
approach is particularly attractive for functional data as it avoids the inverse prob-
lem that is at the root of the problems one encounters in functional regression
and canonical correlation modeling [Yang, Müller and Stadtmüller (2011)]. The
full partial least squares algorithm is iterative, which makes its theoretical analysis
very challenging, especially in the case of functional predictors. Peter braved these
challenges in a tour de force and was able to derive rates of convergence [Delaigle
and Hall (2012a)].
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Peter also left a substantial legacy of works on functional classification, which
recently has become a very active line of research [Cuevas (2014)]. The functional
classification problem was on his radar screen already in 2001, as reflected in Hall,
Poskitt and Presnell (2001). In this early approach, the random functions are pro-
jected onto their first K principal components and these random vectors are then
used in vector-based discriminant analysis. An extension where additionally some
nonlinear functionals are considered, but with the same idea of projecting the func-
tional data onto finite-dimensional random vectors, appeared in Hall, Lee and Park
(2007).

Peter’s main and seminal contributions to functional classification appeared in
two papers in 2012 and 2013, co-authored with Aurore Delaigle. In the 2012 pa-
per [Delaigle and Hall (2012b)], a functional version of Fisher’s linear discriminant
analysis was considered. The main discovery in the paper is that even with this sim-
ple method that is known to be inefficient in many classical classification problems
where the predictors are random vectors, one can obtain consistency in classifica-
tion. This consistency is studied for both Gaussian and non-Gaussian situations
and under specific conditions for the functional Mahalanobis distances between
the two groups to be classified. Here, consistency means that under suitable regu-
larity conditions the misclassification error converges to zero. This phenomenon is
referred to in the paper as perfect classification.

The method that is used to demonstrate this property is based on projecting on
a linear discriminant function. This leads to the convergence of the misclassifi-
cation error to zero in the Gaussian case. This is plausible, since in the infinite-
dimensional case any differences between the means of the two groups will even-
tually be reflected in a functional projection that targets directions for which the
projections are small. Then the linear classifier will eventually detect the difference
in the means of the predictors, leading to perfect classification. The non-Gaussian
case is also studied in the paper.

This approach was further extended in Delaigle and Hall (2013), which intro-
duces the additional challenge to the functional classification problem that the pre-
dictor functions are only observed on random subintervals that are not too short. A
heuristic procedure is introduced to extend the incompletely observed curves. The
theoretical part of the paper introduces a quadratic discriminant method that ex-
tends the results of Delaigle and Hall (2012b) to establish perfect classification in
this more general setting. Undoubtedly, these works and in general Peter’s overall
contributions to functional data analysis have moved the field substantially forward
and will have lasting impact.

4. From functional data to random objects. This section contains some
speculative and subjective thoughts of where functional data analysis might be
headed in the next couple of years. Peter’s contributions were instrumental in
building the foundations of what can be viewed as “first generation” functional
data analysis, characterized by predominantly linear methods, such as functional
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principal component analysis, functional linear regression or linear functional dis-
criminants.

As data of functional type are becoming more complex, the current trend
is toward “next generation” functional data, to use a term coined by Jane-
Ling Wang at the London Workshop on the Future of the Statistical Sciences;
see page 23 of the report, available at http://www.worldofstatistics.org/wos/pdfs/
Statistics&Science-TheLondonWorkshopReport.pdf. An incomplete list of such
next generation data is as follows:

• Functional data that are irregularly and sometimes extremely sparsely observed,
with maybe two measurements per subject that are made at random locations;
Peter’s work included major contributions toward a better understanding of such
functional data of “longitudinal type” [Delaigle and Hall (2013), Hall, Müller
and Wang (2006), Hall, Müller and Yao (2008)], but many open problems re-
main.

• The interface between high-dimensional and functional data, which may occur
simultaneously among the predictors in regression models [Kneip and Sarda
(2011), Kong et al. (2016)] or models where high-dimensional data are rep-
resented as functional data [Chen et al. (2011)], and more recently, functional
data as part of “big data” [Chen et al. (2015)], where Peter’s key contributions in
this area were in the context of predictor selection for functional linear models
[Ferraty, Hall and Vieu (2010)] and in classification [Delaigle and Hall (2012b)].

• Nonlinear models for functional data, where models that address time-warping
have been well studied and nonlinear versions of functional principal component
analysis are of interest [Chen and Müller (2012), Kneip and Ramsay (2008)], in
addition to nonlinear regression models, to which Peter contributed in Chen,
Hall and Müller (2011).

• Functional data in classical biostatistical models, such as survival analysis,
where the Cox regression model plays a prominent role, with functional versions
in Qu, Wang and Wang (2016), and longitudinal or repeated measurements de-
signs where the repeated measurements are functional or where functions have
a multivariate time domain [Chen, Delicado and Müller (2016)] and other forms
of dependent functional data, such as vectors of functional data.

• Functional time series, where one has only one sequence of repeatedly observed
functional data that are sampled over a regular time grid and stationarity is
a common assumption; while a complete theory of functional auto-regressive
models was already presented in Bosq (2000), this area recently has met with
increasing interest, with models both in the spectral as well as time domains and
also spatio-temporal extensions [Horváth and Kokoszka (2012), Panaretos and
Tavakoli (2013)].

A promising approach that has emerged is to make the assumption that there
exists a smooth underlying stochastic process from which a trajectory is sampled

http://www.worldofstatistics.org/wos/pdfs/Statistics&Science-TheLondonWorkshopReport.pdf
http://www.worldofstatistics.org/wos/pdfs/Statistics&Science-TheLondonWorkshopReport.pdf
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by a random mechanism and then a second random mechanism generates the ac-
tual observed data, conditional on the unobserved random trajectory. Functional
dependencies are then modeled through dependency structures of the underlying
stochastic processes. This idea is exemplified in Hall, Müller and Yao (2008).

While functional data analysis differs in key aspects from multivariate data anal-
ysis, mainly due to the infinite dimensionality of functional data and the topologi-
cal aspects of proximity of predictors and continuity of the functional objects, both
fields deal with data that lie in a vector space. For the case of functional data, this
is commonly assumed to be the Hilbert space L2 of square integrable functions
or alternatively a reproducing kernel Hilbert space [Hsing and Eubank (2015)].
Such data are Hilbertian. The inner (scalar) product enables projections and lin-
ear methods, and makes it possible to extend the notions of mean, regression and
principal component analysis, which are central for practical data analysis, from
the multivariate to the functional case.

There are various situations where functional data lie in a subset or submani-
fold of a vector space that itself is not a vector space: Two prominent examples
are random samples of density functions [Kneip and Utikal (2001)] and functional
data with time warping components [Gasser, Sroka and Jennen-Steinmetz (1986)].
Other examples are provided by shape-constrained functional data such as samples
of monotone [Ramsay and Silverman (2005)], unimodal or convex random func-
tions. Since one cannot perform linear operations or projections and stay within
the relevant subspace, the usual methods of functional data analysis will not work
well for these types of inherently nonlinear data.

For such data, one can sometimes find a suitable transformation that maps the
subset in which they live to a suitable vector space where there are no constraints.
Such an approach can, for example, be implemented for functional data that are
densities [Petersen and Müller (2016)]; similarly, for time-warped functional data
one can apply a manifold embedding, for instance with Isomap [Tenenbaum,
de Silva and Langford (2000)] that will then map the subset where the functional
data live to a typically low-dimensional vector space [Chen and Müller (2012)]
under certain geometric assumptions. Therefore, this type of functional objects
can be characterized as quasi-Hilbertian in the sense that there exists a generally
“smooth” invertible transformation of such objects into a Hilbert space, where the
regular tools of functional or multivariate analysis can be applied.

However, this transformation approach will not always be applicable and statis-
ticians increasingly encounter situations of functional or nonfunctional data that
are more decidedly non-Hilbertian. An example are functional data that lie on a
Hilbert sphere or other closed Hilbert manifold or nonfunctional data such as co-
variance and correlation matrices, trees and networks. Such data typically reside
in a metric space for a suitably chosen metric, and in some special cases may lie
on a manifold.

A key feature of functional data analysis is that one has available a sample
of i.i.d. realizations of the underlying processes that are assumed to generate the



1884 H.-G. MÜLLER

observed data. There is currently a shortage of principled statistical methods to
handle i.i.d. samples of non-Hilbertian data that lie in a metric space that is not a
vector space and might not be a manifold. One may refer to i.i.d. samples of data in
metric as well as linear spaces as random objects, which include functional data as
a special case. Methods that have been successful for FDA will inspire the future
development of methods for such random objects. Challenges include the choice
of a suitable metric and the construction of means, modes of variation, regression
and inference.
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