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PETER HALL’S CONTRIBUTIONS TO THE BOOTSTRAP

BY SONG XI CHEN
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1. Introduction. Professor Peter Hall’s first publication appeared in 1977,
one year after he was awarded DPhil from the University of Oxford and MSc
from the Australian National University (ANU). His first paper on the bootstrap
appeared in 1985 [Hall (1985)] on the block bootstrap of spatial point patterns, six
years after the seminal paper [Efron (1979)] that introduced the bootstrap method.
Hall (1985) was his 103rd publication and proposed resampling “tiles” of spa-
tial data (“coverage patterns” in his words) to preserve the spatial dependence.
The proposal was one year earlier than Carlstein’s (1986) proposal of resampling
nonoverlapping blocks of data sub-series for time series data.

The early publications of Peter were predominantly in probability theory: strong
approximation and limiting distributions of various stochastic quantities. In the
first ten years (1976–1985) as a publishing academic, he started as a probabilist
and made a transition to Statistics. An inspection on the publications reveals that
among the 102 papers published prior to his first bootstrap paper [Hall (1985)], 66
papers were published in the probability journals and 36 in the statistics journals:
the Annals, Biometrika, JRSS-B, the Annals of the Institute of Statistical Mathe-
matics (AISM), Journal of Multivariate Analysis and Australian Journal of Statis-
tics. The first statistics paper was Hall (1980) appeared in the Japanese Annals
AISM, which studied estimating a probability density function on the half real line
with the orthogonal series. Hall (1981) was his first The Annals of Statistics (AoS)
paper and his second statistics paper, which was on the density estimation with
trigonometric series. The two works indicated that Peter’s transition to Statistics
started from nonparametric curve estimation, a field to which he has made enor-
mous contributions which is surveyed by Cheng and Fan (2016) in this memorial
issue.

By a search of four key words “bootstrap,”“bagging,” “resampling” and “per-
centile” on titles of Peter’s more than 650 publications, we find 80 papers in the 30
year span from 1985 to 2015, with 50 of these papers published in the first ten years
1985–1994. See Table 1 for yearly counts on the bootstrap publications, which in-
dicates a high intensity of output by Peter on the subject in this period. Figure 1
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TABLE 1
Yearly publication counts of Professor Hall on the bootstrap with four key words: “bootstrap,”

“bagging,” “resampling” and “percentile” in the titles of publications

Year 85 86 87 88 89 90 91 92 93 94 95 96
Publications 1 2 2 5 8 8 5 9 6 4 1 3

Year 98 99 00 01 03 06 07 08 09 10 13 15
Publications 3 3 5 3 2 1 2 1 3 1 1 1

presents a word-cloud based on the titles of the 80 bootstrap papers, which pro-
vides a summary on the topics of these works. It is clear from the word-cloud that
“confidence intervals/regions” is a center-piece of Peter’s work on the bootstrap.
However, it is not clear which would come next. Hence, I exercise my personal
selection that is biased toward the first 10 years or so from 1985 to mid-1990s as it
was the most exciting period for the development of the bootstrap technology. My
selection is by no means comprehensive even to the mentioned period, and only
reflects a personal view on the contributions of Peter on the development of the
bootstrap method.

2. An edgeworth view. After Efron’s (1979) pioneering paper, there was “an
almost bewildering array of bootstrap methods” [Hall (1988a)] that firmly injects
computation to the statistical inference in general and resampling in particular. Us-
ing a comment from Peter’s monograph on the bootstrap [Hall (1992a)], “Efron’s
contribution was to marry the bootstrap to modern computational power.”

One basic appeal of the bootstrap method is in its providing an alternative com-
putational approach to approximate the distribution of a statistic. Before the com-
ing of the bootstrap, the approximation had been predominantly carried out via

FIG. 1. Word-cloud from the 80 bootstrap publications after removing “bootstrap.”
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asymptotic analysis that replied on delicate mathematical derivations and large
sample sizes.

Efron introduced in his seminar paper in 1979, and more elaborately in his
monograph [Efron (1982)], the percentile confidence intervals for a parameter θ .
Let θ = θ(F ) where F is the distribution from which a random sample (IID ob-
servations) Xn = {X1, . . . ,Xn} is drawn, and θ̂ = θ(Fn) be the plug-in estima-
tor by replacing F with Fn, the empirical distribution based on the sample. Let
X∗

1, . . . ,X∗
n be an IID resample drawn from Fn, and θ̂∗ = θ(F ∗

n ) be the bootstrap
estimate based on the resample, where F ∗

n denotes the empirical distribution based
on the resample. Let F

θ̂∗(y) denote the distribution of θ̂∗. A virtue of the bootstrap
is in using the Monte Carlo simulation to approximate F

θ̂∗(y) and the quantile

function F−1
θ̂∗ (p) for p ∈ (0,1). Efron’s percentile confidence interval (one-sided)

with a nominal 1 − α coverage is

(2.1) Ipt = (−∞,F−1
θ̂∗ (1 − α)

)
.

The Monte Carlo approximation is carried out by repeatedly generating in-
dependent resamples and mass producing copies of the bootstrap estimates
θ̂∗,1, . . . , θ̂∗,B for a large integer B . The empirical distribution based on the B

bootstrap estimates, denoted as F ∗
θ̂ ,B

(y) = B−1 ∑B
b=1 I (θ̂∗,b ≤ y) is used to esti-

mate F ∗
θ̂
(y), with the estimation error solely controlled by B , which leads to the

bootstrap estimate of the quantile F ∗−1
θ̂

(p).
There were a set of theoretical analyzes on the properties of various versions

of the bootstrap in the early to middle 1980s, trying to find theoretical justifica-
tion to Efron’s proposal. Singh (1981) studied the bootstrap approximation to the
distribution of the standardized sample mean

√
n(X̄n − μ), where μ = E(X) and

σ 2 = Var(X) are both univariate. He found that
√

n(X̄∗
n − X̄n) has the same one-

term Edgeworth expansion as that of
√

n(X̄n − μ).
In the same issue of the Annals where Singh (1981) appeared, Bickel and Freed-

man (1981) presented the bootstrap distributional approximation of
√

n(X̄n − μ),
and extended to other statistics (the U-statistics, von Mises functionals, and empir-
ical processes). They showed that for the above mentioned statistics, the bootstrap
provides accurate approximation in the leading order. Beran (1982) gave minimax
results regarding the bootstrap estimates and its one-term Edgeworth expansion.
In 1983, Singh published a paper on the Annals with his PhD adviser, G. J. Babu
[Babu and Singh (1983), Issue 3], that extended Singh (1981) to a weighted aver-
age of multi-population means.

On the previous issue of the Annals, Peter [Hall (1983b), Issue 2] published his
third Annals paper titled “Inverting an Edgeworth Expansion” for a general pa-
rameter θ = f (μ) for a smoothed function f . This was the setting for many of his
studies on the bootstrap and a related computer intensive statistical method called
the empirical likelihood [Hall and La Scala (1990); Diccico, Hall and Romano
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(1991)]. Peter had just published a paper [Hall (1983a)] on Edgeworth expansions
of Stein’s statistics in the Math. Proceeding of Cambridge Philosophical Society.
We note that closed related key words “rate of convergence” and “central limit the-
orem” had simultaneously appeared in several titles of Peter’s publications prior to
1983.

Hall (1983b) considered an estimator θ̂n of θ = f (μ), which can be usually
obtained by the plug-in estimator f (X̄n). Suppose that θ̂n admits an Edgeworth
expansion

(2.2) P
{√

n(θ̂n − θ) ≤ x
} = �(x) + n−1/2ξ11(x)φ(x) + n−1ξ12(x)φ(x) + · · ·

for some functions ξ11, ξ12, . . . , where � denoted the standard normal distribution.
The paper first established an one-term inversion of the Edgeworth expansion

(2.3) P
{√

n(θ̂n − θ) ≤ x − n−1/2ξ̂11(x)
} = �(x) + n−1ξ22(x)φ(x) + · · ·

uniformly in x over compact intervals, where ξ̂11 is a
√

n-consistent estimator of
ξ11. And soon he laid out a general iteration of the inversion such that

P
{√

n(θ̂n − θ) ≤ x − n−1/2η̂11(x) − · · · − n(k−1)/2η̂k−1(x)
}

(2.4)
= �(x) + O

(
n−k/2)

.

Peter proved the validity of the inversion for k = 3. And it turned out that this
framework of Edgeworth expansions and their inversions were the very technique
Peter later used to analyze the bootstrap method. The iterative inversion of the
Edgeworth expansions is the tool behind the iterative bootstrap proposed in Hall
(1986a) and Hall and Martin (1988).

Noting Hall’s (1983b) results on inverting the Edgeworth expansion,
Abramovitch and Singh (1985) suggested an explicit corrections by estimating
ξ11 to attain the second correctness of the one-sided confidence interval for the
bootstrap. The authors utilized (2.3) and carried out explicit correction to θ̂ that
involved estimating ξ11. Peter did not like the approach as this was too mechanical
as clearly expressed in Hall (1986a). At this time, the magic power of the bootstrap
was still to be discovered.

Hall [(1986a), AoS] was an important paper that made critical discoveries which
paved the way for further developments. On the same issue of the Annals, there
was an invited paper by Jeff Wu [Wu (1986)] on the jackknife and bootstrap for
regressions. Hall (1986a) first uncovered the advantage of bootstrapping a Stu-
dentized statistic for, again, a θ = f (μ). Let σ 2(θ̂) be the asymptotic variance
of θ̂n = f (X̄n), and σ̂ =: σ̂ (θ̂n) be the plug-in estimator that replaces all the
population moments by the sample ones. Peter defined a Studentized quantity
r2(X̄n, σ̂ ) = n1/2{f (X̄n) − f (μ)}/σ̂ which is asymptotically pivotal due to the
Studentizing. Let r∗

2 (X̄n, σ̂ ) = n1/2{f (X̄∗
n) − f (X̄n)}/σ̂ ∗ be the bootstrap version
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of r2(X̄n, σ̂ ), and t∗α be the αth conditional quantile of r∗
2 (X̄n, σ̂ ) given the original

sample. Peter proved that

(2.5) P
(
n1/2{

f (X̄n) − f (μ)
}
/σ̂ ≤ t∗α

) = α + O
(
n−1)

,

where the n−1/2-order term such as that in (2.2) vanished. In addition, he found that
if the unknown σ was used instead of σ̂ in r∗

2 (X̄n, σ̂ ), the n−1/2-term would reap-
pear in the corresponding Edgeworth expansion to (2.5). This means that the boot-
strap when properly Studentized can automatically perform a one-term Edgeworth
expansion inversion, making the one-sided confidence intervals second-order ac-
curate. Later in the paper, Peter outlined the foundation of the bootstrap iteration,
namely if one do bootstrap on the bootstrap resamples of the Studentized quantity
r∗

2 (X̄n, σ̂ ), namely the double bootstrap, the n−1-term in (2.5) would disappear
making the bootstrap the third-order accurate. This would go on with any extra
layer of the bootstrapping, provided that there are enough moments existed and f

is sufficiently smooth. These were the most elegant results for the bootstrap, estab-
lished by Peter’s Edgeworth view. The results in Hall (1986a) motivated a set of
other findings on the bootstrap. Peter’s significant contribution to the understand-
ing of the bootstrap method was largely conceived by this paper, which is further
enhanced by two papers two years later in Hall (1988a, 1988b).

In the same issue of the Annals as Hall (1986a) Hall (1986b) quantified the
role of the number of bootstrap repetitions B on the coverage probability of the
percentile-t bootstrap confidence intervals for the general smooth function of mean
estimator θ̂n. Using the results in Hall (1986a), Peter proved that if B was chosen
such that the nominal coverage 1 − α = b/(B + 1) for an integer b ≤ B , which
could be easily done for integer percentage for 1 − α like 0.95 or 0.99, the cover-
age error due to using any value of B including for finite B does not exceed the
worse coverage error under B = ∞. He later outlined that the impact of using a
small B was largely on the length of the intervals rather than the coverage. He
stressed that the above results may not be true for confidence intervals not based
on Studentization, for instance the percentile intervals. This further contributed to
his belief for Studentizing and using the percentile-t confidence intervals.

3. Studentizing and percentile-t bootstrap. At the early years of the boot-
strap revolution, a range of methods had been proposed for constructing confidence
intervals for a parameter. The percentile method and the hybrid method were the
early favorite, along with a bias-corrected one [Efron (1982)]. And yet, practical
evaluations of these methods [Buckland (1984)] and Schenker (1985) led to results
with mixed fortune. These prompted Efron to proposed another version of the BC,
the accelerated BC (ABC) [Efron (1987)] based on the idea of transformation and
variance stabilizing.

There was an urgent need to provide in-depth analyses on the properties of these
confidence intervals, that could provide guidelines to practitioners. As a master of
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the Edgeworth expansions, and with the preparatory works in Hall (1986a, 1986b),
Hall (1988a) settled the problem in a special invited paper of the AoS.

Let H(x) = P {n1/2(θ̂n − θ)/σ ≤ x} and K(x) = P {n1/2(θ̂n − θ)/σ̂ ≤ x} be the
distributions of two versions of the standardizations, which were termed as “or-
dinary” and “Studentized” by Peter. Let Ĥ (x) = P {n1/2(θ̂∗

n − θ̂n)/σ̂ ≤ x|X } and
K̂(x) = P {n1/2(θ̂∗

n − θ̂n)/σ̂
∗ ≤ x|X } be the bootstrap versions of H(x) and K(x).

Bootstrap estimates of the αth quantiles are x̂α = Ĥ−1(α) and ŷα = K̂−1(α).
Hall (1988a) first evaluated four types of upper confidence intervals with nomi-

nal coverage 1 − α, constructed using the following upper critical points:

Z-interval: θ̂ORD(α) = θ̂n − n−1/2σ x̂1−α,

Percentile-t: θ̂STUD(α) = θ̂n − n−1/2σ̂ ŷ1−α,
(3.1)

Hybrid: θ̂HYB(α) = θ̂n − n−1/2σ̂ x̂1−α and

Percentile: θ̂BACK(α) = θ̂n + n−1/2σ̂ x̂α.

Peter pointed out that while θ̂ORD and θ̂STUD were sensible as they both “look at the
right tables” (the quantiles were obtained from the correct bootstrap distributions),
the hybrid θ̂HYB “looks at the wrong table” as it mixes up σ̂ with x̂1−α , and θ̂BACK
(which is equivalent to the percentile method) “amounts to looking up the wrong
table backward.”

Realizing the issue with the percentile confidence interval, Efron (1982) pro-
posed the Bias-corrected (BC) confidence interval with an adjustment to the level
α used in θ̂BACK(α). Let Ĝ(x) = P(θ̂∗ ≤ x|X ) and m̂ = �−1{Ĝ(θ̂)}. As Ĝ(θ̂) may
not be 0.5 so that m̂ may not be zero, Efron suggested shifting α to β̂ = �(zα +2m̂)

in the bootstrap critical point, namely using θ̂BACK(β̂) instead of θ̂BACK(α). How-
ever, mixed numerical results on the percentile and the BC prompted Efron to pro-
pose another version of the BC, the accelerated BC (ABC) [Efron (1987)], which
amounted to adjust β̂ by adding a n−1/2-order correction term, and had the critical
point θ̂BACK(β̂ABC) where β̂ABC = �[m̂ + (zα + m̂){1 − â(zα + m̂)}−1].

Applying the insightful “Edgeworth view,” Hall (1988a) presented thorough an-
alyzes on the four bootstrap confidence intervals that used the four critical points
given in (3.1) plus the BC and ABC confidence intervals, and delivered the follow-
ing assessments:

(i) Both the z- and percentile-t intervals have coverage errors of order n−1,
which are the second-order correct.

(ii) The percentile and the hybrid confidence intervals both incur coverage er-
rors of order n−1/2, which do not improve upon the conventional normal approxi-
mation based confidence interval.

(iii) The BC confidence interval cannot completely rescue the percentile
method as it only removes the constant in the coefficient polynomial (quadratic) to
the n−1/2 term in the coverage error.
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(iv) The ABC removes the entire n−1/2 terms in the coverage error, and hence
is at a par with the percentile-t method.

(v) Between the percentile-t and the ABC, the percentile-t is preferred due to
its simplicity and having more attractive third-order coverage property for two-
sided confidence intervals.

These together with his study on the symmetric bootstrap confidence intervals
in Hall (1988b) had led Peter to advocate for the percentile-t method and Studen-
tization in general. This message was much more emphasized in his monograph
on the bootstrap [Hall (1992a)]. Indeed, the power of the bootstrap is only realized
based with the version that Studentizes.

While Peter was a strong believer of the Studentization, he was fully aware of
its reliance on a quality and “stable estimate of σ 2.” It is particularly refreshing
for me to read this passage 20 years after my own work [Chen (1996)] on the
confidence intervals for a probability density function, which was a case where a
stable variance estimation is not easy to come by. Peter had foreseen this in Hall
(1988a).

4. Iterative bootstrap. Although the idea of bootstrap iteration already ap-
peared in Hall (1986a) [also Beran (1987) and Loh (1987)], which was framed by
applying successive Edgeworth expansion inversions, a full spelling of the method
was given only in Hall and Martin (1988). Unlike Hall (1986a), Hall and Martin’s
bootstrap iteration was rooted in “a measure of quality or accuracy, expressed in
the form of an equation whose solution is sought,” which facilitates a bootstrap
iteration via “iterating the empirical solution to this equation so as to improve ac-
curacy.”

Let F0 be the underlying distribution and F1 be the empirical distribution based
on a random sample drawn from F0 and f (F0,F1) be an inferential equation that
can manifest various forms of statistical inference problems. Specifically, the target
of the inference was defined via

(4.1) E
{
f (F0,F1)|F0

} = 0.

An array of inference tasks (bias and variance estimation, quantile estimation or
coverage of confidence intervals) can be expressed via (4.1) as shown in Hall and
Martin (1988) explicitly. Let Fi be the empirical distribution on an ith level re-
sample drawn conditionally from Fi−1, for i = 2,3, . . . . Specifically for i = 2, the
inference equation (4.1) can be mirrored by an one-level higher replica

(4.2) E
{
f (F1,F2)|F1

} = 0,

which can be simulated numerically whereas its parent (4.1) cannot. These pro-
cesses can be continued to the next level, which become the essence of the boot-
strap iteration.
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FIG. 2. Illustrating the idea of bootstrap iteration via a Russian matryoshka doll. The figure was
hand-drawn by Peter and is reproduced from a figure in Hall (1983a) with permission from Springer.

Figure 2 is a drawing of a Russian matryoshka doll that appeared in the mono-
graph Hall (1992a) (with permission). Peter drew the figure himself from a ma-
tryoshka doll he had bought in Moscow in September 1974 when he traveled on
the Trans-Siberian Railway on his way to Oxford to start his DPhil. The drawing
was a lively illustration of the ideas of the bootstrap iteration, namely the inference
at a level i based on a version of (4.1) can be mimicked by that at the level i + 1,
utilizing an analogue with respect to the number of dots on the faces of the dolls.

Hall, Martin and Schucany (1989) demonstrated the ability of the bootstrap it-
eration for the notorious problem of constructing confidence intervals for the cor-
relation coefficient ρ. The percentile-t was known [Efron (1982)] for not working
well for ρ especially when |ρ| is close to 1, largely due to the instability in the
variance estimation as well as the excessive skewness. Hall, Martin and Schucany
implemented the generally inferior percentile method (which is more stable than
the percentile-t due to not having to Studentize) with one level of bootstrap itera-
tion, that is, the double bootstrap, which produced substantial improvement in the
coverage. In one of Peter’s last papers, Chang and Hall (2015) showed that a single
double bootstrap resampling is enough for achieving bias reduction, but not so for
coverage improvement.

5. Block bootstrap. As mentioned at the beginning of this article, Peter’s first
published paper on the bootstrap was on “resampling a coverage pattern” [Hall
(1985)]. The “coverage pattern” that Peter referred to was a spatial point pattern,
a form of two-dimensional dependent data. Peter suggested two schemes of “re-
sampling” units for the spatial point patterns. The first one (termed as “fixed” tiles)
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partitions the entire observation region R “into m congruent and nonoverlapping
tiles” denoted as {ti +A}, where ti are the centers of the tiles and A is a standard ti-
tle that is congruent to R. The second scheme (the “moving” tiles) resamples from
t +A, where t is uniformly distributed over B, the set of t such that t +A ⊂R.

The “fixed” tile scheme is just the “nonoverlapping data blocks” for time series
proposed by Carlstein (1986), while the “moving” tile scheme is equivalent to the
“moving data block” proposed by Künsch (1989) and Liu and Singh (1992). Hall
(1985) demonstrated that both resampling schemes led to consistent bootstrap vari-
ance estimation of general statistics θ̂ on the “coverage pattern” with much similar
properties. He quantified the role of the number of the blocks m and the total spatial
area R on the bias and the variance of the bootstrap variance estimators: the bias
can be reduced by increasing m and R while the variability of the bootstrap vari-
ance estimation can be reduced by the same increase in m and R. It appeared that
neither Carlstein (1986) nor Künsch (1989) were aware of Hall (1985). Although
the contexts of these latter two papers are on the time series, where the depen-
dence has a one-dimensional source, the idea and the purpose were essentially the
same, namely in consistently acquiring variance estimation of an estimator based
on dependent data. Hall (2003) gave an interesting historic coverage on the use of
resampling methods for the crop yield surveys by P. C. Mahalanobis.

Davison and Hall [(1993), Austral. J. Statist.] considered the accuracy of the
distributional approximation offered by using the block bootstrap method to that
of a Studentized statistic with dependent data. The statistic considered was the
sample mean, and the dependent data were generated according to a linear process
with IID innovations. The study was made in the context of “Götze and Künsch
(1990) announced that in the case of dependent data, a particular bootstrap method
can be used to improve on the normal approximation to the distribution of the
Studentized mean. In this note, we show that this result depends fundamentally on
the method of Studentization, in respect of which there are important differences
between the approaches which should be taken for dependent and independent
data” [Davison and Hall (1993)].

Götze and Künsch (1990) was an abstract that claimed that a Studentized boot-
strap approximation could offer a better distributional approximation than the con-
ventional asymptotic normality, which was analogue to the percentile-t method
established for the IID data. Götze and Künsch (1996) appeared to be the paper
abstracted by Götze and Künsch in 1990. The contribution of Davison and Hall
(1993) was to warn and demonstrate specifically that in order to attain the claimed
distributional approximation by a version of the percentile-t bootstrap care had to
be exercised on how to formulate the variance estimate for the Studentizing.

Let {Ȳi}bi=1 be the averaged obtained on each data block. While treating these
statistics from the data blocks as independent for bootstrap variance estimation
may produce consistent variance estimation to the underlying variance of the statis-
tics, the percentile-t bootstrap using the variance estimate to Studentize failed to
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produce a more accurate distributional approximation to the distribution of

T = n1/2b−1σ̂−1
b∑

i=1

(Yi − μ)

than the conventional normal approximation. In the above expression, σ̂ 2 =
lb−1 ∑b

i=1(Ȳi − Ȳ )2 where n = lb and Ȳ is the average of the entire data. Specif-
ically, the o(n−1/2) in (2.5) cannot be attained. Davison and Hall (1993) showed
instead if σ̂ 2 is modified to the long-run variance form to include the covariance
terms, the o(n−1/2) accuracy can be attained by the percentile-t bootstrap.

A critical issue for the block bootstrap method which had not been addressed in
1995 is the choice of the block length. Hall, Hororwitz and Jing (1995) provided
a set of timely results on the block length for inference on a parameter that is a
smooth function of means. “It is shown that optimal block size depends signifi-
cantly on context, being equal to n1/3, n1/4 and n1/5 in the case of the variance
or bias estimation, estimation of a one-sized distribution functions and the estima-
tion of a two-sided distribution functions, respectively” [Hall, Hororwitz and Jing
(1995)]. The paper showed that the rules for the block lengths for the nonoverlap-
ping block and the overlapping (moving blocks) were largely the same. The paper
provided an empirical cross-validation method for practically selecting the block
length. This paper was a highly influential paper that motivates further analysis
in this direction; see Politis and Romano (1994) for an alternative block bootstrap
formulation, and Lahiri (1999) and (2003) for further developments.

6. Bootstrap hypothesis testing. Much of the attention on the bootstrap had
been around the estimation and confidence intervals; there was far less work on
issues related to the hypothesis testing. A key aspect with the hypothesis testing
was respecting the null hypothesis by the bootstrap resampling and the associated
test statistics, on which Young (1986), Beran (1988), Hinkley (1988) and Fisher
and Hall (1990) had investigated.

Hall and Wilson (1991) published in the Consultant’s Forum of Biometrics,
which offered “two guidelines for bootstrap hypothesis testing.” The paper was
written out of an urgency to let practitioners to use the sound bootstrap method,
which was clearly shown in the author’s writing toward the end of the third para-
graph:

“However, these relatively technical contributions are not easily accessible to
biometricians, and so their theoretical recommendations can go unheeded in prac-
tice. Indeed, the present note was partly motivated by an article of. . . ” [Hall and
Wilson (1991)].

The two guidelines were written specifically for testing H0 : θ = θ0 versus H1 :
θ �= θ0, which can be easily modified for one-sided H1. Let θ̂ be an estimator of θ

based on a sample X1, . . . ,Xn, and θ̂∗ be the estimator based a bootstrap resample.
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The first guideline offered was “Resample θ̂∗ − θ̂ , not θ̂∗ − θ0” in order to
respect H0. Resampling of θ̂∗ − θ0 was seen in publications which commanded
certain influence and would distort the power of the testing. The guideline would
help the test to uphold its intrinsic power of the test.

The second guideline was to “based on the bootstrap distribution of (θ̂∗− θ̂ )/σ̂ ∗,
not on the bootstrap distribution of (θ̂∗ − θ̂ )/σ̂ or of θ̂∗ − θ .” This was advocated
based on the more accurate bootstrap distribution approximation offered by the
percentile-t method as shown by Hall (1988a, 1988b), which would translate to
more accurate approximation to the nominal significant level of the test. The Stu-
dentization that produced the pivotal quantity also made the task of respecting the
first guideline easier.

7. Other contributions. In additional to the fundamental contributions out-
lined in the previous sections, Peter has made significant contributions on using
the bootstrap for a set of important areas of statistical inference. These includes
the nonparametric curve estimation with representative works Hall (1992b, 1992c,
1993) that validated the percentile-t method for constructing confidence intervals
and bands for density and nonparametric regression functions, as well as the advo-
cate for the smooth bootstrap. See the review by Professors Cheng and Fan [Cheng
and Fan (2016)] in this issue for Peter’s work in the nonparametric curve estima-
tion. Peter has also skillfully applied the bootstrap methods for high dimensional
statistical inference and classification, which includes Hall and Samworth (2005)
for applying the bagging (bootstrap aggregating) method with the nearest neighbor
classifier, Fan, Hall and Yao (2007) for the bootstrap calibration in high dimen-
sional multiple hypothesis testing, and Hall, Lee and Park (2009) for a bootstrap
subsampling penalty based LASSO that achieved the oracle performance for high
dimensional variable selection. Readers should read the review article in this issue
by Professor Samworth [Samworth (2016)] on Peter’s other contribution in high
dimensional statistics and classification. For Peter’s contributions in the decon-
volution method and in the functional data analysis, readers should see Delaigle
(2016) and Müller (2016) in this memorial issue.

8. Personal reminisces. One day in August of 1989, while I walked past a
bulletin board on the campus of the Victoria University of Wellington (VUW),
I saw an advertisement from the ANU for PhD student recruitment with scholar-
ships. The contact person was Professor Hall, as the Head of the Statistical Re-
search Section at the School of Mathematical Science. After consulting with Pro-
fessor David Vere-Jones, the Chair Professor at VUW and Dr Xiaogu Zheng, my
teacher from my Beijing Normal University (BNU) days (Dr Zheng worked at the
VUW at the time), I decided to apply. The economic situation in New Zealand at
the time was not that promising, as reflected in a much tighter scholarship scene
for overseas students.
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FIG. 3. Word-cloud of tributes left at the memorial website (http://www.stat-center.pku.edu.
cn/Peter_Gavin_Hall/) at the Center for Statistical Science, Peking University, up to February 08th,
2016. Composed by Terry Speed.

FIG. 4. Group photo of a short course by Professor Hall in March 2012 at Peking University. The
short course consisted 16 lectures on Methodology and Theory of the Bootstrap. Front row: Bin Guo,
a student, Weixiang Zhang, Dayue Chen, Song Xi Chen, Peter Hall, Gang Tian, Zhi Geng, Jinzhu Jia
and a student.

http://www.stat-center.pku.edu.cn/Peter_Gavin_Hall/
http://www.stat-center.pku.edu.cn/Peter_Gavin_Hall/
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FIG. 5. On the Great Wall at Mutianyu after a snow/rain mix in March 2012. From Left: Song Xi
Chen, Peter Hall with his camera, Jinyuan Chang, Jing He and Jiani Song.

I received a full ANU PhD scholarship in January 1990. However, my visa to
Australia was not easy. I remember one day in the office of David, he phoned
Peter in Canberra to inform my ordeal. Peter’s immediate response was “let me
talk to Chris and get back to you.” A few weeks later, I received a phone call from
Professor Heyde telling me that “the thing had been refreshed” and “it should be
ok.” With the tremendous help of Professors Vere-Jones, Hall, Heyde and Zheng
(and his family), we finally flew to Canberra in late September 1990.

My first meeting Peter was at the arrival hall of the Canberra airport, which was
quite late at night. Peter came to pick us up. After a brief greeting, to my great
astonishment, he picked up two pieces of heavy luggage (with one hand each) and
walked quickly to his white Subaru. He had already collected the key to an apart-
ment in the Graduate Court. After we got there, he lifted the luggage to the unit on
the third level of the building, and said good night. Whenever I recall the first meet-
ing with Peter, I feel the warmth and generosity of him as a very kind and gentle
person. This has been surely echoed by many people in their tributes registered at
a memorial website established at the Center for Statistical Science, Peking Uni-
versity. Figure 3 displays a word-cloud based on these tributes, which has been
kindly composed by Professor Terry Speed at the University of Melbourne. The
sentiment of these tributes is highly consistent with that of my first meeting with
Peter and those in my subsequent 26 years as his student, mentee and colleague.

Peter visited the Center for Statistical Science at the Peking University in the
spring of 2012 and 2013. He was a member of the International Advisory Com-
mittee of the Center. In March 2012, Peter gave a short course on the bootstrap
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method, which consisted of 16 lectures; see Figures 4 and 5. He returned in March
2013 with six lectures on the functional data analysis. On both occasions, more
than 120 graduate students and faculties from all over China attended his two short
courses. These lectures have had long lasting impacts on the participants not only
on the scientific content but also on the scholarship and professionalism displayed
by Peter during his very dedicated teaching.
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