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TESTING FOR TIME-VARYING JUMP ACTIVITY FOR PURE
JUMP SEMIMARTINGALES1

BY VIKTOR TODOROV

Northwestern University

In this paper, we propose a test for deciding whether the jump activity
index of a discretely observed Itô semimartingale of pure-jump type (i.e., one
without a diffusion) varies over a fixed interval of time. The asymptotic set-
ting is based on observations within a fixed time interval with mesh of the
observation grid shrinking to zero. The test is derived for semimartingales
whose “spot” jump compensator around zero is like that of a stable process,
but importantly the stability index can vary over the time interval. The test
is based on forming a sequence of local estimators of the jump activity over
blocks of shrinking time span and contrasting their variability around a global
activity estimator based on the whole data set. The local and global jump ac-
tivity estimates are constructed from the real part of the empirical characteris-
tic function of the increments of the process scaled by local power variations.
We derive the asymptotic distribution of the test statistic under the null hy-
pothesis of constant jump activity and show that the test has asymptotic power
of one against fixed alternatives of processes with time-varying jump activity.

1. Introduction. In this paper, we derive a test for deciding whether the jump
activity index of a pure-jump Itô semimartingale X remains constant over a fixed
time interval. The jump activity of the process X is measured by the instantaneous
Blumenthal–Getoor (BG) index defined as

(1.1) inf
{
r > 0 :

∫
R

(|x|r ∧ 1
)
νX
t (dx) < ∞

}
,

where the jump compensator of X is given by dt ⊗ νX
t (dx) for some predictable

random measure νX
t (dx) on R. The BG index takes values in the interval [0,2],

and for general semimartingales it can be random and depend on time. However,
in the important case when X is a Lévy process, the instantaneous BG index is a
nonrandom constant. Moreover, the BG index of X continues to be a nonrandom
constant in much more general settings. Indeed this is the case when the jump
component of X is given by a stochastic integral with respect to a Lévy process or
when it is a time-changed Lévy process with the time change being an absolutely
continuous process.
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All prior work on estimating the BG index from high-frequency data [Aït-
Sahalia and Jacod (2009), Bull (2016), Jing, Kong and Liu (2011), Jing et al.
(2012), Kong, Liu and Jing (2015), Todorov (2015), Todorov and Tauchen (2011),
Woerner (2003, 2007)] has been done in the setting where the instantaneous BG
index is a nonrandom constant with the additional restriction that the driving Lévy
process is locally stable, that is, it is a Lévy process whose Lévy measure around
zero behaves like that of a stable process (the local stable assumption can be
viewed as the counterpart of the assumption of regular variation of the tails used
typically in extreme value theory). The goal of this paper is to design a test for
deciding whether the instantaneous BG index is constant or not on a given inter-
val from discrete observations of the process with mesh of the observation grid
shrinking to zero.

In particular, we consider the class of pure-jump Itô semimartingales:

(1.2) dXt = αt dt + σt− dSt + dYt ,

where S is a pure-jump process with characteristic triplet [Jacod and Shiryaev
(2003), Definition II.2.6] (0,0, dt ⊗ νt (dx)) with respect to some truncation func-
tion (see definition in next section) and νt (dx) is given by

(1.3) νt (dx) = A

|x|βt+1 dx,

for some A > 0 and β being a stochastic process with càglàd paths, and with
βt taking values in the interval (1,2) for every t ≥ 0. Y in (1.2) is a “residual”
jump process, in the sense that its activity is below that of S on the observed
time interval, and it can have dependence with the rest of the components of X.
Finally, α and σ are processes with càdlàg paths. In the setting of (1.2)–(1.3), the
instantaneous BG index of X at time t is given by βt . Hence, our testing problem
reduces to deciding whether the process β is constant or not on the observed time
interval.

Designing a test for the process β being constant is complicated for at least
two reasons. First, the jump activity determines the asymptotic order of magni-
tude of the increments at high-frequencies but it is unknown to the statistician.
Hence, the test statistic should contain some form of self-scaling to ensure non-
degenerate limit behavior (at least under the null hypothesis). Second, we want
to perform the test while allowing for time-varying process σ of unknown type.
The jump compensator (intensity) of X then has two sources of variation: one is
given by the presence of the time-varying process σ and the other one is due to
the time-variation of the BG index of X. Essentially, our test statistic should sepa-
rate nonparametrically the two sources of variation in the jump compensator of X

around zero.
The test we develop in this paper makes use of the self-normalized statistics

proposed in Todorov (2015) for efficient estimation of the BG index when the
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latter is constant. These statistics are formed from the first differences of the high-
frequency increments of X scaled by local power variations. The local power varia-
tions are formed from blocks of increments, of asymptotically shrinking time span,
preceding the ones that are scaled. The scaling serves as self-normalization since
it removes the effect of σ on the limit of sample averages formed from (known)
transforms of the scaled increments.

Using the scaled increments, we form two types of estimators for the jump
activity. The first is global, that is, it makes use of all the high-frequency data. The
second jump activity estimator is local, that is, it is based on a block of scaled high-
frequency increments with asymptotically shrinking time span. The blocks for the
local power variations, used to scale the high-frequency increments, and the ones
for constructing the local jump activity estimates from the scaled increments are
allowed to be of different size and can overlap. Finally, both the global and the local
jump activity estimates are based on the real part of the characteristic function of
the scaled increments.

When the BG index of X remains constant on the fixed time interval, then both
the local and global estimators are valid, with the former being obviously much
noisier. When the BG index of X varies over the interval, then the local estima-
tors recover the time-varying BG index while the global estimator converges to
a random variable, taking values in [0,2], whose value depends on the trajectory
of β . Given this different behavior of the local and global jump activity estima-
tors, our test is based on the integrated squared difference between them. When
the BG index of X varies, the latter integrated squared difference converges to a
measure of dispersion of the BG index on the time interval. When the BG index
remains constant on the interval, then the squared differences need to be centered
by an estimate of their nonrandom asymptotic variance. In this case of constant BG
index, the partial sums of the centered squared differences between the local and
global estimates behave asymptotically like a discrete martingale. Therefore, when
scaled up appropriately, the sum of the centered squared differences of the local
and global BG index estimates converges to a normal variable. Thus, a feasible test
for time-varying BG index can be based on this sum.

Overall, our test builds on: (1) self-normalization to separate the time-variation
in the jump compensator due to σ and β and (2) time-aggregation, that is, we
use statistics formed at different time scales, to form an estimate of variability of
functionals of the process β on the observed interval.

The rest of the paper is organized as follows. In Section 2, we introduce our
setting and state the necessary assumptions. In Section 3, we construct our statistics
for local and global estimation of the jump activity. The asymptotic properties of
these statistics are presented in Section 4. This section also contains a test based on
the derived limit results for deciding whether the BG index of the observed process
varies. Section 5 evaluates the performance of the test on simulated data. Section 6
contains the proofs.
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2. Setting and assumptions. We start with stating the assumptions that we
need for our results. The process X in (1.2) is defined on a filtered probability space
(�,F, (Ft )t≥0,P). Below we denote with κ a symmetric truncation function, that
is, κ : R → R is some symmetric C3 function with compact support and κ(x) = 0
for x in a neighborhood of zero.

We begin with our assumption concerning the jump activity of the processes S

and Y in (1.2).

ASSUMPTION A. (a) S in (1.2) is an Itô semimartingale with characteristic
triplet (0,0, dt ⊗ νt (dx)) with νt given by (1.3) for some positive constant A and
some process β with càglàd paths and βt ∈ (1 + ε,2) for ∀t ≥ 0 and some ε > 0.
We further assume E|βt − βs |2 ≤ K|t − s| for s, t ≥ 0 and a constant K > 0.

(b) Yt = ∫ t
0
∫
R

xμY (ds, dx) where μY is an integer-valued measure on R+ ×R

with jump compensator dt ⊗ νY
t (dx). νY

t satisfies
∫
R
(|x|β ′

t ∧ 1)νY
t (dx) < ∞

for every t ≥ 0 and some nonnegative process β ′ with càglàd paths satisfying
supt≥0 β ′

t < 1 for ∀t ≥ 0.

Part (a) of Assumption A allows for stochastic time-varying BG index. The con-
dition on the time-variation in β imposed in part (a) of the assumption is satisfied
for a wide range of processes. For example, it holds for the class of Itô semi-
martigales. It holds also for processes driven by fractional Brownian motion. The
restriction βt > 1 is nontrivial and is discussed later in Section 4.

We note that Assumption A allows Y and S to have dependence. Therefore, as
shown in Todorov and Tauchen (2012), we can accommodate in our setup time-
changed Lévy models with absolute continuous time-change process, which are
widely used in applied work.

Finally, part (b) of the assumption restricts Y to be of finite variation, and for
the convergence in probability results below we can further relax this restriction.

We next state our assumption for the dynamics of α and σ .

ASSUMPTION B. The processes α and σ are Itô semimartingales of the form

αt = α0 +
∫ t

0
bα
s ds +

∫ t

0
ηα

s dWs +
∫ t

0
η̃α

s dW̃s

+
∫ t

0

∫
E

κ
(
δα(s, x)

)
μ̃(ds, dx) +

∫
E

κ ′(δα(s, x)
)
μ(ds, dx),

σt = σ0 +
∫ t

0
bσ
s ds +

∫ t

0
ησ

s dWs +
∫ t

0
η̃σ

s dW̃s

+
∫ t

0

∫
E

κ
(
δσ (s, x)

)
μ̃(ds, dx) +

∫
E

κ ′(δσ (s, x)
)
μ(ds, dx),

(2.1)

where κ ′(x) = x − κ(x), and:
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(a) |σt |−1 and |σt−|−1 are strictly positive;
(b) W and W̃ are two independent Brownian motions; μ is Poisson measure on

R+ × E, having arbitrary dependence with the jump measure of S, with compen-
sator dt ⊗ λ(dx) for some σ -finite measure λ on E;

(c) δα(t, x) and δσ (t, x) are predictable, left-continuous with right limits in t

with |δα(t, x)| + |δσ (t, x)| ≤ γk(x) for all t ≤ Tk , where γk(x) is a deterministic
function on R with

∫
R
(|γk(x)|r ∧ 1)λ(dx) < ∞ for some 0 ≤ r < 2 and Tk is a

sequence of stopping times increasing to +∞;
(d) bα , bσ , ηα , ησ , η̃α and η̃σ are processes with càdlàg paths and further there

exists a sequence of stopping times Tk increasing to infinity and a sequence of
positive numbers k such that for s, t < Tk we have E|ησ

t − ησ
s |2 +E|η̃σ

t − η̃σ
s |2 ≤

k|t − s|ς for some ς > 0.

Assumption B is very general and it is satisfied in the case when the pair (α,σ )

follows a Lévy-driven SDE, which is the typical way of modeling dynamics in
applications. We note that Assumption B significantly generalizes the analogous
assumption in Todorov (2015) by allowing α and σ to contain diffusions and fur-
ther leaving their jump activities essentially unrestricted.

3. The statistics. We continue next with the construction of our statistics. The
estimation in the paper is based on observations of X at the equidistant grid times
0, 1

n
, . . . ,1 with n → ∞, and we denote �n = 1

n
.

3.1. Global estimates of jump activity. We start with constructing an estimator
of the jump activity based on all high frequency observations on the unit interval.
This estimator was introduced in Todorov (2015) and is based on the real part of
the empirical characteristic function of the increments scaled by local block-based
volatility estimates, which we define as

(3.1) V n
i (p) = 1

kn

i−2∑
j=i−kn−1

∣∣�n
jX − �n

j−1X
∣∣p, i = kn + 3, . . . , n,p > 0,

for some 1 < kn < n and where �n
i X = X i

n
− Xi−1

n
. The empirical characteristic

function of the scaled and differenced increments is given by

(3.2) L̂n(p,u) = 1

n − kn − 2

n∑
i=kn+3

cos
(
u
�n

i X − �n
i−1X

(V n
i (p))1/p

)
, u ∈ R+.

Using two different fixed numbers u, v ∈ R+, the global estimate of the jump ac-
tivity is constructed as

(3.3) β̂n(p,u, v) = log(− log(L̃n(p,u))) − log(− log(L̃n(p, v)))

log(u/v)
,
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where L̃n(p,u) = (L̂n(p,u) ∧ n−1
n

) ∨ 1
n

.

As we will see in the next section, β̂n(p,u, v) will be a valid estimator of the
jump activity only when the latter is constant on the unit time interval.

3.2. Block-based estimates of jump activity. We next introduce local, block-
based, estimates of the jump activity. They will estimate the jump activity locally
(in time), even when it varies. These estimators will be based on blocks of size
mn of scaled and differenced increments of X, where kn < mn < n. They are built
from the block analogues of L̂n(p,u) given by

(3.4) L̂n
j (p,u) = 1

mn

∑
i∈In

j

cos
(
u
�n

i X − �n
i−1X

(V n
i (p))1/p

)
, u ∈ R+, j = 1, . . . , bn,

where In
j = kn + 1 + {(j − 1)(mn + 1) + 2, . . . , j (mn + 1)} and the number

of blocks over which the local jump activity estimation is performed is bn =
�n−kn−2

mn+1 . The local estimator of the jump activity is then simply the counterpart

of β̂n(p,u, v) on the local block:

β̂n
j (p,u, v) = log(− log(L̃n

j (p,u))) − log(− log(L̃n
j (p, v)))

log(u/v)
,

(3.5)
j = 1, . . . , bn,

where u, v ∈ R+ with u �= v, and further we use the shorthand L̃n
j (p,u) =

(L̂n
j (p,u) ∧ mn−1

mn
) ∨ 1

mn
.

We note that in the construction of our statistics we use two types of blocks
which play separate roles. First, we use local blocks in order to purge the effect of
the time-varying σt on our statistics. Second, we use local blocks to account for
the presence of time-varying jump activity. Our test for time-varying jump activity
will be based on the statistical significance of the difference between the local
estimates β̂n

j (p,u, v) and the global one β̂n(p,u, v).

3.3. Estimates for feasible inference. We conclude this section with intro-
ducing estimates for the asymptotic variance of our test statistic from the high

frequency data. We denote ζ̂ n
i (u) = cos(u

�n
i X−�n

i−1X

(V n
i (p))1/p ) − L̂n(p,u). We then set

�̂n(p,u, v) = �̂n
0(p,u, v) + 2�̂n

1(p,u, v), where

(3.6) �̂n
j (p,u, v) = 1

n − kn − 2 − j

n∑
i=kn+3+j

ζ̂ n
i (u)ζ̂ n

i−j (v), j = 0,1.
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Finally, we denote

�
n
(p,u, v) = �̂n(p,u,u)

(L̂n(p,u) log(L̂n(p,u)))2
+ �̂n(p, v, v)

(L̂n(p, v) log(L̂n(p, v)))2

− 2
�̂n(p,u, v)

L̂n(p,u) log(L̂n(p,u))L̂n(p, v) log(L̂n(p, v))
.

(3.7)

4. Limit behavior of the statistics and testing for time-varying jump activ-
ity.

4.1. The results. We now derive the limit behavior of our statistics and use
the limit results to construct a test for time-varying jump activity. Henceforth, all
limits are understood to be for n → ∞. To define the asymptotic limits of our
statistics we need some notation. For some β ∈ (1,2), we let S

(β)
1 , S

(β)
2 and S

(β)
3

be random variables corresponding to the values of three independent Lévy pro-
cesses at time 1, each of which with characteristic triplet (0,0, dt ⊗ A

|x|1+β dx)

with respect to some symmetric truncation function κ . Then we denote μp,β =
(E|S(β)

1 − S
(β)
2 |p)β/p , which does not depend on κ , and we further use the short-

hand notation E(eiu(S
(β)
1 −S

(β)
2 )) = e−Aβuβ

for any u > 0 with Aβ being a known
function of A and β . Finally, using the expression for the pth moment of a sym-
metric β-stable random variable; see, for example, (25.6) in Sato (1999), we have

(4.1) Cp,β = Aβ

μp,β

=
[2p(

1+p
2 )(1 − p

β
)√

π(1 − p
2 )

]−β/p

,

which depends only on p and β but not on the scale parameter of the stable random
variables S

(β)
1 and S

(β)
2 . With this notation, we set

(4.2) L(p,u) =
∫ 1

0
e−Cp,βs u

βs
ds, u ∈ R+,

which will be the probability limits of L̂n(p,u). The probability limit of
β̂n(p,u, v) is then given by

(4.3) β(p,u, v) = log(− log(L(p,u))) − log(− log(L(p, v)))

log(u/v)
.

We note that β(p,u, v) ≡ β when the process β remains constant on the interval
[0,1]. Also, it is not difficult to show that β(p,u, v) ∈ (0,2) for arbitrary continu-
ous process β on the interval [0,1] taking values in (0,2).



TESTING FOR TIME-VARYING JUMP ACTIVITY 1291

Finally, the probability limits of �̂n
0(p,u, v) and �̂n

1(p,u, v) are given by

�0(p,u, v) = 1

2
L(p,u + v) + 1

2
L(p,u − v) −L(p,u)L(p, v),

�1(p,u, v) = 1

2

∫ 1

0
e−Cp,βs

2 (uβs +vβs +|u+v|βs ) ds

+ 1

2

∫ 1

0
e−Cp,βs

2 (uβs +vβs +|u−v|βs ) ds −L(p,u)L(p, v).

(4.4)

We then define �(p,u, v) from L(p,u), �0(p,u, v) and �1(p,u, v) exactly as
we defined above �

n
(p,u, v) from L̂n(p,u), �̂n

0(p,u, v) and �̂n
1(p,u, v). We

note that �(p,u, v) is finite-valued and strictly positive as soon as u �= v.
The next theorem shows the limit behavior of β̂n(p,u, v) and �

n
(p,u, v) as

well as that of an integrated measure of divergence between the local and global
jump activity estimates.

THEOREM 1. For the process X, assume Assumptions A and B hold. Let kn �
n� and mn � n� as n → ∞, for some 0 < � < � < 1, with p ∈ (0,1/2). Then we
have

β̂n(p,u, v)
P−→ β(p,u, v),

(4.5)
�

n
(p,u, v)

P−→ �(p,u, v),

1

bn

bn∑
j=1

(
β̂n

j (p,u, v) − β̂n(p,u, v)
)2 P−→

∫ 1

0

(
βs − β(p,u, v)

)2
ds.(4.6)

To derive a test for presence of time-varying jump activity, we need a
higher order asymptotic result for the sum on the left-hand side of (4.6) when
β remains constant. To derive such a result, we make use of the fact that√

mn(β̂
n
j (p,u, v) − β̂n(p,u, v)) is approximately normal with mean zero and

variance �(p,u, v)/(log(u/v))2 when β is constant on [0,1]. Moreover,
mn(β̂

n
j (p,u, v)− β̂n(p,u, v))2 become asymptotically uncorrelated across blocks

in spite of the dependence generated from the self-normalization. Therefore, the
statistic

(4.7) T n(p,u, v) = 1√
2bn

bn∑
j=1

(mn(β̂
n
j (p,u, v) − β̂n(p,u, v))2

�
n
(p,u, v)/(log(u/v))2

− 1
)
,

converges in distribution to a standard normal random variable when β is con-

stant on [0,1]. The formal result is given in the following theorem in which
L−(s)−→

denotes stable convergence in law [see, e.g., Definition VIII.5.28 in Jacod and
Shiryaev (2003)].
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THEOREM 2. For the process X assume Assumptions A and B hold with the
process β being constant on [0,1]. Let kn � n� and mn � n� as n → ∞, for some
1
3 < � < 1

2 < � < 1, and further assume the following holds true for β = β0:

(4.8) (1 − �) ∨ 1 − p

2
< � <

1 + �

4
∧ 4� − 1

3
and

(4.9) p <
β

4
, sup

t∈[0,1]
β ′

t <
β

2
,

p

supt∈[0,1] β ′
t

− p

β
>

1 − �

2
.

Then, denoting with Z a standard normal variable, defined on an extension of the
original probability space and independent of F , we have

(4.10) T n(p,u, v)
L−(s)−→ Z.

We note that both the local and global jump activity estimates contain asymp-
totic biases of order Op(1/kn). This is due to the local scale estimation via
V n

i (p). However, since our statistic T n(p,u, v) depends only on their difference,
β̂n

j (p,u, v) − β̂n(p,u, v), we do not need to perform bias correction to eliminate
these biases. This is very convenient for applications.

We further note that the limiting variance �(p,u, v) does not contain a term
due to the estimation error of the local power variation V n

i (p) that is used to scale
the increments. This is because the first-order effect of V n

i (p) on the estimation
of the jump activity (both locally and globally) is zero. Nevertheless, as seen from
the conditions in (4.8) and (4.9), the power p restricts the range of growth of the
sequences kn and mn.

The two sequences kn and mn control the asymptotic size of the errors in es-
timating locally the scale and the jump activity. To make the biases due to the
variation of σ (which are hard to estimate feasibly) negligible, we need � < 1/2
as well as the bounds from above for � in (4.8). The latter disappear if the pro-
cess σ is constant, for example, when X is a Lévy process. On the other hand, the
bounds from below for � in (4.8) ensure the variability in the local power variation
V n

i (p) is sufficiently small. This is also the reason for requiring p < β/4.
One feasible choice for p, � and � is the following. We can first set p in the

interval (1/5,1/4). For the given choice of p, we can then set � in the region
((1 − p)/2,2/5). Finally, � can take any values in the relatively wide interval
(1 − �,1) which in particular contains the fixed interval (5/8,1).

Finally, the highest possible value for p such that p < β/4 guarantees the weak-
est form of the conditions (4.8) and (4.9) for the tuning parameters � and � as well
as the weakest assumption for β ′

t (but we always need supt∈[0,1] β ′
t < β/2). Since

we do not know β , we need to set p < 1/4 (recall from Assumption A that β > 1).
However, a simple adaptive-type approach can improve on this choice. In partic-
ular, starting with arbitrary small p > 0, we can estimate consistently β using the
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first block estimator β̂n
1 (p,u, v). We can then set p arbitrary close to, but below,

β̂n
1 (p,u, v)/4 and perform the test on the rest of the data. Given the consistency

of β̂n
1 (p,u, v) and by conditioning, the result of Theorem 2 will continue to hold

with this adaptive choice of p.
Combining Theorems 1 and 2, we have the validity of a test for time-varying

jump activity, based on T n(p,u, v). To state it, we introduce the two sets:

(4.11) �c = {
ω : βt(ω) = β0(ω),∀t ∈ [0,1]}, �v = � \ �c.

COROLLARY 1. For the process X assume Assumptions A and B hold. Let
kn � n� and mn � n� as n → ∞, for some 1

3 < � < 1
2 < � < 1 such that (4.8)

holds true, p < 1/4, and β ′ satisfies the second condition in (4.9) if the process β

is constant on [0,1].
Denote with zα the α-quantile of standard normal distribution. We have

P
(
T n(p,u, v) > z1−α|�c) −→ α, if P

(
�c) > 0,

P
(
T n(p,u, v) > z1−α|�v) −→ 1.

(4.12)

4.2. Discussion. The developed test applies to processes of pure-jump type,
that is, processes that do not include a diffusion component. We further restrict
attention to pure-jump specifications with BG index above 1 (so finite variation
jump specifications for X are excluded). We briefly discuss the role of these two
assumptions.

As shown in Todorov (2015) when X contains a diffusive component, then the
jump activity estimators used here converge to the value of 2. Therefore, when X

contains a diffusion and a jump process with time-varying jump activity, our test
will fail to reject the null of constant jump activity. On the other hand, if on the
interval [0,1], the diffusive component of X is nonzero only on some part of it
(with length less than 1), then our test will reject the null of constant jump activity.
For this reason, the test should be performed for processes for which it is known
that there is no diffusion component and a test for this is easy to construct; see, for
example, Todorov and Tauchen (2011) and references therein.

Developing a test for time-varying jump activity in presence of a diffusion in X

will involve different methods than the ones developed here. In such a case, one
first have to account for the role of the diffusion which dominates the increments
at high frequencies to derive jump activity estimates. Then an approach similar to
the one proposed here of comparing global and local jump activity estimators can
be adopted for testing the time-varying jump activity hypothesis in presence of a
diffusion.

The second nontrivial assumption for the process X, that we impose in our
setup, is the requirement βt > 1. In general, the asymptotic behavior of estimators
for jump activity, when the latter is below 1, worsens; see, for example, Aït-Sahalia
and Jacod (2009), Bull (2016) and Todorov (2013). In our particular case, the main
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source of the problem is the deterioration in the rate of convergence of the local
power variation that we use to scale the increments with (and in addition the lead-
ing terms driving its asymptotic behavior around its limit become biases that are
hard to quantify). Of course, one can test the null that a (constant) jump activ-
ity is above 1, using, for example, the estimators in Todorov (2013) and Todorov
(2015), and then proceed with the test proposed here. For many financial data sets,
for example, volatility derivatives, this assumption for the jump activity seems to
be satisfied; see, for example, Todorov and Tauchen (2011).

5. Monte Carlo. We now test the performance of our test on simulated data
from models with the following dynamics:

(5.1) dXt = σt− dLt , dσt = −0.03σt dt + dZt ,

where L and Z are two independent of each other processes. Z is a Lévy process
with Lévy density given by νZ(x) = 0.0293 e−3x

x1.5 1{x>0}, and hence σ is a Lévy-
driven Ornstein–Uhlenbeck process with a tempered stable driving Lévy subordi-
nator. The parameters governing the dynamics of σ imply E(σt ) = 1 and half-life
of shock in σ of around one month (when unit of time is a day) and are adopted
from the Monte Carlo setup in Todorov (2015).

In all considered scenarios, the process L is a pure-jump process with no drift

and jump compensator dt ⊗ νL
t (dx), for νL

t (dx) = λ2−βt

2(2−βt )
e−λ|x|
|x|βt +1 dx where λ >

0 is some constant and βt is some deterministic process taking values in (0,2).
In this specification, βt coincides with the instantaneous BG index of L (and of
X). The parametrization of the jump compensator of L ensures

∫
R

x2νL
t (dx) = 1

for every t , even when the process β varies over time, so that the “instantaneous
variance” of L does not change over the time interval. We note that when the
process β is constant, L is a tempered stable process used extensively in empirical
work.

In all considered cases, we set λ = 0.25. We consider two scenarios under the
null: (N1) βt = 1.2 and (N2) βt = 1.5, for t ∈ [0, T ], where [0, T ] is the fixed time
interval over which X is observed. We consider two scenarios under the alternative
hypothesis of time-varying BG index: (A1) βt = 1.2 + 0.6 × t

T
, and (A2) βt =

1.3 + 0.4 × t
T

.
To show that the model given by (5.1) satisfies our Assumptions A and B,

first note that using the decomposition in Section 1 of the supplementary ap-
pendix of Todorov and Tauchen (2012) and after appropriately extending the
probability space, we can decompose Lt = L̃t + L

(1)
t − L

(2)
t where L̃, L(1),

and L(2) are processes with zero first two characteristics and Lévy densities of
λ2−βt

2(2−βt )
1

|x|βt +1 , λ2−βt

2(2−βt )
1−e−λ|x|
|x|βt +1 and λ2−βt

(2−βt )
1−e−λ|x|
|x|βt +1 , respectively. We further de-

note with L̂t the process whose jump at time t is equal to that of the process L̃t
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divided by ( λ2−βt

2(2−βt )
)1/βt . This process has Lévy density of 1

|x|βt +1 . We thus fi-

nally can represent X via dXt = σ̂t− dL̂t + dYt , where σ̂t = ( λ2−βt

2(2−βt )
)1/βt σt and

Yt = ∫ t
0 σs−(dL

(1)
s − dL

(2)
s ). Thus, Assumptions A and B hold with β ′

t ≡ βt − 1.
In the Monte Carlo, we set T = 22 which corresponds approximately to a time

span of one month, given our time convention. We consider �n = 1/100 and
�n = 1/400, which correspond to sampling approximately every five minutes and
one minute, respectively, in a typical financial setting. We further set p = 0.24,
and kn = 50 for �n = 1/100 and kn = 85 for �n = 1/400. For the jump activity
estimator we use u = 0.2 and v = 0.8. Finally, we experiment with bn = 7 and
bn = 9 for �n = 1/100 and with bn = 11 and bn = 14 for �n = 1/400.

On Figure 1, we plot the local (block-based) and global jump activity estimates
on single realizations from scenarios N2 and A2 for frequency �n = 1/400. The
constant jump activity case reveals the statistical uncertainty of measuring locally
the jump activity. All local estimates in this scenario are, however, centered around
the true constant value. By contrast, in the case of time-varying jump activity, the
local estimates are centered around the time-varying level of the jump activity pro-
cess β . As a result, the difference between them and the global estimate β̂n(p,u, v)

FIG. 1. Local Jump Activity Estimates. The solid line corresponds to the true value of the jump
activity index over the interval of length T = 22; the stars correspond to block-based estimates of
jump activity for the case �n = 1/400 and bn = 14 (and p = 0.24, kn = 85, u = 0.2 and v = 0.8);
the dashed line corresponds to the global β̂n(p,u, v). The constant β corresponds to a simulation
from scenario N2 and the time-varying β to a simulation from scenario A2.
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TABLE 1
Monte Carlo results

�n = 1/100 �n = 1/400

bn = 7 bn = 9 bn = 11 bn = 14

Size of test Size of test

Scenario 5% 1% 5% 1% 5% 1% 5% 1%

N1 (β = 1.2) 3.88 1.62 4.54 1.62 4.10 1.32 4.70 1.60
N2 (β = 1.5) 3.30 1.08 3.36 0.94 4.54 1.16 4.02 1.08
A1 58.80 42.50 52.40 35.20 99.86 99.44 86.66 85.96
A2 25.10 14.20 22.98 10.94 84.34 72.26 79.62 65.10

contains a bias which when aggregated across the blocks in T n(p,u, v) makes it
explode asymptotically.

The results from the Monte Carlo are reported in Table 1. We notice satisfac-
tory performance of the test under all scenarios of constant jump activity. The test
is slightly under-sized for the coarser frequency �n = 1/100 at the 5% nominal
level. However, as expected from theory, the deviations of the empirical rejection
rates from the nominal levels of the test (under the null scenarios) shrink when the
sampling frequency increases to �n = 1/400. We note that there is no significant
difference in the performance of the test for the different block sizes. The test has
also satisfactory performance under the two alternative scenarios. Not surprisingly,
the power of the test is higher for scenario A1 which has more dispersion of the
jump activity over the interval than scenario A2. In both A1 and A2 and for the two
different sampling frequencies, the power of the test is slightly higher for the case
with lower bn, although the differences are not very big. Smaller bn allows to re-
duce the sampling error of measuring locally the jump activity via the block-based
estimates, and thus better identify the differences in the jump activity across the
blocks. On the other hand, smaller bn means the local jump activity effectively av-
erages the time-varying activity over longer time intervals, thus ignoring the time
variation within them. For our alternative scenarios, the gains are larger than the
costs (in terms of power) for the smaller of the block sizes considered.

6. Proofs. In the proofs, we use the shorthand notation E
n
i (·) = E(·|Fi�n) and

P
n
i (·) = P(·|Fi�n). We also set

(6.1) inj = kn + 1 + (j − 1)(mn + 1),

so that In
j = {inj + 2, . . . , inj + mn + 1}.

Further, in the proofs we will denote with K a (finite) positive constant that
does not depend on n and might change from line to line. Finally, to simplify the
notation, henceforth we will use β̂n

j , β̂n and β instead of β̂n
j (p,u, v), β̂n(p,u, v)

and β(p,u, v), respectively.
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6.1. Localization. By standard localization techniques, it suffices to prove the
results in the paper under the following strengthened version of Assumption B.

ASSUMPTION SB. We have Assumption B and:

(a) |σt | and |σt |−1 are uniformly bounded;
(b) |δα(t, x)| + |δσ (t, x)| ≤ γ (x) for all t , where γ (x) is a deterministic

bounded function on R with
∫
R

|γ (x)|rλ(dx) < ∞ for some 0 ≤ r < 2;
(c) bα , bσ , ηα , ησ , η̃α and η̃σ are bounded;
(d) the process

∫
R
(|x|β ′

t ∧ 1)νY
t (dx) is bounded and the jumps of Y are

bounded;
(e) E|ησ

t − ησ
s |2 + E|η̃σ

t − η̃σ
s |2 < |t − s|ι for some positive constant  and

every s, t ≥ 0;

Henceforth, the proofs will be conducted under Assumption SB.

6.2. Proof of Theorem 1. We start with the decomposition(
β̂n

j − β̂n)2 = (
β̃n

j − β̂n)2 + (
β̂n

j − β̃n
j

)2 + 2
(
β̃n

j − β̂n)(β̂n
j − β̃n

j

)
,

where β̃n
j = βinj �n

. Provided we have β̂n P−→ β , then since the process β has
càglàd paths, by Riemann integrability, we have

1

bn

bn∑
j=1

(
β̃n

j − β̂n)2 P−→
∫ 1

0
(βs − β)2 ds.

Since |β̂n
j | ≤ K log(mn) [recall the definition of L̃n

j (p,u)] and using a Taylor series
expansion for the difference β̂n

j − β̃n
j , it is easy to see that to prove the theorem it

suffices to establish the following for some arbitrarily small ι > 0 and u, v ∈ R+:

(6.2)

⎧⎪⎨⎪⎩E
∣∣L̂n

j (p,u) − e
−Cp,β̃n

j
u

β̃n
j ∣∣ ≤ K/ log(mn)

2+ι,

L̂n(p,u)
P−→ L(p,u) and �

n
(p,u, v)

P−→ �(p,u, v).

To establish the above result, we will need some preliminary bounds which we
turn to next.

Upon suitably extending the probability space and using Grigelionis decom-
position [Theorem 2.1.2 of Jacod and Protter (2012)], we can represent St =
S

(1)
t + S

(2)
t where

(6.3) S
(1)
t =

∫ t

0

∫
R

κ
(
δ(s, x)

)
μ̃(ds, dx), S

(2)
t =

∫ t

0

∫
R

κ ′(δ(s, x)
)
μ(ds, dx),

with δ(t, x) = (βt |x|)−1/βt sign(x) and μ being a Poisson random measure on
R+ × R with Lévy measure Adt ⊗ dx, and further μ̃(dt, dx) = μ(dt, dx) −



1298 V. TODOROV

Adt dx. We further denote for t ∈ [(i − 2)�n, i�n]

(6.4) S
(1,n)
t = S

(1)
(i−2)�n

+
∫ t

(i−2)�n

∫
R

κ
(
δ
(
(i − 2)�n, x

))
μ̃(ds, dx),

and we define similarly S
(2,n)
t from S

(2)
t . Then using Lemmas 2.1.5 and 2.1.7 of

Jacod and Protter (2012) and the smoothness assumption for the process β , we
have

(6.5) E
n
i−2

∣∣S(1)
t − S

(1,n)
t

∣∣2 ≤ K�2
n, E

n
i−2

∣∣S(2)
t

∣∣ +E
n
i−2

∣∣S(2,n)
t

∣∣ ≤ K�n.

Another application of Lemmas 2.1.5 and 2.1.7 of Jacod and Protter (2012) plus
the fact that supt∈[0,1] β ′

t < 1 as well as Assumption SB for σ , yields

E
n
i−2

∣∣∣∣∫ i�n

(i−1)�n

(σu− − σ(i−2)�n) dS(1)
u

∣∣∣∣2 ≤ K�2
n,

E
n
i−2

∣∣∣∣∫ i�n

(i−1)�n

(σu− − σ(i−2)�n) dS(2)
u

∣∣∣∣ +E
n
i−1

∣∣�n
i Y

∣∣ ≤ K�n,

E
n
i−2

∣∣∣∣∫ i�n

(i−1)�n

(αu − αu−�n) du

∣∣∣∣ ≤ K�3/2
n .

Next, applying a second-order Taylor expansion, using the fact that βt takes values
in the interval (1,2) for ∀t ≥ 0, as well as the smoothness assumption for β in
Assumption A(a), we have for any q ∈ (0,1] and for j ≤ i

(6.6) E
n
j

∣∣�−q/βn
j +q/βn

i
n − 1

∣∣ ≤ K
(|j − i| log(n) + |j − i|2�−q/2

n log2(n)
)
,

where we set βn
i = βi�n (this shorthand is used for the rest of the proof of the

theorem) and the constant K does not depend on i and j .
Given the above bounds and the smoothness assumption for β in Assumption

A(a), we have for any q ∈ (0,1]∣∣En
i−2 cos

(
�

−1/βn
i−2

n

(
�n

i X − �n
i−1X

)
f n

i−2
)

(6.7)

− exp
(−Aβn

i−2

∣∣σ(i−2)�nf
n
i−2

∣∣βn
i−2

)∣∣ ≤ K�
1− 1

βn
i−2

n ,

∣∣�−q/βn
i−2

n E
n
i−2

∣∣�n
i X − �n

i−1X
∣∣q − |σ(i−2)�n |qμ

q/βn
i−2

q,βn
i−2

∣∣ ≤ K�
q− q

βn
i−2

n ,(6.8)

E
n
i−kn−3

∣∣�−q/βn
i−kn−3

n E
n
i−2

∣∣�n
i X − �n

i−1X
∣∣q − |σ(i−2)�n |qμ

q/βn
i−kn−3

q,βn
i−kn−3

∣∣
(6.9)

≤ K
(√

kn�n log(n) ∨ (kn�n)�
−q/2
n log2(n) ∨ �

q−q/βn
i−kn−3

n

)
,

for f n
i denoting some bounded random variable adapted to Fi�n .



TESTING FOR TIME-VARYING JUMP ACTIVITY 1299

Using the above bounds, we can now show (6.2). First, using Burkholder–
Davis–Gundy inequality for discrete martingales and the above bounds, we have

E

∣∣∣∣∑
i∈In

j

[
cos

(
u
�n

i X − �n
i−1X

(V n
i (p))1/p

)
−E

n
i−2

(
cos

(
u
�n

i X − �n
i−1X

(V n
i (p))1/p

))]∣∣∣∣
≤ K

√
mn,

�
− 2p

βn
i−kn−3

n E
n
i−kn−3

∣∣∣∣∣V n
i (p) − 1

kn

i−2∑
j=i−kn−1

E
n
i−2

∣∣�n
i X − �n

i−1X
∣∣p∣∣∣∣∣

2

≤ K
[(kn�n)�

−p
n log2(n)] ∨ 1

kn

,

and from here for some sufficiently small ε > 0, and taking into account the re-
striction on kn and p, the fact that the process |σ | is bounded from below and (6.6)
and (6.9), we have

P
n
i−kn−3

(
�

−p/βn
i−2

n V n
i (p) < ε

) ≤ K�ι
n,

for some sufficiently small ι > 0.
Combining the above bounds and using the smoothness assumption for σ , we

have for some sufficiently small ι > 0

E
∣∣L̂n

j (p,u) − e
−Cp,β̃n

j
u

β̃n
j ∣∣ ≤ K�ι

n,

which establishes the first part of (6.2). To establish the remaining results in (6.2),
we use the following bound for some sufficiently small ι > 0:

E

∣∣∣∣En
i−3

(
cos

(
u
�n

i X − �n
i−1X

(V n
i (p))1/p

)
cos

(
v
�n

i−1X − �n
i−2X

(V n
i−1(p))1/p

))

− e−
C

p,βn
i−3

2 (u
βn
i−3+v

βn
i−3+|u+v|βn

i−3 ) + e−
C

p,βn
i−3

2 (u
βn
i−3+v

βn
i−3+|u−v|βn

i−3 )

2

∣∣∣∣
≤ K�ι

n,

with the result following from the inequalities above. From here, the last two re-
sults in (6.2) follow easily.

6.3. Proof of Theorem 2: Decompositions and notation. First, we denote the
bias term

Bn = 1

2kn

(
β

p

)2
Cp,β

(
vβ − uβ)

�p,β,
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where we set

�p,β = E

(∣∣∣∣S(β)
1 − S

(β)
2

μ
1/β
p,β

∣∣∣∣p − 1
)2

+ 2E
{(∣∣∣∣S(β)

1 − S
(β)
2

μ
1/β
p,β

∣∣∣∣p − 1
)(∣∣∣∣S(β)

2 − S
(β)
3

μ
1/β
p,β

∣∣∣∣p − 1
)}

,

and we further use the shorthand B̃n = Bn/ log(u/v).
We also introduce the following three different approximations of the local

power variation V n
i (p) which will be used in various stages of the proof:⎛⎜⎝Ṽ n

i (p)

V̂ n
i (p)

|σ |pi

⎞⎟⎠ = 1

kn

i−2∑
j=i−kn−1

⎛⎜⎝ E
n
j−2

∣∣�n
jX − �n

j−1X
∣∣p

|σ(j−2)�n |p
∣∣�n

jS − �n
j−1S

∣∣p/μ
p/β
p,β

|σ(j−2)�n |p

⎞⎟⎠ .

Using the decomposition(
β̂n

j − β̂n)2 = (
β̂n

j − β − B̃n)2 + (
β − β̂n + B̃n)2

+ 2
(
β̂n

j − β − B̃n)(β − β̂n + B̃n),
it is clear that (4.10) will follow if we can show for ∀ι > 0

(6.10)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

bn∑
j=1

(
β̂n

j − β − B̃n) = op

(
n1/2+ι

mn

)
,

β̂n − β − B̃n = op

(
1

(nmn)1/4

)
,

T̂ n(p,u, v)
L−(s)−→ Z,

�
n
(p,u, v)

P−→ �(p,u, v),

where we denote

T̂ n(p,u, v) = 1√
2bn

bn∑
j=1

( mn(β̂
n
j − β − B̃n)2

�(p,u, v)/(log(u/v))2
− 1

)
.

Now we decompose the difference β̂n
j − β − B̃n. For some sufficiently small

ε > 0, and n sufficiently high so that ε > 1/mn, using a Taylor series expansion
we have

β̂n
j − β − B̃n = β̂

(n,1)
j + β̂

(n,2)
j + β̂

(n,3)
j + β̂

(n,4)
j ,

β̂
(n,1)
j = 1

log(u/v)

( L̂n
j (p,u) −L(p,u)

L(p,u) log(L(p,u))
− L̂n

j (p, v) −L(p, v)

L(p, v) log(L(p, v))
−Bn

)
,
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β̂
(n,2)
j = −1 + log(Ln

j (p,u))

2 log(u/v)

(L̂n
j (p,u) −L(p,u))2

(Ln

j (p,u) log(Ln

j (p,u)))2
1{Cn

j }

+ 1 + log(Ln

j (p, v))

2 log(u/v)

(L̂n
j (p, v) −L(p, v))2

(Ln

j (p, v) log(Ln

j (p, v)))2
1{Cn

j },

β̂
(n,3)
j = −β̂

(n,1)
j 1{(Cn

j )c},

β̂
(n,4)
j = (

β̂n
j − β − B̃n)1{(Cn

j )c},

where Ln

j (p,u) is between L̂n
j (p,u) and L(p,u) and Ln

j (p, v) is between

L̂n
j (p, v) and L(p, v) and we denote the set

Cn
j = {

L̂n
j (p,u) ∈ [ε,1 − ε] ∩ L̂n

j (p, v) ∈ [ε,1 − ε]}.
We further decompose

L̂n
j (p,u) −L(p,u) = L̂(n,1)

j (p,u) + L̂(n,2)
j (p,u) + L̂(n,3)

j (p,u),

where L̂(n,k)
j (p,u) = 1

mn

∑
i∈In

j
zk
i (u) for k = 1,2,3 with

z1
i (u) =

[
cos

(
u
�n

i X − �n
i−1X

(V n
i (p))1/p

)
− exp

(
−Aβuβ |σ(i−2)�n |β

�−1
n (V n

i (p))β/p

)]
1{�−p/β

n V n
i (p)>ε},

z2
i (u) =

[
exp

(
−Aβuβ |σ(i−2)�n |β

�−1
n (V n

i (p))β/p

)
− exp

(−Cp,βuβ)]
1{�−p/β

n V n
i (p)>ε},

z3
i (u) =

[
cos

(
u
�n

i X − �n
i−1X

(V n
i (p))1/p

)
− exp

(−Cp,βuβ)]
1{�−p/β

n V n
i (p)≤ε},

with ε being the constant used in the definition of the set Cn
j (a different ε > 0 will

work also). With the same ε, we further decompose

z2
i (u)/

(
L(p,u) log

(
L(p,u)

)) = z̃
(2,a)
i (u) + z̃

(2,b)
i (u) + z̃

(2,c)
i (u),

z̃
(2,a)
i (u) = (

e
−Aβuβ |σ(i−2)�n

|β
�

−1
n (V n

i
(p))β/p − e

−Cp,βuβ |σ(i−2)�n
|β

(|σ |p
i

)β/p )
/
(
L(p,u) log

(
L(p,u)

))
,

z̃
(2,b)
i (u) = (

e
−Cp,βuβ |σ(i−2)�n

|β
(|σ |p

i
)β/p − e−Cp,βuβ )

/
(
L(p,u) log

(
L(p,u)

))
,

z̃
(2,c)
i (u) = −(̃

z
(2,a)
i (u) + z̃

(2,b)
i (u)

)
1{�−p/β

n V n
i (p)≤ε}.
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With this notation, we split further β̂
(n,1)
j into three parts, denoted with β̂

(n,1)
j (a),

β̂
(n,1)
j (b) and β̂

(n,1)
j (c), and given by

β̂
(n,1)
j (a) = 1

log(u/v)

( L̂(n,1)
j (p,u)

L(p,u) log(L(p,u))
− L̂(n,1)

j (p, v)

L(p, v) log(L(p, v))

)
,

β̂
(n,1)
j (b) = 1

log(u/v)

( L̂(n,2)
j (p,u)

L(p,u) log(L(p,u))
− L̂(n,2)

j (p, v)

L(p, v) log(L(p, v))
−Bn

)
,

β̂
(n,1)
j (c) = 1

log(u/v)

( L̂(n,3)
j (p,u)

L(p,u) log(L(p,u))
− L̂(n,3)

j (p, v)

L(p, v) log(L(p, v))

)
.

Finally, denoting β ′ = supt∈[0,1] β ′
t and for arbitrary small ι > 0, we set

αn = �

β
2

p+1
β+1 ∧(

p

β′ ∧1−p
β
)−ι

n .

6.4. Auxiliary results for the proof of Theorem 2. We state the auxiliary results
in a sequence of lemmas whose proofs are given in Section 6.7 and the supplemen-
tary material [Todorov (2017)].

LEMMA 1. Under the conditions of Theorem 2, we have for some sufficiently
small constants ε > 0 and ι > 0 and u ∈ R+

�−p/β
n E

n
i−2

∣∣∣∣�n
i X − �n

i−1X
∣∣p − |σ(i−2)�n |p

∣∣�n
i S − �n

i−1S
∣∣p∣∣ ≤ Kαn,(6.11)

�−p/β
n

∣∣En
i−2

(
(σi�n − σ(i−2)�n)

∣∣�n
i X − �n

i−1X
∣∣p)∣∣ ≤ K�1/2+ι

n ,(6.12)

�−xp/β
n E

n
i−kn−3

∣∣V n
i (p) − Ṽ n

i (p)
∣∣x +E

n
i−kn−3

∣∣�−p/β
n V̂ n

i (p) − |σ |pi
∣∣x

(6.13)
≤ Kk−x/2

n , x ∈ [2, β/p),

P
n
i−kn−3

(
�−p/β

n V n
i (p) ≤ ε

) ≤ Kk−β/(2p)+ι
n ,(6.14)

P
(
L̂n

j (p,u) < ε ∪ L̂n
j (p,u) > 1 − ε

) ≤ K(nmn)
−1/2−ι.(6.15)

To state the next lemma, we need some more notation. We denote

�̃k,i(p,u, v) = �k

(
p,

u|σ(i−2)�n |
�

−1/β
n (V̂ n

i (p))1/p
,

v|σ(i−2)�n |
�

−1/β
n (V̂ n

i (p))1/p

)
,

for k = 0,1, and we set �̃i(p,u, v) = �̃0,i(p,u, v) + 2�̃1,i (p,u, v). Finally,

�i = �̃i(p,u,u)

(L(p,u) log(L(p,u)))2 + �̃i(p, v, v)

(L(p, v) log(L(p, v)))2

− 2
�̃i(p,u, v)

L(p,u) log(L(p,u))L(p, v) log(L(p, v))
.
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LEMMA 2. Under the conditions of Theorem 2, if we further denote

xi = z1
i (u)

L(p,u) log(L(p,u))
− z1

i (v)

L(p, v) log(L(p, v))
,

we have for j = 1, . . . , bn, u, v ∈ R+, and some sufficiently small ι > 0∣∣En
i−2

(
z1
i (u)

)∣∣ ≤ K�1/2+ι
n ,(6.16)

E

∣∣∣∣En
inj

(
1√
mn

∑
i∈In

j

xi

)2
− 1

mn

∑
i∈In

j

�i

∣∣∣∣
(6.17)

≤ K
[
αn ∨ k−1

n ∨ √
mn�

1/2+ι
n

]
,

bn∑
j=1

∑
i∈In

j

(
�i − �(p,u, v)

) = Op

(√
knn ∨ n

kn

)
,(6.18)

E

∣∣∣∣En
inj

(
1√
mn

∑
i∈In

j

xi

)4
− 3�

2
(p,u, v)

∣∣∣∣
(6.19)

≤ K
(
αn ∨ k−1/2

n ∨ (kn�n)
1/2 ∨ m1/2

n �1/2+ι
n ∨ m−1/2

n

)
,

E

∣∣∣∣ 1√
mn

∑
i∈In

j

(
z1
i (u) −E

n
i−2

(
z1
i (u)

))∣∣∣∣q ≤ K, q ≥ 0.(6.20)

For the next lemma, we introduce the following additional notation:

Bn(u) = 1

kn

[
1

2

β

p

(
β

p
+ 1

)
− 1

2

(
β

p

)2
Cp,βuβ

]
�p,β,

and note Bn ≡ Bn(u) −Bn(v).

LEMMA 3. Under the conditions of Theorem 2, we have for some sufficiently
small ι > 0 and u ∈ R+∣∣En

i−kn−3
(̃
z
(2,a)
i (u) − z̃

(2,a)
i (v) −Bn)∣∣

(6.21)

≤ K

(
α2

n ∨ αn√
kn

∨ �1/2+ι
n ∨ k−3/2

n

)
,

∣∣En
i−kn−3

(̃
z
(2,a)
i (u) −Bn(u)

)∣∣ ≤ K
(
αn ∨ √

�n ∨ k−3/2
n

)
,(6.22)

E
(̃
z
(2,a)
i (u) − z̃

(2,a)
i (v) −Bn)2

(6.23)

≤ K

[
α4

n ∨ k−2
n ∨ α2

nkn�n ∨
√

�n

kn

∨ (kn�n)
3/4

kn

]
,
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E
(̃
z
(2,a)
i (u) −Bn(u)

)4 ≤ K
[
α4

n ∨ k−2
n

]
,(6.24) {

E
n
i−kn−3

∣∣̃z(2,b)
i (u) − z̃

(2,b)
i (v)

∣∣q ≤ K(kn�n), q ≥ 1,∣∣En
i−kn−3

(̃
z
(2,b)
i (u)

)∣∣ +E
n
i−kn−3

∣∣̃z(2,b)
i (u)

∣∣q ≤ K(kn�n), q ≥ 2,
(6.25)

E
n
i−kn−3

∣∣̃z(2,c)
i (u)

∣∣q ≤ Kk−β/(2p)+ι
n , q > 0.(6.26)

LEMMA 4. Under the conditions of Theorem 2, we have

(6.27) β̂n − β − B̃n = Op

(
�1/2−ι

n ∨ αn√
kn

)
, ∀ι > 0.

LEMMA 5. Under the conditions of Theorem 2, for any bounded martingale
M and every t ∈ [0,1], we have

(6.28)
1√
bn

�tbn∑
j=1

E
n
inj

[
χn

j (Mkn+1+j (mn+1) − Mkn+1+(j−1)(mn+1))
] P−→ 0,

where χn
j = (mn(β̂

(n,1)
j (a))2 − 1

mn

∑
i∈In

j
�i/(log(u/v))2).

6.5. Proof of Theorem 2 continued. Using the results of Lemma 3, and im-
posing the restriction kn � n� with � ∈ (1/3,1/2), we have for some sufficiently
small ι > 0

E

(
1

mn

∑
i∈In

j

(̃
z
(2,a)
i (u) − z̃

(2,a)
i (v) −Bn))2

(6.29)

≤ K

{
kn

mn

[
1

k2
n

∨ (kn�n)
3/4

kn

]
∨

[
α4

n ∨ α2
n

kn

∨ �1+ι
n ∨ 1

k3
n

]}
,

E

(
1

mn

∑
i∈In

j

z̃
(2,a)
i (u) −Bn(u)

)4
≤ K

(
α4

n ∨ m−2
n

)
,(6.30)

E

∣∣∣∣ 1

mn

∑
i∈In

j

(̃
z
(2,b)
i (u) − z̃

(2,b)
i (v)

)∣∣∣∣q ≤ K(kn�n), q ≥ 1,(6.31)

E

∣∣∣∣ 1

mn

∑
i∈In

j

z̃
(2,b)
i (u)

∣∣∣∣q ≤ K

(
k

q
2
n

m
q
2
n

kn

n
∨ k

q
n

nq

)
, q ≥ 2.(6.32)

E

∣∣∣∣ 1

mn

∑
i∈In

j

z̃
(2,c)
i (u)

∣∣∣∣q ≤ K

(
k

q
2
n

m
q
2
n

k−β/(2p)+ι
n ∨ k−qβ/(2p)+ι

n

)
, q ≥ 2.(6.33)
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Using Lemma 1, we have

(6.34) E
n
i−kn−3

∣∣z3
i (u)

∣∣q ≤ Kk−β/(2p)+ι
n , q > 0,

and, therefore,

(6.35) E

∣∣∣∣ 1

mn

∑
i∈In

j

z3
i (u)

∣∣∣∣q ≤ K

(
k

q
2
n

m
q
2
n

k−β/(2p)+ι
n ∨ k−qβ/(2p)+ι

n

)
, q ≥ 2.

We are now ready to prove the theorem. We make the decomposition(
β̂n

j − β − B̃n)2 = (
β̂

(n,1)
j (a)

)2 + 2β̂
(n,1)
j (a)Rn

j + (
Rn

j

)2
,

where we denote

Rn
j = β̂

(n,1)
j (b) + β̂

(n,1)
j (c) + β̂

(n,2)
j + β̂

(n,3)
j + β̂

(n,4)
j .

In what follows, we set ηn = nι for some arbitrary small ι > 0. Combining the
bounds in (6.29), (6.30), (6.32)–(6.35) and using Lemmas 1 and 2, we have
E|Rn

j |2 ≤ K(nmn)
−1/2−ι, provided p <

β
4 , � ∈ (1/3,1/2) and p

β ′ ∧ 1 − p
β

> 1
4 ,

and the following conditions hold:

ηn

n

k2
nmn

→ 0, ηn

α2
n

√
nmn

kn

→ 0, ηn

k4
n

nmn

→ 0.

Similarly, using the bounds in (6.29)–(6.35) and Lemmas 1 and 2 as well as
Hölder inequality, we have E|β̂(n,1)

j (a)Rn
j | ≤ K(nmn)

−1/2−ι, provided p <
β
4 ,

� ∈ (1/3,1/2) and p
β ′ ∧ 1 − p

β
> 1

4 , and the following conditions hold:

ηn

n

knmn

→ 0, ηn

k3
nn

m4
n

→ 0, ηn

αn

√
n√

kn

→ 0.

Therefore, taking into account the requirements for p, kn and mn in the theorem,
we have altogether

mn√
bn

bn∑
j=1

(
2β̂

(n,1)
j (a)Rn

j + (
Rn

j

)2) = op(1).

Using the bound in (6.18) and the requirements for p, kn, mn, we have

1√
bnmn

bn∑
j=1

∑
i∈In

j

(
�i − �(p,u, v)

) = op(1).

Next, we can use the bounds in Lemmas 2 and 5, the requirements for p, kn and mn

in the theorem (which in particular imply αn

√
n/mn → 0), together with E|�i −
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�(p,u, v)| ≤ K(
√

kn�n ∨ k
−1/2
n ) and the boundedness of �i , and apply a stable

CLT [Theorem IX.7.28 of Jacod and Shiryaev (2003)] to get

1√
2bn

bn∑
j=1

(mn(β̂
(n,1)
j (a))2 − 1

mn

∑
i∈In

j
�i/(log(u/v))2

�(p,u, v)/(log(u/v))2

)
L−(s)−→ Z.

Combining the last three results, we have T̂ n(p,u, v)
L−(s)−→ Z.

Using the bounds in (6.15), (6.16), (6.21)–(6.26) and (6.34), and since p < β/3,
� ∈ (1/3,1/2) and ηnαn

√
n/

√
kn → 0, we also have

bn∑
j=1

(
β̂n

j − β − B̃n) = op

(
n1/2+ιm−1

n

)
, ∀ι > 0.

Further from Lemma 4, provided αn(nmn)
1/4/

√
kn → 0, we have β̂n − β − B̃n =

op((nmn)
−1/4). Finally, from (6.2) we also have �

n
(p,u, v)

P−→ �(p,u, v).
Combining the above results we have altogether (6.10), and hence the result to
be proved.

6.6. Proof of Corollary 1. First, given Theorem 2, we show that we have

T̂ n(p,u, v)
L−(s)−→ Z in restriction to the set �c. Indeed, we can construct a pro-

cess X′ satisfying X′
s = Xs for all 0 ≤ s ≤ 1 on �c and having the same constant

β on �v as well. Then we can apply Theorem 2 for X′ and from the properties of
the stable convergence, the result also holds in restriction to �c (on which set X′
coincides with X). Hence, the claim follows. From here, the result of the corollary
is easily shown by using also Theorem 1 and by applying the Portmanteau lemma.

6.7. Proof of the auxiliary results in Section 6.4. In this section, we provide
the proofs of the auxiliary results stated in Section 6.4.

6.7.1. Proof of Lemma 1. We start with (6.11). First, similar to the proof of
Theorem 1, we split St = S

(1)
t + S

(2)
t where S

(1)
t = ∫ t

0
∫
R

κ(x)μ̃(ds, dx) and μ is
Poisson random measure with Lévy measure dt ⊗ A

|x|β+1 dx. Then using Lemmas
2.1.5 and 2.1.7 of Jacod and Protter (2012) and Assumption SB, we have for arbi-
trary small ι > 0 and l = 0,1,

E
n
i−2

∣∣∣∣∫ (i−1+l)�n

(i−2+l)�n

(σu− − σ(i−2)�n) dS(1)
u

∣∣∣∣q
(6.36)

≤ K�q/2+(q/β)∧1−ι
n , q ∈ (0,2],

E
n
i−2

∣∣∣∣∫ (i−1+l)i�n

(i−2+l)�n

(σu− − σ(i−2)�n) dS(2)
u

∣∣∣∣q ≤ K�q/2+1
n , q ∈ (0,1],(6.37)
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E
n
i−2

∣∣∣∣∫ i�n

(i−1)�n

(αu − αu−�n) du

∣∣∣∣q ≤ K�3q/2
n , q ∈ (0,2],(6.38)

E
n
i−1

∣∣�n
i Y

∣∣q ≤ K�(q/β ′)∧1−ι
n , q > 0 and β ′ = sup

t∈[0,1]
β ′

t .(6.39)

Next, we introduce χ1 = σ(i−2)�n(�
n
i S − �n

i−1S) and

χ2 =
∫ i�n

(i−1)�n

(σu− − σ(i−2)�n) dS(1)
u −

∫ (i−1)�n

(i−2)�n

(σu− − σ(i−2)�n) dS(1)
u

+
∫ i�n

(i−1)�n

(αu − αu−�n) du,

χ3 =
∫ i�n

(i−1)�n

(σu− − σ(i−2)�n) dS(2)
u −

∫ (i−1)�n

(i−2)�n

(σu− − σ(i−2)�n) dS(2)
u

+ �n
i Y − �n

i−1Y.

We finally use the shorthand χ̃i = �
−1/β
n χi for i = 1, . . . ,3. With this notation,

using the results in (6.37) and (6.39), we first have

(6.40) E
n
i−2

∣∣|χ̃1 + χ̃2 + χ̃3|p − |χ̃1 + χ̃2|p
∣∣ ≤ K�

p

β′ ∧1−p
β
−ι

n .

So we are left with the difference |χ̃1 + χ̃2|p − |χ̃1|p . For it, we make use of the
following algebraic inequality:∣∣|χ̃1 + χ̃2|p − |χ̃1|p

∣∣
≤ K|χ̃1|p−1|χ̃2|1{|χ̃1|>ε,|χ̃2|<0.5ε} + |χ̃2|p(1{|χ̃1|≤ε} + 1{|χ̃2|>0.5ε}),

for any ε > 0 and p ∈ (0,1], and where K that does not depend on ε. Since
p < 1/β from (4.9), and using the bounds in (6.36) and (6.38) as well as Hölder
inequality and the fact that En

i−2|�−1/β
n (�n

i S − �n
i−1S)|q is a finite constant (that

depends on q and β but not on n) for q ∈ (−1, β) [see, e.g., (25.6) in Sato (1999)],
we have

E
n
i−2

(|χ̃1|p−1|χ̃2|1{|χ̃1|>ε,|χ̃2|<0.5ε}
)

≤ (
E

n
i−2

(|χ̃1|
(p−1)β

β−1 1{|χ̃1|>ε}
))1− 1

β
(
E

n
i−2|χ̃2|β) 1

β(6.41)

≤ Kε−(1/β−p)−ι�1/2−ι
n ,

E
n
i−2

(|χ̃2|p1{|χ̃1|≤ε}
) ≤ K

(
P

n
i−2

(|χ̃1| ≤ ε
))1−p

β
(
E

n
i−2|χ̃2|β)p

β

(6.42)
≤ Kε1−p/β−ι�p/2−ι

n ,

E
n
i−2

(|χ̃2|p1{|χ̃2|>0.5ε}
) ≤ Kε−(β−p)�β/2−ι

n ,(6.43)
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where the constant K in (6.41)–(6.43) does not depend on ε. Upon setting ε =
�

1
2

β
β+1

n in (6.41)–(6.43), and using (6.40), we get the result in (6.11).
We continue with (6.12) for which we introduce the following additional nota-

tion. For s ∈ [(i − 2)�n, i�n], we set

(6.44) σ̃s = σ(i−2)�n + ησ
(i−2)�n

(Ws − W(i−2)�n) + η̃σ
(i−2)�n

(W̃s − W̃(i−2)�n).

Using Assumption SB (the part about ησ and η̃σ ) and applying Burkholder–Davis–
Gundy inequality and Corollary 2.1.9 of Jacod and Protter (2012), we have for
s ∈ [(i − 2)�n, i�n]∣∣En

i−2(σ̃s − σ(i−2)�n)
∣∣ +E

n
i−2(σ̃s − σ(i−2)�n)

2 ≤ K�n,(6.45)

E
n
i−2|σs − σ̃s |q ≤ K�

q+qς
2 ∧ q

r
∧1

n , q ∈ (1,2].(6.46)

With these bounds, we can now show (6.12). Using the Itô semimartingale as-
sumption for σ , Hölder inequality and the bounds in (6.36)–(6.39) and (6.46), as
well as p < β/2 and the fact that W and W̃ are independent of S, we have for
some sufficiently small ι > 0

�−p/β
n E

n
i−2

(|σi�n − σ(i−2)�n |
∣∣�n

i X − �n
i−1X − σ(i−2)�n

(
�n

i S − �n
i−1S

)∣∣p)
≤ K�1/2+ι

n ,

�−p/β
n E

n
i−2

(|σi�n − σ̃i�n |
∣∣�n

i S − �n
i−1S

∣∣p) ≤ K�1/2+ι
n ,

E
n
i−2

(
(σ̃i�n − σ(i−2)�n)

∣∣�n
i S − �n

i−1S
∣∣p) = 0.

Using the above three bounds, we have altogether the result in (6.12).
Next, (6.13) follows directly by using successive application of Burkholder–

Davis–Gundy inequality. We continue with (6.14). Using (6.11), we have

(6.47)
∣∣�−p/β

n Ṽ n
i (p) − μ

p/β
p,β |σ |pi

∣∣ ≤ Kαn.

Also, given the boundedness from below of the process |σ | and provided ε is cho-
sen sufficiently small, we have μ

p/β
p,β |σ |pi > 3ε/2. Combining this with the bounds

in (6.13) and (6.47), we have the result in (6.14).
We are left with showing (6.15). We decompose L̂n

j (p,u) = ∑5
p=1 A

(n,p)
j where

A
(n,p)
j = 1

mn

∑
i∈In

j
a

(n,p)
i , for p = 1, . . . ,5, with

a
(n,1)
i = cos

(
u
�n

i X − �n
i−1X

(V n
i (p))1/p

)
−E

n
i−2

(
cos

(
u
�n

i X − �n
i−1X

(V n
i (p))1/p

))
,

a
(n,2)
i = E

n
i−2

(
cos

(
u
�n

i X − �n
i−1X

(V n
i (p))1/p

))
− exp

(
−Aβuβ |σ(i−2)�n |β

�−1
n (V n

i (p))β/p

)
,

a
(n,3)
i = exp

(
−Aβuβ |σ(i−2)�n |β

�−1
n (V n

i (p))β/p

)
− exp

(
−Aβuβ |σ(i−2)�n |β

�−1
n (Ṽ n

i (p))β/p

)
,
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a
(n,4)
i = exp

(
−Aβuβ |σ(i−2)�n |β

�−1
n (Ṽ n

i (p))β/p

)
− exp

(
−Cp,βuβ |σ(i−2)�n |β

(|σ |pi )β/p

)
,

a
(n,5)
i = exp

(
−Cp,βuβ |σ(i−2)�n |β

(|σ |pi )β/p

)
.

If ε > 0 is chosen sufficiently small, given the boundedness of the process σ ,
we have |A(n,5)

j | > 3ε/2 and |A(n,5)
j | < 1 − 3ε/2. Hence to show (6.15), it suffices

to show for some sufficiently small ι > 0

(6.48) P

(∣∣A(n,p)
j

∣∣ > ε

8

)
≤ K(nmn)

−1/2−ι, p = 1, . . . ,4.

(a) We start with A
(n,1)
j . Using successive application of Burkholder–Davis–

Gundy inequality for discrete martingales as well as the boundedness of the cosine
function, we have

E
∣∣A(n,1)

j

∣∣q ≤ Km−q/2
n

(6.49)

=⇒ P

(∣∣A(n,1)
j

∣∣ > ε

8

)
≤ Km−q/2

n , ∀q ≥ 2.

(b) We continue with A
(n,3)
j . Using a first-order Taylor expansion and the bound-

edness of the derivative of f (x) = exp(−Aβuβ |σ(i−2)�n |β
xβ/p ), we first have∣∣a(n,3)

i

∣∣q ≤ K�−p/β
n

∣∣V n
i (p) − Ṽ n

i (p)
∣∣, q ≥ 1.

We now can split A
(n,3)
j = 1

mn

∑
i∈In

j
E

n
i−kn−3(a

(n,3)
i ) + 1

mn

∑
i∈In

j
(a

(n,3)
i −

E
n
i−kn−3(a

(n,3)
i )). We can further split the last sum into kn + 1 terms each of which

can be viewed as the terminal value of a discrete martingale. From here, applying
(6.13) derived earlier, we have

(6.50) P

(∣∣A(n,3)
j

∣∣ > ε

8

)
≤ K

((
kn

mn

)q/2
k−1/2
n ∨ k−q/2

n

)
, q ≥ 1.

(c) We show (6.48) for A
(n,4)
j . Using a first-order Taylor expansion we have

(6.51)
∣∣a(n,4)

i

∣∣ ≤ K
∣∣�−p/β

n Ṽ n
i (p) − μ

p/β
p,β |σ |pi

∣∣.
Then, by applying (6.11), we have for n sufficiently big P(|A(n,4)

j | > ε
8) = 0.

(d) We show (6.48) for A
(n,2)
j . For arbitrary q ≥ 1, using the algebraic inequality

| cos(x)−cos(y)| ≤ K|x−y|l for any l ∈ [0,1] and x, y ∈R, the bounds in (6.36)–
(6.39) as well as Assumption SB, we have for ∀ ι > 0

E
n
i−kn−3

∣∣a(n,2)
i 1{�−p/β

n |V n
i (p)|>ε}

∣∣q ≤ K�1/2−ι
n ,

E
n
i−kn−3

∣∣a(n,2)
i 1{�−p/β

n |V n
i (p)|≤ε}

∣∣q ≤ KP
n
i−kn−3

(
�−p/β

n

∣∣V n
i (p)

∣∣ ≤ ε
)
.



1310 V. TODOROV

From here, using also (6.14) and a similar decomposition as that of A
(n,3)
j above,

we have

(6.52) P

(∣∣A(n,2)
j

∣∣ > ε

8

)
≤ K

((
kn

mn

)q/2
γn ∨ γ q

n

)
, q ≥ 1,

where we use the shorthand γn = �
1
2 −ι
n ∨ k

− β
2p

+ι

n .
Combining (6.49), (6.50), (6.51) with (6.11) and (6.52), we get (6.15).
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SUPPLEMENTARY MATERIAL

Supplement to “Testing for Time-Varying Jump Activity for Pure Jump
Semimartingales” (DOI: 10.1214/16-AOS1485SUPP; .pdf). The proofs of the
auxiliary results (Lemmas 2–5) given in Section 6.4 of the main text are relegated
to the supplement [Todorov (2017)].

REFERENCES

AÏT-SAHALIA, Y. and JACOD, J. (2009). Estimating the degree of activity of jumps in high fre-
quency data. Ann. Statist. 37 2202–2244. MR2543690

BULL, A. D. (2016). Near-optimal estimation of jump activity in semimartingales. Ann. Statist. 44
58–86. MR3449762

JACOD, J. and PROTTER, P. (2012). Discretization of Processes. Springer, Heidelberg. MR2859096
JACOD, J. and SHIRYAEV, A. N. (2003). Limit Theorems for Stochastic Processes, 2nd ed. Springer,

Berlin. MR1943877
JING, B.-Y., KONG, X.-B. and LIU, Z. (2011). Estimating the jump activity index under noisy

observations using high-frequency data. J. Amer. Statist. Assoc. 106 558–568. MR2847970
JING, B.-Y., KONG, X.-B., LIU, Z. and MYKLAND, P. (2012). On the jump activity index for

semimartingales. J. Econometrics 166 213–223. MR2862961
KONG, X.-B., LIU, Z. and JING, B.-Y. (2015). Testing for pure-jump processes for high-frequency

data. Ann. Statist. 43 847–877. MR3325712
SATO, K. (1999). Lévy Processes and Infinitely Divisible Distributions. Cambridge Univ. Press,

Cambridge, UK.
TODOROV, V. (2013). Power variation from second order differences for pure jump semimartingales.

Stochastic Process. Appl. 123 2829–2850. MR3054547
TODOROV, V. (2015). Jump activity estimation for pure-jump semimartingales via self-normalized

statistics. Ann. Statist. 43 1831–1864. MR3357880
TODOROV, V. (2017). Supplement to “Testing for Time-Varying Jump Activity for Pure Jump Semi-

martingales.” DOI:10.1214/16-AOS1485SUPP.
TODOROV, V. and TAUCHEN, G. (2011). Limit theorems for power variations of pure-jump pro-

cesses with application to activity estimation. Ann. Appl. Probab. 21 546–588. MR2807966
TODOROV, V. and TAUCHEN, G. (2012). Realized Laplace transforms for pure-jump semimartin-

gales. Ann. Statist. 40 1233–1262. MR2985949

http://dx.doi.org/10.1214/16-AOS1485SUPP
http://www.ams.org/mathscinet-getitem?mr=2543690
http://www.ams.org/mathscinet-getitem?mr=3449762
http://www.ams.org/mathscinet-getitem?mr=2859096
http://www.ams.org/mathscinet-getitem?mr=1943877
http://www.ams.org/mathscinet-getitem?mr=2847970
http://www.ams.org/mathscinet-getitem?mr=2862961
http://www.ams.org/mathscinet-getitem?mr=3325712
http://www.ams.org/mathscinet-getitem?mr=3054547
http://www.ams.org/mathscinet-getitem?mr=3357880
http://dx.doi.org/10.1214/16-AOS1485SUPP
http://www.ams.org/mathscinet-getitem?mr=2807966
http://www.ams.org/mathscinet-getitem?mr=2985949


TESTING FOR TIME-VARYING JUMP ACTIVITY 1311

WOERNER, J. H. C. (2003). Variational sums and power variation: A unifying approach to model
selection and estimation in semimartingale models. Statist. Decisions 21 47–68. MR1985651

WOERNER, J. H. C. (2007). Inference in Lévy-type stochastic volatility models. Adv. in Appl.
Probab. 39 531–549. MR2343676

DEPARTMENT OF FINANCE

NORTHWESTERN UNIVERSITY

EVANSTON, ILLINOIS 60208-2001
USA
E-MAIL: v-todorov@northwestern.edu

http://www.ams.org/mathscinet-getitem?mr=1985651
http://www.ams.org/mathscinet-getitem?mr=2343676
mailto:v-todorov@northwestern.edu

	Introduction
	Setting and assumptions
	The statistics
	Global estimates of jump activity
	Block-based estimates of jump activity
	Estimates for feasible inference

	Limit behavior of the statistics and testing for time-varying jump activity
	The results
	Discussion

	Monte Carlo
	Proofs
	Localization
	Proof of Theorem 1
	Proof of Theorem 2: Decompositions and notation
	Auxiliary results for the proof of Theorem 2
	Proof of Theorem 2 continued
	Proof of Corollary 1
	Proof of the auxiliary results in Section 6.4
	Proof of Lemma 1


	Acknowledgments
	Supplementary Material
	References
	Author's Addresses

