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Weak signal identification and inference are very important in the area of
penalized model selection, yet they are underdeveloped and not well studied.
Existing inference procedures for penalized estimators are mainly focused on
strong signals. In this paper, we propose an identification procedure for weak
signals in finite samples, and provide a transition phase in-between noise and
strong signal strengths. We also introduce a new two-step inferential method
to construct better confidence intervals for the identified weak signals. Our
theory development assumes that variables are orthogonally designed. Both
theory and numerical studies indicate that the proposed method leads to better
confidence coverage for weak signals, compared with those using asymptotic
inference. In addition, the proposed method outperforms the perturbation and
bootstrap resampling approaches. We illustrate our method for HIV antiretro-
viral drug susceptibility data to identify genetic mutations associated with
HIV drug resistance.

1. Introduction. Penalized model selection methods are developed to select
variables and estimate coefficients simultaneously, which is extremely useful in
variable selection if the dimension of predictors is large. Some most popular model
selection methods include Lasso [26], SCAD [6], adaptive Lasso [33], MCP [31]
and the truncated-L1 penalty method [23]. Asymptotic properties have been estab-
lished for desirable penalized estimators such as unbiasedness, sparsity and the or-
acle property. However, established asymptotic theory mainly targets strong-signal
coefficient estimators. When signal strength is weak, existing penalized methods
are more likely to shrink the coefficient estimator to be 0. For finite samples, the
inference of the weak signals is still lacking in the current literature.

In general, identification and inference for weak signal coefficients play an im-
portant role in scientific discovery. A more extreme argument is that all useful
signals are weak [3], where each individual weak signal might not contribute sig-
nificantly to a model’s prediction, but the weak signals combined together could
have significant influence to predict a model. In addition, even though some vari-
ables do not have strong signal strength, they might still need to be included in the
model by design or by scientific importance.
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The estimation of the distribution for the penalized estimator in finite samples is
quite challenging when the true coefficients are small. Standard bootstrap methods
are not applicable when the parameter is close to zero ([1] and [16]). Recently,
Pötscher and Leeb [20] and Pötscher and Schneider [21, 22] show that the distri-
bution of penalized estimators such as Lasso-type estimators are highly nonnormal
in finite samples. They also indicate that the distribution of the penalized estimator
relies on the true parameter and, therefore, is hard to estimate if the true informa-
tion is unknown. Their findings confirm that even if a weak signal is selected in the
model selection procedure, inference of weak-signal parameters in finite samples
is not valid based on the asymptotic theory.

Studies on weak signal identification and inference are quite limited. Among
these few studies, Jin, Zhang and Zhang [14] propose a graphlet screening method
in high-dimensional variable selection, where all the useful features are assumed
to be rare and weak. Their work mainly focuses on signal detection, but not on pa-
rameter inference. Zhang and Zhang [32] develop a projection approach to project
a high-dimensional model to a low-dimensional problem and construct confidence
intervals. However, their inference method is not for the penalized estimator. The
most recent related work is by Minnier, Tian and Cai [19], where they propose
a perturbation resampling method to draw inference for regularized estimators.
However, their approach is more suitable for relatively strong signal rather than
weak signal inference.

In this paper, we investigate finite sample behavior for weak signal inference.
Mainly we propose an identification procedure for weak signals, and provide a
weak signal interval in-between noise and strong signal strengths, where the weak
signal’s range is defined based on the signal’s detectability under the penalized
model selection framework. In addition, we propose a new two-step inferential
method to construct better inference for the weak signals. In theory, we show that
our two-step procedure guarantees that the confidence interval reaches an accu-
rate coverage rate under regularity conditions. Our numerical studies also confirm
that the proposed method leads to better confidence coverage for weak signals,
compared to existing methods based on asymptotic inference, perturbation meth-
ods and bootstrap resampling approaches ([4] and [5]). Note that our method and
theory are developed under the orthogonal design assumption.

Our paper is organized as follows. In Section 2, we introduce the general frame-
work for penalized model selection. In Section 3, we propose weak signal defini-
tion and identification. The two-step inference procedure and its theoretical prop-
erty for finite samples are illustrated in Section 4. In Section 5, we evaluate finite
sample performance of the proposed method and compare it to other available ap-
proaches, and apply these methods for an HIV drug resistance data example. The
last section provides a brief summary and discussion.

2. Penalized least square method. We consider a linear regression model,

y = Xθ + ε,
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where y = (y1, . . . , yn)
T , X = (X1, . . . ,Xp) is a n × p design matrix with p <

n, θ = (θ1, θ2, . . . , θp)T , and ε ∼ N(0, σ 2In). Throughout the entire paper, we
assume that all covariates are standardized with XT

j Xj = n for j = 1, . . . , p.
The penalized least square estimator is the minimizer of the penalized least

square function:

(2.1) L(θ) = 1

2n
‖y − Xθ‖2 +

p∑
j=1

pλ

(|θj |),
where ‖ · ‖ is the Euclidean norm and pλ(·) is a penalty function controlled by a
tuning parameter λ. For example, the adaptive Lasso penalty proposed by [33] has
the following form:

pALASSO,λ(θ) = λ
|θ |

|θ̂LS| ,

where θ is any component of θ , and θ̂LS is the least-square estimator of θ . The
penalized least square estimator θ̂ is obtained by minimizing (2.1) given a λ,
where the best λ can be selected through k-fold cross validation, generalized cross-
validation (GCV) [6] or the Bayesian information criterion (BIC) [28].

In this paper, we mainly focus on the adaptive Lasso estimator as an illustration
for penalized estimators. Our method, however, is also applicable for other appro-
priate penalized estimators. Under the orthogonal designed matrix X, the adaptive
Lasso estimator has an explicit expression:

(2.2) θ̂ALASSO =
(∣∣θ̂LS∣∣ − λ

|θ̂LS|
)

+
sgn

(
θ̂LS)

.

Assume A = {j : θj �= 0}, Ac = {j : θj = 0}, An = {j : θ̂j �= 0}, Ac
n = {j : θ̂j =

0}, where θ̂ denotes the penalized estimation. If the tuning parameter λn satis-
fies conditions of

√
nλn → 0, nλn → ∞, the adaptive Lasso estimator has oracle

properties such that An = A with probability tending to 1 as n goes to infinity. This
indicates that the adaptive Lasso is able to successfully classify model parameters
into two groups, A and Ac, if the sample size is large enough. An underlying
sufficient condition for such perfect separation asymptotically is that all nonzero
signals should be greater than a uniform signal strength, which is proportional to
σ/

√
n [6]. In other words, signal strength within a noise level Cσ/

√
n should not

be detected through a regularized procedure. However, due to an uncertain scale
for the constant C, the absolute boundary between noise and signal level is unclear.

Therefore, it is important to define a more informative signal magnitude which
is applicable in finite samples. This motivates us to define a transition phase in-
between noise level and strong-signal level. In the following, we propose three
phases corresponding to noise, weak signal and strong signal, where three differ-
ent levels are defined based on low, moderate and high detectability of signals,
respectively.
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3. Weak signal definition and identification.

3.1. Weak signal definition. Suppose a model contains both strong and weak
signals. Without loss of generality, the parameter vector θ consists of three com-
ponents: θ = (�(S),�(W),�(N))T , where �(S),�(W) and �(N) represent strong-
signal, weak-signal and noise coefficients. We introduce a degree of detectability
to measure different signal strength levels as follows.

For any given penalized model selection method, we define Pd as a probability
of selecting an individual variable. For example, for the Lasso approach in (2.2),
Pd has an explicit form of θ function given n,σ and λ:

(3.1) Pd(θ) = P(θ̂ALASSO �= 0|θ) = �

(
θ − √

λ

σ/
√

n

)
+ �

(−θ − √
λ

σ/
√

n

)
.

Clearly, Pd(θ) is a symmetric function, and Pd(θ) → 0 for θ = 0, Pd(θ) → 1
for any θ �= 0, as n → ∞. For finite samples, Pd(θ) is an increasing function of
|θ |, and measures the detectability of a signal coefficient, which serves as a good
indicator of signal strength such that a stronger signal leads to a larger Pd and vice
versa.

In the following, we define a strong signal if Pd is close to 1, a noise variable
if Pd is close to 0, and a weak signal if a signal strength is in-between strong and
noise levels. Specifically, suppose there are two threshold probabilities, γ s and γ w

derived from Pd , the three signal-strength levels are defined as

(3.2)

⎧⎪⎪⎨
⎪⎪⎩

θ ∈ �(S), if Pd > γ s,

θ ∈ �(W), if γ w < Pd ≤ γ s,

θ ∈ �(N), if Pd ≤ γ w,

where τ0 � γ w < γ s � 1, and τ0 = minθ Pd(θ) = 2�(−
√

nλ
σ

) can be viewed as
a false-positive rate of model selection. Theoretically, τ0 → 0 when n → ∞ for
consistent model selection. In finite samples, τ0 does not need to be 0, but close
to 0.

To see the connection between signal detectability Pd and signal strength, we
let νγ be a positive solution of Pd = γ in (3.1):

(3.3) γ = �

(
νγ − √

λ

σ/
√

n

)
+ �

(−νγ − √
λ

σ/
√

n

)
.

It can be shown that νγ is an increasing function of γ . In addition, if the two
positive threshold values νs and νw are solutions of equation (3.3) corresponding
to γ = γ s and γ w , then the definition in (3.2) is equivalent to⎧⎪⎪⎨

⎪⎪⎩
θ ∈ �(S), if |θ | > νs,

θ ∈ �(W), if νw < |θ | ≤ νs,

θ ∈ �(N), if |θ | ≤ νw.

(3.4)

Figure 1 also illustrates a connection between definition (3.2) and definition (3.4).
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FIG. 1. Define signal level based on Pd .

The following lemma provides selections of γ s and γ w , which is useful to dif-
ferentiate weak signals from noise variables. Lemma 1 also infers the order of
weak signals, given both γ s and γ w are bounded away from 0 and 1.

LEMMA 1 (Selection of γ s and γ w). If assumptions of
√

nλn → 0, nλn → ∞
are satisfied, and if the threshold values of detectability γ w and γ s corresponding
to the lower bounds of weak and strong signals satisfy

max
{
ε,2�

(
−

√
nλn

σ

)}
< γ w < γ s < 1 − ε,

where ε is a small positive value; then for any γ in the weak signal range (γ w, γ s),
we have νγ /

√
λn → 1.

Although Lemma 1 implies that ν within the weak signal range converges to
zero asymptotically, the weak signal and noise variables have different orders.
Specifically, Lemma 1 indicates that if the regularity condition nλn → ∞ is sat-
isfied, then a weak signal goes to zero more slowly than a noise variable. This is
due to the fact that the weak signal has the same order as

√
λn, which goes to zero

more slowly than the order of noise level n−1/2. To simplify notation, the tuning
parameter λn is denoted as λ throughout the rest of the paper.

The definitions in (3.2) and (3.4) are particularly meaningful in finite samples
since νγ depends on n,λ,σ and γ . That is, the weak signals are relative and de-
pend on the sample size, the signal to noise ratio and the tuning parameter se-
lection. In other words, weak signals �(W) might be asymptotically trivial since
the three levels automatically degenerate into two levels: zero and nonzero coeffi-
cients. However, weak signals should not be ignored in finite samples and serve as
a transition phase between noise variables �(N) and strong signals �(S).

3.2. Weak signal identification. In this section, we discuss how to identify
weak signals more specifically. We propose a two-step procedure to recover possi-
ble weak signals which might be missed in a standard model selection procedure,
and distinguish weak signals from strong signals.
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The key component of the proposed procedure is to utilize the estimated prob-
ability of detection P̂d . Since the true information of parameter θ is unknown, Pd

cannot be calculated directly using (3.1). We propose to estimate Pd by plugging in
the least-square estimator θ̂LS in (3.1). The expectation of the estimator P̂d remains
an increasing function of |θ |, that is,

(3.5) P̂d = �

(
θ̂LS − √

λ

σ/
√

n

)
+ �

(−θ̂LS − √
λ

σ/
√

n

)

and

E(P̂d) = �

( √
n√

2σ
(θ − √

λ)

)
− �

(
−

√
n√

2σ
(θ + √

λ)

)
.

In the following, the weak signal is identified through replacing Pd, (γ w, νw)

and (γ s, νs) in (3.2) by P̂d , (γ1, ν1) and (γ2, ν2), where (γ1, ν1) and (γ2, ν2) sat-
isfy equation (3.3). We denote the identified noise, weak and strong signal set as
(̂S(N), Ŝ(W), Ŝ(S)), where

Ŝ(N) = {
i : |θ̂LS,i | ≤ ν1, i = 1, . . . , p

} = {i : P̂d,i ≤ γ1},
Ŝ(W) = {

i : ν1 < |θ̂LS,i | ≤ ν2, i = 1, . . . , p
} = {i : γ1 < P̂d,i ≤ γ2}, and

Ŝ(S) = {
i : |θ̂LS,i | > ν2, i = 1, . . . , p

} = {i : P̂d,i > γ2}.
The details of selecting ν1 and ν2 are given below.

Note that in finite samples, there is no ideal threshold value ν1 which can sep-
arate signal variables and noise variables perfectly, as there is a trade-off between
recovering weak signals and including noise variables. Here, ν1 is selected to con-
trol a signal’s false-positive rate τ . Specifically, ν1 = zτ/2

σ√
n

for any given toler-

ant false-positive rate τ since it can be shown that P(i /∈ Ŝ(N)|θi = 0) = τ ; see
Lemma 3 in the Appendix. Here, we choose the false-positive rate τ to be larger
than the τ0, since we intend to recover most of the weak signals. This is very dif-
ferent from standard model selection which mainly focuses on model selection
consistency, but neglects detection of weak signals.

The low threshold value ν2 for strong signals is selected to ensure that a strong
signal can be identified with high probability. We choose ν2 = √

λ+zα/2
σ√
n

, and it

can be verified that the estimated detection rate P̂d for any identified strong signal
stays above 1 − α. In fact, based on (3.5), P̂d satisfies the inequality Pd > E(P̂d)

when the true signal is strong. Figure 2 illustrates the relationship between Pd and
E(P̂d). Therefore, there is a high probability that the true detection rate Pd is larger
than 1 − α when P̂d > 1 − α.

In summary, the main focus of weak signal identification is to recover weak
signals as much as possible, at the cost of having a false-positive rate τ in finite
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FIG. 2. Pd and E(P̂d).

samples. This is in contrast to standard model selection procedures which empha-
size consistent model selection with a close-to-zero false-positive rate, but at the
cost of not selecting most weak signals.

To better understand the difference and connection between the proposed weak
signal identification procedure and the standard model selection procedure, we
provide Figure 3 for illustration. Let Pd,0(θ) (dashed line) and Pd,1(θ) (dotted line)
denote the probabilities of selecting θ in the standard model selection and the pro-
posed weak signal identification, respectively, where Pd,0(θ) = P(|θ̂LS| >

√
λ),

and Pd,1(θ) = P(ν1 < |θ̂LS| <
√

λ). Then the total selection probability Pd,2(θ)

(solid line) for the proposed method is Pd,2(θ) = Pd,0(θ) + Pd,1(θ) = P(|θ̂LS| >

ν1). Figure 3 indicates that the proposed procedure recovers weak signals better
than the standard model selection procedure, but at a cost of a small false-positive
rate of including some noise variables. These two procedures have similar detec-
tion power for strong signals.

FIG. 3. Signal’s detectability in two-step procedure.
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4. Weak signal inference.

4.1. Two-step inference method. In this section, we propose a two-step in-
ference procedure which consists of an asymptotic-based confidence interval for
strong signals, and a least-square confidence interval for the identified weak sig-
nals. In the following, the proposed procedure is based on the orthogonal design
assumption.

The asymptotic-based inference method has been developed for the SCAD esti-
mator [6]. Zou [33] also provides the asymptotic distribution of the adaptive Lasso
estimator θ̂An for nonzero parameters, where An = {1,2, . . . , q}. In finite sam-
ples, the adaptive Lasso estimator θ̂An is biased due to the shrinkage estimation.
The bias term of θ̂An and the covariance matrix estimator of θ̂An are given by

b̂(θ̂An) =
(

1

n
XT
An

XAn

)−1(
p′

λ

(|θ̂1|) sgn(θ̂1), . . . , p
′
λ

(|θ̂q |) sgn(θ̂q)
)T

,(4.1)

and

Ĉov(θ̂An) = {
XT
An

XAn + nλ�
}−1XT

An
XAn

{
XT
An

XAn + nλ�
}−1

σ̂ 2,(4.2)

where � = diag{ ŵ1

|θ̂1| , . . . ,
ŵq

|θ̂q | }, and ŵi = 1/|θ̂LS,i |. Although the bias term is

asymptotically negligible, it is important to correct the biased term to get more
accurate confidence intervals in finite samples.

Consequently, if the ith variable is identified as a strong signal in Ŝ(S), a 100(1−
α)% confidence interval for θi can be constructed as

(4.3) θ̂i + b̂AL,i ± zα/2σ̂AL,i ,

where b̂AL,i and σ̂AL,i are the corresponding biased component in (4.1) and the
square root of the diagonal variance component in (4.2), respectively. Under the
orthogonal design, they are equivalent to

b̂AL,i = λ

|θ̂LS,i |
· sgn(θ̂i) and(4.4)

σ̂AL,i =
(

1 + λ

|θ̂i ||θ̂LS,i |
)−1

· σ̂ /n.(4.5)

The above inference procedure performs well for strong signals ([6, 33] and
[12]). However, this procedure does not apply well to weak signals. This is be-
cause weak signals are often missed in standard model selection procedures and,
therefore, there is no confidence interval constructed for any estimator shrunk to 0.
Moreover, even if a weak signal is selected, the variance estimator in (4.2) tends
to underestimate its true standard error, and consequently the confidence interval
based on (4.3) is under-covered. Here, we propose an alternative confidence inter-
val for a weak signal in Ŝ(W) by utilizing the least-square information as follows.
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The proposed inference for weak signals is motivated in that the bias-corrected
confidence interval in (4.3) is close to the least-square confidence interval when
a signal is strong. Therefore, it is natural to construct a least-square confidence
interval for a weak signal to solve the problem of excessive shrinkage for weak
signal estimators.

If the ith variable is identified as a weak signal in Ŝ(W), we construct a 100(1 −
α)% least-square confidence interval for θi as

(4.6) θ̂LS,i ± zα/2σ̂LS,i ,

where θ̂LS,i and σ̂LS,i are the components of the least-square estimator and the
square root of the diagonal component of the covariance matrix estimator:

θ̂LS = (
XT X

)−1XT y,

Ĉov(θ̂LS) = (
XT X

)−1
σ̂ 2.

Under the orthogonal design, θ̂LS,i and σ̂LS,i are

θ̂LS,i = XT
i y/n,

σ̂LS,i = σ̂ /n.

In summary, if a nonzero signal is detected, combining (4.3) and (4.6), we pro-
vide a new two-step confidence interval for the ith variable as follows:

{θ̂LS,i ± zα/2σ̂LS,i}1{i∈Ŝ(W)} + {θ̂i + b̂AL,i ± zα/2σ̂AL,i}1{i∈Ŝ(S)}.

Here, we propose different confidence interval constructions for weak and
strong signals, and the proposed inference is a mixed procedure combining (4.3)
and (4.6). Our inference procedure performs similarly to the asymptotic inference
for strong signals, but outperforms the existing inference procedures in that the
proposed confidence interval provides more accurate coverage for weak signals.
Note that if a signal strength is too weak, neither existing methods nor our method
can provide reasonably good inferences. Nevertheless, our method still provides a
better inference than the asymptotic-based method across all signal levels.

4.2. Finite sample theories. In this section, we establish finite sample theory
on coverage rate for the proposed two-step inference method, and compare it with
the coverage rate of the asymptotic-based inference method. The asymptotic prop-
erties for penalized estimators have been investigated by [6, 8, 33, 35] and many
others. When the sample size is sufficiently large and the signal strength is strong,
the asymptotic inference is quite accurate in capturing the information of the penal-
ized estimators. For instance, the covariance estimator of the penalized estimates in
(4.2) is a consistent estimator [8]. However, the sandwich estimator of the covari-
ance only performs well for strong signals, not for weak signals in finite samples.
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Therefore, it is important to investigate the finite sample property of the penalized
estimator, and especially the weak signal estimators for the proposed method.

We construct the exact coverage rates of the 100(1 − α)% confidence intervals
for the proposed method and the asymptotic method when the sample size is finite.
The derivation for finite sample theory is very different from the asymptotic theory.
In addition, since the coverage rate function is not monotonic, we need to compare
the difference of the two coverage rates piecewisely.

Given a confidence level parameter α, the following regularity conditions are
required for selecting the false-positive rate τ :

(C1) τ ≥ α,
(C2) α+τ

2 < �(−1
2zα/2), which is equivalent to τ < 2�(−1

2zα/2) − α.

Condition (C1) is to ensure that the second step of the proposed method is able
to identify weak signals. Condition (C2) provides a range of τ , so the false positive-
rate is not too large. In addition, we also assume that λ satisfies the criterion

√
λ ≥ zα/2

σ√
n
.(4.7)

The criterion in (4.7) implies that our focus is the case when
√

λ ≥ zα/2
σ√
n

, where
excessive shrinkage might affect weak signal selection. It can be verified that α ≥
τ0 if λ is in this range, and this guarantees that τ > τ0.

In the following, for any parameter θ and parameter ν associated with a different
level of tuning, we introduce three probability functions, Ps , CRa and CRb as
follows. Let Ps be the detection power of θ :

Ps(θ, ν) = �

(
θ − ν

σ/
√

n

)
+ �

(−θ − ν

σ/
√

n

)
.

We define CRa as the coverage probability based on the asymptotic inference ap-
proach when |θ̂LS| is larger than ν:

CRa(θ, ν) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
Ps(θ, ν) − 2�

(
−zα/2

σ̃ (θ)

σ

)}

× I{ν≤zα/2
σ̃ (θ)√

n
}, if |θ | ≤

∣∣∣∣ν − zα/2
σ̃ (θ)√

n

∣∣∣∣,
�

(
zα/2

σ̃ (θ)

σ

)
− �

(√
n(ν − θ)

σ

)
,

if
∣∣∣∣ν − zα/2

σ̃ (θ)√
n

∣∣∣∣ ≤ |θ | ≤ ν + zα/2
σ̃ (θ)√

n
,

1 − 2�

(
−zα/2

σ̃ (θ)

σ

)
, if |θ | > ν + zα/2

σ̃ (θ)√
n

,
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where σ̃ (θ) = (1 + λ
θ2 )−1σ ; and CRb is the coverage probability based on the

least-square confidence interval when |θ̂LS| is larger than ν:

CRb(θ, ν) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
Ps(θ, ν) − α

} · I{ν≤zα/2
σ√
n
}, if |θ | ≤

∣∣∣∣ν − zα/2
σ√
n

∣∣∣∣,
1 − α

2
− �

(√
n(ν − θ)

σ

)
,

if
∣∣∣∣ν − zα/2

σ√
n

∣∣∣∣ ≤ |θ | ≤ ν + zα/2
σ√
n
,

1 − α, if |θ | > ν + zα/2
σ√
n
.

The explicit expressions of coverage rates based on the asymptotic and the pro-
posed two-step methods are provided in the following lemma.

LEMMA 2. Suppose n,σ and tuning parameter λ are given, the coverage rate
CR1(θ) of the 100(1 − α)% confidence interval for any coefficient θ based on the
asymptotic inference is

CR1(θ) = CRa(θ, ν0)

Ps(θ, ν0)
,(4.8)

where ν0 = √
λ. Given any τ , the coverage rate CR(θ) of the 100(1 − α)% confi-

dence interval for any coefficient θ using the proposed two-step inference method
is given by

CR(θ) = CRb(θ, ν1) + CRa(θ, ν2) − CRb(θ, ν2)

Ps(θ, ν1)
,(4.9)

where ν0 = √
λ, ν1 = zτ/2

σ√
n

, and ν2 = √
λ + zα/2

σ√
n

.

The derivations of CR1(θ) and CR(θ) are provided in the proof of Lemma 2
in the Appendix. In fact, CR1(θ) is the conditional coverage probability based on
the asymptotic confidence interval, given that θ is selected using tuning param-
eter λ. Similarly, CR(θ) is the conditional coverage probability of the proposed
confidence interval in (4.7), given that θ is selected based on the two-step pro-
cedure. The expression of CR(θ) in (4.9) can be interpreted as the summation of
two sub-components, where the first component CRb(θ,ν1)−CRb(θ,ν2)

Ps(θ,ν1)
, corresponds

to the conditional coverage probability of the least-square confidence interval when
ν1 < |θ̂LS| < ν2, and the second component CRa(θ,ν2)

Ps(θ,ν1)
, is the conditional coverage

probability of the asymptotic-based confidence interval when |θ̂LS| > ν2.
In addition, we show in the supplement [24] that both CR1(θ) and CR(θ) are

piecewise smooth functions, and require one to compare two coverage rates at each
interval separately. We introduce the boundary points associated with CR1(θ) and
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CR(θ) as follows. Let c1, c2, c3 and c4 be the solutions of θ = √
λ− zα/2

σ̃ (θ)√
n

, θ =√
λ + zα/2

σ̃ (θ)√
n

, θ = √
λ + zα/2

σ√
n

− zα/2
σ̃ (θ)√

n
, and θ = √

λ + zα/2
σ√
n

+ zα/2
σ̃ (θ)√

n
,

respectively. Here, c1 and c2 are the boundary points of piecewise intervals for
CR1(θ) in (4.8), and c3 and c4 are the boundary points of piecewise intervals for
CR(θ) in (4.9). It can be shown that the orders of c1, c2, c3 and c4 satisfy c1 <

c3 < c2 < c4. More specific ranges for c1, c2, c3 and c4 are provided in Lemma 4
of the Appendix. Since there are no explicit solutions for these boundary points,
we rely on the orders of these boundary points to examine the difference between
CR1(θ) and CR(θ).

In the following, we define �(θ) = CR(θ) − CR1(θ) as a difference function
between CR(θ) and CR1(θ). Theorem 1 and Theorem 2 provide the uniform low
bounds of �(θ) for different ranges of λ when zα/2

σ√
n

≤ √
λ < (zα/2 + zτ/2)

σ√
n

and
√

λ ≥ (zα/2 + zτ/2)
σ√
n

. The mathematical details of the proofs are provided in
the Appendix and supplement materials.

THEOREM 1. Under conditions (C1)–(C2), if λ satisfies zα/2
σ√
n

<
√

λ <

(zα/2 + zτ/2)
σ√
n

, the piecewise lower bounds for �(θ) are provided as follows:

(a) when θ ∈ [0, c1], �(θ) ≥ 1 − α
τ

> 0;
(b) when θ ∈ [c1, ν0], �(θ) ≥ 2

1+α
− 2�(1

2zα/2) > 0;
(c) when θ ∈ [ν0,+∞), �(θ) satisfies either �(θ) ≥ 0 or −α

2 < �(θ) < 0.

In addition, a more specific lower bound for �(θ) on [ν0,+∞) is given by

�(θ) ≥

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−4
(

1 − α

2

)
�

(
−3

2
zα/2

)
, if θ ∈ [

ν0,min{ν3, c3}],
See Table 1, if θ ∈ [

min{ν3, c3},
max{ν3, c2}],

−4(1 − α)

(2 − α)2 �(−2zα/2) − α(1 − α)

2 − α
, if θ ∈ [

max{ν3, c2}, c4
]
,

−(1 − α)
�(−3

2zα/2)

�(3
2zα/2)2

, if θ ∈ [c4, ν4],

−(1 − α)
�(−2zα/2)

�(2zα/2)2 , if θ ∈ [ν4,∞),

where ν3 = (zα/2 + zτ/2)
σ√
n

, and ν4 = √
λ + 2zα/2

σ√
n

. Table 1 provides the lower

bounds for �(θ) on interval [min{ν3, c3},max{ν3, c2}] under three cases.

THEOREM 2. Under conditions (C1)–(C2), if λ satisfies
√

λ ≥ (zα/2 +
zτ/2)

σ√
n

, the lower bounds for �(θ) are provided as follows:

1. When θ ∈ [0,min{ν3, c1}], �(θ) ≥ 1 − α
τ

> 0.



1226 P. SHI AND A. QU

TABLE 1
Specific bounds of �(θ) on interval [min{ν3, c3},max{ν3, c2}]

Case 1: θ ∈ [c3, ν3] θ ∈ [ν3, c2]
c3 < ν3 < c2 −2�(− 3

2zα/2) − 4(1−α)

(2−α)2 �(−2zα/2) − α(1−α)
2−α

Case 2: θ ∈ [c3, c2] θ ∈ [c2, ν3]
c3 < c2 < ν3 −2(1 − α)�(− 3

2zα/2) − 1−α

[�( 1
2 zα/2)]2 �(−2zα/2)

Case 3: θ ∈ [ν3, c2]
ν3 < c3 < c2 −α

2

2. When θ ∈ [min{ν3, c1}, ν0], see Table 2.
3. When θ ∈ [ν0,+∞), �(θ) ≥ 0 or −α

2 < �(θ) < 0.

Theorem 1 and Theorem 2 indicate that the proposed method outperforms the
asymptotic-based method, with a uniform lower bound for �(θ) when θ ∈ [0, ν0].
More specifically, the lower bound of �(θ) depends on α and τ for case (i) (θ ∈
[0, c1]) in Theorem 1 and case (i) (θ ∈ [0,min{ν3, c1}]) in Theorem 2. Since we
select τ to be larger than α, it is clear that �(θ) is bounded above zero. For case
(ii) (θ ∈ [c1, ν0]) in Theorem 1 and case (ii) (θ ∈ [min{ν3, c1}, ν0]) in Theorem 2,
the lower bound of �(θ) only depends on α. In fact, the minimum value of 2

1+α
−

2�(1
2zα/2) is larger than 0.22 if α ∈ [0.05,0.1], based on Theorem 1. This also

confirms that the proposed method provides a confidence region with at least 22%
improvement in coverage rate than the one based on the asymptotic method. The
lower bounds of case (ii) in Theorem 2 can be interpreted in a similar way.

In addition, both Theorem 1 and Theorem 2 imply that when θ ∈ (ν0,+∞) with
a moderately large coefficient, the proposed method performs better than, or close
to, the asymptotic method. In summary, the two-step inference method provides
more accurate coverage than the one based on the asymptotic inference, and is
also more effective for the weak signal region.

In Theorem 1, since the order relationships among c2, c3 and ν3 change for
different ranges of tuning parameters and choices of false positive rate τ , it leads
to the three cases in Table 1. Similarly, the order relationships among ν3 and c1
also change for different choices of λ and τ in Theorem 2, leading to the two cases

TABLE 2
Specific bounds of �(θ) on interval [min{ν3, c1}, ν0]

Case 4: θ ∈ [ν3, ν0]
ν3 < c1 2 − α − 2�( 1

2zα/2)

Case 5: θ ∈ [c1, ν3] θ ∈ [ν3, ν0]
c1 < ν3 �(− 1

2zα/2) − α
2 2 − α − 2�( 1

2zα/2)
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FIG. 4. CR(θ) versus CR1(θ) (an example: Case 1).

in Table 2. Figure 4 illustrates an example for case 1. Figures for the other four
cases are provided in the supplemental material.

5. Finite sample performance.

5.1. Simulation studies. To examine the empirical performance of the pro-
posed inference procedure, we conduct simulation studies to evaluate the accuracy
of the confidence intervals described in Section 4.1. We generate 400 simulated
data with a sample size of n under the linear model y = Xθ +N (0, σ 2), where X =
(X1, . . . ,Xp) and Xj ∼ N (0, In). We allow covariates X to be correlated with an
AR(1) correlation structure, and the pairwise correlation cor(Xi ,Xj ) = ρ|i−j |. We
choose (n,p,σ ) = (100,20,2) and (400,50,2), and ρ = 0,0.2 or 0.5 for each set-
ting. In addition, the p-dimensional coefficient vector θ = (1,1,0.5, θ,0, . . . ,0),
which consists of two strong signals of 1’s, one moderate strong signal of 0.5, one
varying-signal θ , and (p − 4) null variables. We let the coefficient θ vary between
0 (null) to 1 (strong signal) to examine the confidence coverages across different
signal strength levels.

We construct 95% confidence intervals for an identified signal based on (4.7).
We implement the glmnet package in R [9] to obtain the adaptive Lasso estimator.
We choose the tuning parameter λ based on the Bayesian information criterion
(BIC), because of its consistency property to select the true model [29]. Here,
we follow a strategy by [28] to select the BIC tuning parameter for the adaptive
Lasso penalty (details are provided in Appendix A.2). The standard deviation σ̂ is
estimated based on the scaled Lasso method [25], using the “scalreg” package in R.
We replace θ̂i by its bias-corrected form θ̂i + b̂AL,i in (4.5) when estimating σ̂AL,
which achieves better estimation of the true standard deviation. For comparison,
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FIG. 5. False positive rate for simulation setting 1 (left) and 2 (right).

we also construct standard confidence intervals based on the asymptotic formula
in (4.3), along with the bootstrap method [5], the smoothed bootstrap method [4],
the perturbation method [19] and the de-biased Lasso method [13]. The de-biased
method is implemented using the R codes provided by Montanari’s website. For
both regular bootstrap and smoothed bootstrap methods, the number of bootstrap
sampling is set to be 4000 [4]. For the perturbation method, the resampling time is
set to be 500 according to [19].

In addition, the coverage rate for the OLS estimator is included as a benchmark
since there is no shrinkage in OLS estimation and the confidence interval is the
most accurate. Here, the OLS estimator θ̂LS given in (4.6) is estimated from the full
model. We used the estimator from the full model because our method assumes that
the covariates are orthogonally designed. Under this assumption, the least square
estimator under a submodel is the same estimator as that under the full model. If
covariates are correlated, the estimator under the correctly specified submodel is
more efficient than the one under the full model. However, we cannot guarantee
that the selected submodel is correctly specified. If the submodel is misspecified,
then the θ̂LS could be biased, which could lead to inaccurate inference for the
coefficients of the selected variables. Note that selection of the wrong model is
likely, especially when weak signals exist.

Figure 5 illustrates the relationship between τ0 and τ when ρ = 0.2 for two

model settings (n,p,σ ) = (100,20,2) and (400,50,2), where τ0 = 2�(−
√

nλ
σ

)

based on Section 3.1. We choose τ larger than τ0 according to Section 3, that is, the
false-positive rate in the weak signal recovery procedure is slightly larger than the
false-positive rate in the model selection procedure. In these two model settings,
τ0 are around 0.1 and 0.03, respectively; here, we select τ as 0.2. In practice, the
selection of τ is flexible, and can be determined by a tolerance level for including
noise variables.

Figure 6 and Figure 7 provide the coverage probabilities for θ varying between 0
and 1 when ρ = 0.2 in two model settings. In each figure, νs and νw are the average
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FIG. 6. 95% confidence interval’s coverage rates for simulation setting 1 when ρ = 0.2.

threshold coefficients corresponding to the detection powers Pd = 0.9 and 0.1,
respectively. When the signal strength is close to zero, neither of the coverage rates
using our method and the asymptotic method are accurate. However, the proposed
method is still better than the asymptotic one, since the asymptotic coverage rate is
close to zero; while the bootstrap and perturbation methods tend to provide over-
coverage confidence intervals. The proposed method becomes more accurate as
the magnitude of signal θ increases, and also outperforms all the other methods
especially in the weak signal region. For example, in setting 1, the coverage rate of
the proposed method is quite close to 95% when the signal strength is larger than

FIG. 7. 95% confidence interval’s coverage rates for simulation setting 2 when ρ = 0.2.
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0.4. On the other hand, the resampling methods and asymptotic inference provide
low coverage rates for signal strength below 0.8. When signal strength is above
0.8, the coverages from all methods are accurate and close to 95%.

The results for correlated covariates settings are provided in Table 3. For each
setting, we select two different values of θ whose detection probabilities Pd are
between 0.1 and 0.9. Here, the first θ is relatively weaker, and the second one is
at the boundary of strong signal. For all these settings, the asymptotic inference,
bootstrap and perturbation methods provide confidence intervals far below 95%
when signals are weak. In general, our method provides a stable inference even
when the correlation coefficient increases, and the coverage rate for weak signals
is between 90–96% when ρ = 0.5. The asymptotic-based inference has the low-
est coverage rates among all, and performs extremely poorly when ρ is larger.
The coverage rates based on the perturbation method are all below 75% for weak
signals. Note that the coverage rate improvement using the smoothed bootstrap
method is not significant compared to the standard bootstrap method. In addition,
for n = 100,p = 50, the bootstrap and smooth bootstrap methods face a singular-
designed matrix problem due to small sample size, which does not produce any
simulation results 7–10% of the time. The average coverage rates provided in Ta-
ble 3 might not be valid and are marked with ∗.

Table 4 provides the CI lengths of all methods for both weak and strong signals.
In general, the proposed method provides narrower confidence intervals and better
coverage rates than the perturbation and bootstrap methods, and shorter confidence
intervals with comparable coverage rates as the de-biased Lasso method for strong
signals. For example, when (n,p,ρ) = (100,20,0) and θ = 0.75, the coverage
rate of our method is 94.4%, compared to 87.6% based on the perturbation method,
91.4% based on the bootstrap method, and 93.8% based on the de-biased method.
The corresponding CI length of our method equals 0.770, which is smaller than the
0.911 from the perturbation method, 1.020 from the bootstrap method, and 1.101
from the de-biased method. Furthermore, our CI is also shorter compared to the
least square CI for strong signals in general.

For weak signals, our CI is wider than the perturbation and bootstrap methods.
This is because both the perturbation and bootstrap methods provide inaccurate
coverage rates which tend to be smaller than 95%. For example, when (n,p,ρ) =
(100,20,0) and θ = 0.3, the coverage rate of our method is 94.4%, compared to
67.3% based on the perturbation method, 74.5% based on the bootstrap method,
and 94.5% based on the de-biased Lasso method. The corresponding CI length of
our method is 0.862, which is wider than the 0.652 from the perturbation method
and the 0.786 from the bootstrap method, but is still shorter than the 1.071 from
the de-biased Lasso method.

Figure 8 also presents the probabilities of assigning each signal category for a
given θ value, where the probabilities for identified strong signal [P(i ∈ Ŝ(S))],
weak signal [P(i ∈ Ŝ(W))] and null variable [P(i ∈ Ŝ(N))] are denoted as solid,
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TABLE 3
Coverage probabilities of confidence regions when σ = 2

p = 20 p = 50

n θ ρ = 0 ρ = 0.2 ρ = 0.5 ρ = 0 ρ = 0.2 ρ = 0.5

100 0.3 CROur 94.4 92.6 91.1 92.1 91.1 95.3
CRAsym 61.5 61.2 38.3 33.3 18.5 21.4
CRPtb 67.3 68.6 74.2 68.6 64.8 58.6
CRBs 74.5 77.0 88.7 100.0∗ 100.0∗ 100.0∗

CRsmBS 68.1 65.4 74.3 95.1∗ 93.5∗ 92.3∗
CROLS 93.2 93.2 94.0 94.5 93.0 95.0

CRLasso-debiased 94.5 95.5 97.0 94.8 94.0 96.5
0.75 CROur 94.4 92.9 91.9 93.8 92.5 93.6

CRAsym 89.6 87.4 75.1 85.3 77.5 63.9
CRPtb 87.6 90.9 86.4 90.0 93.8 78.9
CRBs 91.4 90.7 88.0 98.9∗ 98.8∗ 100.0∗

CRsmBS 89.3 89.1 89.2 91.3∗ 95.3∗ 91.1∗
CROLS 92.8 96.0 94.0 95.5 95.5 94.0

CRLasso-debiased 93.8 96.5 96.8 96.3 96.0 96.3

200 0.2 CROur 94.6 94.7 93.3 95.3 93.7 91.3
CRAsym 52.0 51.6 38.1 15.9 22.4 18.0
CRPtb 61.4 65.3 69.4 48.1 44.2 49.3
CRBs 58.5 58.1 72.8 56.1 61.0 63.5

CRsmBS 54.7 50.5 62.6 46.0 48.8 46.4
CROLS 95.2 94.2 95.8 95.2 95.5 95.8

CRLasso-debiased 93.5 95.0 96.5 95.5 96.0 94.8
0.6 CROur 95.5 93.0 91.5 93.7 91.6 90.3

CRAsym 88.8 86.2 76.6 88.5 82.7 65.0
CRPtb 90.2 92.6 86.1 84.2 88.0 89.6
CRBs 90.7 91.7 88.4 86.9 89.4 82.7

CRsmBS 88.4 89.5 91.2 80.7 84.2 81.4
CROLS 96.2 96.0 96.5 95.2 93.8 94.2

CRLasso-debiased 95.5 95.3 96.3 95.0 95.0 94.0

400 0.15 CROur 93.6 94.6 93.4 97.0 96.3 90.5
CRAsym 31.7 33.8 44.8 9.1 11.6 10.7
CRPtb 33.6 51.0 60.3 33.6 39.3 44.7
CRBs 35.3 54.2 57.9 35.3 39.1 38.6

CRsmBS 27.4 49.9 52.2 27.4 32.2 31.3
CROLS 92.5 96.8 96.0 94.8 95.5 94.2

CRLasso-debiased 90.8 93.3 91.5 94.0 96.5 93.0
0.4 CROur 94.8 92.2 92.2 92.7 92.1 92.8

CRAsym 94.0 91.2 85.5 91.7 88.7 72.6
CRPtb 79.5 89.3 89.2 79.5 75.8 70.7
CRBs 87.5 89.3 80.3 87.5 82.4 70.3

CRsmBS 79.8 87.2 84.3 79.8 76.6 71.0
CROLS 95.8 93.2 93.5 94.5 94.8 93.0

CRLasso-debiased 90.0 92.5 93.5 95.8 94.3 93.8

Note: The values are multiplied by 100. ∗Indicates that the bootstrap and smooth bootstrap methods
encounter a singular-designed matrix problem (7–10% times), and only partial simulation results are
used for calculation.
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TABLE 4
Average widths of confidence intervals when σ = 2

p = 20 p = 50

n θ ρ = 0 ρ = 0.2 ρ = 0.5 ρ = 0 ρ = 0.2 ρ = 0.5

100 0.3 len CROur 0.862 0.889 1.098 1.083 1.131 1.403
len CRAsym 0.594 0.593 0.582 0.542 0.541 0.519
len CRPtb 0.652 0.691 0.803 0.679 0.672 0.829
len CRBs 0.786 0.818 0.954 1.717∗ 1.756∗ 2.206∗

len CRsmBS 0.626 0.654 0.746 0.998∗ 1.014∗ 1.296∗
len CROLS 0.864 0.900 1.094 1.106 1.135 1.401

len CRLasso-debiased 1.071 1.081 1.304 1.179 1.220 1.487

0.75 len CROur 0.770 0.794 1.031 0.956 1.045 1.306
len CRAsym 0.659 0.659 0.648 0.612 0.592 0.579
len CRPtb 0.911 0.929 1.129 0.973 0.971 1.154
len CRBs 1.020 1.054 1.262 1.786∗ 1.886∗ 2.276∗

len CRsmBS 0.902 0.944 1.114 1.073∗ 1.134∗ 1.354∗
len CROLS 0.866 0.899 1.094 1.118 1.151 1.399

len CRLasso-debiased 1.101 1.126 1.414 1.193 1.269 1.529

200 0.2 len CROur 0.580 0.603 0.743 0.628 0.659 0.812
len CRAsym 0.412 0.420 0.427 0.391 0.370 0.379
len CRPtb 0.436 0.444 0.526 0.381 0.356 0.445
len CRBs 0.458 0.504 0.586 0.470 0.504 0.600

len CRsmBS 0.384 0.434 0.498 0.356 0.388 0.454
len CROLS 0.581 0.603 0.745 0.635 0.658 0.815

len CRLasso-debiased 0.635 0.681 0.817 0.838 0.832 0.845

0.6 len CROur 0.517 0.567 0.700 0.556 0.614 0.765
len CRAsym 0.473 0.467 0.471 0.437 0.433 0.421
len CRPtb 0.673 0.699 0.864 0.715 0.727 0.859
len CRBs 0.714 0.734 0.902 0.814 0.820 0.992

len CRsmBS 0.708 0.738 0.894 0.732 0.748 0.892
len CROLS 0.584 0.604 0.743 0.641 0.661 0.818

len CRLasso-debiased 0.689 0.728 0.933 0.865 0.862 0.866

400 0.15 len CROur 0.397 0.416 0.516 0.418 0.434 0.537
len CRAsym 0.293 0.296 0.311 0.283 0.283 0.278
len CRPtb 0.309 0.312 0.391 0.226 0.247 0.261
len CRBs 0.322 0.314 0.372 0.244 0.272 0.290

len CRsmBS 0.308 0.298 0.352 0.214 0.242 0.254
len CROLS 0.401 0.416 0.515 0.419 0.434 0.537

len CRLasso-debiased 0.412 0.434 0.438 0.436 0.432 0.430

0.4 len CROur 0.368 0.401 0.492 0.381 0.419 0.516
len CRAsym 0.327 0.329 0.337 0.306 0.303 0.306
len CRPtb 0.507 0.531 0.638 0.545 0.552 0.602
len CRBs 0.530 0.542 0.654 0.560 0.574 0.670

len CRsmBS 0.578 0.596 0.712 0.578 0.600 0.698
len CROLS 0.401 0.418 0.515 0.419 0.434 0.536

len CRLasso-debiased 0.432 0.464 0.477 0.442 0.440 0.435

Note: ∗Indicates that the bootstrap and smooth bootstrap methods encounter a singular-designed
matrix problem (7–10% times), and only partial simulation results are used for calculation.
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FIG. 8. Empirical probabilities of identifying each signal level. Left: setting 1. Right: setting 2.

dotted and dashed lines, respectively. Here, i corresponds to the index of coeffi-
cient θ . The probability of each identified signal category relies on signal strength.
Specifically, when a signal is close to zero, it is likely to be identified as zero most
of the time, with the highest P(i ∈ Ŝ(N)); when a signal falls into the weak sig-
nal region, P(i ∈ Ŝ(W)) becomes dominant; and when θ increases to be a strong
signal, P(i ∈ Ŝ(S)) also gradually increases and reaches to 1.

5.2. HIV data example. In this section, we apply HIV drug resistance data
(http://hivdb.stanford.edu/) to illustrate the proposed method. The HIV drug resis-
tance study aims to identify the association of protease mutations with susceptibil-
ity to the antiretroviral drug. Since antiretroviral drug resistance is a major obstacle
to the successful treatment of HIV-1 infection, studying the generic basis of HIV-1
drug resistance is crucial for developing new drugs and designing an optimal ther-
apy for patients. The study was conducted on 702 HIV-infected patients, where
79 out of 99 protease codons in the viral genome have mutations. Here, the drug
resistance is measured in units of IC50.

We consider a linear model:

(5.1) y =
p∑

i=1

Xiθi + ε,

where the response variable y is the log-transformation of nonnegative IC50, and
the model predictors Xi are binary variables indicating the mutation presence for
each codon. For each predictor, 1 represents mutation and 0 represents no muta-
tion. The total number of candidate codons p = 79. We are interested in examining
which codon mutations have effect on drug resistance.

We apply the proposed two-step inference method to identify codons’ mutation
presence which have strong or mild effects on HIV drug resistance. We use the
GLMNET in R to obtain the adaptive Lasso estimator for the linear model in (5.1),
where the initial weight of each coefficient is based on the OLS estimator. The

http://hivdb.stanford.edu/
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tuning parameter λ is selected by the Bayesian information criterion, and σ is
estimated similarly as in [33]. To control the noise variable selection, we choose
τ = 0.05. According to the proposed identification procedure in Section 3.2, we
calculate two threshold values ν1 and ν2 as 0.061 and 0.136, which correspond to
two threshold probabilities, γ1 = 0.327 and γ2 = 0.975, for identifying weak and
strong signals, respectively.

We constructed 95% confidence intervals using the proposed method and the
perturbation approach [19] for the chosen variables. Both the standard bootstrap
and smoothed bootstrap methods are not applicable to the HIV data. Since muta-
tion is rather rare and only a few subjects present mutations for most codons, it is
highly probable that a predicator is sampled with all 0 indicators from the Boot-
strap resamples. Consequently, the gram matrix from the Bootstrap resampling
procedure is singular, and we cannot obtain Bootstrap estimators.

In the first step, we apply the adaptive Lasso procedure which selects 17 codons;
in the second step, our method identifies additional 11 codons associated with drug
resistance. Among 28 codons we identified, 13 of them are identified as strong
signals and 15 of them as weak signals. Approach in [19] identified 18 codons,
where the 13 signals (codon 10,30,32,33,46,47,48,50,54,76,84,88 and 90)
are the same as our strong-signal codons, and their remaining 5 signals (codon
37,64,71,89 and 93) are among our 15 identified weak signals. In previous stud-
ies, [30] identifies all 13 strong signals using a permutation test for the regression
coefficients obtained from Lasso; while [15] collect drug resistance mutation in-
formation based on multiple research studies, and discover 9 strong-signal codons
(10,32,46,47,50,54,76,84,90) which are relevant to drug resistance. Neither of
these approaches distinguish between strong-signal and weak-signal codons.

Figure 9 presents a graphical summary showing the half-width of the con-
structed confidence intervals based on our method and the perturbation approach,
where strong signals are labeled in blue, and weak signals are labeled in red. To
make full comparisons for both strong and weak signals, Figure 9 includes confi-
dence intervals for all selected variables based on our method, even if some of them
are not selected by approach in [19]. Table 5 also provides the average half-widths
of confidence intervals in each signal category. In general, our method provides
shorter lengths of confidence intervals for all strong signals, and longer lengths
of confidence intervals for weak signals compared to the perturbation approach.
This is not surprising, since the variables with weak coefficients associated with
the response variable are relatively weaker, and likely result in wider confidence
intervals to ensure a more accurate coverage. These findings are consistent with
our simulation studies.

In summary, our approach recovers more codons than other existing approaches.
One significance of our method lies in its capability of identifying a pool of strong
signals which have strong evidence association with HIV drug resistance, and a
pool of possible weak signals which might be mildly associated with drug re-
sistance. In many medical studies, it is important not to miss statistically weak
signals, which could be clinically valuable predictors.



WEAK SIGNAL IDENTIFICATION AND INFERENCE IN MODEL SELECTION 1235

FIG. 9. Half-width of confidence intervals of selected signals for HIV data.

6. Summary and discussion. In this paper, we propose weak signal identifi-
cation under the penalized model selection framework, and develop a new two-step
inferential method which is more accurate in providing confidence coverage for
weak signal parameters in finite samples. The proposed method is applicable for
true models involving both strong and weak signals. The primary concern regard-
ing the existing model selection procedure is that it applies excessive shrinkage in
order to achieve model selection consistency. However, this results in low detec-
tion power for weak signals in finite samples. The essence of the proposed method
is to apply a mild tuning in identifying weak signals. Therefore, there is always a
trade-off between a signal’s detection power and the false-discovery rate. In our
approach, we intend to recover weak signals as much as possible, without sacrific-
ing too much model selection consistency by including too many noise variables.

The two-step inference procedure imposes different selection criteria and con-
fidence interval construction for strong and weak signals. Both theory and numer-
ical studies indicate that the combined approach is more effective compared to
the asymptotic inference approach, and bootstrap sampling and other resampling
methods. In our numerical studies, we notice that the resampling methods do not
provide good inference for weak signals. Specifically, the coverage probability of
bootstrap confidence interval is over-covered and exceeds the (1 − α)100% con-
fidence level when the true parameter is close to 0. This is not surprising, as [1]

TABLE 5
Average half-width of the CIs

All selected variables Strong signals Weak signals

CIOur 0.147 0.118 0.173
CIPtb 0.171 0.197 0.148



1236 P. SHI AND A. QU

shows that the bootstrap procedure is inconsistent for boundary problems, such as
in our case where the boundary parameters are in the order of 1/

√
n.

Our method is related to post-selection inference in that we select variables if
the corresponding estimated coefficients are not shrunk to zero [2, 17], and then
construct confidence intervals for those nonzero coefficients. This is quite different
from the hypothesis testing approach which constructs valid confidence intervals
for all variables first, then selects variables based on p-values or confidence inter-
vals. One important work among the hypothesis testing approaches is the de-biased
Lasso approach [13], which corrects the bias introduced by the Lasso procedure.
The de-biased approach constructs valid confidence intervals and p-values for all
variables, which is quite powerful when p > n or the gram matrix is singular.
However, this approach selects variables through the p-value. In contrast, we se-
lect variables if the corresponding estimated coefficients are not shrunk to zero,
and construct confidence intervals for those nonzero coefficients. These two ap-
proaches are fundamentally different since some coefficients might not be statisti-
cally significant; however, the corresponding variables can still contribute to model
prediction and should be included in the model. This difference is also reflected in
our simulation studies in that the de-biased method has much lower detection rates
for true signals in general, and especially when the signals are relatively weak.

In the proposed two-step inference procedure, although we utilize information
from the least-square estimators, our approach is very different from applying the
least-square inference directly without a model selection step. The nonpenalization
method is not feasible when the dimension of covariates is very large, for example,
to examine or visualize thousands of conference intervals without model selection.
Therefore, it is essential to make a sound statistical inference in conjunction with
the variable selection, simultaneously. Our approach has several advantages: (1) It
is able to recover possible weak signals which are missed due to excessive shrink-
age in model selection, in addition to distinguishing weak signals from strong sig-
nals. (2) Our inferences are constructed for selected variable coefficients only. We
eliminate noise variables first, and this is different from [13, 19, 27] and [32],
which construct CIs for all variables. Consequently, the CI widths we construct
for strong signals are much narrower compared to the least squared approach or
de-biased method, given that the coverage rates are all accurate. This indicates that
our procedure is more effective compared to the approaches which do not perform
model selection first. This finding is not surprising since the full model including
all the noise variables likely leads to less efficient inference in general. (3) For the
weak signal CI’s, our numerical studies show that the proposed two-step approach
provides CIs comparable to the least square’s, but has a much better coverage rate
compared to the asymptotic, perturbation and resampling approaches.

In this paper, we develop our method and theory under the orthogonal design
assumption. However, our numerical studies indicate that the proposed method
is still valid when correlations among covariates are weak or moderate. It would
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be interesting to extend the current method to nonorthogonal designed covariates
problems.

In addition, it is important to explore weak-signal inference for high-dimensio-
nal model settings when the dimension of covariates exceeds the sample size. Note
that when the dimension of covariates exceeds the sample size, the least square es-
timator is no longer feasible and cannot be used as the initial weights for the adap-
tive Lasso. One possible solution is to replace the full model θ̂LS by the marginal
regression estimator. In order to do this, we assume that the true model satisfies the
partial orthogonality condition, such that the covariates with zero coefficients and
those with nonzero coefficients are weakly correlated, and the nonzero coefficients
are bounded away from zero at certain rates. Under these assumptions, the estima-
tor of the marginal regression coefficient satisfies the following property, such that
the corresponding estimator is not too large for the zero coefficient, and not too
small for the nonzero coefficient [11]. This allows us to obtain a reasonable esti-
mator to assign weights in the adaptive Lasso. The same idea has been adopted in
[11], where marginal regression estimators are used to assign weights in the adap-
tive Lasso for sparse high-dimensional data. Huang et al. [11] and [10] show that
the adaptive Lasso using the marginal estimator as initial weights yields model se-
lection consistency under the partial orthogonality condition. Alternatively, we can
first reduce the model size using the marginal screening approach ([7] and [18]),
and then apply our method to the reduced size model. The marginal screening
method ensures that we can reduce the model size to be smaller than the sample
size, and thus the least square estimator θ̂LS can be obtained from a much smaller
model.

Finally, the variance estimation of the penalized estimator for weak signal is
still very challenging, and worthy of future research. In the proposed method, we
use the least-square estimator to provide inference for weak signals. However, the
variance of the least-square estimator σ̂LS is inflated when p is close to n. This is
likely due to the gram matrix being close to singular when p gets close to n for
the least-square estimation. We believe that the de-biased method [13, 27] could
be very useful when the gram matrix is singular or close to singular, and it would
be interesting to explore a future direction approximating a singular gram matrix
to obtain parameter estimation and variance estimation as good as the de-biased
method and, therefore, to improve the precision of the confidence intervals for the
proposed method.

APPENDIX: NOTATION AND PROOFS

A.1. Notation. ν0 = √
λ, ν1 = zτ/2

σ√
n
, ν2 = √

λ + zα/2
σ√
n

, ν3 = (zα/2 +
zτ/2)

σ√
n

, ν4 = √
λ + 2zα/2

σ√
n

.
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A.2. Tuning parameter selection. BIC criteria function is

BIC(λ) = log
(
σ̂ 2

λ

) + q̂λ

log(n)

n
,

where σ̂λ is the estimated standard deviation based on λ, and q̂λ is the number of
covariates in the model.

We choose the tuning parameter λ based on the BIC because of its consistency
property to select the true model [29]. Here, we follow the strategy in [28] to select
the BIC tuning parameter for the adaptive Lasso penalty. Specifically, for a given λ,

BIC(λ) = (θ̂λ − θ̂LS)T �̂
−1
λ (θ̂λ − θ̂LS) + q̂λ log(n)/n,

where θ̂λ is the adaptive Lasso estimator with a tuning parameter λ provided in
(2.1); �̂

−1
λ = (nσ̂ 2)−1{XT X+nλdiag{I (θ̂λ,j �= 0)/|θ̂λ,j θ̂LS,j |}pj=1}; σ̂ is a consis-

tent estimator of σ based on the scaled Lasso procedure [25]; and q̂λ is the number
of nonzero coefficients of θ̂λ, a simple estimator for the degree of freedom [34].

A.3. Proof of Lemma 1. For any γ satisfies ε < γ < 1 − ε, we show that νγ

that solves Pd = γ follows νγ√
λn

→ 1, as n → ∞.

Pd can be rewritten as Pd = �(
√

nλn

σ
( νγ√

λn
− 1)) − �(−

√
nλn

σ
(1 + νγ√

λn
)).

Given nλn → ∞, if limn→+∞ νγ√
λn

> 1, then Pd(νγ ) → 1, as n → ∞; else if

limn→+∞ νγ√
λn

< 1, then Pd(νγ ) → 0, as n → ∞. Since Pd(νγ ) = γ ∈ (ε,1 − ε),

we have limn→+∞ νγ√
λn

= 1, as n → ∞.

Therefore, both νs and νw satisfy νs√
λn

→ 1 and νw√
λn

→ 1.

A.4. Proof of Lemma 2. Define CIa : {θ : |θ̂LS − θ | < zα/2σ̃ (θ)/
√

n}, and
CIb : {θ : |θ̂LS − θ | < zα/2σ/

√
n}. The confidence interval in (4.7) can be rewritten

as

CIa · I{|θ̂LS|≥ν2} + CIb · I{ν1<|θ̂LS|<ν2}.

Based on CIa,CIb, we define functions CRa(θ, ν),CRb(θ, ν) in the following
manners:

CRa(θ, ν) = P
(
θ ∈ CIa, |θ̂LS| > ν

)
,(A.1)

CRb(θ, ν) = P
(
θ ∈ CIb, |θ̂LS| > ν)σ/

√
n
)
.(A.2)

Besides, define Ps(θ, ν) as P(|θ̂LS| > ν), which equals

Ps(θ, ν) = �

(
θ − ν

σ/
√

n

)
+ �

(−θ − ν

σ/
√

n

)
.(A.3)

The explicit expression of CRa(θ, ν) is derived based on three cases:
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(i) If ν < θ − zα/2
σ̃ (θ)√

n
, then

CRa(θ, ν) = P

(∣∣θ̂LS − θ
∣∣ ≤ zα/2

σ̃ (θ)√
n

)
= 1 − 2�

(
−zα/2

σ̃ (θ)

σ

)
.

(ii) If |θ − zα/2
σ̃ (θ)√

n
| < ν < θ + zα/2

σ̃ (θ)√
n

, then

CRa(θ, ν) = P

(
ν < θ̂LS < θ + zα/2

σ̃ (θ)√
n

)
= �

(
zα/2

σ̃ (θ)

σ

)
− �

(
ν − θ

σ/
√

n

)
.

(iii) If ν < −θ + zα/2
σ̃ (θ)√

n
, then

CRa(θ, ν) = P

(
θ − zα/2

σ̃ (θ)√
n

< θ̂LS < −ν

)
+ P

(
ν < θ̂LS < θ + zα/2

σ̃ (θ)√
n

)

= Ps(θ, ν) − 2�

(
−zα/2

σ̃ (θ)

σ

)
.

The expression of CRb(θ, ν) can be derived in a similar way. Therefore, CRa(θ, ν)

and CRb(θ, ν) have the explicit expressions as

CRa(θ, ν) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
Ps(θ, ν) − 2�

(
−zα/2

σ̃ (θ)

σ

))

× I{ν<zα/2
σ̃ (θ)√

n
}, if |θ | <

∣∣∣∣ν − zα/2
σ̃ (θ)√

n

∣∣∣∣,
�

(
zα/2

σ̃ (θ)

σ

)
− �

(
ν − θ

σ/
√

n

)
,

if
∣∣∣∣ν − zα/2

σ̃ (θ)√
n

∣∣∣∣ ≤ |θ | ≤ ν + zα/2
σ̃ (θ)√

n
,

1 − 2�

(
−zα/2

σ̃ (θ)

σ

)
, if |θ | > ν + zα/2

σ̃ (θ)√
n

,

and

CRb(θ, ν) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
Ps(θ, ν) − α

)
1{ν<zα/2

σ√
n
}, if |θ | <

∣∣∣∣ν − zα/2
σ√
n

∣∣∣∣,
1 − α

2
− �

(
ν − θ

σ/
√

n

)
,

if
∣∣∣∣ν − zα/2

σ√
n

∣∣∣∣ < |θ | < ν + zα/2
σ√
n
,

1 − α, if |θ | > ν + zα/2
σ√
n
.
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The equations in (A.1)–(A.3) are used to provide explicit expressions for CR1(θ)

and CR(θ) in Lemma 2. More specifically,

CR1(θ) = P(θ in asymptotic-based CI |θ is selected in model selection)

= P

(
|θ̂LS − θ | < zα/2

σ̃ (θ)√
n

∣∣∣|θ̂LS| > √
λ

)

= CRa(θ, ν0)

Ps(θ, ν0)
,

where ν0 = √
λ. Similarly,

CR(θ)

= P
(
θ ∈ CI as in (4.7) |θ is selected by the two-step procedure

)
= P(θ ∈ CIa, |θ̂LS| ≥ ν2) + P(θ ∈ CIb, ν1 < |θ̂LS| < ν2)

P (|θ̂LS| > ν1)

= P(θ ∈ CIa, |θ̂LS| ≥ ν2) + P(θ ∈ CIb, |θ̂LS| > ν2) − P(θ ∈ CIb, |θ̂LS| > ν1)

P (|θ̂LS| > ν1)

= CRa(θ, ν2) + CRb(θ, ν1) − CRb(θ, ν2)

Ps(θ, ν1)
.

A.5. Lemmas.

LEMMA 3. If we select ν1 = zτ/2
σ√
n

, then the false positive rate of weak sig-

nal’s identification procedure equals τ .

PROOF. By definition, the false positive rate equals P(i ∈ Ŝ(W) ∪ Ŝ
(S)|θi =

0) = P(|θ̂LS,i | > ν1|θi = 0) = 2�(−
√

n
σ

ν1) = τ . �

LEMMA 4. Under conditions (C1)–(C2), when λ satisfies conditions
√

λ >

zα/2
σ√
n

:

(a) if c1 is the solution to θ = √
λ− zα/2

σ̃ (θ)√
n

, then c1 ∈ ((zα/2 − zτ/2)
σ√
n
,
√

λ);

(b) if c2 is the solution to θ = √
λ+ zα/2

σ̃ (θ)√
n

, then c2 ∈ (
√

λ+ 1
2zα/2

σ√
n
,
√

λ+
zα/2

σ√
n
);

(c) if c3 is the solution to θ = √
λ + zα/2

σ√
n

− zα/2
σ̃ (θ)√

n
, then c3 ∈ (

√
λ,

√
λ +

1
2zα/2

σ√
n
);

(d) if c4 is the solution to θ = √
λ + zα/2

σ√
n

+ zα/2
σ̃ (θ)√

n
, then c4 ∈ (

√
λ +

3
2zα/2

σ√
n
,
√

λ + 2zα/2
σ√
n
).
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In addition, the order relationships of c1, c2, c3 and c4 follow: c1 < c3 < c2 < c4.

LEMMA 5. Given θ ∈ (
√

λ + 1
2zα/2

σ√
n
,
√

λ + 2zα/2
σ√
n
), then θ > c2 if and

only if θ >
√

λ + zα/2
σ̃ (θ)√

n
, and θ > c4 if and only if θ >

√
λ + zα/2

σ√
n

+ zα/2
σ̃ (θ)√

n
.

LEMMA 6 (Monotonicity of CR1(θ)). Suppose θ > 0, CR1(θ) is a piecewise
monotonic function on [0, c2]. More specifically, CR1(θ) is a nondecreasing func-
tion on [0, c1], an increasing function on [c1, c2].

LEMMA 7. For any fixed parameter value ν > 0, the function

CRb(θ, ν)

Ps(θ, ν)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 − α

Ps(θ, ν)

)
1{ν<zα/2

σ√
n
}, if |θ | <

∣∣∣∣ν − zα/2
σ√
n

∣∣∣∣,
1 − α

2 − �(
√

n
σ

(ν − θ))

Ps(θ, ν)
,

if
∣∣∣∣ν − zα/2

σ√
n

∣∣∣∣ < |θ | < ν + zα/2
σ√
n
,

1 − α

Ps(θ, ν)
, if |θ | > ν + zα/2

σ√
n
,

is:

(i) nondecreasing, when |θ | ≤ |ν − zα/2
σ√
n
|;

(ii) increasing, when |ν − zα/2
σ√
n
| < |θ | < ν + zα/2

σ√
n

;

(iii) decreasing, when |θ | ≥ ν + zα/2
σ√
n

.

LEMMA 8. The formulas for CR1(θ) and CR(θ) in Lemma 2 can also be
expressed as

CR1(θ) = CRa(θ, ν0)

Ps(θ, ν0)
,(A.4)

CR(θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

CRb(θ, ν1)

Ps(θ, ν1)
, if |θ | < ν0,

CRb(θ, ν1)

Ps(θ, ν1)
− CRb(θ, ν2)

Ps(θ, ν1)
, if ν0 ≤ |θ | ≤ c3,

CRb(θ, ν1)

Ps(θ, ν1)
+ CRa(θ, ν2)

Ps(θ, ν1)
− CRb(θ, ν2)

Ps(θ, ν1)
, if |θ | > c3.

(A.5)

Then CR1(θ) = J1(θ),CR(θ) = J2(θ) − J3(θ) + J4(θ), where the four functions
J1(θ), J2(θ), J3(θ) and J4(θ) are defined as

J1(θ) = CRa(θ, ν0)

Ps(θ, ν0)
, J2(θ) = CRb(θ, ν1)

Ps(θ, ν1)
,

J3(θ) = CRb(θ, ν2)

Ps(θ, ν1)
, J4(θ) = CRa(θ, ν2)

Ps(θ, ν1)
.
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A.6. Proof of Theorem 1. (a) When θ ∈ [0, c1], we have �(θ) ≥ 1 −
α
τ

> 0. First, it is obvious that CR1(θ) = 0 when θ ∈ [0, c1]. By Lemma 7, CR(θ)

is increasing on [0, ν0], and CR(θ) = 1− α
τ

when θ = 0. Thus, CR(θ)−CR1(θ) ≥
1 − α

τ
for θ ∈ [0, c1], which provides the first lower bound in Theorem 1. Note that

here we also use c1 < ν0 by Lemma 4.
(b) When θ ∈ [c1, ν0], we have �(θ) ≥ 2

1+α
− 2�(1

2zα/2) > 0. By definition,

CR1(θ) = �(zα/2
σ̃ (θ)
σ

) − �(
√

n
σ

(ν0 − θ))

Ps(θ, ν0)
,

CR(θ) = 1 − α
2 − �(

√
n

σ
(ν1 − θ))

Ps(θ, ν1)
.

In the following, we show that ∂CR1(θ)
∂θ

> ∂CR(θ)
∂θ

, so CR(θ)−CR1(θ) is decreasing
when θ ∈ [c1, ν0]. The first-order derivatives of CR1(θ) and CR(θ) are

∂CR1(θ)

∂θ
=

[
zα/2

σ
φ

(
zα/2

σ̃ (θ)

σ

)
σ̃ (θ)′ +

√
n

σ
φ

(√
n

σ
(ν0 − θ)

)]
Ps(θ, ν0)

−1(A.6)

−
[
�

(
zα/2

σ̃ (θ)

σ

)
− �

(√
n

σ
(ν0 − θ)

)]
Ps(θ, ν0)

−2(A.7)

∂CR(θ)

∂θ
=

√
n

σ
φ

(√
n

σ
(ν1 − θ)

)
Ps(θ, ν1)

−1(A.8)

−
[
1 − α

2
− �

(√
n

σ
(ν1 − θ)

)]
Ps(θ, ν1)

−2,(A.9)

where each first-order derivative is composed of two parts. We show the inequality
of each part separately. First, (A.6) > (A.8), which is sufficient by showing

φ

(√
n

σ
(ν0 − θ)

)
Ps(θ, ν0)

−1 > φ

(√
n

σ
(ν1 − θ)

)
Ps(θ, ν1)

−1.

This is equivalent to show

�(
√

n
σ

(θ − ν1)) + �(−
√

n
σ

(θ + ν1))

φ(
√

n
σ

(θ − ν1))
(A.10)

>
�(

√
n

σ
(θ − ν0)) + �(−

√
n

σ
(θ + ν0))

φ(
√

n
σ

(θ − ν0))
.

The inequality in (A.10) can be proved based on monotinicity of two functions
�(x)
φ(x)

and �(−x−y)
φ(x−y)

. Specifically, it can be shown that �(x)
φ(x)

is an increasing function

of x ∈ R, and �(−x−y)
φ(x−y)

is a decreasing function of y ∈ R
+, for any fixed value of
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x > 0. More specifically, since ν1 < ν0, we have

�(
√

n
σ

(θ − ν1))

φ(
√

n
σ

(θ − ν1))
>

�(
√

n
σ

(θ − ν0))

φ(
√

n
σ

(θ − ν0))
and

�(−
√

n
σ

(θ + ν1))

φ(
√

n
σ

(θ − ν1))
>

�(−
√

n
σ

(θ + ν0))

φ(
√

n
σ

(θ − ν0))
,

based on which the inequality in (A.10) holds.
Next, we show that (A.8) < (A.9), which is equivalent with[

1 − α

2
− �

(√
n

σ
(ν1 − θ)

)]
Ps(θ, ν1)

−2

>

[
�

(
zα/2

σ̃ (θ)

σ

)
− �

(√
n

σ
(ν1 − θ)

)]
Ps(θ, ν0)

−2.

It can be shown by

1 − α
2 − �(

√
n

σ
(ν1 − θ))

Ps(θ, ν1)
2 >

1 − α
2 − �(

√
n

σ
(ν0 − θ))

Ps(θ, ν0)
2

>
�(zα/2

σ̃ (θ)
σ

) − �(
√

n
σ

(ν1 − θ))

Ps(θ, ν0)
2 .

Based on the above arguments, we can conclude that for θ ∈ [c1, ν0]:
∂CR1(θ)

∂θ
>

∂CR(θ)

∂θ
.

Therefore, minθ∈[c1,ν0] �(θ) = CR(ν0) − CR1(ν0). More specifically,

CR(ν0) =
�(ν0−ν1

σ/
√

n
) − α

2

�(
ν0−ν1
σ/

√
n
) + �(

−ν0−ν1
σ/

√
n

)
>

1 − α

1 + α
,

CR1(ν0) = �(1
2zα/2) − α

2
1
2 + �(− 2ν0

σ/
√

n
)

< 2�

(
1

2
zα/2

)
− 1,

thus,

CR(ν0) − CR1(ν0) >
2

1 + α
− 2�

(
1

2
zα/2

)
,

which provides the second lower bound in Theorem 1.
(c) When θ ∈ [ν0,+∞), we have �(θ) satisfies either �(θ) ≥ 0 or −α

2 <

�(θ) < 0. The proof of case 1 is provided here, and proof of the other two cases
are similar and are provided in supplementary materials. In case 1, it satisfies c3 <



1244 P. SHI AND A. QU

ν3 < c2. We conduct derivations for sub-intervals [ν0, c3], [c3, ν3], [ν3, c2], [c2,

c4], [c4, ν4] and [ν4,+∞), separately.
When θ ∈ [ν0, c3], we have

J1(θ) =
�(zα/2

σ̃ (θ)
σ

) − �(
ν0−θ

σ/
√

n
)

�(
θ−ν0
σ/

√
n
) + �(

−θ−ν0
σ/

√
n

)
,

J2(θ) =
1 − α

2 − �( ν1−θ

σ/
√

n
)

�( θ−ν1
σ/

√
n
) + �(−θ−ν1

σ/
√

n
)
, and

J3(θ) =
1 − α

2 − �( ν2−θ

σ/
√

n
)

�( θ−ν1
σ/

√
n
) + �(−θ−ν1

σ/
√

n
)
,

thus

�(θ) = J2(θ) − J1(θ) − J3(θ)

=
�( ν2−θ

σ/
√

n
) − �( ν1−θ

σ/
√

n
)

�( θ−ν1
σ/

√
n
) + �(−θ−ν1

σ/
√

n
)

−
�(zα/2

σ̃ (θ)
σ

) − �(
ν0−θ

σ/
√

n
)

�(
θ−ν0
σ/

√
n
) + �(

−θ−ν0
σ/

√
n

)
.

Further,

�(θ) =
�( ν2−θ

σ/
√

n
) − �( ν1−θ

σ/
√

n
)

�( θ−ν1
σ/

√
n
) + �(−θ−ν1

σ/
√

n
)

−
�(zα/2

σ̃ (θ)
σ

) − �(
ν0−θ

σ/
√

n
)

�(
θ−ν0
σ/

√
n
) + �(

−θ−ν0
σ/

√
n

)

>
�( ν2−θ

σ/
√

n
) − �( ν1−θ

σ/
√

n
)

�( θ−ν1
σ/

√
n
) + �(−θ−ν1

σ/
√

n
)

−
�(zα/2

σ̃ (θ)
σ

) − �(
ν0−θ

σ/
√

n
)

�(
θ−ν0
σ/

√
n
)

>
�( ν2−θ

σ/
√

n
) − �( ν1−θ

σ/
√

n
)

�( θ−ν1
σ/

√
n
) + �(−θ−ν1

σ/
√

n
)

−
�( ν2−θ

σ/
√

n
) − �(

ν0−θ

σ/
√

n
)

�(
θ−ν0
σ/

√
n
)

=
[�( ν2−θ

σ/
√

n
) − �( ν1−θ

σ/
√

n
)]�(

θ−ν0
σ/

√
n
) − [�( ν2−θ

σ/
√

n
) − �(

ν0−θ

σ/
√

n
)]�( θ−ν1

σ/
√

n
)

[�( θ−ν1
σ/

√
n
) + �(−θ−ν1

σ/
√

n
)]�(

θ−ν0
σ/

√
n
)

−
[�( ν2−θ

σ/
√

n
) − �(

ν0−θ

σ/
√

n
)]�(−θ−ν1

σ/
√

n
)

[�( θ−ν1
σ/

√
n
) + �(−θ−ν1

σ/
√

n
)]�(

θ−ν0
σ/

√
n
)

= �1(θ) − �2(θ),



WEAK SIGNAL IDENTIFICATION AND INFERENCE IN MODEL SELECTION 1245

where the second inequality uses that zα/2
σ̃ (θ)√

n
≤ ν2 − θ when θ ≤ c3 by Lemma 5.

Here, �1(θ) and �2(θ) are defined as

�1(θ) =
[�( ν2−θ

σ/
√

n
) − �( ν1−θ

σ/
√

n
)]�(

θ−ν0
σ/

√
n
) − [�( ν2−θ

σ/
√

n
) − �(

ν0−θ

σ/
√

n
)]�( θ−ν1

σ/
√

n
)

[�( θ−ν1
σ/

√
n
) + �(−θ−ν1

σ/
√

n
)]�(

θ−ν0
σ/

√
n
)

,

�2(θ) =
[�( ν2−θ

σ/
√

n
) − �(

ν0−θ

σ/
√

n
)]

[�( θ−ν1
σ/

√
n
) + �(−θ−ν1

σ/
√

n
)]�(

θ−ν0
σ/

√
n
)
�

(−θ − ν1

σ/
√

n

)
.

First, it is straightforward to show that �1(θ) > 0. Second, �2(θ) can be bounded
from above by some small value. In fact,

�2(θ) <
[�( ν2−θ

σ/
√

n
) − �(

ν0−θ

σ/
√

n
)]

�( θ−ν1
σ/

√
n
)�(

θ−ν0
σ/

√
n
)

�

(−θ − ν1

σ/
√

n

)

< 4
[
�

(
ν2 − θ

σ/
√

n

)
− �

(
ν0 − θ

σ/
√

n

)]
�

(−θ − ν1

σ/
√

n

)

< 4
[
1 − α

2
− �

(
−1

2
zα/2

)]
�

(
−3

2
zα/2

)
,

where we use that ν2 − θ < zα/2
σ√
n

, −1
2zα/2

σ√
n

< ν0 − c3 < ν0 − θ and

�(−θ−ν1
σ/

√
n

) < �(
−ν0−ν1
σ/

√
n

) < �(−3
2zα/2) when ν0 < θ < c3. Combining the lower

bounds for �1(θ) and �2(θ), we have

�(θ) > −4
[
1 − α

2
− �

(
−1

2
zα/2

)]
�

(
−3

2
zα/2

)
.

In fact, the lower bound on the right-hand side is quite close to zero.
When θ ∈ [c3, ν3],

�(θ) = J2(θ) − J1(θ) − J3(θ) + J4(θ),

where

J1(θ) = �(zα/2
σ̃ (θ)
σ

) − �(
√

n
σ

(ν0 − θ))

�(
√

n
σ

(θ − ν0)) + �(−
√

n
σ

(θ + ν0))
,

J2(θ) = 1 − α
2 − �(

√
n

σ
(ν1 − θ))

�(
√

n
σ

(θ − ν1)) + �(−
√

n
σ

(θ + ν1))
,

J3(θ) = 1 − α
2 − �(

√
n

σ
(ν3 − θ))

�(
√

n
σ

(θ − ν1)) + �(−
√

n
σ

(θ + ν1))
,

J4(θ) = �(zα/2
σ̃ (θ)
σ

) − �(
√

n
σ

(ν3 − θ))

�(
√

n
σ

(θ − ν1)) + �(−
√

n
σ

(θ + ν1))
.
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Therefore,

�(θ) =
�(zα/2

σ̃ (θ)
σ

) − �( ν1−θ

σ/
√

n
)

�( θ−ν1
σ/

√
n
) + �(−θ−ν1

σ/
√

n
)

−
�(zα/2

σ̃ (θ)
σ

) − �(
ν0−θ

σ/
√

n
)

�(
θ−ν0
σ/

√
n
) + �(

−θ−ν0
σ/

√
n

)

=
�( θ−ν1

σ/
√

n
) − �(−zα/2

σ̃ (θ)
σ

)

�( θ−ν1
σ/

√
n
) + �(−θ−ν1

σ/
√

n
)

−
�(

θ−ν0
σ/

√
n
) − �(−zα/2

σ̃ (θ)
σ

)

�(
θ−ν0
σ/

√
n
) + �(

−θ−ν0
σ/

√
n

)

>
�( θ−ν1

σ/
√

n
) − �(−zα/2

σ̃ (θ)
σ

)

�( θ−ν1
σ/

√
n
) + �(−θ−ν1

σ/
√

n
)

−
�( θ−ν1

σ/
√

n
) − �(−zα/2

σ̃ (θ)
σ

)

�( θ−ν1
σ/

√
n
)

+
�( θ−ν1

σ/
√

n
) − �(−zα/2

σ̃ (θ)
σ

)

�( θ−ν1
σ/

√
n
)

−
�(

θ−ν0
σ/

√
n
) − �(−zα/2

σ̃ (θ)
σ

)

�(
θ−ν0
σ/

√
n
)

=
�( θ−ν1

σ/
√

n
) − �(−zα/2

σ̃ (θ)
σ

)

[�( θ−ν1
σ/

√
n
) + �(−θ−ν1

σ/
√

n
)]�( θ−ν1

σ/
√

n
)

·
(
−�

(−θ − ν1

σ/
√

n

))

+ �

(
−zα/2

σ̃ (θ)

σ

)[
1

�(
θ−ν0
σ/

√
n
)

− 1

�( θ−ν1
σ/

√
n
)

]

>
�( θ−ν1

σ/
√

n
) − �(−zα/2

σ̃ (θ)
σ

)

[�( θ−ν1
σ/

√
n
) + �(−θ−ν1

σ/
√

n
)]�( θ−ν1

σ/
√

n
)

·
(
−�

(−θ − ν1

σ/
√

n

))

> −2�

(−θ − ν1

σ/
√

n

)
> −2�

(
−3

2
zα/2

)
,

the second inequality holds since

�

(
θ − ν1

σ/
√

n

)
>

1

2
, 0 <

�( θ−ν1
σ/

√
n
) − �(−zα/2

σ̃ (θ)
σ

)

[�( θ−ν1
σ/

√
n
) + �(−θ−ν1

σ/
√

n
)] < 1,

and the last inequality holds since −θ − ν1 < −(zα/2 + zτ/2)
σ√
n

< −3
2zα/2

σ√
n

,

when θ ≥ c3 >
√

λ ≥ zα/2
σ√
n

.
When θ ∈ [ν3, c2], �(θ) = J2(θ) − J1(θ) + J4(θ) − J3(θ), where

J1(θ) = �(zα/2
σ̃ (θ)
σ

) − �(
√

n
σ

(ν0 − θ))

�(
√

n
σ

(θ − ν0)) + �(−
√

n
σ

(θ + ν0))
,

J2(θ) = 1 − α

�(
√

n
σ

(θ − ν1)) + �(−
√

n
σ

(θ + ν1))
,
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J3(θ) = 1 − α
2 − �(

√
n

σ
(ν2 − θ))

�(
√

n
σ

(θ − ν1)) + �(−
√

n
σ

(θ + ν1))
,

J4(θ) = �(zα/2
σ̃ (θ)
σ

) − �(
√

n
σ

(ν2 − θ))

�(
√

n
σ

(θ − ν1)) + �(−
√

n
σ

(θ + ν1))
.

Therefore,

�(θ) = �(zα/2
σ̃ (θ)
σ

) − α
2

Ps(θ, ν1)
− �(zα/2

σ̃ (θ)
σ

) − �(
√

n
σ

(ν0 − θ))

Ps(θ, ν0)
.

Further, we have �(θ) > �1(θ) + �2(θ), where

�1(θ) = �(zα/2
σ̃ (θ)
σ

) − α
2

Ps(θ, ν1)
− �(zα/2

σ̃ (θ)
σ

) − α
2

�( θ−ν1
σ/

√
n
)

, and

�2(θ) = �(zα/2
σ̃ (θ)
σ

) − α
2

�( θ−ν1
σ/

√
n
)

−
�(zα/2

σ̃ (θ)
σ

) − �(
ν0−θ

σ/
√

n
)

�(
θ−ν0
σ/

√
n
)

.

It is straightforward to get a bound for �1(θ). In fact,

�1(θ) = �(zα/2
σ̃ (θ)
σ

) − α
2

Ps(θ, ν1)�( θ−ν1
σ/

√
n
)

·
[
−�

(−θ − ν1

σ/
√

n

)]
,

here �(zα/2
σ̃ (θ)
σ

) − α
2 < 1 − α,Ps(θ, ν1) > �( θ−ν1

σ/
√

n
) > 1 − α

2 , and −θ − ν1 <

−ν3 −ν1 < −2zα/2σ/
√

n. Therefore, �1(θ) < 0 and |�1(θ)| < 4(1−α)

(2−α)2 �(−2zα/2).
It takes a few more steps to bound �2(θ). In fact,

�2(θ) = 1 − α
2 − �(−zα/2

σ̃ (θ)
σ

)

�( θ−ν1
σ/

√
n
)

−
�(

θ−ν0
σ/

√
n
) − �(−zα/2

σ̃ (θ)
σ

)

�(
θ−ν0
σ/

√
n
)

=
[ 1 − α

2

�( θ−ν1
σ/

√
n
)

− 1
]

+ �

(
−zα/2

σ̃ (θ)

σ

)[
1

�(
θ−ν0
σ/

√
n
)

− 1

�( θ−ν1
σ/

√
n
)

]

>

[ 1 − α
2

�( θ−ν1
σ/

√
n
)

− 1
]

+ α

2

[
1

�(
θ−ν0
σ/

√
n
)

− 1

�( θ−ν1
σ/

√
n
)

]
,

the inequality holds since �(−zα/2
σ̃ (θ)
σ

) > α
2 . It can also be shown that both

1
�(

θ−ν0
σ/

√
n
)

− 1
�(

θ−ν1
σ/

√
n
)

and
1− α

2

�(
θ−ν1
σ/

√
n
)

− 1 are decreasing functions of θ , given θ >
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ν0 > ν1. Therefore,

�2(θ) >

[ 1 − α
2

�(ν2−ν1
σ/

√
n
)

− 1
]

+ α

2

[
1

�(
ν2−ν0
σ/

√
n
)

− 1

�(ν2−ν1
σ/

√
n
)

]

= 1 − α

�(ν2−ν1
σ/

√
n
)

− 1 − α

1 − α
2

> −α(1 − α)

2 − α
.

Combining the lower bounds of �1(θ) and �2(θ), the lower bound for �(θ) is
provided by

�(θ) > −4(1 − α)

(2 − α)2 �(−2zα/2) − α(1 − α)

2 − α
> −α

2
.

When θ ∈ [c2, c4],

J1(θ) = 1 − 2�(−zα/2
σ̃ (θ)
σ

)

�(
√

n
σ

(θ − ν0)) + �(−
√

n
σ

(θ + ν0))
,

J2(θ) = 1 − α

�(
√

n
σ

(θ − ν1)) + �(−
√

n
σ

(θ + ν1))
,

J3(θ) = 1 − α
2 − �(

√
n

σ
(ν2 − θ))

�(
√

n
σ

(θ − ν1)) + �(−
√

n
σ

(θ + ν1))
,

J4(θ) = �(zα/2
σ̃ (θ)
σ

) − �(
√

n
σ

(ν2 − θ))

�(
√

n
σ

(θ − ν1)) + �(−
√

n
σ

(θ + ν1))
.

Therefore,

�(θ) = J2(θ) − J1(θ) + J4(θ) − J3(θ)

= �(zα/2
σ̃ (θ)
σ

) − α
2

Ps(θ, ν1)
− �(zα/2

σ̃ (θ)
σ

) − �(−zα/2
σ̃ (θ)
σ

)

Ps(θ, ν0)
.

Again, �(θ) > �1(θ) + �2(θ), where

�1(θ) = �(zα/2
σ̃ (θ)
σ

) − α
2

Ps(θ, ν1)�(
√

n
σ

(θ − ν1))
·
[
−�

(
−

√
n

σ
(θ + ν1)

)]
, and

�2(θ) = �(zα/2
σ̃ (θ)
σ

) − α
2

�(
√

n
σ

(θ − ν1))
− 2�(zα/2

σ̃ (θ)
σ

) − 1

�(
√

n
σ

(θ − ν0))
.

First,

�1(θ) < 0 and
∣∣�1(θ)

∣∣ <
4(1 − α)

(2 − α)2 �(−2zα/2),
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which holds true because �(zα/2
σ̃ (θ)
σ

)− α
2 < 1−α, Ps(θ, ν1) > �(

√
n

σ
(θ − ν1)) >

1 − α
2 , 1

2zα/2 < zτ/2, and −ν3 − ν1 = −(zα/2 + 2zτ/2)
σ√
n

< −2zα/2
σ√
n

.

Second, when θ > c2, it holds that θ > ν0 + zα/2
σ̃ (θ)√

n
according to Lemma 5,

and further �(
√

n
σ

(θ − ν0)) > �(zα/2
σ̃ (θ)
σ

). Therefore,

�2(θ) >
�(zα/2

σ̃ (θ)
σ

) − α
2

�(
√

n
σ

(θ − ν1))
− 2�(zα/2

σ̃ (θ)
σ

) − 1

�(zα/2
σ̃ (θ)
σ

)

> �

(
zα/2

σ̃ (θ)

σ

)
− α

2
− 2�(zα/2

σ̃ (θ)
σ

) − 1

�(zα/2
σ̃ (θ)
σ

)

= �

(
zα/2

σ̃ (θ)

σ

)
+ 1

�(zα/2
σ̃ (θ)
σ

)

− α

2
− 2.

The function on the right-hand side is a decreasing function of �(zα/2
σ̃ (θ)
σ

). Given

that �(zα/2
σ̃ (θ)
σ

) < 1 − α
2 , we have

�2(θ) > 1 − α

2
− 1

1 − α
2

− α

2
− 2 = −α(1 − α)

2 − α
.

Combining the lower bounds for �1(θ) and �2(θ), we have

�(θ) > −4(1 − α)

(2 − α)2 �(−2zα/2) − α(1 − α)

2 − α
.(A.11)

This lower bound for �(θ) is exactly the same with that in the interval [ν3, c2].
When θ ∈ [c4, ν4],

J1(θ) = 1 − 2�(−zα/2
σ̃ (θ)
σ

)

�(
√

n
σ

(θ − ν0)) + �(−
√

n
σ

(θ + ν0))
,

J2(θ) = 1 − α

�(
√

n
σ

(θ − ν1)) + �(−
√

n
σ

(θ + ν1))
,

J3(θ) = 1 − α
2 − �(

√
n

σ
(ν2 − θ))

�(
√

n
σ

(θ − ν1)) + �(−
√

n
σ

(θ + ν1))
,

J4(θ) = 1 − 2�(−zα/2
σ̃ (θ)
σ

)

�(
√

n
σ

(θ − ν1)) + �(−
√

n
σ

(θ + ν1))
.
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Therefore,

�(θ) = �(
√

n
σ

(ν2 − θ)) − α
2

Ps(θ, ν1)
+

[
1 − 2�

(
−zα/2

σ̃ (θ)

σ

)][
1

Ps(θ, ν1)
− 1

Ps(θ, ν0)

]

>

[
1 − 2�

(
−zα/2

σ̃ (θ)

σ

)][
1

Ps(θ, ν1)
− 1

Ps(θ, ν0)

]
,

the inequality holds since ν2 − θ ≥ ν2 − ν4 = −zα/2
σ√
n

when θ ≤ ν4.

Let �1(θ) = [1 − 2�(−zα/2
σ̃ (θ)
σ

)][ 1
Ps(θ,ν1)

− 1
Ps(θ,ν0)

]. We show that �1(θ) is

negative but quite close to zero. When θ > c4, Ps(θ, ν1) > Ps(θ, ν0) > �(3
2zα/2),

and further Ps(θ, ν1) − Ps(θ, ν0) ∈ (0,�(−3
2zα/2)). Therefore,

0 <
1

Ps(θ, ν0)
− 1

Ps(θ, ν1)
= Ps(θ, ν1) − Ps(θ, ν0)

Ps(θ, ν1)Ps(θ, ν0)
<

�(−3
2zα/2)

�(3
2zα/2)2

,

together with �(zα/2
σ̃ (θ)
σ

) − �(−zα/2
σ̃ (θ)
σ

) < 1 − α, we have

�1(θ) < 0 and
∣∣�1(θ)

∣∣ < (1 − α)
�(−3

2zα/2)

�(3
2zα/2)2

.

Therefore,

�(θ) > −(1 − α)
�(−3

2zα/2)

�(3
2zα/2)2

.

When θ ∈ [ν4,+∞),

J1(θ) = 1 − 2�(−zα/2
σ̃ (θ)
σ

)

�(
√

n
σ

(θ − ν0)) + �(−
√

n
σ

(θ + ν0))
,

J2(θ) = 1 − α

�(
√

n
σ

(θ − ν1)) + �(−
√

n
σ

(θ + ν1))
,

J3(θ) = 1 − α

�(
√

n
σ

(θ − ν1)) + �(−
√

n
σ

(θ + ν1))
,

J4(θ) = 1 − 2�(−zα/2
σ̃ (θ)
σ

)

�(
√

n
σ

(θ − ν1)) + �(−
√

n
σ

(θ + ν1))
.

Therefore,

�(θ) =
[
1 − 2�

(
−zα/2

σ̃ (θ)

σ

)][
1

Ps(θ, ν1)
− 1

Ps(θ, ν0)

]
.
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Here, �(θ) < 0, and

�(θ) >
1

Ps(θ, ν1)
− 1

Ps(θ, ν0)
> −�(−2zα/2)

�(2zα/2)
,

where we use that θ − ν0 > 2zα
σ√
n

when θ > ν4. In fact, Ps(θ, ν1) ≈ Ps(θ, ν0)

when θ gets quite large, thus �(θ) ≈ 0. The proof of case 1 in Theorem 1 is
completed.
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SUPPLEMENTARY MATERIAL

Supplement to “Weak signal identification and inference in penalized
model selection” (DOI: 10.1214/16-AOS1482SUPP; .pdf). Due to space con-
straints, we relegate technical details of the remaining proofs to the supplement.
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