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NONLINEAR SUFFICIENT DIMENSION REDUCTION
FOR FUNCTIONAL DATA

BY BING LI1 AND JUN SONG

Pennsylvania State University

We propose a general theory and the estimation procedures for nonlinear
sufficient dimension reduction where both the predictor and the response may
be random functions. The relation between the response and predictor can be
arbitrary and the sets of observed time points can vary from subject to sub-
ject. The functional and nonlinear nature of the problem leads to construction
of two functional spaces: the first representing the functional data, assumed
to be a Hilbert space, and the second characterizing nonlinearity, assumed to
be a reproducing kernel Hilbert space. A particularly attractive feature of our
construction is that the two spaces are nested, in the sense that the kernel for
the second space is determined by the inner product of the first. We propose
two estimators for this general dimension reduction problem, and establish
the consistency and convergence rate for one of them. These asymptotic re-
sults are flexible enough to accommodate both fully and partially observed
functional data. We investigate the performances of our estimators by simula-
tions, and applied them to data sets about speech recognition and handwritten
symbols.

1. Introduction. Functional data are prevalent in contemporary statistical ap-
plications such as Chemometrics, speech recognition, meteorology and longitudi-
nal data analysis. As a result, estimation and inference methods to study the inter-
relations between functions are becoming increasingly important in data analysis.
See Ramsay and Silverman (2005), Yao, Müller and Wang (2005a, 2005b), Ferraty
and Vieu (2006), Horváth and Kokoszka (2012) and Hsing and Eubank (2015). In
this paper, we develop a general theory along with estimation procedures for non-
linear sufficient dimension reduction of functional data, where both the predictor
and response are allow to be random functions, and their relations can be arbitrary.
In particular, the function-valued predictor and response do not have to be related
through linear indices, as assumed by the recently-developed sufficient dimension
reduction methods for functional data [Müller and Stadtmüller (2005), Ferré and
Yao (2003, 2005), Hsing and Ren (2009)].
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Classical sufficient dimension reduction is characterized by conditional inde-
pendence

Y ⊥⊥ X|βTX,(1)

where X is a p-dimensional random vector, Y is a random variable, and β is a p ×
d matrix (d � p). The goal is to estimate the space spanned by the columns of β .
That is, we seek a few linear combinations of X that are sufficient to describe the
conditional distribution of Y given X [see Cook and Weisberg (1991), Li (1991),
Cook (1998), Cook and Li (2002)]. This problem is linear in the sense that the
reduced predictor takes the linear form βTX. For this reason, we refer to it as
linear sufficient dimension reduction (linear SDR). The situation where Y is also
a vector was considered in Cook and Setodji (2003), Yin and Bura (2006) and Li,
Wen and Zhu (2008).

The theory of linear SDR was extended to functional data by Ferré and Yao
(2003, 2005) and Hsing and Ren (2009), where the random element X takes values
in a functional space, say H, whose members are functions defined on an interval,
representing time. The goal of functional linear SDR is to find members f1, . . . , fd

of H such that

Y ⊥⊥ X|〈f1,X〉H, . . . , 〈fd,X〉H,

where 〈·, ·〉H represents the inner product in H. On a different front, linear
SDR was generalized to the nonlinear case by Li, Artemiou and Li (2011)
and Lee, Li and Chiaromonte (2013), which seek a set of nonlinear functions
f1(X), . . . , fd(X) such that

Y ⊥⊥ X|f1(X), . . . , fd(X).(2)

This was accomplished by enlarging the Euclidean space of linear coefficient vec-
tors for linear SDR to a Hilbert space of functions of X. Lee, Li and Chiaromonte
(2013) showed that the nonlinear functions f1, . . . , fd in (2) can be obtained from
the eigenfunctions of certain linear operators, and developed two methods to esti-
mate them. The precursors of this theory include Bach and Jordan (2003), Cook
(2007), Wu (2008) and Yeh, Huang and Lee (2009), which introduced a variety of
practical nonlinear sufficient dimension reduction methods without articulating a
unifying framework. The generalization frees us from the linear constraint in (1),
so that we can handle relations between X and Y that cannot be described by linear
indices βTX, thus achieving further reduction of dimension.

In this paper, we go one step further to propose the theory and methods for non-
linear sufficient dimension reduction for functional data, which we abbreviate as
functional nonlinear SDR. Specifically, let X and Y be random functions defined
an interval T ⊆R representing time. Our goal is to find a set of nonlinear functions
f1, . . . , fd of X such that the random functions Y and X are independent condi-
tioning on f1(X), . . . , fd(X). The functional and nonlinear nature of this prob-
lem demands that we consider two nested functional spaces. First, X and Y are
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themselves functions on T , and they reside in functional spaces whose domains
are T . Second, f1(X), . . . , fd(X) reside in a space of functions whose domains
are the first space. To employ the nested Hilbert spaces to construct estimators of
f1, . . . , fd and to develop asymptotic theories special to functional nonlinear SDR
are the core of this paper.

This generalization is motivated and justified by many recent applications. For
example, in a speech recognition problem [Ferraty and Vieu (2006), Section 2.2],
the predictor is a voice signal as a function of time, and the response is the name
of the vowel sounds pronounced, which can be regarded as a discrete random vari-
able. And, regarding a Canadian weather data set [Ramsay and Silverman (2005),
page 17] asked the following question:

Can the temperature record Temp be used as a predictor of the entire precipitation pro-
file, not merely the total precipitation?

This is a case where one is interested in predicting one set of functions by an-
other set of functions. As a more visual example, consider the problem of training
the computer to learn to associate two sets of handwritten symbols, one numerical
and one alphabetical, as illustrated in Figure 1. In this problem, both the predictor
and the response are in the form of two-dimensional functions t �→ (f1(t), f2(t))

T,
which describe the curves in a two-dimensional space. Moreover, the relation is too
complicated to be described through linear index as in classical sufficient dimen-
sion reduction. As we show in Section 9, the methods proposed in this paper are
sufficiently flexible to handle all these situations.

An alternative approach to functional nonlinear SDR is to represent each func-
tion as coordinates in a basis expansion and then perform nonlinear SDR on the
coefficients as if they were multivariate data. However, the chief advantage of treat-
ing observed units as functions rather than vectors is that we can smooth the data
across time; that is, to borrow information from adjacent time points. This special
feature of functional data analysis is reflected in the convergence rate we develop

FIG. 1. Associating two sets of symbols.
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in Section 7, where the convergence rate improves as the observe frequency of
the functional data increases. Such an asymptotic behavior cannot be expected in
the multivariate setting, where increase of dimension tends to hamper, rather than
enhance, accuracy.

The rest of the paper is organized as follows. In Section 2, we give the formal
definition of functional nonlinear SDR. In Section 3, we construct the two nested
Hilbert spaces. In Sections 4 and 5, we extend the Generalized Sliced Inverse Re-
gression (GSIR) and the Generalized Average Variance Estimator (GSAVE) in-
troduced by Lee, Li and Chiaromonte (2013) to the functional case, resulting in
function GSIR (f-GSIR) and functional GSAVE (f-GSAVE). In Section 6, we de-
velop the algorithms for the two estimators, as well as accompanying procedures
for selecting the tuning parameters involved in these estimators. In Section 7, we
establish the consistency and convergence of the proposed f-GSIR method, and the
consistency of a dimension estimation procedure. In Section 8, we investigate the
performances of f-GSIR and f-GSAVE by simulation studies. In Section 9, we ap-
ply the new methods to two data sets involving speech recognition and handwritten
symbols. Some concluding remarks are made in Section 10. Due to limited space
all proofs are presented in an Online Supplement [Li and Song (2016)].

2. Functional nonlinear sufficient dimension reduction. Let (�,F,P ) be
a probability space, and TX,TY be subsets in R

k1 and R
k2 . Let HX be a Hilbert

space of functions from TX to R
p , and HY be a Hilbert space of functions from

TY → R
q . Let FX and FY be the Borel σ -fields generated by the topologies in-

duced by the inner products in HX and HY . Let X : � → HX and Y : � → HY

be random elements measurable with respect to F/FX and F/FY , respectively.
This general framework accommodates both random processes and random fields:
if TX and TY are intervals in R, then X and Y are random processes; if TX and TY

are subsets of R2, then X and Y are random fields.
Let PX and PY be the distributions of X and Y ; that is, they are induced mea-

sures P◦X−1 and P◦Y−1 on (HX,FY ) and (HY ,FY ). For simplicity, we assume
the pair of random elements takes values in the product space (HX × HY ,FX ×
FY ). Let σ(X) be the sub σ -field in F generated by X; that is, σ(X) = X−1(FX).
Let PX|Y : HY ×FX →R be the conditional distribution of X given Y .

DEFINITION 1. Suppose the family of probability measures {PX|Y (·|y) : y ∈
HY } is dominated by a σ -finite measure. A sub σ -field G of σ(X) is a sufficient
dimension reduction (SDR) σ -field for Y verses X iff Y and X are independent
given G, or in symbols,

Y ⊥⊥ X|G.(3)

The intersection of all sufficient sub σ -fields is called the central σ -field.
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We denote the central σ -field as GY |X . Following the proof of Theorem 1 of
Lee, Li and Chiaromonte (2013) it can be shown that, if {PX|Y (·|y) : y ∈ HY } is
dominated by a σ -finite measure, then the central σ -field also satisfies (3). This is
the target of functional nonlinear SDR.

Definition 1 generalizes the previously developed functional linear SDR.
Dauxois, Ferré and Yao (2001), Ferré and Yao (2003, 2005), and Amato, An-
toniadis and De Feis (2006) developed the following framework for functional
sufficient dimension reduction

Y ⊥⊥ X|〈β1,X〉HX
, . . . , 〈βd,X〉HX

,

where β1, . . . , βd are members of HX . This is a special case of (3) if we take
G to be the σ -field generated by 〈β1,X〉HX

, . . . , 〈βd,X〉HX
. Hsing and Ren

(2009) proposed a more general framework of functional linear SDR where
〈β1,X〉HX

, . . . , 〈βd,X〉HX
are replaced by a finite set of random variables in the

closure of the span of {X(·, t) : t ∈ TX}, where TX is a subset of R. Wang, Lin and
Zhang (2013) extended Contour Regression of Li, Zha and Chiaromonte (2005) to
functional linear SDR. In all of the above extensions, the response Y is a random
variable rather than a random function.

The following example illustrates the idea of functional nonlinear SDR in Def-
inition 1.

EXAMPLE 1. Suppose that HX is a separable Hilbert space and � : HX →
HX is a trace-class operator. Let X be a Gaussian random element in HX

with � as its variance operator. That is, for any h ∈ HX we have E(ei〈X,h〉) =
ei〈μ,h〉−〈�h,h〉/2, where 〈·, ·〉 stands for the inner product in HX and i = √−1. Let
β1(t) = sin((3/2)πt), β2(t) = sin((5/3)πt). Let

Y = e〈β1,X〉 + 〈
β2,X

2〉 + 0.3ε,(4)

where ε ⊥⊥ X and ε ∼ N(0,1). Then the central σ -field GY |X is the σ -field gen-
erated by e〈β1,X〉 + 〈β2,X

2〉, and the central class is spanned by the class of all
strictly monotone functions of this random variable in HX .

3. Nested Hilbert spaces. For convenience, assume that TX = TY = T . As
laid out in the last section, the Hilbert spaces HX and HY define the ranges of
the random functions X and Y . To characterize the distributions of X and Y , and
in particular their conditional independence, we need the second-level spaces MX

and MY . In this section, we propose a convenient method for constructing these
spaces.

A function f ∈ HX has p components: f = (f1, . . . , fp)T, where each fi is a
function on T to R. We assume HX = H0

X × · · · × H0
X . Furthermore, we assume

that H0
X is a Hilbert with inner product 〈·, ·〉H0

X
. We define HX to be a Hilbert
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space with inner product

〈f,g〉HX
=

p∑
i=1

〈fi, gi〉H0
X
.

We define H0
Y and HY similarly.

Without distinguishing between X and Y , let H = H0 × · · · × H0 and 〈·, ·〉H
be as defined above. To construct the second-level space M, we need a kernel that
maps H×H to R. The next definition suggests a convenient way to define such a
kernel.

DEFINITION 2. We say that a positive definite kernel κ : H × H → R is in-
duced by 〈·, ·〉H if there is a function ρ :R3 →R

+ such that, for any φ,ψ ∈ H,

κ(φ,ψ) = ρ
(〈φ,φ〉H, 〈φ,ψ〉H, 〈ψ,ψ〉H)

.

An example of nested kernel is k(φ,ψ) = exp(−γ ‖φ − ψ‖2
H), which corre-

sponds to the Gaussian radial basis function often used in machine learning litera-
ture, except that the Euclidean scalar product is now replaced by the inner product
〈·, ·〉H in H. We define the second-level space M to be the RKHS generated by κ .
Since the inner product in M is uniquely determined by κ , and κ is uniquely de-
termined by 〈·, ·〉H, the inner product in M is uniquely determined by the inner
product in H; thus in this sense they are nested. There are many ways to choose H
and ρ. The following examples give several choices of H and ρ, where H is itself
chosen to be a reproducing kernel Hilbert space generated by a kernel function κT

defined on T × T .

EXAMPLE 2. Assume s = 1, so that H = H0. Let H0 be the reproducing-
kernel Hilbert space generated by the Gaussian radial basis kernel on T ×
T : κT (t1, t2) = e−γ1(t1−t2)

2
where γ1 > 0. It can be shown [see, e.g., Minh

(2010)] any function in H is of the form φ(t) = e−γ1t
2 ∑∞

k=0 wkt
k such that∑∞

k=0 k!w2
k/(2γ1)

k < ∞. Thus, if we let

C =
{
{wk} :

∞∑
k=0

[
k!w2

k/(2γ1)
k] < ∞

}
,

then a function in H can be equivalently represented as a sequence in C. We will
write φ ∼ {wk} to represent this one-to-one correspondence. It can be shown that
for any φ ∼ {wk}, ψ ∼ {vk} in C, we have

〈φ,ψ〉H =
∞∑

k=0

k!wkvk/(2γ1)
k.
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If we take Gauss radial basis function, then the second-level kernel κ for M is

κ : H×H →R, (φ,ψ) �→ exp

(
−γ2

∞∑
k=0

[
k!(wk − vk)

2/(2γ1)
k]).

The space M is the completion of the collection of all functionals that are linear
combinations of κ(·,ψ1), . . . , κ(·,ψm) where ψ1, . . . ,ψm are members of H. That
is, M is the completion of the set of functionals of the form

φ �→
m∑

=1

c exp

(
−γ2

∞∑
k=0

[
k!(wk − v

()
k

)2
/(2γ1)

k]),

where φ ∼ {wk}, and φ ∼ {v()
k }, c ∈ C for all  = 1, . . . ,m.

EXAMPLE 3. Let {U(t) : t ∈ T } be a random process. Then it can be shown
that the mapping (t1, t2) �→ cov[U(t1),U(t2)] is positive definite [see Berlinet
and Thomas-Agnan (2004), page 58]. Then κT (t1, t2) = cov[U(t1),U(t2)] can
be used as a kernel to generate RKHS. An important special case is the stan-
dard Brownian motion, where this kernel takes the form κT (t1, t2) = min(t1, t2).
The space H generated by this kernel consists of φ : T → R that are abso-
lutely continuous, φ(0) = 0, and

∫ [φ̇(t)]2 dt < ∞. The inner product in H is
〈φ,ψ〉H = ∫

φ̇(t)ψ̇(t) dt . The eigenvalues and eigenfunctions for this kernel in
Mercer’s theorem are

λj = [
(j − 1/2)π

]−2
, vj (t) = √

2 sin
[
(j − 1/2)πt

]
,(5)

respectively; see Amini and Wainwright (2012). The kernel κ for the second-level
functional space is then κ(φ,ψ) = ρ(

∫
(φ̇(t) − ψ̇(t))2 dt). The space M is the

RKHS generated by this kernel.

For more choices of kernels κT , see, for example, Berlinet and Thomas-Agnan
(2004), Appendix and Rasmussen and Williams (2006), Chapter 4. In order for
the class of functions MX to characterize the central σ -field, we need to make the
following assumption. Let L2(PX) denote the class of all functions of X such that
Ef 2(X) < ∞ under PX .

ASSUMPTION 1. MX is a dense subset of L2(PX) modulo constants; that
is, for any f ∈ L2(PX), there is a sequence {fn} ⊆ MX such that var[fn(X) −
f (X)] → 0.

We now use a subset of MX to characterize functional nonlinear SDR. Com-
paring to the central σ -field GY |X , this alternative representation gives a concrete
object to estimate.



1066 B. LI AND J. SONG

DEFINITION 3. Under Assumption 1, the class of functions in MX that are
GY |X-measurable is the central dimension reduction class, or the central class.

The central class will be denoted by SY |X , and our goal is to recover SY |X from
a random sample of (X,Y ). If a subspace S of MX is contained in SY |X , then we
say it is unbiased; if it is equal to SY |X , then we say it is exhaustive. Similar to Lee,
Li and Chiaromonte (2013) we define a complete sub-σ field of G and complete
class as follows.

DEFINITION 4. A sub σ -field G of σ(X) is complete if, for each f measurable
with respect to G such that E[f (X)|Y ] = constant almost surely PY , we have
f (X) = 0 almost surely PX . The class of functions in MX that is measurable with
respect to a complete G is called a complete class.

4. Functional generalized sliced inverse regression. In this section, we ex-
tend the Generalized Sliced Inverse Regression [GSIR; Lee, Li and Chiaromonte
(2013)] for nonlinear SDR to the functional case. We refer to this extension
as functional GSIR, or f-GSIR. For two generic Hilbert spaces H1 and H2, let
B(H1,H2) denote the class of bounded linear operators from H1 to H2; if H1 =
H2 = H, we abbreviate B(H,H) by B(H). For any operator A ∈ B(H1,H2), let
A∗ denote the adjoint operator of A, ker(A) the kernel of A, ran(A) the range of A,
and ran(A) the closure of the range of A.

ASSUMPTION 2. There are constants C1 > 0 and C2 > 0 such that, for all
f ∈ MX and g ∈ MY , var[f (X)] ≤ C1‖f ‖2

MX
, var[g(Y )] ≤ C2‖g‖2

MY
.

Let L
(c)
2 (PX) = {f − Ef (X) : f ∈ L2(PX)} be the centered L2(PX) space.

Assumption 2 ensures that the mapping HX → L
(c)
2 (PX), f �→ f is continuous.

This assumption guarantees that the bilinear form MX × MX → R, (f, g) �→
cov[f (X), g(X)] is bounded. Hence, there is an operator �XX ∈ B(MX) such
that 〈f,�XXg〉MX

= cov[f (X), g(X)]. We can define �YY ∈ B(MY ), and �XY ∈
B(MY ,MX) in the same way. By definition, �XX is self adjoint and �∗

XY = �YX .
Similar constructions were used in Fukumizu, Bach and Jordan (2009) and Lee, Li
and Chiaromonte (2013). See also Baker (1973).

Although �XX is defined on MX , its effective domain is the space ran(�XX).
This is because members of ker(�XX) are constants almost surely, which are unim-
portant to our consideration. Understanding this fact is instructive for constructing
estimators at the sample level. The subspace ran(�XX) has an explicit expres-
sion, as given by the next lemma. Under Assumption 2, there exists C > 0 such
that E|f (X)| < C‖f ‖MX

for any f ∈ MX . This implies that the linear functional
f �→ E[f (X)] from MX to R is bounded. Let μX be the Riesz representation of
this linear functional. Let

M0
X = span

{
κX(·, x) − μX : x ∈ HX

}
,(6)
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where span denotes the closure of linear span. We can define M0
Y and μY in the

same way.

LEMMA 1. Under Assumption 2, we have ran(�XX) = M0
X and ran(�YY ) =

M0
Y .

Interestingly, although this explicit expression has been used at the sample level
[see, e.g., Fukumizu, Bach and Jordan (2009), Lee, Li and Chiaromonte (2013)],
to our knowledge, it has never been stated at the population level.

Since any f ∈ ran(�XX) can be uniquely written as �XX(g1 + g2) where g1 ∈
ker(�XX) and g2 ∈ ran(�XX) = M0

X , the mapping f �→ g2 from ran(�XX) to
M0

X is well defined. We call it the Moore–Penrose inverse of �XX , and denote it
by �

†
XX . For more information about Moore–Penrose inverse in this setting, see

Hsing and Eubank (2015), Section 3.5.

ASSUMPTION 3. ran(�YX) ⊆ ran(�YY ) and �
†
YY �YX is a bounded operator.

Note that, under ran(�YX) ⊆ ran(�XX), �
†
YY �YX is well define. We do not

assume the operators �
†
YY to be bounded, which would be unrealistic because we

typically assume �XX and �YY are compact operators, whose eigenvalues decay
to 0. However, it is not unreasonable to assume �

†
XX�XY and �

†
YY �YX to be

bounded, which is determined by the interaction between two operators. In the
following, we refer to the bounded operator �

†
XX�XY as the regression operator,

due to its similarity in appearance to the coefficient vector in multivariate linear
regression, and denote it by RYX .

PROPOSITION 1. Under Assumptions 1 through 3 we have, for any f ∈MX ,

�
†
YY �YXf = E

(
f (X)|Y ) − Ef (X) + E

[(
�

†
YY �YXf

)
(Y )

]
.

The next theorem is the theoretical basis for unbiasedness and exhaustiveness
of f-GSIR. The proof is similar to that given in Lee, Li and Chiaromonte (2013)
for vector-valued X and Y , and is omitted.

THEOREM 1. Under Assumptions 1 through 3, we have ran(R∗
YX) ⊆

cl(�XXSY |X). Furthermore, if SY |X is complete, then ran(R∗
YX) = cl(�XXSY |X),

where cl(· · · ) indicates the closure of a set.

Intuitively, R∗
YX can be calculated as �XY �

†
YY . However, recall that �

†
YY is

defined on ran(�YY ) instead of ran(�YY ) = M0
Y . Nevertheless, because �XY �

†
YY

is bounded, its domain can be extended to ran(�YY ). Thus, we take the domain
R∗

YX = �XY �
†
YY as ran(�YY ).



1068 B. LI AND J. SONG

Since ran(R∗
YX) = ran(R∗

YXARYX) for any invertible operator A : M0
Y → M0

Y ,
at the population level we can use any operator of the form R∗

YXARYX to recover
the same portion of cl(�XXSY |X). Choosing A = �YY results in the following
operator

R∗
YX�YY RYX = �XY �

†
YY �YY �

†
YY �YX = �XY �

†
YY �YX(7)

which resembles SIR in the sense that, for any f ∈ MX ,〈
f,R∗

YX�YY RYXf
〉
MX

= 〈RYXf,�YY RYXf 〉MX
= var

[
E

(
f (X)|Y )]

.(8)

To make Theorem 1 into a form that can be mimicked at the sample level, we make
the following assumption.

ASSUMPTION 4. For a positive definite operator A : M0
X →M0

X , the operator

�
†
XX�XY A�YX�

†
XX(9)

has finite rank, say d .

Because of the resemblance of (8) to the defining property of SIR, Lee, Li and
Chiaromonte (2013), refer to any sample estimator targeting

ran
(
�

†
XXR∗

YX�YY RYX�
†
XX

) = ran
(
�

†
XXR∗

YX

) = ran
(
�

†
XX�XY A�YX�

†
XX

)
in the nonlinear SDR setting as GSIR. Thus, in the functional nonlinear SDR set-
ting, we refer to any sample estimator targeting the above space as an f-GSIR.

A particularly convenient choice of A is �2
YY , because it leads to

�
†
XX�XY �YX�

†
XX , which avoids the inverse �

†
YY . In our simulation studies, we

do not find significant difference for choosing different A. Therefore, throughout
the rest of the paper we take A = �2

YY .
Combining Theorem 1 and Assumption 4, we arrive at the following population-

level statement that suggests an algorithm. Henceforth, we call the subspace of
functions in MX that are measurable with respect to σ(f1(X), . . . , fd(X)) the
subspace generated by f1, . . . , fd .

COROLLARY 1. Suppose Assumptions 2 through 4 are satisfied. Let f1, . . . , fd

be solution to the following sequential maximization problem: for each k =
1, . . . , d ,

maximize
〈
f,�

†
XX�XY �YX�

†
XXf

〉
MX

subject to f ∈ M0
X, 〈f,f 〉MX

= 1, 〈f,f1〉MX
= · · · = 〈f,fk−1〉MX

= 0.

Then the functions f1(X), . . . , fd(X) generate a subspace of a subspace of SY |X .
Furthermore, if SY |X is complete, then these functions generate the central class.

Note that we only need to carry out the maximization over f ∈ M0
X because the

domain of �YX�
†
XX is M0

X . This fact will be important for constructing sample
estimate.
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5. Functional GSAVE. Another important dimension reduction estimator in
the classical setting is the Sliced Average Variance Estimator (SAVE) introduced
by Cook and Weisberg (1991), which was extended to the nonlinear case by Lee, Li
and Chiaromonte (2013), GSAVE. We now further extend it to the functional case.
We refer to our extension as the functional GSAVE, or f-GSAVE. Here, we adopt a
somewhat different approach than Lee, Li and Chiaromonte (2013): we use RKHS
MX and MY as the basis for extension; whereas in Lee, Li and Chiaromonte
(2013) used L2(PX) and L2(PY ) as the basis for extension. This alternative ap-
proach not only makes the extensions of SIR and SAVE more consistent, but also
facilitates their asymptotic development, which will be carried out in Section 7.

Similar to the construction of �XX , for each y ∈ HY , the mapping

MX ×MX →R, (f1, f2) �→ cov
(
f1(X), f2(X)|Y = y

)
(10)

defines a bilinear form, which is bounded under the following assumption.

ASSUMPTION 5. There is a constant C > 0 such that, for each f ∈ MX and
y ∈ HY , var(f (X)|y) ≤ C‖f ‖2

MX
.

Under Assumption 5, the bounded bilinear form (10) induces an operator
VXX|Y (y) :MX →MX such that〈

f1,VXX|Y (y)f2
〉
HX

= cov
(
f1(X), f2(X)|Y = y

)
.

The mapping �Y → B(MX), y �→ VXX|Y (y) then defines a random operator,
which plays the role of var(X|Y) in SAVE. To proceed further, we need the notion
of the expectation of a random operator such as VXX|Y (Y ). Let A be any random
operator taking values in B(MX) such that E‖A‖ < ∞ where ‖ · ‖ is the operator
norm. Then A defines the bounded bilinear form

MX ×MX →R, (f1, f2) �→ E〈f1,Af2〉MX
,

which induces a (nonrandom) operator B ∈ B(MX) such that 〈f1,Bf2〉MX
=

E〈f1,Af2〉MX
. The operator B is defined as the expectation of A, and is writ-

ten as E(A). That is, the expectation of a random operator is uniquely defined
through the equation 〈

f1,E(A)f2
〉
MX

= E〈f1,Af2〉MX
.(11)

Our f-GSAVE is based on the following operator:

S ≡ E
{[

�XX − VXX|Y (Y )
]2}

.

For this expectation to be defined, we need the following assumption.

ASSUMPTION 6. E(‖�XX − VXX|Y (Y )‖2) < ∞.
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Our goal is to show that the range of S is contained in �XXSY |X . To establish
this, we need an additional assumption.

ASSUMPTION 7. For any f ∈ MX such that cov[f (X), g(X)] = 0 for all g ∈
SY |X , the conditional variance var[f (X)|GY |X] is a constant almost surely PX .

This is an extension of what is called the constant conditional variance assump-
tion for SAVE in the classical setting. See, for example, Cook and Weisberg (1991)
and Li, Zha and Chiaromonte (2005). Assumption 7 was also used in Lee, Li and
Chiaromonte (2013). The next theorem is the theoretical basis of f-GSAVE. Since
the assumptions here are different from Lee, Li and Chiaromonte (2013), the proof
is also different.

THEOREM 2. Under Assumptions 2, 1, 6 and 7, we have ran(S) ⊆
cl(�XXSY |X).

According to this theorem, if �
†
XXS�

†
XX is defined, then its range space is

contained in M0
X ∩ SY |X , which is equivalent to the central class SY |X because

any f ∈ SY |X can be written as c1 + f0 where f0 ∈ M0
X ∩ SY |X and 1 is the

constant function 1(f ) = 1 for all f ∈ MX . Similar to the construction of the
f-GSIR operator, we make a strong enough assumption so that the range can be
recovered via finite steps of optimizations.

ASSUMPTION 8. The operator �
†
XXS�

†
XX has finite rank d .

We can now restate Theorem 2 in a form that suggests an algorithm.

COROLLARY 2. Suppose Assumptions 1, 2, 6, 7 and 8 are satisfied. Let
f1, . . . , fd be solution to the following sequential maximization problem: for each
k = 1, . . . , d ,

maximize
〈
f,�

†
XXS�

†
XXf

〉
MX

subject to f ∈ M0
X, 〈f,f 〉MX

= 1, 〈f,f1〉MX
= · · · = 〈f,fk−1〉MX

= 0.

Then the functions f1(X), . . . , fd(X) generate a subspace of a subspace of M0
X ∩

SY |X .

We call the sample estimate that targets ran(�
†
XXS�

†
XX) an f-GSAVE. Recall

that, by Corollary 1, the range of the operator �
†
XX�XY �YX�

†
XX fully recovers

the central class SY |X when the latter is complete. When SY |X is not complete,
this range can be a proper subspace �XXSY |X , but the operator S recovers a larger
subspace of SY |X , as guaranteed by the next theorem. The proof is parallel that in
Lee, Li and Chiaromonte (2013) and is omitted.
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THEOREM 3. Under Assumptions 3 and 6, we have

ran
(
R∗

YX

) ⊆ ran
[
�XX − VXX|Y (Y )

]
almost surely PY .

6. Estimation. Having defined f-GSIR and f-GSAVE at the population level,
we now turn to its implementation at the sample level. To focus on the main
ideas, we first discuss the case where p = 1 and q = 1, and then extend to the
p > 1, q > 1 case. For simplicity, we only consider the case where T is an in-
terval in R; the more general case can be developed by analogy. The basic idea
for constructing sample versions of f-GSIR and f-GSAVE is to replace the true
distribution of (X,Y ) by the empirical distribution based on an i.i.d. sample of
(X,Y ), and express the relevant operators as n × n matrices using a coordinate
representation system [see Horn and Johnson (1985), Section 0.10].

6.1. Coordinate representation. Let H1 be a generic finite-dimensional vec-
tor space with basis B = {b1, . . . , bn}. For each f ∈ H1, there is a vector α =
(α1, . . . , αn)

T such that f = ∑n
i=1 αibi . The vector α is called the coordinate of

f with respect to B, and is written as [f ]B. Through the rest of this section we
will reserve the square bracket [·] for coordinate representation by systematically
avoiding using it anywhere else. Let H2 be another Hilbert spaces, spanned by
C = {c1, . . . , cm} and A : H1 → H2 be a linear operator. Then, for any f ∈ H1,

Af = A

(
n∑

i=1

([f ]B)
ibi

)
=

n∑
i=1

([f ]B)
i (Abi) =

n∑
i=1

([f ]B)
i

m∑
j=1

([Abi]C)
j cj .

The right-hand side can be rewritten as

m∑
j=1

n∑
i=1

([f ]B)
i

([Abi]C)
j cj ≡

m∑
j=1

{(
C[A]B)([f ]B)}

j cj ,

where C[A]B is the m × n matrix whose (j, i)th entry is ([Abi]C)j . The above
equation shows that [Af ]C = (C[A]B)[f ]B . The matrix C[A]B is called the co-
ordinate of the operator A relative to bases B and C. Let H3 be a third Hilbert
space with basis D = {d1, . . . , d} and B : H2 → H3 be a linear operator. Then
D[BA]B = (D[B]C)(C[A]B). In the following, if the bases involved are clear from
the context, we will drop the subscripts and write D[B]C and [f ]B as [B] and [f ].
We write the ith component of [f ] as [f ]i .

6.2. Construction of HX , HY , MX , MY . We first construct HX and HY , using
HX as an illustration. Let (X1, Y1), . . . , (Xn,Yn) be an i.i.d. sample of (X,Y ).
Suppose, rather than observing the function Xi in its entirety, we only observe it
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on a finite subset {ti1, . . . , timi
} of T , which is allowed to differ from subject to

subject. Let u = ∑n
i=1 mi and

τ = (t11, . . . , t1m1, . . . , tn1, . . . , tnmn)
T ≡ (τ1, . . . , τu)

T.

Let Ji be the set of indices of τk that belongs to the ith subject, and Ti = {τk :
k ∈ Ji}. For simplicity, assume that all time points are distinct: τk �= τ whenever
k �= . When time points overlap, the following development is still valid with
slight modification. Let KT be the u × u Gram matrix {κT (τk, τ)}. Using the
coordinate system in Section 6.1, we can express the inner product in HX as

〈φ,ψ〉 =
〈

u∑
k=1

[φ]kκT (·, τk),

u∑
=1

[ψ]κT (·, τ)

〉
= [φ]TKT [ψ].

Since each Xi is observed at mi time points, it only needs mi functions in HX to
specify. Naturally, we choose these functions to be {κT (·, τk) : k ∈ Ji}. This means
all except mi entries of [Xi] are 0. With this in mind, we have

Xi =
u∑

k=1

[Xi]kκT (·, τk) = ∑
k∈Ji

[Xi]kκT (·, τk).

Furthermore, for each  ∈ Ji ,

Xi(τ) = 〈
Xi, κT (·, τ)

〉
HX

= ∑
k∈Ji

[Xi]kκT (τ, τk).

Let [Xi]0 denote the mi -dimensional subvector of [Xi] consisting of entries with
indices in Ji , K

(i,j)
T denote the mi × mj sub-matrix {(KT )k : k ∈ Ji,  ∈ Jj }, and

Xi(Ti) denote the (column) vector {Xi(τ) : τ ∈ Ti}. Then Xi(Ti) = K
(i,i)
T [Xi]0.

Solve this equation with Tychonoff regularization to obtain

[Xi]0 = (
K

(i,i)
T + ε

(X)
T Imi

)−1
Xi(Ti).

We define HX as the space spanned by {∑mi

=1[Xi]0
κT (·, ti) : i = 1, . . . , n} with

inner product determined by 〈κT (·, s), κT (·, t)〉HX
= κT (s, t). It follows that

〈Xi,Xj 〉HX
= [Xi]0TK

(i,j)
T [Xj ]0

(12) = XT
i (Ti)

(
K

(i,i)
T + ε

(X)
T Imi

)−1
K

(i,j)
T

(
K

(j,j)
T + ε

(X)
T Imj

)−1
Xj(Tj ).

We define HY similarly.
We now turn to the second-level spaces MX and MY , using MX as an illustra-

tion. For each i, j = 1, . . . , n, let

κX(Xi,Xj ) = ρ
(〈Xi − Xj,Xi − Xj 〉HX

)
(13)

= ρ
(〈Xi,Xi〉HX

− 2〈Xi,Xj 〉HX
+ 〈Xj,Xj 〉HX

)
,
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where ρ is the function introduced in Definition 2, and 〈Xi,Xi〉HX
and so on are

calculated by (12). Let MX be the space spanned by {κX(·,Xi) : i = 1, . . . , n} and
KX be n × n Gram matrix {κX(Xi,Xj )}. Then, for f1, f2 ∈ MX , 〈f1, f2〉MX

=
[f1]TKX[f2].

6.3. Implementation of f-GSIR. To develop the f-GSIR estimator, we first de-
rive the coordinates of �XX , �YY , and �YX . With MX defined in the last sub-
section, let μX be the Riesz representation of the linear functional f �→ Enf (X)

defined on f ∈ HX; let M0
X = span{κX(·,Xi) − μX : i = 1, . . . , n}. Furthermore,

let 1n denote the n-dimension vector with its components identically 1, In denote
the n×n identity matrix, and Q = In −1n1T

n/n. Note that Q is the projection on to
the orthogonal complement of span(1n) in the Euclidean space R

n. The following
facts are easily checked.

PROPOSITION 2. Let MX , μX , and M0
X be as defined in this section. Then:

1. μX = n−1 ∑n
i=1 κX(·,Xi);

2. f ∈ M0
X iff [f ] = Q[f ].

As we mentioned in Section 4, the relevant subspace of dimension reduc-
tion is M0

X , because functions in its orthogonal complement are constant almost
surely PX . To reflect this at the sample level our coordinate representation for oper-
ators such as �XX , �YX and �YY are with respect to M0

X rather than MX . Using
Proposition 2, we can easily prove the following results, which can be found in
Fukumizu, Bach and Jordan (2009) and Lee, Li and Chiaromonte (2013). Let GX

and GY denote QKXQ and QKY .

PROPOSITION 3. We have the following coordinate expression at the sample
level:

[�XX] = n−1GX, [�YY ] = n−1GY , [�YX] = n−1GX,

[�XY ] = n−1GY ,
[
�

†
XX

] = nG
†
X,

[
�

†
YY

] = nG
†
Y .

By Proposition 3, we can express the quantities in Corollary 1 in matrix form.
The operator �

†
XXR∗

YX�2
YY RYX�

†
XX can be expressed as

(
n−1GX

)†(
n−1GY

)(
n−1GX

)(
n−1GX

)† = G
†
XGY GXG

†
X.

Hence,〈
f,

(
RYX�

†
XX

)∗
�2

YY

(
RYX�

†
XX

)
f

〉
MX

= [f ]TKXG
†
XGY GXG

†
X[f ]

= [f ]TGXG
†
XGY GXG

†
X[f ],
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where the second equality follows from [f ] = Q[f ] and G
†
X = QG

†
X . To prevent

over-fitting, we use the Tychonoff regularized inverse (GX + εXIn)
−1 to replace

the Moore–Penrose inverse G
†
X , where εX > 0 is a tuning constant, which results

in

[f ]TGX(GX + εXIn)
−1GY GX(GX + εXIn)

−1[f ].(14)

Since GX and (GX +εXIn)
−1 commute, the matrix sandwiched between [f ]T and

[f ] is symmetric.
Because it suffices to maximize (14) over M0

X , the inner products in Corollary 1

are 〈f,f 〉MX
= [f ]TGX[f ] and 〈f,f〉MX

= [f ]TGX[f]. Put v = G
1/2
X [f ] and

solve for [f ] with Tychonoff regularization to obtain [f ] = (GX + εXIn)
−1v. In

terms of v, Corollary 1 is implemented as the following standard eigenvalue prob-
lem: for k = 1, . . . , d ,

maximize: vT(GX + εXI)−3/2GXGY GX(GX + εXI)−3/2v

subject to: vTv = 1, vTv1 = 0, . . . , vTvk−1 = 0.

In other words, v1, . . . , vd are the first d eigenvectors of

(GX + εXI)−3/2GXGY GX(GX + εXI)−3/2.(15)

We then retrieve the coefficients [f] = (GX + εXI)−1/2v. Our final product is
the set of functions

f̂ = vT
 (GX + εXIn)

−1/2QbX,  = 1, . . . , d,

which are the (nonlinear) sufficient predictors that span the approximate central
class.

6.4. Implementation of f-GSAVE. We first need a procedure to estimate the
conditional covariance

cov
(
f1(X), f2(X)|y) = E

(
f1(X)f2(X)|y) − E

(
f1(X)|y)

E
(
f2(X)|y)

(16)

for each function y and any f1, f2 ∈ MX . For this purpose, we need to estimate
E(f (X)|y) for any f ∈ MX . We introduce a few more operators

MYX : induced by the bilinear form MX ×MY →R, (f, g) �→ E(fg),

MYY : induced by the bilinear form MY ×MY →R, (f, g) �→ E(fg),(17)

EYX = M−1
YY MYX.

By the similar argument used in Section 4, it can be shown that, for any f ∈ MX ,
EYXf = E(f (X)|Y). These operators are similar to and �YX , �YY , and RYX

except they are not centered. This is because the centering is automatically done
by the expression (16) itself. Using these operators, we can express (16) as

covn(f1, f2|y) = {
EYX(f1f2)

}
(y) − {

(EYXf1)(y)
}{

(EYXf1)(y)
}
.(18)
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By the argument similar to that used in Lee, Li and Chiaromonte (2013), it can be
shown that the coordinate representation (in MX) of these operators are

[MYY ] = n−1KY , [MYX] = n−1KX, [EYX] = K−1
Y KX.

The next lemma gives the coordinate representation of f1f2.

LEMMA 2. For any f1, f2 ∈ MX , we have [f1f2] = K−1
X (KX[f1]�KX[f2]),

where � is the Hadamard product.

We are now ready to derive the explicit expression for covn(f1, f2|y). In the
following, we will use the equality (a � b)Tc = aT diag(c)b, which can be easily
verified.

LEMMA 3. We have covn(f1, f2|y) = [f1]TA(y)[f2] where

A(y) = KX diag
(
KY bY (y)

)
KX − KXK−1

Y bY (y)bT
Y (y)K−1

Y KX.(19)

The next theorem gives the coordinate representation of VXX|Y (y).

THEOREM 4. [VXX|Y (y)] = G
†
XQA(y)Q.

We now describe an algorithm that implement the procedure in Corollary 2 at
the sample level. For ease of exposition, we will keep using G

†
X in the following

development. In actual estimation, like in the case of f-GSIR, we replace it by the
Tychonoff regularized inverse (GX + εXIn)

−1.
By Corollary 2, we need to maximize 〈f,�

†
XXS�

†
XXf 〉MX

successively over
f ∈M0

X under the constraint ‖f ‖MX
= 1 and that f is orthogonal (in MX) to the

previously found maximizers. By (11),〈
f,�

†
XXS�

†
XXf

〉
MX

= En

(〈
f,�

†
XX

(
�XX − VXX|Y (Y )

)2
�

†
XXf

〉
MX

)
.

By Theorem 4,〈
f,�

†
XX

(
�XX − VXX|Y (Y )

)2
�

†
XX

〉
MX

= [f ]TQ
(
GX − G

†
XA(Y )

)2
G

†
XQ[f ]

= [f ]T(
Q − G

†
XA(Y )G

†
X

)
GX

(
Q − G

†
XA(Y )G

†
X

)[f ].
Hence, 〈

f,�
†
XXS�

†
XXf

〉
MX(20)

= [f ]TEn

{(
Q − G

†
XA(Y )G

†
X

)
GX

(
Q − G

†
XA(Y )G

†
X

)}[f ].
To transform this into a standard eigenvalue problem, where the constraints are in
terms of scalar product aTb in R

n rather than 〈f,g〉MX
, let v = G

1/2
X [f ]. Then
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[f ] = G
†1/2
X v. The maximizer of (20) is of the form G

†1/2
X v where v is the eigen-

vector of

En

{
QG

†1/2
X

(
Q − G

†
XA(Y )G

†
X

)
GX

(
Q − G

†
XA(Y )G

†
X

)
G

†1/2
X Q

}
.(21)

To sum up the f-GSAVE algorithm, we first replace the G
†
X in (21) by

(GX + εXIn)
−1 (including the G

†
X in G

−1/2
X ) and KY in A(y) by (KY + εY In),

where εX > 0 and εY > 0 are constants to be determined by the tuning method
in Section 6.6. With these replacements in place, we compute the first d eigen-
vectors v1, . . . , vd of (21). Our sufficient predictors are f1, . . . , fd , where [f] =
(GX + εXIn)

−1/2v,  = 1, . . . , n.
The next three subsections are devoted to tuning parameters, of which there are

three classes. The first class consists of tuning parameters for HX and HY , which
include the Tychonoff regularization constants ε

(X)
T and ε

(Y )
T , and, if the Gauss

radial basis function is used, the constants γ
(X)
T and γ

(Y )
T . This is discussed in

Section 6.5. The second class of tuning parameters are for MX and MY , which
are εX , εY , γX and γY (if the Gauss radial basis function is used). This is discussed
in Section 6.6. The third-class consists of one tuning parameter: the dimension d

of the central class. This is discussed in Section 6.7. In the following, we assume
that the GRB kernel is used, but the basic ideas apply to other kernels as well.

6.5. Tuning first-level functions. Since the procedures for tuning (γ
(X)
T , ε

(X)
T )

and (γ
(Y )
T , ε

(Y )
T ) are the same, we focus on the X-version and omit the super-

scripts of γT and εT . First, we recommend the default value for εT to be ε0
T =

0.05λ̂1(KT ), where λ̂1(KT ) the largest eigenvalue of KT , and the default value for
γT to be γ 0

T = 1/(2ρ) where ρ = (u
2

)−1 ∑
i<j (τi − τj )

2.
We can either use the default values as the tuning parameters or use general-

ized cross validation (GCV) to fine tune the parameters around the default val-
ues. Recall from Section 6.2 that we fit the function Xi by its observed values
{Xi(τk) : k ∈ Ji} according to

X̂i(t, γT , εT ) = XT
i (Ti)

(
K

(i,i)
T (γT ) + εT Imi

)−1
κT (t, Ti;γT ), t ∈ T ,

where we have put γT in K
(i,i)
T and κT to emphasize their dependence on it. Let

gcv(γT , εT ) =
n∑

i=1

m−1
i

∑mi

j=1[Xi(tij ) − X̂i(tij , γT , εT )]2

{m−1
i tr[Imi

− Ĥi(γT , εT )]}2

=
n∑

i=1

m−1
i ‖[Imi

− Ĥi(γT , εT )]Xi(Ti)‖2

{m−1
i tr[Imi

− Ĥi(γT , εT )]}2
,

where Ĥi(γT , εT ) is the matrix K
(i,i)
T (γT )(K

(i,i)
T (γT )+εT Imi

)−1, a smoothed pro-
jector that projects the random function Xi on to the important eigenfunctions of
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the kernel K
(i,i)
T . This criterion pools observations from all subjects to determine

εT , and allows Ji to overlap for different subjects. In particular, in the balanced
case the criterion reduces to

gcv(εT , γT ) = m

tr[Im − Ĥ (γT , εT )]2

n∑
i=1

∥∥[
Im − Ĥ (γT , εT )

]
Xi(Ti)

∥∥2
.

We minimize gcv(γT , εT ) over a grid of γT in [γ 0
T /20,20γ 0

T ] and a grid of εT

in [ε0
T /50,50ε0

T ] using the Gauss–Seidel method. Each grid consists of 20 points,
equally spaced in log scale.

6.6. Tuning second-level functions. Next, we tune the parameters γX , εX , γY ,
εY in the second-level functions, again focusing on the X-version. These pro-
cedures are further developed from the tuning methods in Li, Chun and Zhao
(2012, 2014) and Lee, Li and Chiaromonte (2013).

We recommend the default values γ 0
X and ε0

X to be the same as γ 0
T and ε0

T but

with K
(i,i)
T replaced by KX , u by n, and |τi − τj | by ‖Xi − Xj‖. We then use

the leave-one-out cross validation (LOOCV) to fine tune γX and εX around their
default values. In nonparametric regression, the LOOCV criterion is defined by∑n

i=1{Yi − Ê(−i)(Yi |Xi)}2, where Ê(−i)(Y |X) is some nonparametric estimate of
the conditional expectation E(Y |X) based on the sample with the ith subject left
out. In our setting, however, the response is a space of functions of y spanned by
{κY (·, Yi), i = 1, . . . , n} rather than a single y. This means we need to fit not one
but a set of functions. For each i = 1, . . . , n, we predict gj = κ(·, Yj ) for j �= i by

E
(−i)
XY gj , where E

(−i)
XY is the third operator in (17) applied to the sample with the

ith subject removed. That is, [E(−i)
XY ] = (K

(−i)
X + εXIn−1)

−1K
(−i)
Y , where K

(−i)
X

and K
(−i)
Y are kernel matrices based on the sample with ith subject left out. The

sum of squared errors of these predictions is

n∑
i=1

∑
j �=i

{
κY (Yi, Yj ) − (

E
(−i)
XY κY (·, Yj )

)
(Xi)

}2
.(22)

As a member of MX , the function E
(−i)
XY κY (·, Yj ) has coordinate

[
E

(−i)
XY κY (·, Yj )

] = [
E

(−i)
XY

][
κY (·, Yj )

]
,

where the coordinate of κY (·, Yj ) with respect to the set {κ(·, Yj ) : j �= i} is e
(n−1)
j ,

the j th column of In−1. Thus, E
(−i)
XY κY (·, Yj ) is the mapping

x �→ (
e
(n−1)
j

)T[
E

(−i)
XY

]T
κX

(
X(−i), x

)
,
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where κX(X(−i), x) denotes the vector (κX(X1, x), . . . , κX(Xn, x))T with its ith
component removed. Criterion (22) can now be written as

loocv(γX, εX) =
n∑

i=1

∑
j �=i

{
κY (Yi, Yj ) − (

e
(n−1)
j

)T[
E

(−i)
XY

]T
κX

(
X(−i),Xi

)}2

=
n∑

i=1

∥∥κY

(
Y (−i), Yi

) − [
E

(−i)
XY

]T
κX

(
X(−i),Xi

)∥∥2
,

where ‖ · ‖ is the norm in the Euclidean space Rn−1. We then use the Gauss–Seidel
algorithm to minimize loocv(γX, εX) over the grids defined in the same way as
before, except that γ 0

T , ε0
T are replaced by γ 0

X, ε0
X .

The tuning parameters (γY , εY ) are determined in the same way with the roles
of X and Y reversed.

6.7. Dimension determination. We propose two strategies to determine the di-
mension d . When the response Y is a categorical variable with k categories and k

is relatively small (say k ≤ 8), we propose to choose d to be k − 1. The rational
for this choice is that k points can occupy at most a k − 1 dimensional Euclidean
space. Thus, if the clusters were points then k − 1 would be an upper bound of d .
More generally, if all clusters are of the same shape, then d is upper bounded by
k − 1. We choose d to be k − 1 to allow extra dimensions that may be caused
by the different shapes of the clusters. Our experiences indicate that the shapes of
clusters in the sufficient-predictor plot derived from nonlinear SDR are more reg-
ular than those derived from linear SDR, because the kernel mapping in nonlinear
SDR “absorbed” nonlinearity from the clusters. For this reason, d = k − 1 is large
enough in many practical problems.

For continuous response or categorial response with a large number of cate-
gories, we propose a criterion similar to CVBIC (cross-validated BIC) introduced
by Li, Artemiou and Li (2011). Let

Gn(k) =
k∑

i=1

λ̂i − aλ̂1n
αβ/(1+β) log(n)k,(23)

where λ̂i are the eigenvalues of the matrix representations of f-GSIR and
f-GSAVE, as given in (15) and described at the end of Section 6.4. The num-
bers α ∈ (0,1/2] and β ∈ (0,1] are the constants in the optimal convergence rate
to be derived in Section 7: α represents the frequency of the measurement schedule
for the functional data, which is closer to 1/2 is the schedule is more frequent, and
close to 0 if it is more sparse; β represents the smoothness of the relation between
X and Y , with β closer to 1 representing a smoother relation. In all the examples
in this paper, we take α = 1/2 and β = 1, so that n−αβ/(1+β) = n−1/4. We propose
to estimate d by

d̂ = argmax
{
Gn(k) : k = 0,1, . . . , n

}
.(24)
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In Section 7, we prove the consistency of this criterion for the case of f-GSIR.
The constant a in (23) is determined by LOOCV, as follows. For each fixed a in

a grid, we find d̂(a) according to (24), and compute the first d̂(a) eigenfunctions
U = (f̂1(X), . . . , f̂

d̂(a)
(X))T of the f-GSIR or f-GSAVE operator. We then use U

to replace X and perform LOOCV as described in Section 6.6. Since the dimension
of U is relatively low, we set the Tychonoff regularization tuning constant εU = 0
for computing E

(−1)
UY in (22). We use the default value γ 0

U for tuning parameter in
the kernel κU . This round of cross validation is to be performed after all the other
tuning parameters have been determined and fixed. We take the grid to be 20 points
placed in [0.1,1] with equal distance in loge scale.

In Section 6.6, we prove the consistency of the criterion (23). The BIC aspect
of this criterion is related to the BIC-type criteria in Zhu, Miao and Peng (2006),
Wang and Yin (2008) and Li, Li and Zhu (2010) in the classical sufficient dimen-
sion reduction setting.

6.8. Vector-valued functions of t . When p > 1 and q > 1, the estimation pro-
cedures remain largely the same except that HX and HY and their inner products
need to be redefined. Let

Xi(t) = (
X1

i (t), . . . ,X
p
i (t)

)T
, Yi(t) = (

Y 1
i (t), . . . , Y

p
i (t)

)T

be vector-valued functions of t , and let (X1, Y1), . . . , (Xn,Yn) be an i.i.d. sample
of (X,Y ). We construct HXi for each component Xi of X as described in Sec-
tion 6.2 using a kernel κT , which, for convenience, is taken to be the same for all
components. We then define HX for the vector-valued function t �→ X(t) as the
direct sum HX1 ⊕ · · · ⊕HXp ; that is:

1. a function φ ∈ HX is a vector-valued function (φ1, . . . , φp)T where φi ∈
HXi ;

2. the inner product between two functions φ,ψ ∈ HX is
∑p

i=1〈φi,ψi〉H
Xi

.

We define HY similarly. The rest of the algorithm is the same as the p = q = 1
case.

7. Asymptotic analysis. In this section, we establish the consistency and con-
vergence rate of f-GSIR. We first derive the convergence rate assuming the random
functions Xi and Yi are fully observed, and then extend the result to accommodate
the situations where they are not fully observed. We also give the consistency of
the dimension determination method. Although we focus on f-GSIR due to limited
space, the techniques employed here are fully applicable to f-GSAVE.

7.1. Convergence rate for fully observed functional data. The next lemma is
proved similarly to Lemma 5 of Fukumizu, Bach and Gretton (2007).
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LEMMA 4. If E[κX(X,X)] < ∞, E[κY (Y,Y )] < ∞, then �XX , �YY and
�YX are Hilbert–Schmidt operators and

‖�̂XX − �XX‖HS = OP

(
n−1/2)

, ‖�̂YY − �YY ‖HS = OP

(
n−1/2)

,

‖�̂YX − �YX‖HS = OP

(
n−1/2)

.

Let M and M̂ denote the population- and sample-level f-GSIR operators in
Sections 4 and 6.3 with A taken to be �2

YY ; that is,

M = �
†
XX�XY �YX�

†
XX,

(25)
M̂ = (�̂XX + εnI )−1�̂XY �̂YX(�̂XX + εnI )−1.

Here, we have used εn to represent εX to emphasize the dependence on n (and we
can do so because εY is not involved in this version of f-GSIR). For two sequences
of positive numbers {an} and {bn}, we write an ≺ bn iff an/bn → 0, write bn � an

iff an ≺ bn, and write an � bn iff an/bn either tends to 0 or is a bounded sequence.

THEOREM 5. Suppose EκX(X,X) < ∞, EκY (Y,Y ) < ∞, and �XY =
�

1+β
XX SXY for some linear operator SXY : MX → MY and 0 < β ≤ 1. Suppose

n−1/2 ≺ εn ≺ 0:

1. If SXY is bounded, then ‖M̂ − M‖OP = OP (ε
β
n + ε−1

n n−1/2).
2. If SXY is Hilbert–Schmidt, then ‖M̂ − M‖HS = OP (ε

β
n + ε−1

n n−1/2).

Because �XX is a Hilbert–Schmidt operator, its eigenvalues go to 0, which
means �

†
XX is an unbounded operator. In order for �

†
XX�XY to be bounded, we

need at a minimum that �XY = �XXB for a bounded linear operator B . However,
for the consistency of f-GSIR it is not enough for �

†
XX�XY to be bounded: we

need (�
†
XX)1+β�XY to be bounded for some β > 0. This is actually a smoothness

condition, because it implies the subspaces corresponding to the small singular
values of �XY be sufficiently aligned with the eigenspaces of small eigenvalues
of �XX—in other words, the range space of �XY be sufficiently focussed on the
eigenspaces of the large eigenvalues of �XX . Since large eigenvalues are usu-
ally associated with low-frequency components, the range of �XY is essentially
spanned by the low-frequency components of �XX . The larger β is, the stronger
this tendency. Thus, β characterizes the degree of “smoothness” in the relation be-

tween X and Y . Because β ≤ 1, the rate ε
β
n + ε−1

n n−1/2 is the fastest when β = 1,
in which case it is εn + ε−1

n n−1/2. Hence, when β = 1, both the optimal conver-
gence rate and the optimal regularity constant are of the order n−1/4. We should
mention the rate ε

β
n + ε−1

n n−1/2 is an upper bound of the error, rather that the error
itself. The reason that we restrict β to be no greater than 1 is that further increasing
β would not lead to faster rate than ε

β
n + ε−1

n n−1/2.
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By a well-known result in perturbation theory [see Koltchinskii and Giné
(2000), Lemma 5.2 and Zwald and Blanchard (2006), Theorem 2] the eigenspaces
of M̂ converge to those of M at the same rate.

COROLLARY 3. Suppose that the assumptions in Theorem 5 hold, and the
nonzero eigenvalues of M are distinct. Let P̂k and Pk be the projection operators
on to the subspaces spanned by the kth eigenfunctions of M̂ and M , respectively,
where k = 1, . . . , d . Then

‖P̂k − Pk‖ = OP

(
εβ
n + ε−1

n n−1/2)
,

where the norm is the operator norm if SXY is bounded, and Hilbert–Schmidt norm
if SXY is Hilbert–Schmidt.

7.2. Convergence rate for partially observed functional data. The consistency
and convergence rate in Section 7.1 are developed under the assumption that Xi

and Yi are observed in their entirety. In reality, they are observed on a finite set of
time points called measurement schedule in functional data analysis [Wang, Chiou
and Muller (2015)]. Following this convention, we refer the measurement sched-
ules that are sufficiently frequent so that covariance operators �XX , �XY , �XY

and �YY can be estimated at the n−1/2 rate as dense schedules. Applications in-
volving automated measurements by instruments, such as fMRI, EEG and smart
wearable records, may be regarded as belonging to this category. Since Theorem 5
and Corollary 3 depend only on the n−1/2-convergence of the estimators of co-
variance operators, they apply to dense schedules without change. At the other
extreme, the measurement schedules where the number of time points does not
go to infinity with n are referred to as sparse schedules, which suitably describe
a typical longitudinal study. For sparse schedules consistency can be achieved by
pooling time points from different subjects, provided that these time points are
sufficiently varied from subject to subject to fill up the whole interval as n → ∞.
However, the convergence rates for sparse schedules are slower than n−1/2, and
depend on the type of time smoothers employed. There are also, of course, mea-
surement schedules in between these two extreme cases, resulting in convergence
rates between them. We refer to these schedules as nondense schedules.

In order to suit nondense measurement schedules, we extend Theorem 5 and
Corollary 3 to the case where the covariance operators are estimated at an arbi-
trary rate n−1/2 � δn ≺ 1. Due to the limited scope of this paper, we do not delve
into specific convergence rates by various time smoothers under different measure-
ment schedules, but instead make the convergence statements sufficiently flexible
to accommodate any convergence rate that might be provided by future investiga-
tions of specific cases. The proof of the next theorem follows those of Theorem 5
and Corollary 3, and is omitted.
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THEOREM 6. Suppose the covariance operators �XX , �XY , �YX and �YY

can be estimated by �̂XX , �̂XY , �̂YX , and �̂YY at a rate δn in operator norm,
where n−1/2 � δn ≺ 0; that is,

‖�̂XX − �XX‖OP = OP (δn), ‖�̂YY − �YY ‖OP = OP (δn),

‖�̂YX − �YX‖OP = OP (δn).

Furthermore, suppose the Tychonoff regularization sequence {εn} in M̂ satisfies
δn ≺ εn ≺ 0, and the covariance operator �XY satisfies �XY = �

1+β
XX SXY for

some bounded linear operator SXY :MX →MY and 0 < β ≤ 1. Then:

1. ‖M̂ − M‖OP = OP (ε
β
n + δn/εn),

2. ‖P̂k − Pk‖OP = OP (ε
β
n + δn/εn), k = 1, . . . , d .

Moreover, the above statements hold for the Hilbert–Schmidt norm if SXY is a
Hilbert–Schmidt operator.

From this theorem, it is easy to derive the optimal εn for a given β , δn. The
proof of the next corollary is straightforward, and is omitted.

COROLLARY 4. Under the assumptions of Theorem 6, the optimal rate of con-
vergence and the regularization sequence that achieves the optimal convergence
rate are, respectively,

ρn(δn,β) = δβ/(1+β)
n , εn(δn, β) = δ1/(1+β)

n .

To provide more intuition about these optimal rates, suppose δn = n−α for some
0 < α ≤ 1/2. Then α reflects the frequency of the measurement schedule: the more
frequent a measurement schedule is, the close α is to 1/2, with α = 1/2 represent-
ing dense schedules. Meanwhile, recall that β measures a degree of smoothness of
the relation between X and Y . In terms of α and β , the above rates are

ρn(α,β) = n−αβ/(1+β), εn(α,β) = n−α/(1+β).

These relations sum up nicely the how the optimal penalty and optimal con-
vergence rate depend on the smoothness and the measurement frequency: the
smoother the relation between X and Y , the faster the optimal convergence rate and
the stronger the optimal penalty; the more frequently the functional data are mea-
sured, the faster the optimal convergence rate and the weaker the optimal penalty.

7.3. Consistency of the dimension determination criterion. We now state the
consistency of the dimension determination criterion proposed in Section 6.7,
which is similar to the proof of Theorem 3 in Li, Li and Zhu (2010).

THEOREM 7. Suppose the conditions in Theorem 6 are satisfied, and the op-
timal regularization sequence εn = n−α/(1+β) is used. Suppose all the nonzero
eigenvalues of M in (25) are distinct; that is, λ1 > · · · > λd > λd+1 = · · · = 0. If d̂

is the minimizer of (23) for any constant a, then P(d̂ = d) → 1.
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8. Simulation studies. In this section, we investigate the performances of f-
GSIR and f-GSAVE by simulation. We consider three different scenarios of re-
sponse versus predictor: random variable versus random function (scenario I),
random function versus random vector (scenario II) and random function versus
random function (scenario III). We take T = [0,1], and include both balanced
cases (where {ti1, . . . , timi

} are the same for different i) and unbalanced cases
(where they are not). For vector-valued predictor or response, we use the Euclidean
space as HX or HY . We first describe how the random functions are generated.

8.1. Simulation of random functions. We choose the Gaussian radial basis
function (GRB) or Brownian motion covariance (BMC) as the kernel for HX

and HY . When the GRB kernel is used, we generate X by
∑m

k=1 akκT (·, tk) where
a1, . . . , am are independently sampled from N(0,1), t1, . . . , tm are independently
sampled from U [0,1], m = 5, and γT = 7. When the BMC kernel is used, we
generate X by

X(t) =
100∑
j=1

√
2
(
(j − 1/2)π

)−1
aj sin

(
(j − 1/2)πt

)

with a1, . . . , a100 independently sampled from N(0,1). As we noted in Example 3,
the functions in the summand are the eigenfunctions of the BMC kernel. The ran-
dom function Y is generated in the same way. The two kernels are also used for
estimation: in Section 8.2, we compare the results from the four combinations of
two kernels and two estimators.

For the observed time points {ti1, . . . , timi
: i = 1, . . . , n}, we simulated both

the balanced and the unbalanced cases. For the balanced case, we chose equally-
spaced 10 time points. For the unbalanced case, we fixed 100 equally-spaced time
points in [0,1], then randomly selected 10 points from them for each subject. To
provide intuition, in Figure 2 we show 50 sample paths of the random function
generated by each kernel.

8.2. Scenario I. We first consider the case where Y is a random variable and
X is a random function:

Model I-1: Y = 〈b1,X〉 + 〈b2,X〉 + ε,

Model I-2: Y = 〈b1,X〉
1 + e〈b2,X〉 + 0.2〈X,X〉 + ε,

Model I-3: Y = (〈b1,X〉 + 〈b2,X〉)ε,
(26)

where ε ∼ N(0,0.12) and b1, b2, b3 are nonrandom elements of HX . When the
GRB kernel is used, we take b1(t) = κ(t − 0.1), b2(t) = κ(t − 0.5), b3(t) =
κ(t − 0.9); when the BMC kernel is used, we take bj (t) = vj (t), j = 1,2,3, as
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FIG. 2. Sample paths generated by the GRB kernel (left panel) and BMC kernel (right panel).

defined in (5). The sample size is n = 100. Note that Models I-1 and I-2 have com-
plete central class, for which f-GSIR is exhaustive, but Model I-3 does not have a
complete central class.

To compare the estimated and true predictors, which may be vectors of dif-
ferent dimensions, we propose a multivariate version of Spearman’s correlation,
which we call Multiple Correlation of Multivariate Rank (MCMR), as follows.
Let U1, . . . ,Un ∈ R

r and V1, . . . , Vn ∈ R
s be two samples of random vectors rep-

resenting the estimated and true predictors. Let Ũi and Ṽi be their multivariate
ranks

Ũi = n−1
n∑

=1

(U − Ui)/‖U − Ui‖, Ṽi = n−1
n∑

=1

(V − Vi)/‖V − Vi‖.

See, for example, Oja (2010). We define MCMR between {U1, . . . ,Un} and
{V1, . . . , Vn} to be the multiple correlation between the multivariate ranks of the
two samples:

mcmrn(U,V ) = (
tr

{[
varn(Ṽ )

]−1/2 covn(Ṽ , Ũ)
[
varn(Ũ)

]−1

× covn(Ũ , Ṽ )
[
varn(Ṽ )

]−1/2})1/2
.

Lee, Li and Chiaromonte (2013) used Spearman’s correlation to measure the (pos-
sibly nonlinear) dependence between the estimated and the true predictors that
are both scalars. The Spearman’s correlation is an ideal measurement of such de-
pendence because it is invariant under monotone transformations the two random
variables involved. Our use of MCMR is similarly motivated.

Since this criterion is always evaluated at the test set, there is no over fitting.
However, when the dimension of Û or V̂ is high relative to the sample size, there
can be spurious correlation (i.e., two samples of high-dimensional vectors tend to
be correlated even when they are uncorrelated at the population level). Hence, to
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TABLE 1
Performances of f-GSIR and f-GSAVE under Models I-1 through I-3 and the two kernels in the

balanced case

Methods

Models BMC GRB

X Y |X f-GSIR f-GSAVE f-GSIR f-GSAVE

BMC I-1 0.933 (0.023) 0.814 (0.031) 0.916 (0.130) 0.849 (0.039)
I-2 0.401 (0.360) 0.936 (0.021) 0.325 (0.321) 0.931 (0.023)
I-3 0.214 (0.252) 0.844 (0.030) 0.226 (0.242) 0.813 (0.040)

GRB I-1 0.973 (0.026) 0.845 (0.038) 0.980 (0.015) 0.928 (0.025)
I-2 0.783 (0.253) 0.530 (0.094) 0.660 (0.339) 0.699 (0.083)
I-3 0.445 (0.259) 0.864 (0.027) 0.193 (0.221) 0.867 (0.029)

objectively reflect the performance of the estimators, we only calculate MCMR for
the first 10 estimated predictors when the dimension d is estimated to be greater
than 10. This happened rather rarely: in only 3 out of the 42 scenarios considered d̂

is larger than 10. These are Model II-1, 2, 3 and Model III-1 for f-GSAVE, where
d is estimated to be 69, 67, 40, 50, respectively. In most cases, the estimate of d is
no greater than 3.

We generate 2n = 200 independent observations on (X,Y ), of which 100 are
used as the training set and the rest as the test set. We apply our methods to the
training set to obtain the sufficient predictors, and then evaluate these predictors at
X in the test set. We then evaluate MCMR between the estimated and true predic-
tors from the test set. We repeat this process 100 times and report the averages and
standard errors (in parentheses) of the MCMR in Table 1. The tuning parameters
are determined by the methods in Sections 6.5 through 6.7. To save computing
time, we estimate the tuning parameters based on 10 separately generated pilot
samples, and then use their average (except d̂) for estimation in the 100 training
sample. For the dimension d̂ , we use the mode of the histogram of the 10 esti-
mates instead of the average. Tuning parameters for the other two scenarios were
determined the same way.

Table 1 shows the results for the balanced case from the three models in (26)
and the two estimation methods (f-GSIR and f-GSAVE), as they are coupled with
two kernels, resulting a combination of six models and four methods. We note
that the performances of f-GSIR and f-GSAVE are comparable for Models I-1 and
I-2, where the central class is complete; whereas f-GSAVE performs better than
f-GSIR for Model I-3, where the central class is not complete. Overall, at sample
size 100, with relatively sparsely positioned observation times and rather compli-
cated nonlinear relations in (26), the two methods capture the true predictor quite
well, with MCMR mostly ranging from 0.6 ∼ 0.9 with relatively low standard er-
rors. The few cases with low MCMR, such as the 0.530 for the (GRB, I-2, BMC,
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TABLE 2
Performances of f-GSIR and f-GSAVE under Models I-1–I-3 in the

unbalanced case

Models f-GSIR f-GSAVE

I-1 0.830 (0.024) 0.871 (0.031)
I-2 0.388 (0.306) 0.920 (0.024)
I-3 0.237 (0.258) 0.866 (0.029)

f-GSAVE) combination, are due to underestimate of dimension d by the pilot sam-
ple, which is 1. The MCMR increases sharply to 0.622 when the second and third
sufficient predictor is included.

We carry out rest of the simulations using the BMC kernel only. Table 2 shows
the results for Models I-1, I-2, I-3 in the unbalanced case. Overall, the perfor-
mances in the unbalanced case are slightly worse than in the balanced case.

8.3. Scenarios II and III. For these scenarios we only present the results for
the balanced case, where the random functions are observed in equally spaced 10
time points in [0,1]. As in scenario I, the training sample size, test sample size
and simulation sample size are each taken to be 100. Let vj be the eigenfunctions
in (5). We consider following models for scenarios II:

Model II-1: Y(t) = v0(t) + (X1 + X2)

5∑
i=1

vi(t) + σε(t),

Model II-2: Y(t) = v0(t) + (
X1/

(
1 + eX2

) + X3
) + σε(t),

Model II-3: Y(t) = X1‖X‖2ε(t),

where X ∼ N(0, I10) and ε(t) is generated from the standard Brownian motion.
The results are shown in the first 3 rows of Table 3.

TABLE 3
Performances of f-GSIR and f-GSAVE under Models II-1–II-3

and III-1–III-3

Models f-GSIR f-GSAVE

II-1 0.981 (0.005) 0.953 (0.013)
II-2 0.971 (0.007) 0.931 (0.013)
II-3 0.145 (0.151) 0.882 (0.019)
III-1 0.881 (0.023) 0.990 (0.003)
III-2 0.864 (0.085) 0.849 (0.036)
III-3 0.791 (0.173) 0.853 (0.028)
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For scenario III, we consider the following models:

Model III-1: Y(t) = (〈X,b1〉 + 〈X,b2〉)ρ(t) + σε(t),

Model III-2: Y(t) =
( 〈X,b1〉

1 + e〈X,b2〉 + 〈X,b3〉
)
ρ(t) + σε(t),

Model III-3: Y(t) = cos
(〈b1,X〉) + sin

(〈b2,X〉)ρ(t) + σε(t),

where X is a random function on T = [0,1], bj (t) are taken to the eigenfunctions
vj (t) defined in (5), ρ(t) = ∑5

j=1 vj (t), σ = 0.5, and ε(t) is generated from the
standard Brownian motion. The results are shown in the last 3 rows of Table 3.

From Table 3, we see that f-GSIR and f-GSAVE perform similarly in the com-
plete cases, but f-GSAVE performs significantly better than f-GSIR in the incom-
plete case.

9. Applications.

9.1. Speech recognition data. We applied our functional nonlinear SDR meth-
ods to analyzed the speech recognition dataset from the TIMIT, available at
http://statweb.stanford.edu/~tibs/ElemStatLearn/, which was also used in Hastie,
Tibshirani and Friedman (2009), Rossi and Villa (2006) and Epifanio (2008). It
consists of five phonemes transcribed as follows: “sh” as in “she,” “dcl” as in
“dark,” “iy” as the vowel in “she,” “aa” as the vowel in “dark” and “ao” as the first
vowel in “water.” A total of 4509 speech frames of 32 millisecond duration each
are recorded. Figure 3 shows the phoneme curves for the first 10 speech frames
corresponding to each of the five phonemes, computed by a log-periodogram with
length 256. As in Epifanio (2008), we only used the first 150 frequencies.

For each phoneme type from the database, we randomly selected with replace-
ment 50 samples of curves each containing 200 curves. We then randomly di-
vide each sample of 200 curves into training and test dataset, each containing 100
curves. At the end of the process we obtained 50 samples, each sample containing
a training and test dataset, each dataset containing 500 curves evenly distributed
among 5 phoneme types.

We applied f-GSIR and f-GSAVE to each training set to derive the sufficient
predictors. Figure 4 shows the scatter plots of first two predictors derived from
f-GSIR and f-GSAVE based on one sample, where the left panels show the training
set, and right panels show the test set. These plots show reasonably good separation
of the phoneme types, but a much clear separation can be seen in a 3-d spin plot—
which cannot be shown here—in which all except the blue and light blue groups are
well separated. The blue and light blue groups represent the first vowel in “water”
and the vowel in “dark,” respectively, which are quite close. In fact, as noted by
Epifanio (2008) and Rossi and Villa (2006), these two sounds are the most difficult
to classify in the database.

http://statweb.stanford.edu/~tibs/ElemStatLearn/
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FIG. 3. First 10 phoneme curves of each phoneme.

We then applied three commonly used classifiers, Linear Discriminant Analy-
sis (LDA), Quadratic Discriminant Analysis (QDA) and Support Vector Machine
(SVM), to the first d̂ sufficient predictors by the f-GSIR, f-GSAVE and f-SIR,
and recorded the misclassification rate. As a baseline for comparison, we also
computed the misclassification rate of the functional SIR (f-SIR) of Ferré and
Villa (2006). We repeat the process for all 50 samples and report in Table 4 the
mean and standard error of the misclassification rates from the combinations in
{f-GSIR, f-GSAVE, f-SIR} × {LDA, QDA, SVM} × {training set, test set}.

The tuning parameters were chosen by the methods described in Sections 6.5–
6.7. In particular, then dimension d is taken to be 5 − 1 = 4 for both f-GSIR and
f-GSAVE as proposed in Section 6.7. We used GBR for both the kernels of the first-
level and second-level functions. For f-SIR, we used the regularization parameter
to be 10 and dimension to be 4, which are taken from Ferré and Villa (2006),
Table 2. The table shows that f-GSIR and f-GSAVE consistently perform better
than f-SIR in the training and test sets according to all three classifiers; f-GSIR
performs better than f-GSAVE in most cases, but worse than f-GSAVE for the test
data set with QDA as classifier.

9.2. Handwriting symbol association. Our second application is the hand-
written symbol association problem mentioned in the Introduction, where our
goal is to train the computer to learn to associate two sets of handwritten
symbols: a, b, c, . . . , and 1, 2, 3, . . . . Available handwritten data are usually
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FIG. 4. Scatter plots of first two f-GSIR predictors of the phoneme data (black = “sh,” red = “iy,”
green = “dcl,” dark blue = “aa” and light blue = “ao”). Left panels show the predictors evaluated
at the training set; the right panels the test set.

TABLE 4
Comparison of means and standard errors of misclassification rates based on 50 samples

Dimension reduction methods

Training set Test set

Classifier f-GSIR f-GSAVE f-SIR f-GSIR f-GSAVE f-SIR

LDA 0.0296 0.1091 0.1075 0.0883 0.1090 0.1084
(0.0067) (0.0137) (0.0122) (0.0128) (0.0104) (0.0119)

QDA 0.0315 0.0942 0.0981 0.0948 0.1037 0.1083
(0.0066) (0.0122) (0.0103) (0.0125) (0.0112) (0.0124)

SVM 0.0290 0.0947 0.0959 0.0878 0.1040 0.1126
(0.0062) (0.0116) (0.0112) (0.0120) (0.0112) (0.0123)
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of two types: the on-line type, which is a parameterized curve in R
2, and

the off-line type, which is simply a 2-d image. The on-line type is a natu-
ral form of functional data, and we use it for our analysis. The data set can
be found in the UJIpenchars2 database: http://archive.ics.uci.edu/ml/machine-
learning-databases/uji-penchars/version2/. See also [Llorens et al. (2008)].

The database consists of 11,640 handwritten symbols from 60 writers ×
97 characters × 2 repetitions. We used the first repetition as the training set,
and the second as the test set. Mathematically, each predictor or response is a
2-dimensional random function. For example, (X1(t), Y1(t)) is subject 1’s hand-
writing of “2” and “a,” where X1(t) = (X1

1(t),X
2
1(t)) is the parameterized curve

for “2” and Y1(t) = (Y 1
1 (t), Y 2

1 (t)) is that for “a.” Obviously, there is no reason to
believe that the association between these symbols follows a linear index model;
nevertheless, a relatively strong relation must exist because humans can easily as-
sociate them.

We normalize the data by rescaling the images to fit within a [0,100]× [0,180]
rectangle and rescaling the sets of t to fit within the interval [0,0.1]. After the
rescaling, the data consist of R2-valued functions of t observed at different sets of
times. We first used “2,” “3” and “6” as the predictors, and “a,” “b” and “c” as the
responses. These symbols were selected for simplicity: it is slightly more compli-
cated to parameterize symbols with loops, such as 4 and 8 (though a more careful
treatment can solve this problem). Figure 5 shows the first two sufficient predic-
tors from f-GSIR (upper panels) and f-GSAVE (lower panels). The left panels use
the handwritten alphabets as the plotting symbols; the right panels use handwrit-
ten digits as the plotting symbols. We then repeated the analysis on with 2, 3, 6
replaced by 5, 7, 9, and obtained the similar degree of matching, as shown in Fig-
ure 6. The sufficient predictors and tuning parameters are based on the training set,
and Figures 5 and 6 show the results for the test sets.

As we see from Figures 5 and 6, f-GSAVE worked better for the first set of
symbols, and f-GSIR worked better for the second. In each case, they gave nearly
perfect separation. Note that this is not a classification problem: the responses
(handwritten letters) are simply continuous curves whose meanings are not under-
stood by a computer as symbols. Thus, it is more difficult than classification. It is
also interesting to note that the cases that were not well separated were often due
to poor handwriting. For example, the symbols

appeared in the middle of the three clusters in the upper left panel of Figure 6
(f-GSIR for the second set of symbols): the first symbol is 5 and the second is 9.
However, due to the ambiguous handwriting the first symbol was placed near the
9 group, and the second symbol was placed near the 5 group.

http://archive.ics.uci.edu/ml/machine-learning-databases/uji-penchars/version2/
http://archive.ics.uci.edu/ml/machine-learning-databases/uji-penchars/version2/
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FIG. 5. Scatter plots of first two predictors from f-GSIR (upper panels) and f-GSAVE (lower pan-
els). The left panels use handwritten letters as the plotting symbol; the right panels use handwritten
numerals as the plotting symbol.

10. Conclusions. We have extended the theory of nonlinear sufficient dimen-
sion reduction to situations where both the predictor and response can be functions.
We developed two estimators, the f-GSIR and f-GSAVE, to estimate the central
class for functional nonlinear SDR, along with procedures for choosing the tuning
parameters and for determining the dimension of the central class.

While functional nonlinear SDR inevitably shares some common properties
with nonlinear SDR for multivariate data in Lee, Li and Chiaromonte (2013), the
development here goes far beyond that paper in several aspects. First, to account
for the functional and nonlinear nature of this problem, we proposed the construc-
tion of two nested Hilbert spaces, where the inner product of the first determines
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FIG. 6. Scatter plots of first two predictors from f-GSIR (upper panels) f-GSAVE (lower panels) for
associating handwritten 5, 7, 9 and handwritten a, b, c.

the reproducing kernel of the second. Second, we derived the convergence rate of
f-GSIR as a function of a smoothness index and an observation frequency index,
which reflect the special features of functional data that set it apart from multivari-
ate data. Third, we developed tuning and dimension estimation procedures spe-
cific to functional data, which cannot be deduced from Lee, Li and Chiaromonte
(2013). Finally, the vast amount of functional data made available by recent tech-
niques such as smart wearable devices [see, e.g., Bai et al. (2012)] create signifi-
cant new demands for dimension reduction, which justifies fully developed theory
and methodologies, in spite of their precursors in multivariate nonlinear SDR.

The theoretical framework laid out in this paper has many ramifications that
cannot all be fully developed here due to limited space. For example, other dimen-
sion reduction methods in the classical setting, such as Directional Regression [Li
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and Wang (2007)], can be generalized in to functional nonlinear SDR in a similar
manner. Other asymptotic properties such as asymptotic normality need also be
established. We leave these to future research.
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SUPPLEMENTARY MATERIAL

External Appendix to “Nonlinear sufficient dimension reduction for func-
tional data” (DOI: 10.1214/16-AOS1475SUPP; .pdf). The supplementary file
provides the proofs of Lemmas 1, 2 and 3, Theorems 1, 4, 5 and 7, and Propo-
sition 1.
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