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CONSISTENCY OF SPECTRAL HYPERGRAPH PARTITIONING
UNDER PLANTED PARTITION MODEL

BY DEBARGHYA GHOSHDASTIDAR AND AMBEDKAR DUKKIPATI

Indian Institute of Science

Hypergraph partitioning lies at the heart of a number of problems in ma-
chine learning and network sciences. Many algorithms for hypergraph parti-
tioning have been proposed that extend standard approaches for graph par-
titioning to the case of hypergraphs. However, theoretical aspects of such
methods have seldom received attention in the literature as compared to the
extensive studies on the guarantees of graph partitioning. For instance, consis-
tency results of spectral graph partitioning under the stochastic block model
are well known. In this paper, we present a planted partition model for sparse
random nonuniform hypergraphs that generalizes the stochastic block model.
We derive an error bound for a spectral hypergraph partitioning algorithm
under this model using matrix concentration inequalities. To the best of our
knowledge, this is the first consistency result related to partitioning nonuni-
form hypergraphs.

1. Introduction. A wide variety of complex real-world systems can be under-
stood by analyzing the interactions among various entities or components of the
system. This has made network analysis a subject of both theoretical and practical
interest. A plethora of challenging problems related to social, biological, commu-
nication networks have intrigued researchers over the past decades, and has led
to the development of some sophisticated techniques for network analysis. This is
clearly witnessed in the problems related to network or graph partitioning, where
the task is to find strongly connected groups of nodes with sparse connections
across groups. The problem appears in several engineering applications such as
circuit or program segmentation [Kernighan and Lin (1970)], community detec-
tion in social or biological networks [Guimera and Amaral (2005), Wasserman
(1994)], data analysis and clustering [Ng, Jordan and Weiss (2002)] among others.

Graph partitioning and the stochastic block model. The problem of finding
a balanced partition of a graph is known to be computationally hard. However,
a number of approximate methods have been studied in the literature. These in-
clude spectral algorithms [Fiedler (1973), Krzakala et al. (2013), Ng, Jordan and
Weiss (2002)], modularity and likelihood based methods [Bickel and Chen (2009),
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Choi, Wolfe and Airoldi (2012), Girvan and Newman (2002)], convex optimiza-
tion [Amini and Levina (2014), Chen, Sanghavi and Xu (2014)], belief propagation
[Decelle et al. (2011)] among others. The empirical success of such methods is not
a mere coincidence, and theoretical guarantees for most of these methods have
been extensively studied. In this respect, it is quite common to study partitioning
algorithms under statistical models for random networks, such as the stochastic
block model or planted partition model [Holland, Laskey and Leinhardt (1983)]
or its variants. In this model, one considers a random graph on n nodes with a
well defined k-way partition ψ : {1, . . . , n} → {1, . . . , k}. The edges are randomly
added with probabilities depending on the class labels of the participating nodes.
Thus, the following interesting question arises.

QUESTION. Let ψ ′ be the partition obtained from an algorithm, then what is
the number of mismatches between ψ and ψ ′?

One typically asks for a high probability bound on the above error in terms of n.
Such error bounds have been established for a variety of partitioning algorithms
including aforementioned approaches. Chen, Sanghavi and Xu (2014) compare the
theoretical guarantees for different approaches.

In the case of random graphs under stochastic block model, analysis of a spectral
algorithm was first considered by McSherry (2001). However, the popular variant
of spectral graph partitioning, commonly known as spectral clustering, was stud-
ied only in recent times [Lei and Rinaldo (2015), Rohe, Chatterjee and Yu (2011)].
It is now known that for a planted graph with �(lnn) minimum node degree, spec-
tral clustering achieves an o(n) error rate. One commonly refers to this property as
the weak consistency of spectral clustering. This not the best known error rate as
exact recovery of the partitions are known to be possible using other approaches
[Amini and Levina (2014)]. Recent results [Gao et al. (2015), Lei and Zhu (2014),
Vu (2014)] show that an additional refinement process can improve the partition-
ing of spectral clustering to exactly recover the partitions, thereby achieving strong
consistency. The condition on minimum node degree can be also relaxed by con-
sidering alternative spectral techniques [Krzakala et al. (2013), Le, Levina and
Vershynin (2015)], and these algorithms can detect partitions in sparse random
graphs that are close to the algorithmic barrier for community detection [Decelle
et al. (2011)].

Hypergraph partitioning. In spite of the vast applicability of network model-
ing and analysis, there exists more complex scenarios, where pairwise interactions
cannot accurately model the system of interest. A common example is folksonomy,
where individuals annotate online resources, such as images or research papers.
Such problems appear to have a tri-partite structure in form of “user–resource–
annotation”, and is naturally represented as a 3-uniform hypergraph [Ghoshal
et al. (2009)], where each edge connects three nodes. Earlier works in data mining
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[Gibson, Kleinberg and Raghavan (2000)] as well as in computer vision [Govindu
(2005)] have also demonstrated the necessity of uniform hypergraphs. Moreover,
in large scale circuit design [Karypis and Kumar (2000)] and molecular interac-
tion networks [Michoel and Nachtergaele (2012)], one needs to consider group
interactions that is appropriately modeled by a nonuniform hypergraph.

The current work focuses on hypergraph partitioning that appears in various ap-
plications such as circuit partitioning [Schweikert and Kernighan (1979)], categor-
ical data clustering [Gibson, Kleinberg and Raghavan (2000)], geometric grouping
[Govindu (2005)] and others. Various partitioning techniques are used in prac-
tice including move-based algorithms [Karypis and Kumar (2000), Schweikert
and Kernighan (1979)], spectral algorithms [Rodríguez (2002), Zhou, Huang and
Schölkopf (2007)], tensor based methods [Govindu (2005)], etc.

Hypergraph partitioning and related problems have been of theoretical interest
for quite some time [Berge (1984)]. While early works on hypergraph partition-
ing studied various properties of hypergraph cuts [Bolla (1993), Chung (1993)],
more recent results provide insights into the algebraic connectivity and chromatic
numbers of hypergraphs [Cooper and Dutle (2012), Hu and Qi (2012)]. However,
to date, little is known about the theoretical guarantees of hypergraph partitioning
methods that are popular amongst practitioners. The primary reason for this lack
of results, at least in a stochastic framework, is due to the absence of random mod-
els of nonuniform hypergraphs that can incorporate a planted structure. Planted
structures in uniform hypergraphs have been studied in context of hypergraph col-
oring [Chen and Frieze (1996)], and in a more general setting in Ghoshdastidar
and Dukkipati (2014), where almost sure error bounds are derived for partition-
ing planted uniform hypergraphs via tensor decomposition. But, extension of such
models or analysis to nonuniform hypergraphs does not follow directly.

Contributions. The primary focus of this paper is to derive an error bound for
a hypergraph partitioning algorithm that solves a spectral relaxation of the normal-
ized hypergraph cut problem. This is achieved in the form of a two-fold contribu-
tion.

We present a model for generating random hypergraphs with a planted solu-
tion. Extensions of the Erdős–Rényi model to nonuniform hypergraphs have been
studied in the literature [Darling and Norris (2005), Schmidt-Pruzan and Shamir
(1985)], where, for each m, the probability of generating edges of size m is con-
trolled by a parameter pm. The recent work of Stasi et al. (2014) present a similar
model, but with a specified degree sequence. Such models implicitly suggest that
one can consider a nonuniform hypergraph as a collection of m-uniform hyper-
graphs for varying m. Thus, it is possible to construct planted models for nonuni-
form hypergraphs from a collection of uniform hypergraph models. Based on this
idea, we present a planted hypergraph model that naturally extends the sparse
stochastic block model for graphs [Lei and Rinaldo (2015)], and also encompasses



292 D. GHOSHDASTIDAR AND A. DUKKIPATI

previously studied models for uniform hypergraphs [Ghoshdastidar and Dukkipati
(2014)].

We consider a popular spectral algorithm for hypergraph partitioning, and derive
a bound on the number of nodes incorrectly assigned by the algorithm under the
above model. We prove that for random planted hypergraphs with minimum node
degree above a certain threshold, the algorithm is weakly consistent in general.
However, the algorithm can also exactly recover the partitions from dense hyper-
graphs without any subsequent refinement procedure. Our analysis relies on an
alternative characterization of the incidence matrix of the random hypergraph, and
the use of matrix concentration inequalities [Chung and Radcliffe (2011), Tropp
(2012)].

Typically, spectral partitioning algorithms involve a post-processing stage of
distance based clustering. Though the k-means algorithm [Lloyd (1982)] or its ap-
proximate variants [Kumar, Sabharwal and Sen (2004), Ostrovsky et al. (2012)]
are the popular choice in practice, such algorithms are not always guaranteed to
provide good clustering. Gao et al. (2015) discusses the implication of this draw-
back on the consistency results for spectral clustering [Lei and Rinaldo (2015)].
On the other hand, we establish that under certain conditions, the approximate k-
means algorithm of Ostrovsky et al. (2012) indeed provides a good clustering with
very high probability.

Finally, we consider special cases of the planted model. We comment on the
allowable model parameters, and illustrate their effect on the derived error bound.
Numerical studies reveal the practical significance of spectral hypergraph parti-
tioning as well as the applicability of our analysis.

Organization. We first describe the spectral hypergraph partitioning algorithm
under consideration in Section 2. Section 3 describes the model for random hy-
pergraphs with a planted partition. We provide the main consistency result in Sec-
tion 4, followed by a series of examples of planted models studied in Section 5.
Section 6 contains experimental results that validate our model and analysis, and
Section 7 presents the concluding remarks. The proofs of the technical lemmas can
be found in the supplement to this paper [Ghoshdastidar and Dukkipati (2016)].

Notations. Some of the notation that is often used in this paper are mentioned
here. 1{·} is the indicator function and ln(·) refers to the natural logarithm. E[·]
denotes expectation with respect to the distribution of the planted model. For a
matrix A, we use Ai· to refer to the ith row of A and A·i refers to its ith column.
‖ · ‖2 denotes the Euclidean norm for vectors and the spectral norm for matrices,
while ‖ · ‖F denotes the Frobenius norm. We sometimes compute standard matrix
functions like Trace(·) and det(·). In addition, we also use asymptotic notation
O(·), o(·),�(·), etc., where we view these quantities as functions of the number
of nodes n.
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2. Spectral hypergraph partitioning. A hypergraph is defined as a tuple
(V,E), where V is a set of objects and E is a collection of subsets of V . Though
early works in combinatorics viewed this structure purely as a set system, it was
soon realized that one may view V as a set of nodes and every element of E as
an edge (or connection) among a subset of nodes. As noted in Berge (1984), such
a generalization of graphs helps to simplify several combinatorial results in the
graph literature. A hypergraph is said to be r-uniform if every edge e ∈ E contains
exactly r nodes.

In this paper, we assume that there are no edges of size 0 or 1 as they do not
convey any information in a partitioning framework. We also assume that the hy-
pergraph is undirected, that is, there is no ordering of nodes in any edge. Under
this setting, the most simple representation of a hypergraph is in terms of its in-
cidence matrix H ∈ {0,1}|V|×|E|, where Hve = 1 if the node v is contained in the
edge e, and 0 otherwise. One can note that the degree of any node v can be written
as deg(v) = ∑

e∈E Hve, which is simply the sum of the vth row of H . Similarly,
the cardinality of any edge e is |e| = ∑

v∈V Hve.
Several notions of hypergraph cut and hypergraph Laplacian have been pro-

posed in the literature [Bolla (1993), Chung (1993), Rodríguez (2002)] that gener-
alize the standard notions well studied in the graph literature. In this work, we con-
sider the generalization studied in Zhou, Huang and Schölkopf (2007). Let V1 ⊂ V ,
then vol(V1) = ∑

v∈V1
deg(v) is called the volume of V1, while the boundary of V1,

defined as ∂V1 = {e ∈ E : e ∩ V1 �= φ, e ∩ Vc
1 �= φ}, denotes the set of edges that

are cut when the nodes are divided into V1 and Vc
1 = V \V1. The volume of ∂V1 is

defined as

vol(∂V1) = ∑
e∈∂V1

|e ∩ V1||e ∩ Vc
1 |

|e| .

We consider the problem of partitioning the vertex set V into k disjoint sets,
V1, . . . ,Vk , that minimizes the normalized hypergraph cut

NH-cut(V1, . . . ,Vk) =
k∑

j=1

vol(∂Vj )

vol(Vj )
.(1)

One can observe that for graphs, the above definition (1) retrieves the standard
notion of a normalized cut [von Luxburg (2007)]. Zhou, Huang and Schölkopf
(2007) also define the notion of a normalized hypergraph Laplacian matrix L ∈
R

|V|×|V| given by

L = I − D−1/2H�−1HT D−1/2,(2)

where the matrices D ∈ R
|V|×|V|,� ∈ R

|E|×|E| are diagonal with Dvv = deg(v)

and �ee = |e|. A simple calculation shows that the problem of minimizing the
quantity in (1) is equivalent to the problem

minimize
V1,...,Vk

Trace
(
X̂T LX̂

)
,(3)
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Algorithm 1 Spectral hypergraph partitioning algorithm
input Incidence matrix H of the hypergraph.
1: Compute the hypergraph Laplacian L as in (2).
2: Compute the leading eigenvector matrix X ∈ R

|V|×k .
3: Normalize rows of X to have unit norm. Call this matrix X.
4: Run k-means on the rows of X.
output Partition of V that corresponds to the clusters obtained from k-means.

where X̂ ∈ R
|V|×k is such that X̂vj =

√
deg(v)
vol(Vj )

1{v ∈ Vj }, and satisfies X̂T X̂ = I .

Since the optimization in (3) is NP-hard, one relaxes the problem by minimizing
over all X ∈ R

|V|×k with orthonormal columns. It is well known that the solution
to this relaxed problem is the matrix of k leading orthonormal eigenvectors of L.
Note that L is a positive semi-definite matrix with at least one eigenvalue equal to
zero. The term “leading eigenvectors” refers to the eigenvectors that correspond to
the k smallest eigenvalues of L.

The above discussion motivates a spectral k-way partitioning approach based on
minimizing NH-cut. The method is listed in Algorithm 1. The form of Laplacian
matrix in (2) also suggests that the problem of minimizing NH-cut may be alter-
natively expressed as the problem of partitioning a graph with weighted adjacency
matrix

A = H�−1HT .(4)

Such a graph is related to the star expansion of the hypergraph [Agarwal, Branson
and Belongie (2006)].

The intuition behind the k-means step in Algorithm 1 is as follows. If the so-
lution of the spectral relaxation results in X = X̂, where X̂ is defined as in (3),
then after row normalization, X corresponds to a binary matrix with exactly one
nonzero term in each row. Hence, one obtains the partitions desired in (3) by per-
forming k-means on the rows of X. In this paper, we assume that the approximate
k-means method of Ostrovsky et al. (2012) is used that provides a near optimal
solution in a single iteration.

3. Planted partition in random hypergraphs. In the rest of the paper, we
study the error incurred by Algorithm 1. For this, we consider a model for gener-
ating random hypergraphs with a planted solution.

3.1. The model. Let V = {1,2, . . . , n} be a set of nodes, and let ψ : {1,2,

. . . , n} → {1,2, . . . , k} be a partition of the nodes into k classes. Here, ψ is the
unknown planted partition that one needs to extract from a hypergraph generated
on V . For a node i, we denote its class by ψi . Let M ≥ 2 be an integer, repre-
senting the range or the maximum edge cardinality in the hypergraph. In view of
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practical situations, we allow both k and M to vary with n though this dependence
is not made explicit in the notation. One may set M = n to allow occurrence of all
possible edges, but in practice, one can assume that M = O(lnn). Also, for each
n and for each m = 2, . . . ,M , let αm,n ∈ [0,1], and B(m) ∈ [0,1]k×k×···×k be a
symmetric k-dimensional tensor of order m.

A random hypergraph on V is generated as follows. For each m = 2, . . . ,M , and
for every set {i1, i2, . . . , im} ⊂ V , an edge is included independently with proba-
bility αm,nB

(m)
ψi1ψi2 ...ψim

. This process generates a random hypergraph of maximum

edge cardinality M . The tensor B(m) contains the probabilities of forming m-way
edges among the different classes if αm,n = 1. On the other hand, αm,n allows for a
sparsity scaling that does not depend on the partitions. In the case of sparse graphs,
α2,n regulates the edge density. However, in real-world nonuniform hypergraphs,
one often finds than the density of 2 or 3-way edges is much more than edges of
larger size (say, 10). To account for this generality, we allow αm,n to vary both with
m and n. For instance, if α2,n = 1 and αm,n = 1

nm−1 for all m > 2, then the gener-

ated hypergraph contains O(n2) number of 2-way edges, but only O(n) number
of m-way edges for every m > 2.

As a special case, note that for graphs, M = 2 for all n, and the model corre-
sponds to the sparse stochastic block model, where an edge (u, v) is formed with
probability α2,nB

(2)
ψuψv

. In other words, if Z ∈ {0,1}n×k denotes the assignment
matrix, then the probability of edge (u, v) is same as the corresponding entry of
α2,nZB(2)ZT . For r-uniform uniform hypergraphs, one has αm,n = 0 for all m �= r .
Ghoshdastidar and Dukkipati (2014) considered a dense uniform hypergraph, that
is, αr,n = 1, and edge probabilities specified by a r th-order k-dimensional tensor
B(r). It was shown that the population adjacency tensor can be expressed in terms
of B(r) and Z.

The intuition behind the above described model is that one may view a hyper-
graph of range M as a collection of uniform hypergraphs of orders m = 2, . . . ,M .
In the random setting, each m-uniform hypergraph is specified in terms of αm,n

and B(m). The above model can be easily extended to directed hypergraphs, and
also to the case of weighted hypergraphs.

3.2. The random hypergraph Laplacian. For the stochastic block model, a
random instance of a graph is specified by its n × n adjacency matrix. However,
for random hypergraphs, the size of the incidence matrix H is a random quantity
as it depends on the number of generated edges. Since this poses difficulties in
working with the form of hypergraph Laplacian in (2), we present an alternative
representation. The Laplacian can be written as

L = I − ∑
e∈E

1

|e|D
−1/2aea

T
e D−1/2,(5)

where for e ⊂ E , ae ∈ {0,1}n with (ae)i = 1, if node i ∈ e, and 0 otherwise.
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Let βM = ∑M
m=2

(n
m

)
. Note that βM is the maximum number of edges the hyper-

graph can contain given the fact that its range is M . For convenience, we define
a bijective map ξ : {1,2, . . . , βM} → {e ⊂ V : 2 ≤ |e| ≤ M}, where each ξj refers
to a subset of nodes, that is, a possible edge in the given hypergraph. Then the
Laplacian can be expressed as

L = I −
βM∑
j=1

1{ξj ∈ E}
|ξj | D−1/2aξj

aT
ξj

D−1/2,(6)

where the summation is over all possible edges of size at most M , but the missing
edges do not contribute to the sum. Similarly, one can express the degree matrix D

as

Dii = deg(i) = ∑
e∈E

(ae)i =
βM∑
j=1

1{ξj ∈ E}(aξj
)i .(7)

The above representation corresponds to an ‘extended’ version of the incidence
matrix as H ∈ {0,1}n×βM , whose j th column is 1{ξj ∈ E}aξj

, that is, H con-
tains the columns of H with additional zero columns inserted to account for miss-
ing edges. This holds for any hypergraph of range M defined on the set V . We
use this representation to keep the number of columns as a deterministic quan-
tity. We now discuss how the described planted partition model for hypergraphs,
with maximum edge size M , can be expressed in terms of the extended incidence
matrix H ∈ {0,1}n×βM . Let hj , j = 1,2, . . . , βM be independent Bernoulli ran-
dom variables that indicate the presence of the edge ξj ⊂ V . By description of
the model, if ξj = {i1, i2, . . . , imj

} for some mj ∈ {2, . . . ,M}, then the random

variable hj ∼ Bernoulli(αmj ,nB
(mj )

ψi1ψi2 ...ψimj

). The j th column of H is hjaξj
, and

hence, the Laplacian matrix for the random hypergraph is

L = I −
βM∑
j=1

hj

|ξj |D
−1/2aξj

aT
ξj

D−1/2 where Dii =
βM∑
j=1

hj (aξj
)i .(8)

At this stage, we note that the above matrices depend on the number of nodes n.
For ease of notation, we do not explicitly mention this dependence.

4. Consistency of spectral hypergraph partitioning. This section presents
the main result of this paper that gives a bound on the error incurred by the spectral
hypergraph partitioning algorithm described in Algorithm 1. Let ψ ′ : {1, . . . , n} →
{1, . . . , k} denote the labels obtained from the algorithm. The partitioning error is
given by the number of nodes incorrectly assigned by Algorithm 1, that is,

(9) Err
(
ψ,ψ ′) = min

σ

n∑
i=1

1
{
ψi �= σ

(
ψ ′

i

)}
,
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where the minimum is taken over all permutation σ of labels. We show that if
(i) the partitions are identifiable, and (ii) the hypergraph is not too sparse, then
indeed Err(ψ,ψ ′) is bounded by a quantity that is at most sub-linear in n. Fur-
thermore, the bound holds with probability (1 − o(1)). This immediately implies
that Algorithm 1 is weakly consistent. However, we show later that for particu-
lar model parameters, Algorithm 1 can even recover the partitions exactly, that is,
Err(ψ,ψ ′) = o(1).

4.1. The main result. The consistency result studied in this paper is quite sim-
ilar, in spirit, to those studied in the case of stochastic block model for graphs. In
such a case, one typically analyzes the population version of a spectral algorithm,
and then uses the fact that the spectral properties of the Laplacian eventually con-
centrates around those of the population Laplacian.

From this point of view, we consider the population version of the hypergraph
Laplacian (8) defined as

L = I −
βM∑
j=1

E[hj ]
|ξj | D−1/2aξj

aT
ξj
D−1/2,(10)

where D is the expected degree matrix, that is, Dii = ∑βM

j=1 E[hj ](aξj
)i . We also

define the quantity d = mini∈{1,...,n}Dii . Without loss of generality, we may also
assume that for a given n, the community sizes are n1 ≥ n2 ≥ · · · ≥ nk .

Before stating the main result, it is useful to elaborate on the aforementioned
conditions under which the derived error bound holds. A lower bound on the spar-
sity of the hypergraph is a standard requirement to ensure that the concentration of
the spectral properties eventually hold, and has been often used in the graph liter-
ature [Le, Levina and Vershynin (2015), Lei and Rinaldo (2015)]. In our setting,
this can be stated in terms of the sparsity factors αm,n, or more simply, in terms of
the minimum expected degree d , that grows with n but at a rate controlled by the
sparsity factors.

A more critical condition is the identifiability of the partitions. Note that the
definition of the hypergraph Laplacian essentially implies that the hypergraph is
reduced to a graph with self-loops. Hence, the performance of Algorithm 1 cru-
cially depends on the identifiability of the partitions from L, or rather from this
reduced graph with the population adjacency matrix

A = E[A] =
βM∑
j=1

E[hj ]
|ξj | aξj

aT
ξj

.

The following result provides a characterization of L and A, which in turn helps
to quantify the condition for identifiability of the partitions from L.



298 D. GHOSHDASTIDAR AND A. DUKKIPATI

LEMMA 4.1. Let Z ∈ {0,1}n×k denote the assignment matrix corresponding
to the partition ψ . Then the population hypergraph Laplacian is given by

L= I −D−1/2AD−1/2,(11)

where A can be expressed as

A = ZGZT − J.(12)

Here, J ∈R
n×n is diagonal with Jii = Jjj whenever ψi = ψj , and G ∈ R

k×k .
Furthermore, L contains k eigenvalues for which the corresponding orthonor-

mal eigenvectors are the columns of the matrix X = Z(ZT Z)−1/2U , where U ∈
R

k×k is orthonormal.

The representation in (12) shows that A is essentially of rank k, except for the
diagonal entries. Owing to the first term in (12), one does expect L to have k

eigenvectors whose entries are constant in each community. As discussed later, a
close inspection of X reveals that indeed the columns of X satisfy this property.
Thus, if the spectral stage of Algorithm 1 can extract X , then zero error can be
achieved from the k-means step.

In general, X need not correspond to leading eigenvectors L (as computed in
Algorithm 1). This is true even for certain types of graphs, for instance k-colorable
graphs [Alon and Kahale (1997)]. This effect is more pronounced in nonuniform
hypergraphs due to the presence of a large number of model parameters. To ac-
count for this factor, we define the following quantity:

δ =
(
λmin(G) min

1≤i≤n

nψi

Dii

)
− max

1≤i,j≤n

∣∣∣∣ Jii

Dii

− Jjj

Djj

∣∣∣∣,(13)

where nψi
is the size of the community in which node i belongs. We show that if

δ > 0, then the columns of X are the k leading eigenvectors of L. Here, λmin(G)

refers to the smallest eigenvalue of G. Thus, we can state the consistency result for
Algorithm 1 as below.

THEOREM 4.2. Consider a random hypergraph on n nodes generated ac-
cording to the planted partition model described in Section 3. Assume that n is
sufficiently large, and the size of the k partitions are n1 ≥ n2 ≥ · · · ≥ nk . Let d be
the minimum expected degree, and δ be the quantity defined in (13).

There exists an absolute constant C > 0, such that, if δ > 0 and

d > C
kn1(lnn)2

δ2nk

(14)

then with probability at least 1 − O((lnn)−1/4),

(15) Err
(
ψ,ψ ′) = O

(
kn1 lnn

δ2d

)
.
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Note here that the quantities δ, d and k can vary with n. On substituting the
condition on d into (15), one can see that Err(ψ,ψ ′) = o(n) with probability
(1 − o(1)). Hence, Algorithm 1 is weakly consistent if the conditions of the the-
orem are satisfied. However, we show later that in certain dense hypergraphs, the
bound in (15) may eventually decay to zero. Thus, Algorithm 1 is guaranteed to
exactly recover the communities in such cases.

In Section 5, we consider particular instances of the planted model, and illustrate
the dependance of the above result on the model parameters. For instance, (14)
implies that the result holds if the sparsity factor (αm,n) is above a certain threshold
(see Corollaries 5.1 and 5.2). Even when (14) holds, higher error is incurred for a
sparse hypergraph (small d) or when the number of communities k is large.

One may note that δ > 0 is the condition for identifiability of the partitions,
and is essential for success of the algorithm. Typically, one does find that δ ↓ 0 as
n → ∞. To this end, the condition (14) implies that δ cannot decay rapidly as δ2d

needs to maintain a minimum growth rate. We also note that δ quantifies identifia-
bility of the partitions and Err(ψ,ψ ′) varies as 1

δ2 . Hence, if the model parameters
are such that δ is small, for instance if the probability of inter-community edges is
very close to that of within community edges, then Err(ψ,ψ ′) is larger.

Before presenting the proof of Theorem 4.2, we comment on the assumption
of sufficiently large n. Note that the sole purpose of this assumption is to ensure
the success of the k-means algorithm. Later, in the proof, we establish that if n is
large enough, the condition (14) ensures that the approximate k-means method of
Ostrovsky et al. (2012) provides a near optimal solution, which is worse by only
a constant factor. Earlier works on spectral graph partitioning [Lei and Rinaldo
(2015), Rohe, Chatterjee and Yu (2011)] assumed the existence of such a near op-
timal solution with probability 1. To demonstrate the effect of such an assumption,
we state the following result, which is a modification of Theorem 4.2 under the
above assumption.

COROLLARY 4.3. Consider a random hypergraph on n nodes generated ac-
cording to the planted partition model, and let the other quantities be as defined in
Theorem 4.2. Assume that for a constant γ > 1, there is a γ -approximate1 k-means
algorithm that succeeds with probability 1.

There exists an absolute constant C > 0, such that, if δ > 0 and

d > C
lnn

δ2(16)

then with probability at least 1 − 4
n2 ,

(17) Err
(
ψ,ψ ′) = O

(
kn1 lnn

δ2d

)
.

1Informally, a γ -approximate k-means methods returns a solution for which the objective of the
k-means problem is at most γ times the global minimum, where γ > 1. A formal definition is post-
poned to (22) and subsequent discussions.
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The result reveals that if a good k-means algorithm is available, then the success
probability of Algorithm 1 increases, and the result is also applicable for more
sparse hypergraph since the condition (16) is weaker than (14). However, based
on the existing results in the k-means literature, one should consider the following
remark.

REMARK. If the data satisfies certain clusterability criterion,2 then the effi-
cient variants of k-means [Kumar, Sabharwal and Sen (2004), Ostrovsky et al.
(2012)] provide a γ -approximate solution with a constant probability ρ < 1. Both
γ and ρ depend on various factors including k, clusterability criterion, etc.

In view of the above remark, Corollary 4.3 is too optimistic. Recently, Gao
et al. (2015) pointed that if one uses the method of Kumar, Sabharwal and Sen
(2004), then γ grows with k. In addition, one should also note that the success
probability of this method is ρ = ck for an absolute constant c ∈ (0,1). Hence, a
spectral partitioning algorithm using this method cannot succeed with probability
(1 − o(1)). Instead, we use the method of Ostrovsky et al. (2012) to achieve a
higher success rate as stated in Theorem 4.2. The only additional assumption is
that of sufficiently large n. We note that this requirement, along with condition
(14), can be relaxed if one only aims for a constant success probability. This is
shown in the following modification of Theorem 4.2, where we assume that the
k-means algorithm of Ostrovsky et al. (2012) is used.

COROLLARY 4.4. Consider a random hypergraph on n nodes generated ac-
cording to the planted partition model, and let the other quantities be as defined in
Theorem 4.2.

There exist absolute constants C > 0 and ε ∈ (0,0.015), such that, if δ > 0 and

d >
C

ε2

kn1 lnn

δ2nk

(18)

then with probability at least 1 − O(
√

ε),

(19) Err
(
ψ,ψ ′) = O

(
kn1 lnn

δ2d

)
.

4.2. Proof of Theorem 4.2. We now present an outline of the proof of Theo-
rem 4.2 using a series of lemmas. The proofs for these lemmas are given in the
supplementary material [Ghoshdastidar and Dukkipati (2016)]. The result is ob-
tained by proving the following facts:

2Various clusterability criteria have been studied in the literature. In this work, we consider the
notion of ε-separability proposed by Ostrovsky et al. (2012).
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1. If Algorithm 1 is performed on the population Laplacian L, then under the
condition of δ > 0, the obtained partitions are correct.

2. The deviation of L from L is bounded above, and the bound holds with proba-
bility at least (1 − 4

n2 ).
3. As a consequence of above facts, the standard matrix perturbation bounds

[Stewart and Sun (1990)] imply that the eigenvalues and the corresponding
eigenspaces of L concentrate about those of L.

4. If (14) holds, then k-means stage of Algorithm 1 succeeds in obtaining a near
optimal solution with probability at least 1 − O((lnn)−1/4).

5. The partitioning error can be expressed in terms of the above bounds, which
leads to (15).

Corollaries 4.3 and 4.4 can be proved in similar manner. This is discussed in the
supplementary material [Ghoshdastidar and Dukkipati (2016)]. We now prove the
above facts. The following result extends Lemma 4.1.

LEMMA 4.5. If δ > 0, then the k leading orthonormal eigenvectors of L cor-
respond to the columns of the matrix X = Z(ZT Z)−1/2U .

In the above result, ZT Z is a diagonal matrix with entries being the sizes of
the k partitions. Hence, both ZT Z and U are of the rank k. Due to this, one can
observe that the matrix X contains exactly k distinct rows, each corresponding to
a particular partition, that is, if Ai· denotes ith row of a matrix A, then for any two
nodes i, j ∈ V ,

Xi· = Xj · ⇐⇒ Zi· = Zj · ⇐⇒ ψi = ψj .

Moreover, since U is orthonormal, the distinct rows of X are orthogonal. Hence,
after row normalization, the distinct rows correspond to k orthonormal vectors in
R

k , which can be easily clustered by k-means algorithm to obtain the true com-
munities. Technically, δ is a lower bound on the eigen-gap between the kth and
(k + 1)th smallest eigenvalues of L. Since, it is difficult to obtain a simple charac-
terization of the eigen-gap, we resort to the use of δ as defined in (13).

Next, we bound the deviation of a random instance of L from the population
Laplacian L. This bound relies on the use of matrix Bernstein inequality [Chung
and Radcliffe (2011), Tropp (2012)]. We note that for graphs, sharp deviation
bounds have been used [Lei and Rinaldo (2015)], but such techniques cannot be
directly extended to the case of hypergraphs.

LEMMA 4.6. If d > 9 lnn, then with probability at least (1 − 4
n2 ),

(20) ‖L −L‖2 ≤ 12

√
lnn

d
.
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We now use the principle subspace perturbation result due to Lei and Rinaldo
(2015) to comment on the deviation of the leading eigenvectors of L from those
of L. A modified version of their result is proved that incorporates the row normal-
ization of the eigenvector matrix. Let X be the matrix of the k leading eigenvectors
of L, and X be its row normalized version. We have the following result. Note that
since δ < 1, the condition of Lemma 4.6 is subsumed by the condition stated be-
low.

LEMMA 4.7. If δ > 0 and d > 576 lnn
δ2 , then there is an orthonormal matrix

Q ∈ R
k×k such that

(21) ‖X − ZQ‖F ≤ 24

δ

√
2kn1 lnn

d

with probability at least (1 − 4
n2 ).

We now derive a bound on the error incurred by the k-means step in the al-
gorithm. Formally, k-means minimizes ‖X − S‖F over all S ∈ Mn×k(k), where
Mn×k(r) is the set of all n × k matrices with at most r distinct rows. In practice,
the rows of S correspond to the centers of obtained clusters. Achieving a global
optimum for this problem is NP-hard. However, there are algorithms [Kumar, Sab-
harwal and Sen (2004), Ostrovsky et al. (2012)] that can provide a solution S∗
from the above class of matrices such that∥∥X − S∗∥∥

F ≤ γ min
S

‖X − S‖F(22)

for some γ > 1. The factor γ depends on the algorithm under consideration. For
instance, γ grows with k in the case of Kumar, Sabharwal and Sen (2004). On the
other hand, Ostrovsky et al. (2012) showed that a constant factor approximation is
possible if the data (rows of X in our case) is well separated.

To be precise, define ηr(X) to be the minimum of the objective function when
r clusters are found, that is,

(23) ηr(X) = min
S∈Mn×k(r)

‖X − S‖F .

The rows of X is said to be ε-separated if ηk(X) ≤ εηk−1(X). Theorem 4.15 in
Ostrovsky et al. (2012) claims that if this condition holds for small enough ε, then
the solution S∗ ∈ Mn×k(k) obtained from their approximate k-means algorithm

satisfies (22) with probability (1 − O(
√

ε)), where γ is given as γ =
√

1−ε2

1−37ε2 .

The following result shows that in our case, the rows of X are indeed well
separated.

LEMMA 4.8. If the condition in (14) holds, then the rows of X are ε-separated
with ε = (lnn)−1/2.
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As a consequence of Lemma 4.8, it follows that if n is sufficiently large, then
the result of Ostrovsky et al. (2012) holds. Moreover, one can also observe that for
large n, we have γ = O(1).

Finally, one needs to combine the above results in order to prove Theorem 4.2.
For this, define the set Verr ⊂ V as

Verr =
{
i ∈ V : ∥∥S∗

i· − Zi·Q
∥∥

2 ≥ 1√
2

}
.(24)

Rohe, Chatterjee and Yu (2011) used a similar definition for the number of in-
correctly assigned nodes, and discussed the intuition behind this definition. In the
following result, we formally prove that the nodes that are not in Verr are correctly
assigned. We also provide an upper bound on the size of Verr.

LEMMA 4.9. Let i, j /∈ Verr and S∗
i· = S∗

j ·, then ψi = ψj . As a consequence,
Err(ψ,ψ ′) ≤ |Verr|. In addition,

|Verr| ≤ 4
(
1 + γ 2)‖X − ZQ‖2

F .

Theorem 4.2 follows by combining the above bound with (21).

5. Consistency for special cases. We now study the implications of Theo-
rem 4.2 for partitioning particular models of uniform and nonuniform hypergraphs.
We also discuss the conditions for identifiability in special cases.

5.1. Balanced partitions in uniform hypergraph. Let the n nodes be divided
into k groups such that each group contains n

k
nodes. We now consider a random

r-uniform hypergraph on the nodes generated as follows. Let p,q ∈ [0,1] be con-
stants with (p+q) ≤ 1, and αr,n ∈ (0,1] be the sparsity factor dependent on n. For
any r nodes from the same group, there is an edge among them with probability
αr,n(p + q). If all the r nodes do not belong to same group, then there is an edge
with probability αr,nq .

In terms of the model in Section 3, one can see that M = r , and for all m < r ,
αm,n = 0. The r th order k-dimensional tensor B(r) is given by

B
(r)
j1j2...jr

=
{
p + q if j1 = j2 = · · · = jr ,

q otherwise.

One can see that for r = 2, this model corresponds to the sparse stochastic block
model considered in Lei and Rinaldo (2015) with balanced community sizes, and
if α2,n = 1, one has the standard four parameter stochastic block model [Rohe,
Chatterjee and Yu (2011)]. The following corollary to Theorem 4.2 shows the con-
sistency of Algorithm 1.
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COROLLARY 5.1. In the above model,

(25) δ = pαr,nn

rkd

(
n
k

− 2

r − 2

)
,

and hence, the partitions are identifiable for all p > 0. Moreover, if

(26) αr,n ≥ C
k2r−1n(lnn)2(n

r

)
for some absolute constant C > 0, then the conditions in Theorem 4.2 are satisfied,
and hence, we have

Err
(
ψ,ψ ′) = O

(
k2r−2n2 lnn

p2αr,n

(n
r

) )
= o(n)(27)

with probability (1 − o(1)).

The lower bound on αr,n mentioned in Corollary 5.1 needs some discussion.
One can verify that in the above model, the expected number of edges lie in the
range [qαr,n

(n
r

)
, (p + q)αr,n

(n
r

)], that is, it is about αr,n

(n
r

)
up to a constant scal-

ing. The lower bound on αr,n specifies that the number of edges must be at least
�(k2r−1n(lnn)2). This also indicates that for a larger r , more edges are required
to ensure the error bound of Corollary 5.1. Since αr,n ≤ 1, one can see that the
result is applicable for k = O(n0.5−ε) for all ε > 1

2(2r−1)
. Even consistency results

for graph partitioning require similar condition [Choi, Wolfe and Airoldi (2012),
Rohe, Chatterjee and Yu (2011)].

A closer look at the condition (26) shows that if k is constant or increases slowly,
k = O(lnn), then a sufficient condition for weak consistency of Algorithm 1 is

αr,n ≥ Cr
(lnn)2r+1

nr−1 , where the constant Cr depends only on r . In case of graph
partitioning, this level of sparsity is needed when one relies on matrix Bernstein
inequality. However, recent results [Lei and Rinaldo (2015)] reduced the lower
bound by using sharp concentration bounds for the binary adjacency matrix. Corol-
lary 5.1 also indicates that if k increases at a higher rate, for example, k = na , then
consistency can be guaranteed only when the hypergraph is more dense.

On the other extreme are uniform hypergraphs encountered in computer vision
Ghoshdastidar and Dukkipati (2014, 2015) that are usually dense, that is, αr,n = 1.

In this case, if k = O(lnn) then Err(ψ,ψ ′) = O((lnn)2r−1

nr−2 ). Thus, the error de-
creases at a faster rate for r-uniform hypergraphs with larger r . In fact, for r ≥ 3,
above bound indicates that Err(ψ,ψ ′) = o(1), that is, Algorithm 1 guarantees ex-
act recovery of the partitions for large n.

Lastly, we discuss the effect of δ and the parameters p,q in this setting. Note
that the case q = 0 is not interesting as there are no edges among different groups,
and hence, the partition can be identified by a simple breadth-first search. On the
other hand, p = 0 generates a random uniform hypergraph with all identical edges.
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Hence, the partitions cannot be identified in this case. This can also be seen from
(25), where δ = 0. In general, p denotes the gap between the probability of edge
occurrence among nodes from same community and the probability with which
nodes from different communities form an edge. Since δ is linear in p, one can
observe from Theorem 4.2 that Err(ψ,ψ ′) varies as 1

p2 with p. However, note that
the model assumes that p does not vary with n, and may be treated as a constant
in the asymptotic case.

5.2. Balanced partitions in nonuniform hypergraph. We now consider the
case of nonuniform hypergraph of range M , where M may vary with n. As in Sec-
tion 5.1, assume that n nodes are equally split into k groups. Also let p,q ∈ (0,1)

such that (p + q) ≤ 1, and for m = 2, . . . ,M , let B(m) be the mth-order symmetric
k-dimensional tensor with

B
(m)
j1j2...jm

=
{
p + q if j1 = j2 = · · · = jm,

q otherwise.

Setting αm,n ∈ (0,1] as the sparsity factors, we obtain a model, where the edges
appear independently, and for each m, an edge on m nodes from the same group ap-
pears with probability αm,n(p + q). For any set of m nodes from different groups,
there is an edge among them with probability αm,nq .

Since, the nonunifom hypergraph is a superposition of the m-uniform hyper-
graphs for m = 2, . . . ,M , one can easily derive a consistency result in the nonuni-
form case by applying Corollary 5.1 for each of the uniform components. How-
ever, observe that the number of edges of size m is �(αm,n

(n
m

)
), and hence, the

requirement αm,n

(n
m

) ≥ Cmk2m−1n(lnn)2 for each m implies that the number of
m-size edges should increase with m. This contradicts the natural intuition in ex-
isting random models [Darling and Norris (2005)], where the hypergraph contains
less edges of higher cardinality. The same phenomenon is also observed in practice
(see Section 6.1). The following consistency result takes this fact into account.

COROLLARY 5.2. The partitions in the above model are identifiable for all
p > 0. In addition, let (θm)∞m=2 be a nonnegative sequence independent of n, and
assume that for any n ∈ N and m = 2, . . . ,M , the sparsity factor

αm,n = θmna(lnn)b(n
m

)
for some a ≥ 1 and b ≥ 2. There exists an absolute constant C, such that, if

(28)
M∑

m=r

mθm ≤ C

(
na−1(lnn)b−2

k2r−1

)
for r = min{m : θm > 0}, then Err(ψ,ψ ′) = o(n) with probability (1 − o(1)).
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In the above result, r denotes the smallest size of an edge in the hypergraph.
In practice (θm)∞m=2 is a decreasing sequence, and hence, the number of m-
size edges also decreases with m. In particular, if θ2 > 0,

∑∞
m=2 mθm < ∞, and

k = O(n(a−1)/3(lnn)(b−2)/3), then Algorithm 1 is weakly consistent. Thus, if the
hypergraph is sparse, that is, a = 1, consistency is guaranteed only for logarithmic
growth in k, whereas larger number of partitions can be consistently detected only
in dense hypergraphs. Observe that the problem gets harder if r > 2.

5.3. Identifiability of the partitions. In the previous two sections, we consid-
ered problems where the partitions are identifiable from L. This need not hold for
arbitrary model parameters. We now briefly discuss few cases, which show that the
partitions are typically identifiable under reasonable choice of model parameters.

EXAMPLE 1. Consider a 3-uniform hypergraph on n nodes. For simplicity,
assume there are k ≥ 3 partitions of equal size. We define B(3) as follows:

B
(3)
j1j2j3

=

⎧⎪⎪⎨⎪⎪⎩
p1 if j1 = j2 = j3,

p2 if exactly two of them are identical,

p3 if j1, j2, j3 are all different

for some constants p1,p2,p3 ∈ [0,1]. Observe that the above situation is the most
general case provided that the partitions are statistically identical. In this setting, it
is easy to see that the following statement holds.

LEMMA 5.3. Assume that n is a multiple of k. Then δ > 0 if and only if

(29) (p2 − p3) + 1

k
(p1 − 3p2 + 2p3) − 2

n
(p1 − p2) > 0.

In particular, δ > 0 when p1 > p2 > p3, or at most one inequality is replaced by
equality.

Note that the setting of Section 5.1 follows when p1 > p2 = p3, while the case
p1 = p2 = p3 corresponds to a random hypergraph with all edges following the
same law. Obviously, the partitions are not identifiable in the latter case. More gen-
erally, the order of probabilities p1 > p2 > p3 is intuitive as it implies that an edge
has a larger probability of occurrence if it has more nodes from the same commu-
nity. One may compare this observation with the case of graphs, where partitioning
based on the leading eigenvectors of Laplacian works only when edges within each
community occur more frequently than edges across communities. The opposite
scenario, found in colorable graphs, requires one to consider eigenvectors corre-
sponding to the other end of the spectrum [Alon and Kahale (1997)]. Moreover, if
p2 > p3 and k grows with n, one can observe that δ mostly depends on the gap
(p2 − p3), and hence, the error Err(ψ,ψ ′) is proportional to 1

(p2−p3)
2 .
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EXAMPLE 2. We now modify the above model by allowing edges of size 2 to
be present. In particular, assume α2,n = 1 and B(2) = I , which means all pairwise
edges within each community are present, and no two nodes from different com-
munities form a pairwise edge. In addition, let α3,n ∈ [0,1] be arbitrary. Then one
can observe the following.

LEMMA 5.4. Assume that n is a multiple of k. Then δ > 0 if and only if

(30)
1

2
+ nα3,n

3

(
(p2 − p3) + (p1 − 3p2 + 2p3)

k
− 2(p1 − p2)

n

)
> 0.

It is easy to see that if α3,n = 0, then the hypergraph is a graph with k dis-
connected components, and hence, the partitions are identifiable. However, even
when α3,n = o( 1

n
), the pairwise edges eventually dominate and the partitions can

be identified for arbitrary values of p1,p2,p3. On the other hand, if α3,n grows
faster than 1

n
(for instance, α3,n = 1), then the situation is eventually similar to

that of Lemma 5.3. The critical case is α3,n = �( 1
n
), where the expected number

of 2-way and 3-way edges are of similar order. In this case, (30) suggests that the
partitions can be identified (δ > 0) even when p2 < p3 provided p3 is sufficiently
small.

EXAMPLE 3. In the above cases, we restricted ourselves to communities of
equal size. The arguments also hold for n1

nk
= O(1). However, if nk � n1 or the

probability of edges vary across different communities, then the second term in
(13) can lead to δ ≤ 0, or equivalently, may affect the identifiability of the parti-
tions. To study this effect, we consider the following model for r-uniform hyper-
graphs.

Let αr,n = 1, and there are k = 2 partitions of size s and (n − s). We assume
s = o(n), and define B(r) ∈ R

2×2×···×2 as

B
(r)
j1j2...jr

=
⎧⎨⎩1 if j1 = j2 = · · · = jr = 1,

1

2
otherwise.

For r = 2, the model is same as that of a s clique planted in a Erdős–Rényi graph.
This model presents a high disparity in both community sizes and degree distribu-
tions. We make the following comment on the identifiability of the partitions under
this model.

LEMMA 5.5. For a given r ≥ 2, there exists a finite constant sr such that δ > 0
for the above model for all s ≥ sr .

Thus, when s grows with n, the partitions can be eventually identified from L.
The proof of the above result shows that both the terms in (13) decay with n, but
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the ratio of the first term to the second grows as �(s). We believe that a similar ob-
servation can be made in more general situations, where this growth rate depends
on the size of the smallest community.

In view of the above lemma, it is interesting to know whether Algorithm 1 is
able to detect small cliques in uniform hypergraphs. This is indeed true, but due to
the generality of the approach, as listed in this paper, the minimal growth rate for
s needed to accurately find the partitions from L is not optimal. More precisely, it
is worse by a logarithmic factor in the case of graphs. However, Lemma 5.5 shows
that one can use spectral techniques similar to [Alon, Krivelevich and Sudakov
(1998)] for finding planted cliques in hypergraphs.

6. Experimental results. In this section, we empirically demonstrate that the
conditions in Corollaries 5.1 and 5.2 are reasonable. For this, we consider a num-
ber of hypergraphs that have been studied in practical problems [Alpert (1998),
Ghoshal et al. (2009)]. We also study the performance of Algorithm 1 in some
benchmark clustering problems.

6.1. Sparsity of real-world hypergraphs. The consistency results in this paper
are applicable only under certain restrictions on the hypergraph to be partitioned.
To be precise, Corollaries 5.1 and 5.2 hold when the sparsity of the hypergraph is
above a certain threshold. We study the practicability of the conditions in the case
of real-world hypergraphs. We consider two types of applications—folksonomy,
where the underlying model is a 3-uniform hypergraph, and circuit design, which
involves nonuniform hypergraph partitioning.

To study the nature of hypergraphs in folksonomy, we consider 11 networks
from KONECT, HetRec’2011 and MovieLens.3 Each network is a tri-partite 3-
uniform hypergraph containing three types of nodes: user, resource and annotation.
Each edge is an entry in the database that occurs when an user describes a certain
resource by a particular tag or rating. The number of nodes vary between 2630
to 9.8 × 105. Assuming that k = O(1), the sufficient condition in Corollary 5.1
requires that the number of edges in a 3-uniform hypergraph grows as �(n(lnn)2).
In Figure 1, we compare the number of edges |E | with n(lnn)2 for above networks.
We observe that in few cases (last four in Figure 1), these quantities are similar,
whereas for the remaining networks, |E | is smaller by a nearly constant factor.

The next study is related to nonuniform hypergraphs that are encountered in
circuit partitioning. We consider 18 circuits from the ISPD98 circuit benchmark
suite [Alpert (1998)]. From a hypergraph view, the components of the circuit are
the nodes of the hypergraph, while the multi-way connections among them are the
edges. These networks are also sparse as the number of nodes vary from 1.27×104

3The HetRec’2011 and MovieLens datasets are maintained by the GroupLens research group, and
are available at: http://grouplens.org/.

KONECT refers to the Koblenz network collection: http://konect.uni-koblenz.de/.

http://grouplens.org/.
http://konect.uni-koblenz.de/
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FIG. 1. Bar plot for |E | and n(lnn)2 in logarithmic scale for 11 folksonomy networks.

to 2.1 × 105, while the number of edges range between 1.4 × 104 to 2 × 105.
Moreover, these networks contain relatively large number of edges of sizes 2 or 3,
and the number of edges of size m gradually decreases with m. We assume a = 1,
b = 2, and ignoring constant factors, we estimate θm as θm = |Em|

n(lnn)2 , where Em is
the set of edges of size m in the network. Figure 2 shows a plot of this quantity as a
function of m for different networks. We find that the estimate of θm is bounded by
exponentially decaying functions, and hence, one can argue that

∑
m mθm < ∞.

6.2. Experiments on benchmark problems. Partitioning the networks dis-
cussed in the previous section is an interesting problem. However, for such net-
works, the underlying partitions are not known, and hence, for these networks,

FIG. 2. Scatter plot for estimated θm = |Em|
n(lnn)2 versus m for the 18 circuits. Plot for each circuit

is shown in a different color. The bounding curves correspond to the functions 0.05 exp(−m0.5) from
above and 0.002 exp(−m0.8) from below.
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TABLE 1
Fraction of nodes incorrectly assigned by different clustering algorithms. The results for ROCK,

COOLCAT and LIMBO are taken from Andritsos et al. (2004)

Database ROCK COOLCAT LIMBO hMETIS Clique Algorithm 1

Voting 0.16 0.15 0.13 0.24 0.12 0.12
Mushroom 0.43 0.27 0.11 0.48 0.11 0.11

the performance of Algorithm 1 cannot be measured in terms of the number of
incorrectly assigned nodes. So, we consider benchmark problems for categorical
data clustering, where the true partitions are known. Here, one needs to group in-
stances of a database, each described by a number of categorical attributes. Two
such benchmark databases include the 1984 US Congressional Voting Records and
the Mushroom Database available at the UCI repository [Lichman (2013)]. The
first set contains votes of 435 Congress men on 16 issues. The task is to group the
Congress men into Democrats and Republicans based on whether they voted for or
against the issue, or abstained their votes. The mushroom database contains infor-
mation about 22 features of 8124 varieties of mushrooms. Based on the categorical
features, one needs to separate the edible varieties from the poisonous ones. Thus,
both databases have two well-defined partitions.

One may consider the instances of the database as the nodes of the hypergraph.
For each possible value of each attribute, an edge is considered among all instances
that take the particular value of the attribute. This generates a sparse nonuniform
hypergraph that can be partitioned to obtain the clusters. Table 1 compares the per-
formance of Algorithm 1 with some popular categorical clustering algorithms. We
also study the performance when the hypergraph partitioning is done using a multi-
level approach (hMETIS) [Karypis and Kumar (2000)] or eigen-decomposition of
the normalized Laplacian obtained from clique expansion [Rodríguez (2002)]. The
error is measured as 1

n
Err(ψ,ψ ′). Table 1 shows that Algorithm 1 performs quite

well compared to other methods.

7. Conclusion. The primary focus of this work was to study the consistency
of hypergraph partitioning in the presence of a planted structure in the hypergraph.
This is achieved by considering a model for random hypergraphs that extends the
stochastic block model in a natural way. The algorithm studied in this work is
quite simple, where one essentially reduces a given hypergraph to a graph with
weighted adjacency matrix given by (4), and then performs spectral clustering on
this graph. Our analysis mainly relies on a matrix concentration inequality that was
previously used to derive concentration bounds for the Laplacian matrix of sparse
random graphs [Chung and Radcliffe (2011)]. We also establish that the k-means
step indeed achieves a constant factor approximation with probability (1 − o(1)).
This question had remained unanswered for a long time in the spectral clustering
literature.
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Note on the optimality of our result. Theorem 4.2 is quite similar, in spirit,
to the existing results in the block model literature, for instance Lei and Rinaldo
(2015), where it is shown that spectral clustering is weakly consistent when the
expected degree of any node is �(lnn), or equivalently the edge density α2,n =
�( lnn

n
). One can easily see from Corollary 5.1 that our result is not optimal, at

least in the case of graphs. The primary factor contributing to this difference is a
sharp concentration result [Friedman, Kahn and Szemeredi (1989)] that holds for
the sparse binary adjacency matrix. While such a sharp bound may not hold for a
weighted adjacency matrix, we do wonder whether one can consider the following
approach.

QUESTION. Viewing a hypergraph as a collection of m-uniform hypergraphs,
one can represent the adjacencies as a collection of m-way binary tensors for vary-
ing m. Does a generalization of Friedman, Kahn and Szemeredi (1989) hold for
sparse binary tensors? If so, then what is its implication on the allowable sparsity
for community detection in hypergraphs?

One can show that for dense tensors, the operator norm (equivalently, largest
eigenvalue for matrices) does concentrate similar to the matrix case [Ghoshdastidar
and Dukkipati (2015)], but the sparse case has not been studied yet.

Considering the most sparse regime for community detection [Decelle et al.
(2011)], it is now known that spectral techniques based on eigenvectors of suitably
defined matrices work even for graphs with density α2,n = �( 1

n
) [Krzakala et al.

(2013), Le, Levina and Vershynin (2015)]. To this end, the following problem is
quite interesting.

QUESTION. What is an appropriate extension of the regularized adjacency
matrix [Le, Levina and Vershynin (2015)] and the nonbacktracking matrix
[Krzakala et al. (2013)] in the case of hypergraphs? More generally, what is the
algorithmic barrier for community detection in hypergraphs?

Phase transitions in uniform hypergraphs have been studied in the literature
[Achlioptas and Coja-Oghlan (2008), Panagiotou and Coja-Oghlan (2012)], and
thresholds for 2-colorability and Boolean satisfiability are known up to constant
factors. However, the case of nonuniform hypergraphs still remains unexplored.

Extensions of our results. One can observe that both the model and the analysis
can be further extended to more general situations. For instance, one often encoun-
ters weighted hypergraphs in practical applications [Ghoshdastidar and Dukkipati
(2014)], where every edge e has a weight w(e) associated with it. In our random
model, we assumed w(e) to be a Bernoulli random variable. A direct extension
to the weighted hypergraphs is obtained by allowing w(e) to take real values. To
this end, we note that our results are only based on the first two moments of w(e).
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Hence, if we restrict w(e) ∈ [0,1] and assume that first moment is same as that of
the Bernoulli variables in our model, then Theorem 4.2 holds even in this setting.

In the case of planted graphs, the stochastic block model has been extended
to account for factors such as degree heterogenity or overlapping communities
[Lei and Rinaldo (2015), Zhang, Levina and Zhu (2014)]. Similar modifications of
the hypergraph model is an interesting extension. However, it also seems possible
that some information, such as community overlap, may be lost when the edge
information is ‘compressed’ into the hypergraph Laplacian. Hence, one may have
to consider spectral properties of the incidence matrix H or other alternatives for
the Laplacian in (2).

While we restricted our discussions to a popular hypergraph partitioning ap-
proach, the results can be extended to variants of Algorithm 1. For instance, one
may use the eigenvectors of the weighted adjacency matrix A instead of the Lapla-
cian L. Minor modifications to Theorem 4.2 can guarantee the consistency of such
an approach. Moreover, Theorem 4.2 is based on a theoretical result of approxi-
mate k-means [Ostrovsky et al. (2012)]. As mentioned in Section 4, we need to
assume n to be sufficiently large in order to ensure that the k-means step provides
a near optimal solution. Alternatively, one could also use the greedy clustering
algorithm of Gao et al. (2015) that may alleviate the condition on n.

It also is known that one can iteratively refine the solution of a spectral algo-
rithm to exactly recover the partitions [Lei and Zhu (2014), Vu (2014)]. Such an
approach usually constructs an embedding of the nodes based on the adjacency
matrix. We believe that similar results will hold for hypergraphs if one constructs
the embedding using the weighted adjacency matrix A defined in (4).

We noted in Lemma 5.5 that Algorithm 1 can be used to find a planted clique
in a random hypergraph. For a more optimal result, one could possibly extend the
approach of Alon, Krivelevich and Sudakov (1998) to the case of hypergraphs. To
this end, it is interesting to note that the hypergraph clique problem is often en-
countered in computer vision applications [Ghoshdastidar and Dukkipati (2014)].
Thus, several variations of the hypergraph partitioning problem surface in engi-
neering applications.

This work explores into the theoretical analysis of hypergraph partitioning, and
provides the first step for expanding the extensive studies on planted graphs to the
case of hypergraphs.

Acknowledgements. The authors thank the reviewers for pointing out key ref-
erences and for helpful suggestions that led to inclusion of the result for k-means
algorithm, and discussions on identifiability of the partitions.

SUPPLEMENTARY MATERIAL

Supplement to “Consistency of spectral hypergraph partitioning under
planted partition model” (DOI: 10.1214/16-AOS1453SUPP; .pdf). The supple-
mentary material contains detailed proofs of all the lemmas and corollaries stated
in Sections 4 and 5.
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