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DISCUSSION OF “INFLUENTIAL FEATURES PCA
FOR HIGH DIMENSIONAL CLUSTERING”

BY BOAZ NADLER

Weizmann Institute of Science

I commend Jin and Wang on a very interesting paper introducing a novel ap-
proach to feature selection within clustering and a detailed analysis of its clustering
performance under a Gaussian mixture model.

I shall divide my discussion into several parts: (i) prior work on feature selection
and clustering; (ii) theoretical aspects; (iii) practical aspects; and finally (iv) some
questions and directions for future research.

On feature selection and clustering. Jin and Wang write that the idea of
two-stage clustering, consisting of feature selection followed by clustering is not
completely new, and cite a paper by Chan and Hall from 2010. I would like to
point out that the fact that in high dimensional settings, feature selection is a crit-
ical component in successful clustering has been long recognized in the cluster-
ing community. Indeed, several methods that select variables on which to clus-
ter have been proposed, see for example Friedman and Meulman (2004), Law,
Figueiredo and Jain (2004), Witten and Tibshirani (2010) and references therein
for earlier works. These methods are different from IF-PCA as they propose joint
feature selection and clustering, solving the resulting non-convex problem by an
expectation-minimization approach. However, similar in spirit to the approach pre-
sented here, there are also filter methods that choose variables irrespective of the
clustering method that will follow, for example, Dash et al. (2002), He, Cai and
Niyogi (2005).

In this sense, and also from a practical perspective, it would be interesting to
see a comparison of the proposed IF-PCA method to some of these methods and a
discussion of their similarities and differences.

Theoretical aspects. The model assumed by Jin and Wang is that of a Gaus-
sian mixture model with diagonal covariance, where the mean vectors of the dif-
ferent classes are all sparse, so most features are distributed as a single Gaussian
and only a few of them as a mixture of say K Gaussians with different means.
The theoretical analysis considers the limit as both p,n → ∞, where even at the
influential features, the separation between the unknown classes all tend to zero.
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The approach proposed by the authors to select influential features is based
on the Kolmogorov–Smirnov distance of the empirical CDF of each feature from
the standard normal distribution. Namely, each feature is processed separately,
without taking into account the possible correlation structure between different
features.

Several issues come to mind. The first is whether processing each feature sep-
arately is indeed optimal. In this context it is interesting to compare the situation
to sparse-PCA. There, Johnstone and Lu (2009) proposed a diagonal threshold-
ing method, which selects features based on their individual variances, and proved
the asymptotic consistency of their approach as p,n → ∞. However, as explained
in Nadler (2009), and proven in Birnbaum et al. (2013), this method is not rate-
optimal and to achieve the minimax rate one must also consider the covariance
structure between the different features. This raises the following question: Is the
situation here different, or could one gain improved feature selection (and subse-
quently improved clustering) by jointly looking at subsets of candidate features
as all being influential? Furthermore, can improved feature selection be done in a
computationally efficient way?

To this end, let me propose the following simple correlation-based approach to
detect influential features: Given a mean-centered p×n data matrix X, (i) compute
the p × p correlation matrix R̂ = D−1/2 1

n
XXT D−1/2, where D is diagonal with

Dii storing the variance in the ith feature; (ii) Define the following threshold,

t (α) =
√

2

n

√
logp − log(logp) − log(4π) − 2 log(α),

where 0 < α � 1, and may possibly decrease to zero with p. Declare variable i

as influential if there exist at least one j �= i such that |R̂ij | > t(α); (iii) As in IF-
PCA, apply k-means clustering on the first K − 1 singular vectors of the reduced
matrix of the data restricted to the influential features.

In Krauthgamer, Nadler and Vilenchik (2015) we proposed a similar approach
in the context of sparse-PCA with very weak and sparse signals, and observed
that empirically it works better than diagonal thresholding. This was subsequently
proven by Deshpande and Montanari (2014).

Let us briefly analyze the capabilities of this method, which I shall call Corr-
IF (correlated influential features). Consider for simplicity the case of K = 2 clus-
ters, equally balanced δ1 = δ2 = 0.5, and s > 1 influential features all separated at
the same distance 2u. Namely at each of the s influential features, class 1 fol-
lows N(−u,1) and class 2 follows N(u,1). Clearly, the correlation between an
influential and a non-influential feature is zero, whereas if both features i, j are
influential, then for u � 1,

Rij = E[R̂ij ] = u2

1 + u2 ≈ u2.
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Let us analyze at what separation values u could a pair of influential features be de-
tected. Consider thus a p × p sample correlation matrix of multivariate Gaussian
observations with diagonal covariance. In the limit as p,n → ∞, each correla-
tion coefficient is approximately distributed as N(0,1/n), and thus at each row
the maximal null sample correlation is sharply concentrated around

√
(2 logp)/n.

Since R̂ij − Rij = OP (1/
√

n), intuitively, we need u2 � √
(logp)/n. Namely,

even pairs of influential variables separated at u � (logp/n)1/4 will be de-
tected by our proposed Corr-IF approach. Since logp/n � 1, these are sig-
nificantly smaller separations than those needed for the IF-PCA method, namely
u = (r logp/n)1/6. In fact, if u > C(logp/n)1/4 for a sufficiently large con-
stant C, and the number of influential features s � n, and α → 0 sufficiently fast
[say α = 1/(p logp)], then asymptotically all s influential features will be de-
tected by this approach and at most O(1) non-influential features will be detected,
which would lead to perfect clustering. Hence, for this specific setting, this simple
method, with computational complexity O(np2), seems to achieve the minimax
rates established in Verzelen and Arias-Castro (2015), up to a multiplicative fac-
tor of s1/4, which in turn is related to the recent conjecture on computational and
statistical tradeoffs in hidden clique type problems.

I studied the performance of this method in several simulations. In the first p =
3000, n = 150, s = 20, and the separation in each influential feature is scaled as
u × (logp/n)1/6. Figure 1 (left) compares the clustering errors of CorrIF with
parameter α = 1/p and IF-PCA as a function of the separation parameter u. As
seen in the figure, our method detects the influential features and thus clusters
correctly at lower separations where IF-PCA still fails.

In the second simulation, I kept p = 3000 fixed, considered different sample
sizes n = 200,400,600,800,1000, a false alarm parameter α = 1/p, a fixed num-
ber of influential features s = 20, and studied the clustering error of CorrIF as
a function of signal strength u. The resulting error as a function of u is shown in

FIG. 1. Comparison of clustering error of CorrIF and IF-PCA. (Left) Gaussian noise; (right)
non-Gaussian noise (exponential and chi-squared) in several non-influential features.
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FIG. 2. Clustering error of CorrIFmethod vs. signal strength (left) and vs. scaled signal strength
(right), for different samples sizes n.

Figure 2 (left). Clearly, with a larger sample size, a smaller separation u suffices to
detect the influential features and obtain accurate clusters. In Figure 2 (right) the
signal strength was scaled by n1/4 as suggested by our analysis. Now all the curves
nicely align with each other.

Practical aspects. Whenever a new procedure is proposed, and in particular
when its properties are analyzed under a particular model, a natural question is how
robust is the method to deviations from the assumed model. The authors present
some very convincing results on several gene expression data. They also perform
several simulation studies where the noise is not Gaussian. However, one key as-
sumption in their model as well as in their simulations is that all p features have the
same noise characteristics. This raises the following question: What happens if the
noise in some influential features is of some type, say Gaussian, but in some other
non-influential features, it has different characteristics, such as a much slower tail
decay?

To this end, consider a simulation at parameters identical to the ones described
in the previous section, only that 100 of the non-influential features have expo-
nential distribution with parameter λ = 1, and another 100 non-influential features
have a χ2 distribution with 5 degrees of freedom. In this case, these 200 features
have a distribution which is far from Gaussian, and thus have large KS deviations.
The IF-PCA method selects the 100 exponential variables as influential and a
few additional ones from the other features, and thus fails to cluster correctly at
the considered signal separations. In contrast, since sample correlation coefficients
are quite robust to the underlying distribution, our proposed method is still able
to detect the true influential features and cluster correctly. As shown in Figure 1
(right), its performance is hardly affected by different variables having different
noise characteristics.



2370 B. NADLER

Due to time and space limitations, I have tried to apply the proposed Corr-IF
approach to only one real dataset—the Lung1 data. Here, my proposed method did
not work so well, simply because this data deviates significantly from the Gaussian
mixture assumption. A closer examination reveals that quite a few out of the 12,533
features exhibit “outliers” with extremely large values, hence easily detected by the
KS statistic. It turns out these outliers predominantly belong to the class-1 samples,
but each sample of class 1 is an outlier on different subsets of features (and not as in
the mixture of Gaussian model). Perhaps this calls for a more complex hierarchical
Dirichlet type model where at feature j , Xj = Zjμj (Y ) + noise, where Zj is a
0/1 latent variable that decides on whether there is activation at this feature for this
sample.

Future research. The approach presented in this paper raises several ques-
tions for future research. Let me just mention one of them: how to adapt the pro-
posed approach to a semi-supervised setting, whereby for few out of the n available
samples, we do have their class labels. It is then also natural to ask—what bene-
fit do these few labeled instances provide? In this context, in their seminal work,
Castelli and Cover (1995) showed that labeled data has exponentially larger value
over unlabeled data, in the sense that each additional labeled sample reduces the
probability of error exponentially fast to the Bayes risk. Their analysis assumed
fixed p and fixed distributions of the two classes. The situation here is different,
as the model assumes that both p,n → ∞, with the separation between different
classes at the level of individual coordinates tending to zero. It is thus of interest
to better understand the value of few labeled samples under this model.

To conclude, I again wish to commend the authors on an interesting and timely
piece of work. In my opinion, despite decades of research, the problem of cluster-
ing is still far from being resolved. This work not only suggests a new method in
the context of high dimensions, but also raises many new interesting questions for
future research.

Acknowledgments. I thank Ery Arias-Castro and Nicolas Verzelen for inter-
esting discussions.
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