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VARIATIONAL REPRESENTATIONS FOR THE PARISI
FUNCTIONAL AND THE TWO-DIMENSIONAL

GUERRA–TALAGRAND BOUND1

BY WEI-KUO CHEN

University of Minnesota

The validity of the Parisi formula in the Sherrington–Kirkpatrick model
(SK) was initially proved by Talagrand [Ann. of Math. (2) 163 (2006) 221–
263]. The central argument relied on a dedicated study of the coupled free
energy via the two-dimensional Guerra–Talagrand (GT) replica symmetry
breaking bound. It is believed that this bound and its higher dimensional gen-
eralization are highly related to the conjectures of temperature chaos and ul-
trametricity in the SK model, but a complete investigation remains elusive.
Motivated by Bovier–Klimovsky [Electron. J. Probab. 14 (2009) 161–241]
and Auffinger–Chen [Comm. Math. Phys. 335 (2015) 1429–1444] the aim of
this paper is to present a novel approach to analyzing the Parisi functional
and the two-dimensional GT bound in the mixed p-spin models in terms of
optimal stochastic control problems. We compute the directional derivative
of the Parisi functional and derive equivalent criteria for the Parisi measure.
We demonstrate how our approach provides a simple and efficient control for
the GT bound that yields several new results on Talagrand’s positivity of the
overlap and disorder chaos in Chatterjee [Disorder chaos and multiple valleys
in spin glasses. Preprint] and Chen [Ann. Probab. 41 (2013) 3345–3391]. In
particular, we provide some examples of the models containing odd p-spin
interactions.

1. Introduction. In 1979, Parisi [16] suggested an ingenious variational for-
mula for the limiting free energy in the Sherrington–Kirkpatrick (SK) model. Its
validity was rigorously established by Talagrand [18] following the discovery of
Guerra’s beautiful replica symmetry breaking scheme [9]. Parisi’s formula was
later shown to be valid in the mixed p-spin models by Panchenko [15]. For N ≥ 1,
the Hamiltonian of the mixed p-spin model is defined as

HN(σ ) = XN(σ ) + h

N∑
i=1

σi(1)
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for σ = (σ1, . . . , σN) ∈ �N := {−1,+1}N , where XN is the linear combination of
the pure p-spin Hamiltonians,

XN(σ ) = β
∑
p≥2

γp

N(p−1)/2

∑
1≤i1,...,ip≤N

gi1,...,ipσi1 · · ·σip

for i.i.d. standard Gaussian random variables, gi1,...,ip , for all 1 ≤ i1, . . . , ip ≤ N

and p. In physics, the gi1,...,ip ’s are called the disorder, h ∈R is the strength of the
external field and β > 0 is called the (inverse) temperature. Here, we assume that
the nonnegative sequence (γp)p≥2 decays fast enough, for example,

∑
p≥2 2pγ 2

p <

∞, such that the covariance of XN can be computed as

EXN

(
σ 1)XN

(
σ 2) = Nξ(R1,2)

for any two spin configurations σ 1 = (σ 1
1 , . . . , σ 1

N) and σ 2 = (σ 2
1 , . . . , σ 2

N) from
�N , where

R1,2 := 1

N

N∑
i=1

σ 1
i σ 2

i(2)

is called the overlap between σ 1 and σ 2 and

ξ(s) := ∑
p≥2

β2
psp, ∀s ∈ [−1,1](3)

for βp := βγp for all p. An important example of ξ is the mixed even p-spin
model, that is, γp = 0 for all odd p. In particular, the SK model corresponds to
ξ(s) = β2s2/2. Denote the Gibbs measure associated to HN by

GN(σ ) = expHN(σ )

ZN

,(4)

where the normalizing factor ZN = ∑
σ∈�N

expHN(σ ) is called the partition func-
tion.

The Parisi formula is described as follows. Let M be the space of all probability
measures on [0,1] and Md be the collection of all atomic measures in M. Denote
by αμ the distribution function of μ ∈ M. We endow the space M with the metric:

d
(
μ,μ′) =

∫ 1

0

∣∣αμ(s) − αμ′(s)
∣∣ds.(5)

For any μ ∈M, let �μ be the solution to the Parisi PDE on [0,1] ×R,

∂s�μ(s, x) = −ξ ′′(s)
2

(
∂xx�μ(s, x) + αμ(s)

(
∂x�μ(s, x)

)2)
,

(6)
�μ(1, x) = log coshx.

Here, for any μ ∈ Md , this PDE can be explicitly solved by performing the Hopf–
Cole transformation. For an arbitrary probability measure μ ∈ M, the solution �μ



VARIATIONAL REPRESENTATIONS FOR RSB BOUNDS 3931

is understood in the weak sense (see Jagannath and Tobasco [11]). Define the Parisi
functional P on M by

P(μ) = log 2 + �μ(0, h) − 1

2

∫ 1

0
αμ(s)sξ ′′(s) ds.

Note that this functional is Lipschitz continuous (see Guerra [9]). The famous
Parisi formula says that

lim
N→∞

1

N
E logZN = min

μ∈MP(μ).

Here, the quantity inside the limit of the left-hand side is called the free energy of
the model. Recently, Auffinger and Chen [2] showed that the Parisi functional is
strictly convex, which implies the uniqueness of the minimizer. We will call this
minimizer the Parisi measure and denote it by μP . In order to classify the structure
of μP , we say that the Parisi measure is replica symmetric (RS) if it is a Dirac
measure, is k replica symmetry breaking (k-RSB) if it is atomic with exactly k + 1
jumps and is full replica symmetry breaking (FRSB) otherwise. In addition, for
given sequence (γp)p≥2 and fixed external field h, we define the high temperature
regime as the collection of all β > 0 such that the corresponding Parisi measures
are RS and the low temperature regime is defined as its complement. An important
quantity associated to the mixed p-spin model is the overlap R1,2 between two
independently sampled spin configurations σ 1 and σ 2 from the Gibbs measure
GN . At very high temperature, that is, when β is exceedingly small, this overlap is
concentrated around a constant (see Talagrand [20], Chapter 13, for the SK model
and Jagannath and Tobasco [10] for the mixed p-spin model), whereas in the low
temperature regime, it is typically supported by a set containing more than one
point (see Panchenko [14]).

Arguably, in the past decade, the most important development in the study of
mean-field spin glasses is Guerra’s replica symmetry breaking bound [9] for the
free energy in the mixed even p-spin model. Its statement reads that any N ≥ 1
and μ ∈ M,

1

N
E logZN ≤ P(μ).(7)

Based on Guerra’s interpolation scheme [9], the first proof of Parisi’s formula was
obtained in the seminal work of Talagrand [18]. The central ingredient was played
by a two-dimensional extension of Guerra’s inequality (7) for the coupled free
energy with constrained overlaps, which was used to control the error estimate
between the two sides of (7) when μ is very close to the Parisi measure. The
full generalization of Guerra’s inequality (7), called the Guerra–Talagrand (GT)
bound throughout this paper, was later presented in [20], Section 15.7. The two-
dimensional GT bound, in particular, has two important consequences regarding
the behavior of the overlap under the Gibbs measure. The first is known as the
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positivity of the overlap established by Talagrand [20], Section 14.12, in the mixed
even p-spin model, which says that if the external field is present, h 	= 0, then
the overlap defined above is essentially bounded from below by some positive
constant. Note that this behavior is very different from the one when the external
field is absent, h = 0, in which case the overlap R1,2 is symmetric with respect to
the origin.

Another consequence is concerned with the phenomenon of chaos in disorder.
It arose from the observation that in some spin glass models, a small perturbation
to the disorder will result in a dramatic change to the overall energy landscape (see
Rizzo [17] for a recent survey in physics). In the mixed p-spin model, one typical
way to measure such instability is to consider two Hamiltonians:

H 1
N

(
σ 1) = X1

N

(
σ 1) + h

∑
1≤i≤N

σ 1
i and H 2

N

(
σ 2) = X2

N

(
σ 2) + h

∑
1≤i≤N

σ 2
i ,

where X1
N and X2

N are jointly Gaussian with mean zero and covariance structure,

EX1
N

(
σ 1)X1

N

(
σ 2) = ξ(R1,2) = EX2

N

(
σ 1)X2

N

(
σ 2),

(8)
EX1

N

(
σ 1)X2

N

(
σ 2) = tξ(R1,2)

for some t ∈ [0,1]. Let σ 1 and σ 2 be independent samplings from G1
N and G2

N ,
respectively, and let R1,2 be their overlap, which now also depends on t . The case
t = 1 means that the two systems are the same, H 1

N = H 2
N = HN , and the overlap

has the behavior we described above. From physics literature (e.g., Bray–Morre
[4], Fisher–Huse [8], Krz̧akała–Bouchaud [13]), chaos in disorder is defined by the
phenomenon that R1,2 is concentrated around a nonrandom number independent
of N if the two systems are decoupled, that is, t ∈ (0,1). The key point here is that
such behavior is predicted to be true at any temperature. The first rigorous result in
this direction was justified in the mixed even p-spin models without external field
in the work of Chatterjee [5] and the situation in the presence of the external field
was carried out in Chen [6].

As the above discussion indicates, the Parisi functional and the GT bound play
fundamental roles in the study of the mixed p-spin model. Several challenging
conjectures, such as the strong ultrametricity and temperature chaos (see Talagrand
[20], Section 15.7), rely heavily on the subtle control of these two objects and their
higher dimensional generalization. To this regard, the aim of this paper is to present
a novel approach to analyzing the Parisi functional as well as the two-dimensional
GT bound by means of optimal stochastic control theory. Ultimately, we hope that
this new method will shed some light on how to tackle the remaining open prob-
lems. Our idea is motivated by the observation that the Parisi PDE solution �μ

admits a variational representation (see Theorem 1 below) in terms of an opti-
mal stochastic control problem that corresponds to the Hamilton–Jacobi–Bellman
equation induced by a linear diffusion control problem. This was formerly used in
Bovier and Klimovsky [3] to study the strict convexity of the Parisi functional for
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some cases of the SK model with multidimensional spins. Later it was understood
that this approach allows one to derive the strict convexity of the Parisi functional
in the mixed p-spin models by Auffinger and Chen [2].

This article consists of four major results. The first result involves an analytic
study of the Parisi formula, where we compute the directional derivative of the
Parisi functional and give equivalent criteria for the Parisi measure. As an ap-
plication, we generalize a theorem of Toninelli [21], which states that the Parisi
measure in the SK model is not a Dirac measure when the temperature and ex-
ternal field stay above the Almeida–Thouless transition line [see (15) below]. In
addition, we extend Talagrand’s characterization [20], Theorem 13.4.1, of the high
temperature regime for the SK model to the temperature regime of k-RSB Parisi
measures for any mixed p-spin models. Second of all, we establish a variational
representation for the two-dimensional Parisi PDE solution in terms of an optimal
stochastic control problem and use this to give a new formulation of the original
GT bound. Based on this new form, our last two results are devoted to demonstrat-
ing a self-contained proof of the positivity of the overlap and disorder chaos in
the mixed p-spin model. We recover the aforementioned results and, furthermore,
extend them to many new examples of the model allowing odd p-spin interactions.
Along the way, we also obtain a nonnegativity principle of the overlap in the mixed
p-spin model, which says that in the absence of the external field, the overlap is
basically nonnegative if one adds certain odd p-spin interactions to the Hamilto-
nian. In Section 5 below, our approach significantly simplifies and avoids several
technicalities in the control of the two-dimensional GT bound compared to the ar-
guments in Talagrand [20], Section 14.12, and Chen [6]. For instance, the error
estimate of this bound was previously obtained through a quite involved iteration
for certain functions of Gaussian random variables. With the new approach, it now
becomes quantitatively simpler in the critical case (see Proposition 5 below).

This paper is organized as follows. In Section 2, we state the four main results
described above and their proofs are presented in Sections 3 to 5. The analytic
properties of the Parisi functional are investigated in Section 3 and the variational
representation for the two-dimensional GT bound is derived in Section 4. Finally,
we present the proof for the results on the positivity of the overlap and disorder
chaos in Section 5.

2. Main results.

2.1. Some properties of Parisi’s functional and measure. First, we recall the
variational representation for the Parisi PDE from Auffinger and Chen [2]. Let
(P,F , (Fr )0≤r≤1) be a filtered probability space satisfying the usual condition,
that is, it is complete and the filtration is right continuous. Let B = {B(r),Fr ,0 ≤
r ≤ 1} be a standard Brownian motion. For 0 ≤ s < t ≤ 1, let D[s, t] be the col-
lection of all progressively measurable processes u with respect to (Fr )s≤r≤t

satisfying sups≤r≤t |u(r)| ≤ 1. We equip the space D[s, t] with the norm ‖u‖ =
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(
∫ t
s Eu(w)2 dw)1/2. Let ξ and h be fixed. Set ζ = ξ ′′. For μ ∈ M, we define a

functional on D[s, t] ×R by

F s,t
μ (u, x) = E

[
Cs,t

μ (u, x) − Ls,t
μ (u)

]
,(9)

where, recalling that αμ is the distribution function of μ,

Cs,t
μ (u, x) := �μ

(
t, h +

∫ t

s
αμ(w)ζ(w)u(w)dw +

∫ t

s
ζ(w)1/2 dB(w)

)
,

Ls,t
μ (u) := 1

2

∫ t

s
αμ(w)ζ(w)u(w)2 dw.

The Parisi PDE solution can be expressed as the following.

THEOREM 1 ([2], Theorem 3 and Proposition 3). For any μ ∈M,

�μ(s, x) = max
u∈D[s,t]F

s,t
μ (u, x).(10)

The maximum is attained by uμ(r) = ∂x�μ(r,X(r)), where (X(r))s≤r≤t satisfies

(11) X(r) = x +
∫ r

s
αμ(w)ζ(w)∂x�μ

(
w,X(w)

)
dw +

∫ r

s
ζ(w)1/2 dB(w).

In addition, the maximizer is unique if αμ > 0 on [s, t] and
∫ t
s αμ(r) dr < 1.

Here and throughout the remainder of the paper, the existence of the partial
derivatives ∂x�μ and ∂xx�μ is ensured by [1], Proposition 2. Letting (s, t) =
(0,1) in Theorem 1, the Parisi functional now reads

P(μ) = log 2 + max
u∈D[0,1]

(
F 0,1

μ (u,h) − 1

2

∫ 1

0
αμ(w)wζ(w)dw

)
.

Our first main results below are the computation of the directional derivative of the
Parisi functional and the equivalent criteria for the Parisi measure.

THEOREM 2. Let μ0 ∈M. Define μθ = (1 − θ)μ0 + θμ for each μ ∈M and
θ ∈ [0,1]. We have

(12)
d

dθ
P(μθ)

∣∣∣∣
θ=0

= 1

2

∫ 1

0
ζ(r)

(
αμ(r) − αμ0(r)

)(
Euμ0(r)

2 − r
)
dr

for all μ ∈ M, where d
dθ
P(μθ)|θ=0 is understood as the right derivative at 0 and

uμ0 is the maximizer of (10) using μ0 and (s, t) = (0,1). In addition, the following
statements are equivalent:

(i) μ0 is the Parisi measure.
(ii) d

dθ
P(μθ)|θ=0 ≥ 0 for all μ ∈ M.

(iii) d
dθ
P(μθ)|θ=0 ≥ 0 for all Dirac measures μ = δq with q ∈ [0,1].
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The equivalence of (i) and (ii) is mainly due to the strict convexity of the Parisi
functional. The criterion (iii) essentially says that if one could not lower the Parisi
functional by adding one more jump to μ0, then μ0 must be the Parisi measure.
There are two immediate consequences that can be drawn from this theorem. For
convenience, we set Mk

d for k ≥ 0 to be the collection of all members of Md that
have no more than k + 1 atoms, that is, μ = ∑k+1

i=1 aiδqi
for some 0 ≤ q1 ≤ · · · ≤

qk+1 ≤ 1 and 0 ≤ a1, . . . , ak+1 ≤ 1 with
∑k+1

i=1 ai = 1. In particular, M0
d denotes

the space of all Dirac measures on [0,1]. In the first consequence, we extract some
information about the support of the Parisi measure.

PROPOSITION 1. Let S be the support of μP . For all q ∈ S,

E∂x�μP

(
q,X(q)

)2 = q,(13)

ζ(q)E∂xx�μP

(
q,X(q)

)2 ≤ 1,(14)

where (X(s))0≤s≤1 satisfies the following stochastic differential equation:

X(s) = h +
∫ s

0
αμP

(r)ζ(r)∂x�μP

(
w,X(w)

)
dw +

∫ s

0
ζ(w)1/2 dB(w),

∀s ∈ [0,1].

REMARK 1. Suppose that μP is a Dirac measure at some q ∈ [0,1]. A direct
computation gives

�μP
(s, x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

2

(
ξ ′(1) − ξ ′(s)

) +E log cosh
(
x + z

(
ξ ′(q) − ξ ′(s)

)1/2)
,

if (s, x) ∈ [0, q) ×R,
1

2

(
ξ ′(1) − ξ ′(q)

) + log coshx, if (s, x) ∈ [q,1] ×R,

for z a standard Gaussian random variable. Since αμP
= 0 on [0, q), Theorem 1

reads

E tanh2(zξ ′(q)1/2 + h
) = q,

(15)

ζ(q)E
1

cosh4(zξ ′(q)1/2 + h)
≤ 1.

Note that if q ∈ [0,1] minimizes the Parisi functional over all choices in M0
d ,

then one can get the first equation (by a direct differentiation; see, for example,
[19], Chapter 1), but if the temperature and external field are above the Almeida–
Thouless line, that is, (15) is violated, then the Parisi measure can not be RS. This
generalizes Toninelli’s theorem [21], where he established the same statement for
the SK model ξ(s) = β2s2/2.
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REMARK 2. Consider the SK model without external field, that is, ξ(s) =
β2s2/2 and h = 0. We now argue that the high temperature regime, defined as the
collection of all β such that μP is a Dirac measure, is described by β ≤ 1. To see
this, note that since h = 0, 0 is always in the support of the Parisi measure by [1],
Theorem 1. Thus, it suffices to show that μP = δ0 if and only if β ≤ 1. If μP = δ0
and β > 1, we will obtain a contradiction as (15) is violated. Conversely, suppose
β ≤ 1. A use of Itô’s formula and (6) gives

uδ0(r) = β

∫ r

0
∂xx�δ0

(
w,X(w)

)
dB(w) + uδ0(0)

= β

∫ r

0

1

cosh2 X(w)
dB(w)

and hence,

Euδ0(r)
2 = β2

∫ r

0

1

cosh4 X(w)
dw ≤ β2

∫ r

0
1dw ≤ r.

Therefore, for all μ ∈ M,

d

dθ
P(μθ)

∣∣∣∣
θ=0

= β2

2

∫ 1

0

(
αμ(r) − 1

)(
Euδ0(r)

2 − r
)
dr ≥ 0

and Theorem 2 implies that δ0 is the Parisi measure.

The second consequence of Theorem 2 is a generalization of Talagrand’s char-
acterization [20], Theorem 13.4.1, of the high temperature regime for the SK
model, where he showed that this regime is indeed equal to the set of all β such
that infμ∈M1

d
P(μ) = P(μ0) for some μ0 ∈ M0

d . For any such β , he proved that
μ0 will automatically be the Parisi measure. With the help of Theorem 2(iii), this
result can be generalized to any k-RSB Parisi measures.

PROPOSITION 2. Consider arbitrary ξ and h. Let k ≥ 0 and μ0 be an opti-
mizer of P over Mk

d . If

inf
μ∈Mk+1

d

P(μ) = P(μ0),(16)

then μ0 is the Parisi measure.

In other words, for fixed sequence (γp)p≥2 and external field h, the temperature
regime of k-RSB Parisi measures is described by the collection of all β > 0 such
that the corresponding Parisi functionals satisfy (16) for some optimizer μ0 of P
restricted to Mk

d .
It is generally very difficult to compute the Parisi measure as one needs to mini-

mize P over all probability measures on [0,1]. In principle, Proposition 2 suggests
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a heuristic way to simulate k-RSB Parisi measures. The procedure is based on the
observation that if we restrict P to Mk

d , then it is a differentiable function that
depends only on 2(k + 1) variables on a compact set:{

(q1, . . . , qk+1, a1, . . . , ak+1) : 0 ≤ q1 ≤ · · · ≤ qk+1 ≤ 1,0 ≤ a1, . . . , ak+1 ≤ 1,

k+1∑
i=1

ai = 1

}
,

on which one can compute the derivative of P and numerically simulate the min-
imizer of P over Mk

d . Starting from the case k = 0, if (16) is satisfied, then one
can stop and obtain the RS Parisi measure; otherwise one must proceed to the case
k = 1 and continue this process. If eventually there is a smallest integer k ≥ 0 such
that (16) is obtained, then one gets a k-RSB Parisi measure.

2.2. A variational representation for the two-dimensional GT bound. The
two-dimensional GT bound in the setting of [20], Theorem 15.7, is formulated
as follows. Let h1, h2 ∈ R and X1

N,X2
N be jointly Gaussian processes indexed by

�N with mean zero and covariance,

EX
N

(
σ 1)X′

N

(
σ 2) = Nξ,′(R1,2)

for 1 ≤ , ′ ≤ 2 and σ 1,σ 2 ∈ �N , where R1,2 is the overlap between σ 1,σ 2 de-
fined through (2). Here, ξ,′’s are convex functions on [−1,1] defined in terms
of infinite series similar to the definition of ξ in (3). Consider two mixed p-spin
Hamiltonians:

H
N

(
σ ) = X

N

(
σ ) + h

∑
1≤i≤N

σ
i ,  = 1,2.(17)

Denote by SN the collection of all possible values of R1,2. Fix q ∈ SN . Assume
that (y

p)0≤p≤k for 1 ≤  ≤ 2 are jointly centered Gaussian random variables such

that for certain real sequences (ρ,′
p )0≤p≤k+1 for 1 ≤ , ′ ≤ 2 with

ρ
1,1
0 = ρ

2,2
0 = ρ

1,2
0 = ρ

2,1
0 = 0,

ρ
1,1
k+1 = ρ

2,2
k+1 = 1,(18)

ρ
1,2
k+1 = ρ

2,1
k+1 = q,

we have

Ey
py′

p = ξ ′
,′

(
ρ

,′
p+1

) − ξ ′
,′

(
ρ,′

p

)
.
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THEOREM 3 (Guerra–Talagrand). Let (mp)0≤p≤k be a sequence with m0 =
0 < m1 < · · · < mk−1 < mk = 1. Under the assumptions stated above,

FN(q) := 1

N
E log

∑
R1,2=q

exp
(
H 1

N

(
σ 1) + H 2

N

(
σ 2))

(19)

≤ 2 log 2 + Y0 − λq − 1

2

∑
1≤,′≤2

k∑
p=0

mp

(
θ,′

(
ρ

,′
p+1

) − θ,′
(
ρ,′

p

))
,

where θ,′(s) := sξ ′
,′(s)− ξ,′(s) and Y0 is defined as follows. Denote by Ep the

expectation with respect to y,′
p . Starting with

Yk+1 = log

(
cosh

(
h1 +

k∑
p=0

y1
p

)
cosh

(
h2 +

k∑
p=0

y2
p

)
coshλ

+ sinh

(
h1 +

k∑
p=0

y1
p

)
sinh

(
h2 +

k∑
p=0

y2
p

)
sinhλ

)
,

we define decreasingly Yp = m−1
p Ep expmpYp+1 for 1 ≤ p ≤ k. Finally, set Y0 =

E0Y1.

The inequality (19) is a two-dimensional extension of Guerra’s replica symme-
try breaking bound (7). Its proof as well as the higher dimensional extension can
be found in [20], Section 15.7. Recall q from the statement of Theorem 3. Let
ι = 1 if q ≥ 0 and ι = −1 otherwise. For 1 ≤ , ′ ≤ 2, let ρ,′ be nondecreasing
continuous functions on [0,1] with

ρ1,1(0) = ρ1,2(0) = ρ2,1(0) = ρ2,2(0) = 0,
(20)

ρ1,1(1) = ρ2,2(1) = 1, ρ1,2(1) = ρ2,1(1) = |q|.
Assume that these functions are differentiable everywhere except at a finite number
of points, at which the right derivatives exist. For any s ∈ [0,1], we define

T (s) =
[
ζ1,1(s) ζ1,2(s)

ζ2,1(s) ζ2,2(s)

]
:=

⎡
⎢⎢⎣

d

ds
ξ ′

1,1
(
ρ1,1(s)

) d

ds
ξ ′

1,2
(
ιρ1,2(s)

)
d

ds
ξ ′

2,1
(
ιρ2,1(s)

) d

ds
ξ ′

2,2
(
ρ2,2(s)

)
⎤
⎥⎥⎦ .(21)

In the right-hand side of (21), the derivatives are understood as the ones from
the right if one of ρ,′’s is not differentiable. We suppose that T (s) is positive
semidefinite and its operator norm ‖T (s)‖ is uniformly bounded from above by
some constant K > 0. For μ ∈ Md , we consider the classical solution �μ to the
two-dimensional Parisi PDE,

∂s�μ = −1

2

(〈
T ,�2�μ

〉 + αμ〈T��μ,��μ〉)(22)
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for (λ, s,x) ∈ R× [0,1) ×R
2 with terminal condition

�μ(λ,1,x) = log(coshx1 coshx2 coshλ + sinhx1 sinhx2 sinhλ).(23)

The assumption μ ∈ Md guarantees the existence of the solution by a standard
application of Hopf–Cole transformation. One may refer to Lemma 3 below for the
precise formula of the solution. Our first main result below says that the mapping
μ ∈ Md → �μ is Lipschitz with respect to the metric d defined by (5).

THEOREM 4. For any μ,μ′ ∈ Md ,∣∣�μ(λ, s,x) − �μ′(λ, s,x)
∣∣ ≤ 3K d

(
μ,μ′)

for (λ, s,x) ∈ R× [0,1] ×R
2.

This Lipschitz property allows us to extend �μ continuously to all μ ∈
M using sequences of atomic probability measures. Denote by B = {B(r) =
(B1(r),B2(r)),Gr ,0 ≤ r < ∞} a two-dimensional Brownian motion, where
(Gr )r≥0 satisfies the usual condition. For 0 ≤ s < t ≤ 1, denote by D[s, t] the space
of all two-dimensional progressively measurable processes v = (v1, v2) with re-
spect to (Gr )s≤r≤t satisfying sups≤r≤t |v1(r)| ≤ 1 and sups≤r≤t |v2(r)| ≤ 1. Endow
the space D[s, t] with the norm

‖v‖s,t =
(
E

∫ t

s

(
v1(w)2 + v2(w)2)dw

)1/2
.

Similar to the formulation of (9), we define a functional

F s,t
μ (λ, v,x) = E

[
Cs,t

μ (λ, v,x) −Ls,t
μ (v)

]
for (λ, v,x) ∈ R×D[s, t] ×R

2, where

Cs,t
μ (λ, v,x) := �μ

(
λ, t,x +

∫ t

s
αμ(w)T (w)v(w)dw +

∫ t

s
T (w)1/2 dB(w)

)
,

Ls,t
μ (v) := 1

2

∫ t

s
αμ(w)

〈
T (w)v(w), v(w)

〉
dw.

The following is an analogue of Theorem 1 for �μ.

THEOREM 5. For any μ ∈ M,

�μ(λ, s,x) = max
{
F s,t

μ (λ, v,x)|v ∈D[s, t]}.(24)

The maximum of (24) is attained by vμ(r) = ��μ(λ, r,X(r)), where the two-
dimensional stochastic process (X(r))s≤r≤t satisfies

X(r) = x +
∫ r

s
αμ(w)T (w)��μ

(
λ,w,X(w)

)
dw +

∫ r

s
T (w)1/2 dB(w).(25)
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Using the notation introduced above, we can now formulate the GT bound in
terms of �μ.

THEOREM 6 (Guerra–Talagrand). Suppose that T is positive semidefinite for
all s. Then

FN(q) ≤ 2 log 2 +E�μ(λ,0, h1, h2) − λq
(26)

− 1

2

∫ 1

0
αμ(s)

(∑
=′

ρ,′(s)ζ,′(s) + ι
∑
 	=′

ρ,′(s)ζ,′(s)
)

ds.

Typically, to use this bound, one needs to first find suitable parameters λ and
ρ,′ depending on q such that the right-hand side is less than or equal to 2P(μP )

for any q ∈ [−1,1]. In Section 5, we shall see that this can be achieved in the case
of ξ1,1 = ξ2,2 and h1 = h2, but the general situation remains mysterious.

2.3. Some properties of the overlap. Recall the Hamiltonian HN and the
Gibbs measure GN from (1) and (4). Let μP be the Parisi measure associated
to HN and set η = min suppμP . It is known (see [7]) that

η = 0 if h = 0 and η > 0 if h 	= 0.(27)

Recall that as we discussed in the Introduction, the overlap R1,2 between two inde-
pendently sampled spin configurations from GN is symmetric with respect to the
origin if the mixed p-spin is even and the external field is absent. The positivity
principle of the overlap says that this symmetry will be broken in such a way that
the overlap is essentially bounded from below by η if the external field is present.

THEOREM 7 (Positivity of the overlap). Assume that ξ is convex on [−1,1]
and is not identically equal to zero. If h 	= 0, then under either of the following two
assumptions:

(i) ξ is even,
(ii) ξ is not even and the function below is nondecreasing on (0,1],

ξ ′′(s)
ξ ′′(s) + ξ ′′(−s)

,(28)

we have that for any ε > 0, there exists a constant K0 > 0 such that

(29) EGN × GN

((
σ 1,σ 2) : R1,2 ≤ η − ε

) ≤ K0 exp
(
− N

K0

)
, ∀N ≥ 1.

The inequality (29) means that if the external field is present, then the over-
lap essentially charges weight only in the interval [η,1] ⊆ (0,1]. Positivity of
the overlap under the condition (i) was initially established by Talagrand [20],
Section 14.10. Our main contribution here is the case (ii), where we allow odd
p-spin interactions in the Hamiltonian. Below we describe a concrete example of
the case (ii).



VARIATIONAL REPRESENTATIONS FOR RSB BOUNDS 3941

EXAMPLE 1. Consider ξ(s) = β2(γ 2
2ps2p + γ 2

2p+1s
2p+1) on [−1,1] with γ2p

and γ2p+1 satisfying

c := (2p + 1)γ 2
2p+1

(2p − 1)γ 2
2p

< 1.

It is easy to verify that this condition ensures the convexity of ξ on [−1,1]. Since

ξ ′′(s)
ξ ′′(s) + ξ ′′(−s)

= 1 + cs

2

is nondecreasing on (0,1], condition (ii) in Theorem 7 is satisfied, from which we
obtain (29) for any β > 0.

Our next result shows that in the absence of the external field h = 0, the behavior
of the overlap is also drastically influenced by the odd p-spin interactions in the
Hamiltonian, where the overlap will stay nonnegative.

THEOREM 8 (Nonnegativity of the overlap). Assume that ξ is convex on
[−1,1] and is not identically equal to zero. If h = 0 and the assumption (ii) in
Theorem 7 hold, then for any ε > 0, there exists a constant K0 > 0 such that

EGN × GN

((
σ 1,σ 2) : R1,2 ≤ −ε

) ≤ K0 exp
(
− N

K0

)
, ∀N ≥ 1.(30)

2.4. Chaos in disorder. Recall the Hamiltonians H 1
N and H 2

N from (17). As-
sume that the Gaussian parts of the Hamiltonians, X1

N and X2
N , have the covariance

structure:

ξ1,1 = ξ2,2 = ξ, ξ1,2 = ξ2,1 = ξ0(31)

for some series ξ0 defined in a way similar to ξ and that the external fields satisfy

h1 = h2 = h.(32)

In other words, the two systems have the same distribution and they are coupled
through the function ξ0. Denote by G1

N and G2
N the Gibbs measures associated to

these Hamiltonians in the same fashion as (4). Note that the two systems share the
same Parisi measure μP and η := min suppμP have the property (27). Consider
the overlap R1,2 between the independently sampled σ 1 and σ 2 from G1

N and G2
N ,

respectively. We say that there is chaos in disorder between H 1
N and H 2

N if the
overlap is concentrated around a constant value. Our main result shows that this
behavior holds as long as the two systems are decoupled, ξ0 	= ξ , for ξ and ξ0
satisfying some mild assumptions.
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THEOREM 9 (Disorder chaos). Assume that (31) and (32) hold. If ξ and ξ0
are convex on [−1,1] and are not identically equal to zero such that

ξ ′′(s)
ξ ′′(s) + ξ ′′

0 (−s)
and

ξ ′′(s)
ξ ′′(s) + ξ ′′

0 (s)
(33)

are both nondecreasing on (0,1] and

ξ ′′
0 (s) < ξ ′′(|s|)(34)

for s ∈ [−1,1] \ {0}, then there is a constant q∗ such that for any ε > 0,

EG1
N × G2

N

((
σ 1,σ 2) : ∣∣R1,2 − q∗∣∣ > ε

) ≤ K0 exp
(
− N

K0

)
(35)

for all N ≥ 1, where K0 is a constant independent of N . Here, q∗ = 0 if h = 0 and
q∗ ∈ (0, η) if h 	= 0.

Form this theorem, the overlap is basically concentrated around a constant value
q∗ if the two systems are decoupled in an appropriate way (33) and (34). We em-
phasize that this behavior is completely different from the situation when ξ = ξ0, in
which case the two systems are indeed identical, H 1

N = H 2
N = HN , and the over-

lap typically has nontrivial limiting distribution in the low temperature regime.
See, for instance, Examples 1 and 2 in [14]. The following two choices of ξ and
ξ0 summarize the previously known results and give new examples of chaos in
disorder.

EXAMPLE 2 (mixed even p-spin models). Assume that the two systems are
mixed even p-spin models and they are correlated through ξ0 = tξ for some t ∈
(0,1). This choice of (ξ, ξ0) corresponds to (8) and was originally considered in
Chatterjee [5], where he provided moments estimates to prove that the overlap
is concentrated around 0 when there is no external field h = 0. Later Chen [6]
established (35) in the presence of external field h 	= 0. One can easily check that
ξ and ξ0 are convex functions and (33) and (34) are satisfied. Thus, Theorem 9
proves disorder chaos irrespective of the presence or absence of the external field.

The main merit of Theorem 9 is that it also covers the mixed p-spin models
containing odd p-spin interactions for properly chosen sequences (γp)p≥2.

EXAMPLE 3. Recall ξ and c from Example 1. Let ξ1,1 = ξ2,2 = ξ . For t ∈
[0,1), set ξ0(s) := β2(γ 2

2ps2p + tγ 2
2p+1s

2p+1) for s ∈ [−1,1]. Since c < 1 and
t ∈ [0,1), one can check that ξ0 is convex on [−1,1]. In addition, since

ξ ′′(s)
ξ ′′(s) + ξ ′′

0 (s)
= 1 + cs

2(1 + (1+t
2 )cs)

,

ξ ′′(s)
ξ ′′(s) + ξ ′′

0 (−s)
= 1 + cs

2(1 + (1−t
2 )cs)

,
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and t ∈ [0,1), a direct differentiation with respect to s implies that they are both
nondecreasing on (0,1]. On the other hand,

ξ ′′
0 (s) = 2pβ2s2p−2((2p − 1)γ 2

2p + t (2p + 1)γ 2
2p+1s

)
< 2pβ2|s|2p−2((2p − 1)γ 2

2p + (2p + 1)γ 2
2p+1|s|

)
= ξ ′′(|s|)

for all s ∈ [−1,1]\{0}. Therefore, the conclusion of Theorem 9 holds for all β > 0.

3. Directional derivative of the Parisi functional. In this section, we estab-
lish the main results stated in Section 2.1. We will use the variational representation
formula (10) for �μ(0, x) with (s, t) = (0,1) throughout this section. Recall the
associated maximizer uμ from (11). We start by computing the directional deriva-
tive of the Parisi functional, which relies on two technical lemmas. The first is the
combination of [1], Proposition 2, and [2], Lemma 2.

LEMMA 1. For any μ ∈ M and s ∈ [0,1], ∂x�μ(s, ·) is odd, strictly increas-
ing and uniformly bounded by 1. In addition, the process uμ satisfies

uμ(b) − uμ(a) =
∫ b

a
ζ(w)1/2∂xx�μ

(
w,X(w)

)
dB(w)

for all 0 ≤ a ≤ b ≤ 1.

The second lemma allows us to take derivatives for maximum functions under
mild assumptions.

LEMMA 2. Let K be a metric space and I be an interval with right open edge.
Let f be a real-valued function on K ×I and g(y) = supa∈K f (a, y). Suppose that
there exists a K-valued continuous function a(y) on I such that g(y) = f (a(y), y)

and ∂yf is continuous on K × I , then g is right-differentiable with derivative
∂yf (a(y), y) for all y ∈ I .

PROOF. Let y ∈ I . Consider any h > 0 that satisfies y + h ∈ I . Observe that

g(y + h) − g(y)

h
= f (a(y + h), y + h) − f (a(y), y + h)

h

+ f (a(y), y + h) − f (a(y), y)

h

≥ f (a(y), y + h) − f (a(y), y)

h
.
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Therefore, lim infh↓0 h−1(g(y +h)−g(y)) ≥ ∂yf (a(y), y). On the other hand, we
also have

g(y + h) − g(y)

h
= f (a(y + h), y + h) − f (a(y + h), y)

h

+ f (a(y + h), y) − f (a(y), y)

h

≤ f (a(y + h), y + h) − f (a(y + h), y)

h

= ∂yf
(
a(y + h), y(h)

)
for some y(h) ∈ I with y(h) → y as h ↓ 0, where the last equation used
the mean value theorem. Finally, using the continuity of ∂yf , we obtain
lim suph↓0 h−1(g(y + h) − g(y)) ≤ ∂yf (a(y), y). This completes our proof. �

PROOF OF THEOREM 2. Define

f (u, θ) = log 2 + F 0,1
μθ

(u,h) − 1

2

∫ 1

0
αμθ (s)sζ(s) ds

for (u, θ) ∈ D[0,1] × [0,1]. Recall the definition of F 0,1
μθ

,

f (u, θ) = log 2 +E

[
log cosh

(
h +

∫ 1

0
αμθ (s)ζ(s)u(s) ds +

∫ 1

0
ζ(s)1/2 dB(s)

)

− 1

2

∫ 1

0
αμθ (s)ζ(s)

(
u(s)2 + s

)
ds

]
.

Its partial derivative with respect to θ is clearly continuous on D[0,1] × [0,1] and
a direct computation gives

∂θf (uμθ , θ) = E

[
uμθ (1)

∫ 1

0
ζ(s)

(
αμ(s) − αμ0(s)

)
uμθ (s) ds

− 1

2

∫ 1

0
ζ(s)

(
αμ(s) − αμ0(s)

)(
uμθ (s)

2 + s
)
ds

]
.

Since {uμθ (r)}0≤r≤1 is a martingale from Lemma 1, the first term can be computed
as ∫ 1

0
ζ(s)

(
αμ(s) − αμ0(s)

)
Euμθ (s)

2 ds

and thus,

∂θf (uμθ , θ) = 1

2

∫ 1

0
ζ(s)

(
αμ(s) − αμ0(s)

)(
Euμθ (s)

2 − s
)
ds.

Applying Lemma 2 gives (12). From (12), if μ0 is the Parisi measure, then (ii)
clearly holds. Assuming (ii), we note that for any ε > 0, there exists some δ > 0
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such that P(μθ) − P(μ0) ≥ −εθ whenever 0 < θ < δ. This and the convexity of
P imply

P(μθ) ≤ (1 − θ)P(μ0) + θP(μ),

so

θ
(
P(μ) −P(μ0)

) = θP(μ) + (1 − θ)P(μ0) −P(μ0) ≥ −εθ.

Therefore, P(μ) ≥ P(μ0) − ε. Since this holds for all ε > 0, we have that
P(μ) ≥ P(μ0). In other words, μ0 is the minimizer of the Parisi functional and the
uniqueness of the Parisi measure [2] implies that μ0 = μP . So (ii) implies (i). Fi-
nally, we complete our proof by proving that (iii) yields (ii). Let μ ∈Mk

d for some
k ≥ 0. Write μ = ∑k

p=0 apδqp with ap ≥ 0 and
∑k

p=0 ap = 1. Define μp = δqp

and μ
p
θ = (1 − θ)μ0 + θμp . Now applying (iii) to μp , we obtain

d

dθ
P
(
μ

p
θ

)∣∣∣∣
θ=0

= 1

2

∫ 1

0
ζ(s)

(
αμp(s) − αμ0(s)

)(
Euμ0(s)

2 − s
)
ds ≥ 0

and thus, using
∑k

p=0 ap = 1 and ap ≥ 0,

d

dθ
P(μθ)

∣∣∣∣
θ=0

= 1

2

∫ 1

0
ζ(s)

(
αμ(s) − αμ0(s)

)(
Euμ0(s)

2 − s
)
ds

=
k∑

p=0

ap · 1

2

∫ 1

0
ζ(s)

(
αμp(s) − αμ0(s)

)(
Euμ0(s)

2 − s
)
ds

=
k∑

p=0

ap

d

dθ
P
(
μ

p
θ

)∣∣∣∣
θ=0

≥ 0.

Here, the second equation used the observation that αμ = ∑k
p=0 apαμp . Since this

inequality holds for arbitrary probability measures in Md , an approximation argu-
ment using the definition of the right derivative of P implies that d

dθ
P(μθ)|θ=0 ≥ 0

for all μ ∈ M and we obtain (ii). �

PROOF OF PROPOSITION 1. First, we claim that (13) and (14) hold for q ∈
S ∩ (0,1). Assume q ∈ S ∩ (0,1) is isolated. Define μ1,μ2 ∈ M such that

αμ1(w) =
{
αμP

(w), if w ∈ [0, q − ε) ∪ [q,1],
αμP

(q), if w ∈ [q − ε, q),

αμ2(w) =
{
αμP

(w), if w ∈ [0, q) ∪ [q + ε,1],
αμP

(q−), if w ∈ [q, q + ε).
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From Theorem 2, we have

d

dθ
P
(
μ1

θ

)∣∣∣∣
θ=0

= 1

2

∫ q

q−ε
ζ(r)

(
αμP

(q) − αμP
(w)

)(
EuμP

(w)2 − w
)
dw ≥ 0,

d

dθ
P
(
μ2

θ

)∣∣∣∣
θ=0

= 1

2

∫ q+ε

q
ζ(r)

(
αμP

(q−) − αμP
(w)

)(
EuμP

(w)2 − w
)
dw(36)

≥ 0.

Note that αμP
(q) > αμP

(w) for w ∈ [q − ε, q) and αμP
(q−) < αμP

(w) for w ∈
[q, q+ε]. Since EuμP

(r)2 is a continuous function, the inequalities (36) imply that
there exists some ε0 > 0 such that EuμP

(w)2 ≥ w on [q − ε0, q] and EuμP
(w)2 ≤

w on [q, q + ε0], which clearly gives (13). Now suppose that q is an accumulation
point of S ∩ (0,1). Then there exists (qn)n≥1 ⊂ S ∩ (0,1) such that either qn ↑ q

or qn ↓ q . Assuming the first case, we consider μ3,μ4 ∈ M defined through

αμ3(w) =
{
αμP

(w), if w ∈ [0, q − ε) ∪ [q,1],
αμP

(q), if w ∈ [q − ε, q),

αμ4(w) =
{
αμP

(w), if w ∈ [0, q − ε) ∪ [q,1],
αμP

(q − ε), if w ∈ [q − ε, q).

From Theorem 2, we have

d

dθ
P
(
μ3

θ

)∣∣∣∣
θ=0

= 1

2

∫ q

q−ε
ζ(w)

(
αμP

(q) − αμP
(w)

)(
EuμP

(w)2 − w
)
dw

(37)
≥ 0,

d

dλ
P
(
μ4

θ

)∣∣∣∣
λ=0

= 1

2

∫ q

q−ε
ζ(w)

(
αμP

(q − ε) − αμP
(w)

)(
EuμP

(w)2 − w
)
dw

(38)
≥ 0.

From the condition qn ↑ q , we see that αμP
(q) > αμP

(w) and αμP
(q − ε) <

αμP
(w) for w ∈ [q − ε, q). The inequality (37) then gives EuμP

(w)2 ≥ w for all
w sufficiently close to q from the left-hand side. On the other hand, since qn ↑ q ,
the inequality (38) implies that EuμP

(w)2 ≤ w for all w sufficiently close to q ,
again from the left-hand side. Therefore, EuμP

(w)2 = w on [q − ε′
0, q] for some

ε′
0 > 0. Similarly, the case qn ↓ q also implies EuμP

(w)2 = w on [q, q + ε′′
0 ] for

some ε′′
0 > 0 by using

αμ5(w) =
{
αμP

(w), if w ∈ [0, q) ∪ [q + ε,1],
αμP

(q), if w ∈ [q, q + ε),

αμ6(w) =
{
αμP

(w), if w ∈ [0, q) ∪ [q + ε,1],
αμP

(q + ε), if w ∈ [q, q + ε).
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These yield (13). To show (14), we note that from Lemma 1,

EuμP
(b)2 −EuμP

(a)2 =
∫ b

a
ζ(r)E∂xx�μP

(
w,X(w)

)2
dw.(39)

From the discussion,above, we see that either EuμP
(w)2 ≤ w on [q, q ′] for some

q ′ > q or EuμP
(w)2 ≥ w on [q ′′, q] for some q ′′ < q . If we are in the first situation,

then for all s ∈ [q, q ′], (39) implies∫ s

q
ζ(w)E∂xx�μP

(
w,X(w)

)2
dw = EuμP

(s)2 −EuμP
(q)2 ≤ s − q =

∫ s

q
1dw,

and hence (14). In the second situation, the same argument also yields∫ q

s
ζ(w)E∂xx�μP

(
w,X(w)

)2
dw = EuμP

(q)2 −EuμP
(s)2 ≤ q − s =

∫ q

s
1dw

for all s ∈ [q ′′, q], which concludes (14) and completes the proof of our claim.
Finally, note that Lemma 1 yields EuμP

(r)2 < 1 for all 0 ≤ r ≤ 1. If 1 ∈ S,
one may take μ = δ0 and μ0 = μP in (12) to obtain a contradiction since
d
dθ
P(μθ)|θ=0 < 0. Hence, 1 /∈ S. If now 0 ∈ S, then no matter if it is an isolated

point or an accumulation point of S, one can argue exactly in the same way as
above to obtain EuμP

(w)2 ≤ w for all w ∈ [0, ε0] for some ε0 > 0. Consequently,
EuμP

(0)2 = 0. Since∫ s

0
ζ(w)E∂xx�μP

(
w,X(w)

)2
dw = EuμP

(s)2 −EuμP
(0)2 ≤ s − 0 =

∫ s

0
1dw

for all s ∈ [0, ε0], we obtain (14) with q = 0. This completes our proof. �

Proof of Proposition 2. For any q ∈ [0,1], define μ
q
θ = (1 − θ)μ0 + θδq

for 0 ≤ θ ≤ 1. Since μ
q
θ ∈ Mk+1

d , it follows from (16) that d
dθ
P(μ

q
θ )|θ=0 ≥ 0.

Therefore, μ0 is the Parisi measure by applying Theorem 2(ii). �

4. The optimal stochastic control problem for �μ. In this section, we will
prove Theorems 4, 5 and 6 mostly following the ideas from [2]. Our argument
relies on the following calculus lemma, which provides an explicit expression for
the function �μ when μ ∈ Md . As this lemma is not directly related to the core
of our arguments, we defer its proof to the Appendix.

LEMMA 3. Let 0 ≤ a < b ≤ 1 and 0 ≤ m ≤ 1. Recall ρ,′ from (21). Sup-
pose that they are differentiable on [a, b). Let A be a smooth function on R

2 with
lim sup|x|→∞ |A(x)|/|x| < ∞. For (s,x) ∈ [a, b] ×R

2, set

L(s,x) = 1

m
logE expmA

(
x1 + y1(s), x2 + y2(s)

)
,
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where (y1(s), y2(s)) is a two-dimensional Gaussian random vector with mean zero
and covariance:

Ey1(s)y1(s) = ξ ′
1,1

(
ρ1,1(b)

) − ξ ′
1,1

(
ρ1,1(s)

)
,

Ey1(s)y2(s) = ξ ′
1,2

(
ιρ1,2(b)

) − ξ ′
1,2

(
ιρ1,2(s)

)
,

Ey2(s)y1(s) = ξ ′
2,1

(
ιρ2,1(b)

) − ξ ′
2,1

(
ιρ2,1(s)

)
,

Ey2(s)y2(s) = ξ ′
2,2

(
ρ2,2(b)

) − ξ ′
2,2

(
ρ1,1(s)

)
.

Then L satisfies

∂sL = −1

2

(〈
T ,�2L

〉 + m〈T�L,�L〉)(40)

for (s,x) ∈ [a, b) ×R
2 with terminal condition L(b,x) = A(x). Moreover, if ∂xi

A

is uniformly bounded by 1, so is ∂xi
L.

PROOF OF THEOREM 5 FOR μ ∈ Md . Suppose that μ is atomic with jumps
at {qp}kp=1, where qp < qp+1 for 1 ≤ p ≤ k − 1. Let q0 = 0, qk+1 = 1 and
mp = αμ(qp) for 0 ≤ p ≤ k. Without loss of generality, we may assume that the
nondifferentiable points of ρ,′ are located at {qp}kp=1 and in addition, qj = s

and qj ′ = t for some 0 ≤ j < j ′ ≤ k + 1. Note that since (y1
p(s), y2

p(s)) equals∫ qp+1
s T (w)1/2 dB(w) in distribution for each s ∈ [qp, qp+1] and 0 ≤ p ≤ k, we

can write by Lemma 3,

�μ(λ, qp, x) = 1

mp

logE expmp�μ

(
λ,qp+1, x +

∫ qp+1

qp

T (w)1/2 dB(w)

)
,

(41)
∀j ≤ p < j ′.

We claim that

�μ(λ, s,x) ≥ max
v∈D[s,t]F

s,t
μ (λ, v,x).(42)

For v ∈D[s, t], set

Zp = exp
(
−1

2

∫ qp+1

qp

m2
p

〈
T (w)v(w), v(w)

〉
dw

−
∫ qp+1

qq

mp

〈
T (w)1/2v(w), dB(w)

〉)
.

Define conditional probability measure P̃(A) = E[1AZp|Gqp ] and set B̃(r) =∫ r
qp

mpT (w)1/2v(w)dw + B(r) for r ∈ [qp, qp+1]. We use Ẽ to denote the ex-

pectation with respect to P̃. Since the Girsanov theorem [12], Theorem 5.1, says
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that B̃ is a standard Brownian motion starting from B(qp) under P̃, we can write

E expmp�μ

(
λ,qp+1,x +

∫ qp+1

qp

T (w)1/2 dB(w)

)

= Ẽ expmp�μ

(
λ,qp+1,x +

∫ qp+1

qp

T (w)1/2 dB̃(w)

)

= E

[
expmp�μ

(
λ,qp+1,x +

∫ qp+1

qp

mpT (w)v(w)dw

+
∫ qp+1

qp

T (w)1/2 dB(w)

)

× exp
(
−1

2

∫ qp+1

qp

m2
p

〈
T (w)v(w), v(w)

〉
dw

−
∫ qp+1

qq

mpT (w)1/2v(w) · dB(w)

)∣∣∣Gqp

]
.

From (41) and Jensen’s inequality m−1 logE[expmA|Gqp ] ≥ E[A|Gqp ] for any
measurable A and m > 0, it follows

�μ(λ, qp,x) ≥ E

[
�μ

(
λ,qp+1,x +

∫ qp+1

qp

αμ(w)T (w)v(w)dw

+
∫ qp+1

qp

T (w)1/2 dB(w)

)

− 1

2

∫ qp+1

qp

αμ(w)
〈
T (w)v(w), v(w)

〉
dw

∣∣∣Gqp

]

for all j ≤ p < j ′. Using this and conditional expectation, a decreasing iteration
argument over p from j ′ − 1 to j gives

�μ(λ, s,x) = �μ(λ, qj ,x)

≥ E

[
�μ

(
λ,qj ′,x +

j ′−1∑
p=j

∫ qp+1

qp

αμ(w)T (w)v(w)dw

+
j ′−1∑
p=j

∫ qp+1

qp

ζ(w)1/2 dB(w)

)

− 1

2

j ′−1∑
p=j

∫ qp+1

qp

αμ(w)
〈
T (w)v(w), v(w)

〉
dw

]

= Fqj ,qj ′
μ (λ, v,x)

= F s,t
μ (λ, v,x).
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Since this is true for arbitrary v ∈D[s, t], this gives (42).
Note that since |∂x1�μ(λ,1, ·)| and |∂x2�μ(λ,1, ·)| are uniformly bounded

above by 1, Lemma 3 combined with an iteration argument using (41) yields
that |∂x1�μ(λ, r, ·)| and |∂x2�μ(λ, r, ·)| are also uniformly bounded by 1 for any
s ≤ r ≤ t , which clearly imply that vμ ∈ D[s, t]. Therefore, to complete the proof,
it remains to show that F s,t

μ (λ, vμ,x) = �μ(s,x). To this end, we define

Y(r) = �μ

(
λ, r,X(r)

) −
∫ r

s
αμ(w)

〈
T (w)vμ(w), vμ(w)

〉
dw

−
∫ r

s
T (w)1/2 dB(w).

Observe that

EY(s) = E�μ

(
λ, s,X(s)

) = �μ(λ, s,x),

EY(t) = F s,t
μ (λ, vμ,x).

The use of Itô’s formula and (22) implies

d�μ = ∂s�μ dw + 〈��μ,dX〉 + 1

2

2∑
i,j=1

∂xixj
�μ d〈Xi,Xj 〉

= − 1

2

(〈
T ,�2�μ

〉 + αμ〈T��μ,��μ〉)dw

+ αμζ 〈T��μ,��μ〉dw + T 1/2〈��μ,dB〉 + 1

2

〈
T ,�2�μ

〉
dw

= 1

2
αμ〈T��μ,��μ〉dw + T 1/2〈��μ,dB〉

and thus, dY = 0, which means that F s,t
μ (λ, vμ,x) = EY(t) = EY(s) =

�μ(λ, s,x). This completes our proof. �

PROOF OF THEOREM 4. Let μ,μ′ ∈ Md . Since

�μ(λ,1,x) = �μ′(λ,1,x) = log(coshx1 coshx2 coshλ + sinhx1 sinhx2 sinhλ),

the mean value theorem implies∣∣�μ(λ,1,x) − �μ′
(
λ,1,x′)∣∣ ≤ ∣∣x − x′∣∣

for λ ∈ R and x,x′ ∈R
2. Therefore, for any v ∈ D[s,1],

∣∣Cs,1
μ (λ, v,x) − Cs,1

μ′ (λ, v,x)
∣∣ ≤ ∫ 1

0

∣∣αμ(w) − αμ′(w)
∣∣∣∣T (w)v(w)

∣∣dw

≤ √
2K d

(
μ,μ′),
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where the last inequality used ‖T (w)‖ ≤ K and |v(w)| ≤ √
2. Also, we know that∣∣Ls,1

μ (v) −Ls,1
μ′ (v)

∣∣ ≤ K d
(
μ,μ′).

Combining these two inequalities together leads to∣∣F s,1
μ (λ, v,x) −F s,1

μ′ (λ, v,x)
∣∣ ≤ 3K d

(
μ,μ′)

and applying (24) gives the announced inequality. �

PROOF OF THEOREM 5 FOR ARBITRARY μ. This part of the proof relies on
a standard approximation using a sequence of atomic {μn}n≥1 with weak limit μ.
Just like the facts that ∂xi�μ is uniformly bounded by 1 and limn→∞ ∂xi�μn =
∂xi�μ uniformly for i = 1,2, one may imitate the same approach as the Appendix
in [1] to show that |∂xi

�μ| ≤ 1, ‖�2�μ‖ ≤ C and limn→∞�i�μn = �i�μ uni-
formly for i = 1,2. These give the existence of the SDE (25) and will lead to (i)
and (ii) by using the results for atomic measures we established above and the
same argument as in the proof of [2], Theorem 3. As the details are quite routine
and follow exactly in the same lines, we will not reproduce them here. �

PROOF OF THEOREM 6. By the virtue of the Lipschitz property of μ → �μ

with respect to the metric d defined by (5), it suffices to justify (26) for atomic μ

with jumps at {qp}kp=1, where qp < qp+1 for all 1 ≤ p ≤ k − 1. Let q0 = 0 and
qk+1 = 1. Without loss of generality, we may also assume that the nondifferen-
tiable points of ρ,′ are all at {qp}kp=1. Set

ρ1,1
p = ρ1,1(qp), ρ2,2

p = ρ2,2(qp), ρ1,2
p = ιρ1,2(qp),

ρ2,1
p = ιρ2,1(qp)

for 0 ≤ p ≤ k + 1. Note that (18) follows from (20). Since

ξ ′
,′

(
ρ

,′
p+1

) − ξ ′
,′

(
ρ,′

p

) =
∫ qp+1

qp

ζ,′(s) ds,

the assumption T (s) ≥ 0 implies that〈⎡⎣ξ ′
1,1

(
ρ

1,1
p+1

) − ξ ′
1,1

(
ρ1,1

p

)
ξ ′

1,2
(
ρ

1,2
p+1

) − ξ ′
1,2

(
ρ1,2

p

)
ξ ′

2,2
(
ρ

2,2
p+1

) − ξ ′
2,2

(
ρ2,2

p

)
ξ ′

2,1
(
ρ

2,1
p+1

) − ξ ′
2,1

(
ρ2,1

p

)
⎤
⎦x,x

〉

=
∫ qp+1

qp

〈
T (s)x,x

〉
ds ≥ 0

for all x ∈ R
2. Thus, the matrix on the left-hand side is positive semidefinite, which

ensures that we can construct Gaussian random vectors (y
p, y′

p ) with mean zero
and covariance:

Ey
py′

p = ξ ′
,′

(
ρ

,′
p+1

) − ξ ′
,′

(
ρ,′

p

)
.
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We now apply Theorem 3 with the choice mp = μ([0, qp]) for 0 ≤ p ≤ k to get
(19) as follows. Recall the definition of Yp for 0 ≤ p ≤ k + 1 from Theorem 3.
Define

(
Z1

p,Z2
p

) =
(
h1 +

p−1∑
j=0

y1
j , h2 +

p−1∑
j=0

y2
j

)
, ∀1 ≤ p ≤ k + 1,

(
Z1

0,Z2
0
) = (h1, h2).

Observe that Yk+1 = �μ(λ,1,Z1
k+1,Z

2
k+1). If Yp+1 = �μ(λ, qp+1,Z

1
p+1,Z

2
p+1)

for some 0 ≤ p ≤ k, then Lemma 3 yields

Yp = 1

mp

logEp expmpYp+1

= 1

mp

logEp expmp�μ

(
λ,qp+1,Z

1
p + y1

p,Z2
p + y2

p

)
= �μ

(
λ,qp,Z1

p,Z2
p

)
and so Y0 = �μ(λ,0, h1, h2). On the other hand, since θ ′

,′(w) = wξ ′′
,′(w), we

have that for  = ′,

θ,′
(
ρ

,′
p+1

) − θ,′
(
ρ,′

p

) = θ,′
(
ρ,′(qp+1)

) − θ,′
(
ρ,′(qp)

)
=

∫ qp+1

qp

ρ′
,′(s)θ ′

,′
(
ρ,′(s)

)
ds

=
∫ qp+1

qp

ρ,′(s)ζ,′(s) ds

and for  	= ,

θ,′
(
ρ

,′
p+1

) − θ,′
(
ρ,′

p

) = θ,′
(
ιρ,′(qp+1)

) − θ,′
(
ιρ,′(qp)

)
=

∫ qp+1

qp

ιρ′
,′(s)θ ′

,′
(
ιρ,′(s)

)
ds

=
∫ qp+1

qp

ιρ,′(s)ζ,′(s) ds.

Consequently,

∑
1≤,′≤2

k∑
p=0

mp

(
θ,′

(
ρ

,′
p+1

) − θ,′
(
ρ,′

p

))

=
∫ 1

0
αμ(s)

(∑
=′

ρ,′(s)ζ,′(s) + ι
∑
 	=′

ρ,′(s)ζ,′(s)
)

ds.

Putting all these together into (19), we obtain (26). �
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5. The control of the GT bound. This section is devoted to proving Theo-
rems 7 and 9 in Sections 2.3 and 2.4. We assume throughout this section that X1

N

and X2
N are jointly Gaussian processes with mean zero and covariance,

EX1
N

(
σ 1)X1

N

(
σ 2) = Nξ(R1,2),

EX2
N

(
σ 1)X2

N

(
σ 2) = Nξ(R1,2),

EX1
N

(
σ 1)X2

N

(
σ 2) = Nξ0(R1,2),

where ξ and ξ0 are of the form (3). Furthermore, we assume that they are convex
on [−1,1], are not identically equal to zero and

ξ ′′
0 (s) ≤ ξ ′′(|s|), ∀s ∈ [−1,1].(43)

Let h ∈ R. Consider two mixed p-spin models,

H 1
N

(
σ 1) = X1

N

(
σ 1) + h

N∑
i=1

σ 1
i and H 2

N

(
σ 2) = X2

N

(
σ 2) + h

N∑
i=1

σ 2
i .

Clearly, they share the same Parisi measure μP . Denote by η the minimum of
the support of μP . Recall the formulation of the two-dimensional GT bound from
(26). For fixed q ∈ SN , set

ρ1,1(s) = ρ2,2(s) = s,

ρ1,2(s) = ρ2,1(s) = min
(|q|, s)

for s ∈ [0,1]. From (21), it follows that

T (s) =
[

ξ ′′(s) ιξ ′′
0 (ιs)

ιξ ′′
0 (ιs) ξ ′′(s)

]
, ∀s ∈ [

0, |q|) and

(44)

T (s) =
[
ξ ′′(s) 0

0 ξ ′′(s)

]
, ∀s ∈ [|q|,1

]
.

Consequently, from the condition (43), one sees that T ≥ 0 on [0, |q|); also it is
clear that T ≥ 0 on [|q|,1]. These allow us to apply Theorem 6 with arbitrary
μ ∈ M to get

FN(q) ≤ 2 log 2 + �μ(λ,0, h,h) − λq
(45)

−
(∫ 1

0
αμ(s)sξ ′′(s) ds +

∫ |q|
0

αμ(s)sξ ′′
0 (ιs) ds

)
.

Note that the right-hand side of this inequality is indeed well defined for all
q ∈ [−1,1]. We denote this extension by �μ(λ, q) and set �(q) =
infλ∈R,μ∈M �μ(λ, q). In the following two subsections, we will control �(q) us-
ing the GT bound in two disjoint regions: [−η,η] and [−1,−η) ∪ (η,1].
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5.1. Behavior of � in [−η,η]. The main result in this subsection is Proposi-
tion 3 below. This part of the argument appeared before in [7] and [20], Chapter 14.
For completeness, we will give the detailed proof in the terminology of the varia-
tional representation (10) and (24). Recall that η satisfies (27).

PROPOSITION 3. If h 	= 0, then there exists some q∗ ∈ (0, η] such that

�(q) < 2P(μP )

for any q ∈ [−η,η] \ {q∗}. Here, q∗ = η if ξ = ξ0 and q∗ < η if ξ 	= ξ0.

The proof of this proposition relies on the following technical lemma.

LEMMA 4. Let s ∈ [|q|,1] and x = (x1, x2) ∈ R
2. If μ,μ′ ∈ M satisfy μ = μ′

on [|q|,1], then

�μ(0, s,x) = �μ′(s, x1) + �μ′(s, x2),(46)

∂λ�μ(0, s,x) = ∂x�μ′(s, x1)∂x�μ′(s, x2).(47)

PROOF. For any |q| ≤ s ≤ 1 and v = (v1, v2) ∈ D[s,1], we write by (44),

x +
∫ 1

s
αμ(r)T (r)v(r) dr +

∫ 1

s
T (r)1/2 dB(r)

=
(
x1 +

∫ 1

s
αμ′(r)ξ ′′(r)v1(r) dr +

∫ 1

s
ξ ′′(r)1/2 dB1(r),(48)

x2 +
∫ 1

s
αμ′(r)ξ ′′(r)v2(r) dr +

∫ 1

s
ξ ′′(r)1/2 dB2(r)

)
and ∫ 1

s
αμ(r)

〈
T (r)v(r), v(r)

〉
dr

(49)

=
∫ 1

s
αμ′(r)ξ ′′(r)v1(r)

2 dr +
∫ 1

s
αμ′(r)ξ ′′(r)v2(r)

2 dr.

From the terminal condition of �μ at (23),

�μ(0,1,x) = log coshx1 + log coshx2 = �μ′(1, x1) + �μ′(1, x2),(50)

∂λ�μ(0,1,x) = tanhx1 · tanhx2 = ∂x�μ′(1, x1) · ∂x�μ′(1, x2).(51)

Using (10) and (24), the equations (48), (49) and (50) yield (46) since

�μ(0, s,x) = max
v=(v1,v2)∈D[s,1]F

s,1
μ (0, v,x)

= max
v1∈D[s,1]F

s,1
μ′ (v1, x1) + max

v2∈D[s,1]F
s,1
μ′ (v2, x2)

= �μ′(s, x1) + �μ′(s, x2).
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To show (47), let vμ(r) = ��μ(0, r,X(r)) be the maximizer for �μ(0, s,x), where
X(r) = (X1(r),X2(r)) follows (25). The key observation is that the use of (46)
leads to

Xi(r) = xi +
∫ r

s
αμ′(w)ξ ′′(w)∂x�μ′

(
w,Xi(w)

)
dw +

∫ r

s
ξ ′′(w)1/2 dBi (w)

for i = 1,2. Therefore, �μ′(s,Xi(s)) is the maximizer of (10) and ∂x�μ′(s, xi) =
E∂x�μ′(1,Xi(1)) from Lemma 2. Using these and Lemma 2 together with (48),
(49) and (51), we obtain (47) since

∂λ�μ(0, s,x) = ∂λF s,1
μ (0, vμ,x)

= E∂x�μ′
(
1,X1(1)

)
∂x�μ′

(
1,X2(1)

)
= E∂x�μ′

(
1,X1(1)

) ·E∂x�μ′
(
1,X2(1)

)
= ∂x�μ′(s, x1)∂x�μ′(s, x2). �

PROOF OF PROPOSITION 3. Assume h 	= 0. This proof has three major steps:
Step I. Define

f (q) = E∂x�μP

(
η,h + z1(q)

)
∂x�μP

(
η,h + z2(q)

)
for q ∈ [−η,η], where z1(q) and z2(q) are jointly Gaussian with mean zero and
covariance Ez1(q)2 = ξ ′(η) = Ez2(q)2 and Ez1(q)z2(q) = ξ ′

0(q). We claim that f

maps [−η,η] into itself and has a unique fixed point q∗ ∈ (0, η]. Moreover, q∗ = η

if ξ = ξ0 and q∗ < η if ξ 	= ξ0. To see these, recall from (13) and (14),

E∂x�μP

(
η,h + z1(η)

)2 = E∂x�μP

(
η,h + z2(η)

)2

(52)

= E∂x�μP

(
η,h +

∫ η

0
ζ(r)1/2 dB(r)

)2
= η

and

ξ ′′(η)E∂xx�μP

(
η,h + z1(η)

)2 = ξ ′′(η)E∂xx�μP

(
η,h + z2(η)

)2

= ξ ′′(η)E∂xx�μP

(
η,h +

∫ η

0
ζ(r)1/2 dB(r)

)2
(53)

≤ 1.

Using (52) and the Cauchy–Schwarz inequality, f evidently maps [−η,η] into
itself, which implies the existence of a fixed point, say q∗. To see its uniqueness,
we apply the Gaussian integration by parts to obtain

f ′(q) = ξ ′′
0 (q)E∂xx�μP

(
η,h + z1(q)

)
∂xx�μP

(
η,h + z2(q)

)
.

Since ξ ′′
0 (q) ≤ ξ ′′(|q|) < ξ ′′(η) for q ∈ (−η,η), applying the Cauchy–Schwarz

inequality and (53) to this formula leads to f ′ < 1 on (−η,η), so the fixed point
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q∗ is unique. Now, since ∂x�μP
is odd and strictly increasing (see Lemma 1) and

h 	= 0, one sees that

f (0) = (
E∂x�μP

(η,h + z)
)2

> 0,

where z is Gaussian with mean zero and variance ξ ′(η). So q∗ ∈ (0, η]. If ξ = ξ0,
(52) implies q∗ = η; if ξ 	= ξ0, then the Cauchy–Schwarz inequality and (52) leads
to q∗ < η. This ends the proof of our claim.

Step II. We check that

�μP
(0, q) = 2P(μP ),(54)

∂λ�μP
(0, q) = f (q) − q(55)

for |q| ≤ η. Consider the variational representation (24) for �μP
(λ,0, h,h) with

(s, t) = (0, η). Since αμP
= 0 on [0, η),

F0,η
μP

(λ, v,h,h) = E�μP

(
λ,η, (h,h) +

∫ η

0
T (r)1/2 dB(r)

)
, ∀v ∈ D[0, η].

Observe that from (44),
∫ η

0 T (r)1/2 dB(r) has the covariance structure∫ η

0
T (r) dr =

∫ |q|
0

dr

[
ξ ′′(r) ιξ ′′

0 (ιr)

ιξ ′′
0 (ιr) ξ ′′(r)

]
+

∫ η

|q|
dr

[
ξ ′′(r) 0

0 ξ ′′(r)

]

=
[
ξ ′(η) ξ ′

0(q)

ξ ′
0(q) ξ ′(η)

]
.

So we may write

�μP
(λ,0, h,h) = max

v∈D[0,η]F
0,η
μP

(λ, v,h,h) = E�μP

(
λ,η,h + z1(q), h + z2(q)

)
,

where (z1(q), z2(q)) is the Gaussian vector defined in Step I. Therefore, us-
ing (46),

�μP
(0,0, h,h) = E�μP

(
0, η, h + z1(q), h + z2(q)

)
= E�μP

(
η,h + z1(q)

) +E�ηP

(
η,h + z2(q)

)
= 2E�μP

(η,h + z)

= 2�μP
(0, h),

where z is a Gaussian random variable with mean zero and variance Ez2 = ξ ′(η)2,
and the last equality used the assumption that αμ = 0 on [0, |q|) and the variational
representation (10) for �μ(0, h) with (s, t) = (0, η). In addition, applying (47),

∂λ�μP
(0,0, h,h) = E∂λ�μP

(
0, η, h + z1(q), h + z2(q)

)
= E∂x�μP

(
η,h + z1(q)

)
∂x�μP

(
η,h + z2(q)

)
= f (q).
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Using again αμP
= 0 on [0, |q|), we then obtain

�μP
(0, q) = 2 log 2 + �μP

(0,0, h,h) −
∫ 1

0
αμP

(s)sξ ′′(s) ds = 2P(μP ),

∂λ�μP
(0, q) = ∂λ�μP

(0,0, h,h) − q = f (q) − q,

which complete the verification of (54) and (55).
Step III. From (55) and Step I, we know ∂λ�μP

(0, q) 	= 0 for any q ∈ [−η,η] \
{q∗}. Depending on the sign of this quantity, we may decrease or increase λ slightly
to obtain �μP

(λ, q) < �μP
(0, q). As a result, �(q) < 2P(μP ) by the definition

of �(q) and (54). This completes our proof. �

5.2. Behavior of � outside of [−η,η]. For notational convenience, we set
ζ(s) = ξ ′′(s) and ζ0(s) = ξ ′′

0 (ιs) for s ∈ [0,1]. Note that since ξ and ξ0 are convex
and are not identically equal to zero, the function ζ is positive on (0,1] and so is
ζ0 if ι = 1. In addition, ζ0 ≥ 0 on (0,1] and ζ0 = 0 for at most a finite number
of points if ι = −1. The following proposition takes care of the behavior of � on
[−1,−η) ∪ (η,1].

PROPOSITION 4. The following two statements hold:

(i) For −1 ≤ q < −η, if ξ = ξ0 is even and h 	= 0, then �(q) < 2P(μP ).
(ii) For |q| > η, if ζ0 < ζ and ζ/(ζ + ζ0) is nondecreasing on (0,1], then

�(q) < 2P(μP ).

The essential idea to prove this proposition is to construct relevant μ ∈ M de-
pending on q and μP such that∫ 1

0
αμ(s)sξ ′′(s) ds +

∫ |q|
0

αμ(s)sξ ′′
0 (ιs) ds =

∫ 1

0
αμP

(s)sξ ′′(s) ds(56)

and

�μ(0,0, h,h) < 2�μP
(0, h).(57)

Once these are established, it will follow by definition that �(q) ≤ �μ(0, q) <

2P(μP ). In order to get (56), one natural choice of μ is via (60) below. The major
obstacle here comes from the derivation of (57) for such a choice of μ. This will
be handled through the variational representation for �μ and �μP

. A key lemma
we will need along the line is the global uniqueness of the maximizer for �μP

.

LEMMA 5. Let 0 ≤ s < t ≤ 1. Suppose that u∗ is a maximizer of �μ(0, x) =
maxu∈D[0,t] F 0,t

μ (u, x). If αμ > 0 on (s, t), then u∗(r) = ∂x�μ(r,X(r)) for s ≤
r ≤ t , where

X(r) = x +
∫ r

0
αμ(w)ζ(w)∂x�μ

(
w,X(w)

)
dw +

∫ r

0
ζ(w)1/2 dB(w),

∀s ≤ r ≤ t.
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In other words, the maximizer is unique under the assumption αμ > 0 on (s, t).

PROOF. Let {ai}ni=0 be a regular partition of [s, t] with
∫ ai+1
ai

αμ(r)ζ(r) dr < 1
for 1 ≤ i < n. Define ui ∈ D[ai, t] by ui(w) = u∗(w) for ai ≤ w ≤ t and vi ∈
D[0, ai] by vi(w) = u∗(w) for 0 ≤ w ≤ ai . Set

yi = x +
∫ ai

0
αμ(w)ζ(w)vi(w)dw +

∫ ai

0
ζ(w)1/2 dB(w).

Using conditional expectation,

�μ(0, x) = E
(
E
[
C0,t

μ

(
u∗, x

) − L0,t
μ

(
u∗)|yi

])
= E

(
E
[
Cai,t

μ (ui, yi) − Lai,t
μ (ui)|yi

]) −EL0,ai
μ (vi)

≤ E�μ(ai, yi) −EL0,ai
μ (vi)

= F 0,ai
μ (vi, x)

≤ �μ(0, x),

which implies that F 0,ai
μ (vi, x)’s are the same for all 0 ≤ i ≤ n. Using this, we

obtain that

EC0,ai
μ (vi, x) −EL0,ai

μ (vi) = F 0,ai
μ (vi, x)

= F 0,ai+1
μ (vi+1, x)

= EC0,ai+1
μ (vi+1, x) −EL0,ai+1

μ (vi+1)

and thus

EC0,ai
μ (vi, x) = EC0,ai+1

μ (vi+1, x) −ELai,ai+1
μ

(
u′

i

)
= ECai,ai+1

μ

(
u′

i , yi

) −ELai,ai+1
μ

(
u′

i

)
= E

(
E
[
Cai,ai+1

μ

(
u′

i , yi

) −ELai,ai+1
μ

(
u′

i

)|yi

])
(58)

≤ E max
u′∈D[ai ,ai+1]

Fai,ai+1
μ

(
u′, yi

)
= E�μ(ai, yi),

where u′
i ∈ D[ai, ai+1] is the restriction of u∗ to [ai, ai+1]. Since

max
u′∈D[ai ,ai+1]

Fai,ai+1
μ

(
u′, y

) = �μ(ai, y), ∀y ∈ R,

and EC0,ai
μ (vi, x) = E�μ(ai, yi), these and (58) force that when conditioning on

yi , u′
i is the maximizer to the variational problem maxu′∈D[ai ,ai+1] F

ai,ai+1
μ (u′, yi).

Therefore, applying the local uniqueness of the maximizer for (s, t) = (ai, ai+1)
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in Theorem 1 leads to u′
i (r) = ∂x�μ(r,Xi(r)) on [ai, ai+1], where Xi =

(Xi(w))ai≤w≤ai+1 is the solution to

Xi(r) = yi +
∫ ai+1

ai

αμ(w)ζ(w)∂x�μ

(
w,Xi(w)

)
dw +

∫ ai+1

ai

ζ(w)1/2 dB(w).

Concatenating all these from i = 0 to n − 1 together gives the announced result.
�

The core ingredient of the matter is a quantitative error estimate between the
one- and two-dimensional Parisi PDEs for a specific choice of μ given in the
proposition below.

PROPOSITION 5. Assume that |q| > η and

ζ(s)

ζ(s) + ζ0(s)
(59)

is nondecreasing on (0,1]. Define μ ∈ M by

αμ(s) =
⎧⎪⎨
⎪⎩

αμP
(s)ζ(s)

ζ(s) + ζ0(s)
, if s ∈ [

0, |q|),
αμP

(s), if s ∈ [|q|,1
]
.

(60)

(i) We have that

�μ(0,0,x) ≤ �μP
(0, x1) + �μP

(0, x2)
(61)

− 1

2

∫ |q|
0

αμP
ζζ0(ζ − ζ0)

(ζ + ζ0)2 E(v1 − ιv2)
2 dw,

where vμ = (v1, v2) is the maximizer to the variational problem (5) for
�μ(0,0, x1, x2) using (s, t) = (0, |q|).

(ii) Define

(
u1(r), u2(r)

) = 1

ζ(r) + ζ0(r)
T (r)vμ(r),(62)

(
B1(r),B2(r)

) = 1

ζ(r)1/2 T (r)1/2B(r)(63)

for 0 ≤ r ≤ |q|. If

�μ(0,0,x) = �μP
(0, x1) + �μP

(0, x2),

then u1 and u2 are the maximizers for the variational problem (10) of �μP
(0, x1)

and �μP
(0, x2) using (s, t) = (0, |q|) with respect to the standard Brownian mo-

tions B1 and B2, respectively. Moreover, on the interval [η, |q|], they are equal
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to

u1(r) = ∂x�μP

(
r,X1(r)

)
,

u2(r) = ∂x�μP

(
r,X2(r)

)
,

where (X1(r))0≤r≤|q| and (X2(r))0≤r≤|q| satisfy

X1(r) = x1 +
∫ r

0
αμP

(w)ζ(w)∂x�μP

(
w,X1(w)

)
dw +

∫ r

0
ζ(w)1/2 dB1(w),

X2(r) = x2 +
∫ r

0
αμP

(w)ζ(w)∂x�μP

(
w,X2(w)

)
dw +

∫ r

0
ζ(w)1/2 dB2(w).

PROOF. Note that the well-definedness of μ is guaranteed by (59). Let vμ =
(v1, v2) be the maximizer to the variational problem (5) for �μ with (s, t) =
(0, |q|). Set (u1, u2) via (62). Here, u1, u2 are progressively measurable processes
with respect to the filtration (Gr )r≥0 and B1,B2 are (correlated) standard Brownian
motions. Denote by(

C
0,|q|
μP ,1,L

0,|q|
μP ,1,F

0,|q|
μP ,1

)
and

(
C

0,|q|
μP ,2,L

0,|q|
μP ,2,F

0,|q|
μP ,2

)
the functionals defined in the same away as (9) using B1 and B2, respectively.
Observe that from (46) and the definition of u1, u2,

C0,|q|
μ (0, vμ,x)

= �μP

(
|q|, x1 +

∫ |q|
0

αμP
(w)ζ(w)u1(w)dw +

∫ |q|
0

ζ(w)1/2 dB1(w)

)

+ �μP

(
|q|, x2 +

∫ |q|
0

αμP
(w)ζ(w)u2(w)dw +

∫ |q|
0

ζ(w)1/2 dB2(w)

)

= C
0,|q|
μP ,1(u1, x1) + C

0,|q|
μP ,2(u2, x2).

In addition, noting that a direct computation gives

(
u1(r), u2(r)

) =
(

ζ(r)v1(r) + ιζ0(r)v2(r)

ζ(r) + ζ0(r)
,
ιζ0(r)v1(r) + ζ(r)v2(r)

ζ(r) + ζ0(r)

)
,

it follows that

1

ζ + ζ0
〈T vμ, vμ〉 − u2

1 − u2
2

=
(

ζ

ζ + ζ0
− ζ 2 + ζ 2

0

(ζ + ζ0)2

)(
v2

1 + v2
2
) + 2ιζ0

(
1

ζ + ζ0
− 2ζ

(ζ + ζ0)2

)
v1v2

= ζ0(ζ − ζ0)

(ζ + ζ0)2 (v1 − ιv2)
2,
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which implies

L0,|q|
μ (vμ) = L

0,|q|
μP ,1(u1) + L

0,|q|
μP ,2(u2) + 1

2

∫ |q|
0

αμP
ζζ0(ζ − ζ0)

(ζ + ζ0)2 E(v1 − ιv2)
2 dw.

Combining these together, the variational representations for �μ(0,0,x) and
�μP

(0, h) yield (61) since

�μ(0,0,x)

= F0,|q|
μ (0, vμ,x)

= F
0,|q|
μP ,1(u1, x1) + F

0,|q|
μP ,2(u2, x2) − 1

2

∫ |q|
0

αμP
ζζ0(ζ − ζ0)

(ζ + ζ0)2 E(v1 − ιv2)
2 dw

≤ �μP
(0, x1) + �μP

(0, x2) − 1

2

∫ |q|
0

αμP
ζζ0(ζ − ζ0)

(ζ + ζ0)2 E(v1 − ιv2)
2 dw.

If �μ(0,0,x) = �μP
(0, x1) + �μP

(0, x2), this inequality implies that u1 and u2
are the maximizers of the variational representations,

�μ(0, x1) = max
u∈D[0,|q|]F

0,|q|
μP ,1(u, x1) and �μ(0, x2) = max

u∈D[0,|q|]F
0,|q|
μP ,2(u, x2)

corresponding to the Brownian motions B1 and B2, respectively. Since αμ > 0 on
(η, |q|], Lemma 5 concludes (ii). �

PROOF OF PROPOSITION 4. First, note that the measure μ in (60) is well
defined since the function ζ/(ζ + ζ0) under both assumptions (i) and (ii) is nonde-
creasing on (0,1]. We plug this μ into (45) and let λ = 0 to obtain

�(q) ≤ 2 log 2 + �μ(0,0, h,h) −
∫ 1

0
αμP

(s)sξ ′′(s) ds.

Thus, to complete the proof, we only need to verify that �μ(0,0, h,h) <

2�μP
(0, h). Suppose the equality holds. Proposition 5(ii) implies that for any

η ≤ r ≤ |q|,
u1(r) = ∂x�μP

(
r,X1(r)

)
,

u2(r) = ∂x�μP

(
r,X2(r)

)
,

where (X1(r))0≤r≤|q| and (X2(r))0≤r≤|q| satisfy

X1(r) = h +
∫ r

0
αμP

(w)ζ(w)∂x�μP

(
w,X1(w)

)
dw +

∫ r

0
ζ(w)1/2 dB1(w),

(64)
X2(r) = h +

∫ r

0
αμP

(w)ζ(w)∂x�μP

(
w,X2(w)

)
dw +

∫ r

0
ζ(w)1/2 dB2(w).

Our proof will clearly be completed by the following two cases.
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Case I: −1 ≤ q < −η, ξ = ξ0 is even and h 	= 0. Since ι = −1, these as-
sumptions combined with (62) and (63) lead to u1 = −u2 and B1 = −B2. Con-
sequently, adding the two equations in (64) together implies X1(r) + X2(r) = 2h

for q ≤ r ≤ −η. On the other hand, since ∂x�μP
(r, ·) is odd and strictly increasing

from Lemma 1, the equation

∂x�μP

(
r,X1(r)

) = u1(r) = −u2(r) = ∂x�μP

(
r,−X2(r)

)
implies X1(r) = −X2(r), which contradicts X1(r) + X2(r) = 2h since h 	= 0.

Case II: ζ0 < ζ on (0,1]. Since ζ > ζ0 ≥ 0 and ζ0 = 0 for at most a finite
number of points, we deduce from (61) and the continuity of v1, v2 that v1 = ιv2

on [η, |q|]. From (62), it then follows that u1 = ιu2 on [η, |q|]. Again, using the
facts that ∂x�μP

(r, ·) is odd and strictly increasing, we conclude X1 = ιX2 on
[η, |q|] and from (64), for r ∈ [η, |q|],

0 = X1(r) − ιX2(r) = (1 − ι)h +
∫ r

0
ζ(w)1/2 d

(
B1(w) − ιB2(w)

)
.

This forces that B1 = ιB2 and, therefore, (63) implies that ζ(r)2 − ζ0(r)
2 =

detT (r) = 0 for r ∈ [η, |q|]. This leads to a contradiction since ζ > ζ0 ≥ 0. �

5.3. Proof of Theorems 7, 8 and 9. Before we start, it is crucial to notice that
�μ(λ,0, h,h) is a continuous function in q ∈ [−1,1] for any μ ∈ M and λ ∈ R.
This can be easily shown by following a similar argument as the proof of Theo-
rem 4. Thus, � is upper semicontinuous on [−1,1].

Proof of Theorem 7. Note that H 1
N = HN = H 2

N since ξ = ξ0. Let ε > 0.
Denote

q ′ = Argmax
q∈[−1,η−ε]

�(q).

Here, the existence of q ′ is guaranteed by the upper semicontinuity of � on
[−1, η − ε]. If the assumption (i) holds, then Proposition 3 and the first assertion
of Proposition 4 together imply �(q) < 2P(μP ) for q ∈ [−1, η − ε], and thus,

�(q) ≤ �
(
q ′) < 2P(μP ), ∀q ∈ [−1, η − ε].(65)

Now suppose that the condition (ii) is true. Then the series ξ must contain some
term β2

psp with βp 	= 0 for some odd p. This implies that for any q ∈ [−1,−η),

ζ0(s) = ξ ′′(−s) < ξ ′′(s) = ζ(s), ∀s ∈ (0,1],(66)

which combined with (28) yields �(q) < 2P(μP ) for q ∈ [−1,−η) by the second
assertion of Proposition 4. Since h 	= 0, we can use Proposition 3 to obtain �(q) <



VARIATIONAL REPRESENTATIONS FOR RSB BOUNDS 3963

2P(μP ) for q ∈ [−η,η − ε], and consequently (65) is valid. In summary, the two
assumptions (i) and (ii) lead to

lim sup
N→∞

max
q∈SN∩[−1,η−ε]

1

N
E log

∑
R1,2=q

exp
(
HN

(
σ 1) + HN

(
σ 2)) < 2P(μP ).

Finally, from this inequality, (29) can be obtained by using the Gaussian concen-
tration of measure and the Parisi formula. Since this part of the argument is very
standard and has appeared in several places, for example, [20], Section 14.12, we
omit the details. �

PROOF OF THEOREM 8. Again H 1
N = HN = H 2

N . Note that η = 0 since
h = 0. Recall the maximizer q ′ from the proof of Theorem 7. From the given as-
sumption of Theorem 8, one sees that (66) is also valid. Thus, the second assertion
of Proposition 4 implies �(q) < 2P(μp) for all q ∈ [−1,−ε]. As a result,

�(q) ≤ �
(
q ′) < 2P(μp), ∀q ∈ [−1,−ε],

from which it follows that

lim sup
N→∞

max
q∈SN∩[−1,−ε]

1

N
E log

∑
R1,2=q

exp
(
HN

(
σ 1) + HN

(
σ 2)) < 2P(μP ).

The rest of the proof can be completed by an identical argument as the last part of
the proof of Theorem 7. �

PROOF OF THEOREM 9. Note that ξ 	= ξ0. Let q∗ ∈ (0, η) be the constant
stated in Proposition 3 if h 	= 0 and set q∗ = 0 if h = 0. From the upper semicon-
tinuity of �, for ε > 0, let q ′′ be the maximizer of

max
q∈[−1,1]:|q−q∗|≥ε

�(q).

Note that from the assumptions (33) and (34),

�(q) < 2P(μP ), ∀q ∈ [−1,−η) ∪ (η,1](67)

by the second statement of Proposition 4. If h = 0, then η = q∗ = 0 and this in-
equality implies

�(q) ≤ �
(
q ′′) < 2P(μP ), ∀q ∈ [−1,1] with

∣∣q − q∗∣∣ ≥ ε.(68)

If h 	= 0, then Proposition 3 gives �(q) < 2P(μP ) for q ∈ [−η,η] \ {q∗}. This
together with (67) gives (68) by the second assertion of Proposition 4. Therefore,
we have shown that

lim sup
N→∞

max
q∈SN :|q−q∗|≥ε

1

N
E log

∑
R1,2=q

exp
(
H 1

N

(
σ 1) + H 2

N

(
σ 2)) < 2P(μP ).

Using this inequality, (35) follows by applying the Gaussian concentration of mea-
sure and the Parisi formula. Once again, we skip this part of the argument as it can
be found in great detail in the proof of [7], Theorem 7. �
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APPENDIX

PROOF OF LEMMA 3. We argue by applying the Gaussian integration by parts
formula. Define

c1(s) = ι
(
ξ ′

1,2
(
ιρ1,2(b)

) − ξ ′
1,2

(
ιρ1,2(s)

)) =
∫ b

s
ρ′

1,2(l)ξ
′′
1,2

(
ιρ1,2(l)

)
dl ≥ 0,

c2(s) = ι
(
ξ ′

2,1
(
ιρ2,1(b)

) − ξ ′
2,1

(
ιρ2,1(s)

)) =
∫ b

s
ρ′

2,1(l)ξ
′′
2,1

(
ιρ2,1(l)

)
dl ≥ 0,

d1(s) = ξ ′
1,1

(
ρ1,1(b)

) − ξ ′
1,1

(
ρ1,1(s)

) − c1(s),

d2(s) = ξ ′
2,2

(
ρ2,2(b)

) − ξ ′
2,2

(
ρ2,2(s)

) − c2(s).

We parametrize (y1(s), y2(s)) as(
y1(s), y2(s)

) = (
ι
√

c1(s)z0 + √
d1(s)z1,

√
c2(s)z0 + √

d2(s)z2
)
,

where z0, z1, z2 are i.i.d. standard Gaussian. Note c1 = c2 by the symmetry of T .
Recall ζ,′ from (21). Observe that

Ey′
1(s)y1(s) = −ζ1,1(s)

2
,

Ey′
2(s)y2(s) = −ζ2,2(s)

2
,

Ey′
1(s)y2(s) = −ζ1,2(s)

2
= −ζ2,1(s)

2
= Ey′

2(s)y1(s),

where y′
1 and y′

2 are the derivatives of y1 and y2 with respect to s, respectively.
From the growth condition of A, it allows us to apply the Gaussian integration by
parts to obtain

∂sL = 1

EemA
E
[
y′

1∂x1A + y′
2∂x2A

]
emA

= 1

EemA

(
E
(
y′

1y1
)
E
(
∂x1x1A + m(∂x1A)2)emA

+E
(
y′

1y2
)
E(∂x1x2A + m∂x1A∂x2A)emA)

+ 1

EemA

(
E
(
y′

2y2
)
E
(
∂x2x2A + m(∂x2A)2)emA

+E
(
y′

2y1
)
E(∂x2x1A + m∂x1A∂x2A)emA)

= − 1

2EemA
E
[
ζ1,1

(
∂x1x1A + m(∂x1A)2)

+ ζ1,2
(
∂x1x2A + m(∂x1A)(∂x2A)

)]
emA
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− 1

2EemA
E
[
ζ2,2

(
∂x2x2A + m(∂x2A)2)

+ ζ2,1
(
∂x1x2A + m(∂x1A)(∂x2A)

)]
emA

= − 1

2EemA
E
[〈
T ,�2A

〉 + m〈T�A,�A〉]emA.

On the other hand, a direct computation gives

∂x1L = E∂x1AemA

EemA
,

(69)

∂x2L = E∂x2AemA

EemA

and

∂x1x1L = E(∂x1x1A + m(∂x1A)2)emA

EemA
− m

(
E∂x1AemA

EemA

)2
,

∂x2x2L = E(∂x2x2A + m(∂x2A)2)emA

EemA
− m

(
E∂x2e

mA

EemA

)2
,

∂x1x2L = ∂x2x1L

= E(∂x1x2A + m(∂x1A)(∂x2A))emA

EemA
− m

(
E∂x1e

mA

EemA

)(
E∂x2A expmA

EemA

)
.

Using these, one may easily check that〈
T ,�2L

〉 + m〈T�L,�L〉
= − 1

emA
E
[〈
T ,�2A

〉 + m〈T�A,�A〉]emA

= −2∂sL,

which gives (40). If ∂xi
A is uniformly bounded by 1, then (69) clearly yields

|∂xi
L| ≤ 1. �
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