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UNIVERSALITY OF CUTOFF FOR THE ISING MODEL

BY EYAL LUBETZKY AND ALLAN SLY

New York University and University of California, Berkeley

On any locally-finite geometry, the stochastic Ising model is known to
be contractive when the inverse-temperature β is small enough, via classical
results of Dobrushin and of Holley in the 1970s. By a general principle pro-
posed by Peres, the dynamics is then expected to exhibit cutoff. However, so
far cutoff for the Ising model has been confirmed mainly for lattices, heav-
ily relying on amenability and log Sobolev inequalities. Without these, cutoff
was unknown at any fixed β > 0, no matter how small, even in basic examples
such as the Ising model on a binary tree or a random regular graph.

We use the new framework of information percolation to show that, in
any geometry, there is cutoff for the Ising model at high enough tempera-
tures. Precisely, on any sequence of graphs with maximum degree d, the Ising
model has cutoff provided that β < κ/d for some absolute constant κ (a result
which, up to the value of κ , is best possible). Moreover, the cutoff location
is established as the time at which the sum of squared magnetizations drops
to 1, and the cutoff window is O(1), just as when β = 0.

Finally, the mixing time from almost every initial state is not more than a
factor of 1 + εβ faster then the worst one (with εβ → 0 as β → 0), whereas
the uniform starting state is at least 2 − εβ times faster.

1. Introduction. Classical results going back to Dobrushin [12] and to Holley
[15] in the early 1970s and continuing with the works of Dobrushin and Shlosman
[13] and of Aizenman and Holley [1] show that, if G is any graph on n vertices
with maximum degree d , the Glauber dynamics for the Ising model on G exhibits
a rapid convergence to equilibrium in total-variation distance at high enough tem-
peratures. Namely, if the inverse-temperature β is at most c0/d for some absolute
c0 > 0, then the continuous-time dynamics is contractive, whence coupling tech-
niques show that the total-variation mixing time is O(logn).

A known consequence of contraction is that the spectral gap of the dynamics is
bounded away from 0, and so, by a general principle proposed by Peres in 2004
(addressing whether or not the product of the spectral gap and mixing time diverges
with n), one expects the cutoff phenomenon1 to occur. (For more on the cutoff
phenomenon, discovered in the early 80s by Aldous and Diaconis, see [3, 7].)
Concretely, Peres conjectured ([17], Conjecture 1, [18], Section 23.2) cutoff for
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1Sharp transition in the L1-distance of a finite Markov chain from equilibrium, dropping quickly
from near 1 to near 0.
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the Ising model on any sequence of transitive graphs when the mixing time is
O(logn), and in particular in the range β < c0/d as above.

This universality principle, whereby cutoff should accompany high enough tem-
peratures in any underlying geometry, is supported by the heuristic that at small
enough β the model should qualitatively behave as if β = 0. The latter, equivalent
to random walk on the hypercube, was one of the first examples of cutoff, estab-
lished with an O(1)-cutoff window by Aldous [2], and refined in [4, 8]. Thus, one
may further expect cutoff for the Ising model with an O(1)-window provided that
β is small enough.

In contrast, cutoff for the Ising model has so far mainly been confirmed on Zd

[22, 23], via proofs that hinged on log-Sobolev inequalities (see [5, 9, 10, 32]) that
are known to hold for the Ising model on the lattice [16, 26–29, 34, 35] as well as
on the subexponential growth rate of balls in the lattice.

Even before requiring these powerful log-Sobolev inequalities, the restriction
to subexponential growth rate automatically precluded the analysis of examples as
basic as the Ising model on a binary tree at any small β > 0, or on an expander
graph (e.g., a random regular graph), the hypercube, etc.

Here, using the framework of information percolation that we introduced in the
companion paper [25], we confirm that on any sequence of graphs with maximum
degree d , cutoff indeed occurs whenever βd is small enough, and with an O(1)-
window (just as when β = 0). Furthermore, we analyze the effect of the initial
state on the mixing time (e.g., a warm start of i.i.d. spins versus the all-plus starting
state).

1.1. Results. Our first result establishes that, on any geometry, at high enough
temperature there is cutoff within an O(1)-window around the point

(1.1) tm = inf
{
t > 0 :∑

v

mt (v)2 ≤ 1
}
,

where mt (v) is the magnetization at a vertex v ∈ V at time t > 0, that is,

mt (v) = EX+
t (v),(1.2)

with X+
t denoting the dynamics started from all-plus. Note that on a transitive

graph (such as Zd
n), the point tm coincides with the time at which

∑
v mt (v) drops

to a square-root of the volume, which has the intuitive interpretation that mixing
occurs once the expected sum of spins in X+

t drops within the normal deviations in
the Ising measure. However, it turns out that for general (nontransitive) geometries
(such as trees) it is the sum of squared magnetizations

∑
v mt (v)2 that governs the

mixing.

THEOREM 1. There exist absolute constants κ,C > 0 such that the following
holds. Let G be a graph on n vertices with maximum degree d . For any fixed
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0 < ε < 1 and large enough n, the continuous-time heat-bath Glauber dynamics
for the Ising model on G with inverse-temperature 0 ≤ β < κ/d satisfies

tMIX(1 − ε) ≥ tm − C log(1/ε),

tMIX(ε) ≤ tm + C log(1/ε).

In particular, on any sequence of such graphs the dynamics has cutoff with an
O(1)-window around tm.

Apart from giving a first proof of cutoff for the Ising model on any tree/expander
graph at β > 0, note that the above theorem allows the maximum degree d to
depend on n in any way, and so it applies, for example, to the Ising model on the
hypercube (with d = log2 n), a dense Erdős–Rényi graph G(n, 1

2), etc.
As mentioned above, the proof uses the new information percolation frame-

work, which analyzes interactions between spins viewed as a percolation process
in the space-time slab. As opposed to the application of this method in the com-
panion paper [25] for the torus, various obstacles arise in the present setting due
to the asymmetry between vertices and lack of amenability. Moreover, a naïve ap-
plication of the method would require β to be as small as about d−d , and carrying
it up to κ/d (the correct dependence in d up to the value of κ) required several
novel ingredients, notably using a discrete Fourier expansion (see Section 4.2) to
prescribe update rules for the dynamics that would endow the resulting percolation
clusters with a subcritical behavior.

Roughly put, the framework considers the dynamics at a designated time around
tm, and for each site develops the history of updates that led to its final spin (tracing
back branching to its neighbors). The resulting “information percolation” clusters
in the space-time slab are then categorized into three types:—RED (those surviving
to time zero and nontrivially depending on the initial state), BLUE (those remain-
ing which involve a unique “ancestor”) and GREEN (all remaining clusters), as
illustrated in Figure 1. The green clusters (which may exhibit complicated depen-
dencies but are independent of the initial state) are taken out of the equation via
conditioning, leaving behind a competition between blue clusters (whose ances-
tor vertices are i.i.d. uniform spins by symmetry) and red clusters. Controlling the
latter, namely an exponential moment of their cumulative size, then establishes
mixing.

Overall, the information percolation framework allows one to reduce challeng-
ing problems involving mixing and cutoff for the Ising model into simpler and
tractable problems on subcritical percolation.

It is natural to ask about extension such as boundary conditions, external fields
or other spin systems. While the present arguments makes use of the symmetry
between plus and minus spins in the Ising model, we expect that the results should
generalize to the case of boundary conditions or external fields. Conversely adapt-
ing these methods to the antiferromagnetic Ising model or the Potts model likely
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FIG. 1. Information percolation clusters for the stochastic Ising model on two geometries: hyper-
bolic graph (left, showing largest 3 clusters of each type) and the lattice Z2

100 (right). A cluster is red
if it survives to time 0, blue if it dies out and is the history of a single vertex, and green o/w.

requires additional new ideas as the monotonicity of the Ising model is crucial in
matching the upper and lower bounds. The specific challenge is that in the Potts
model a grand coupling will couple more slowly than a coupling of two states.

Furthermore, by analyzing not only on the size of the red clusters, but rather
where these hit the initial state at time zero, this framework opens the door to
understanding the effect of the starting configuration on the mixing time (where
sharp results on total-variation mixing for the Ising model were only applicable to
worst-case starting states, usually via coupling techniques).

Our next result demonstrates this by comparing the worst-case mixing time
[which is matched by the all-plus starting state up to an additive O(1)-term] with a
typical starting configuration, and finally with the uniform starting configuration,
that is, each site is initialized by an independent uniform ±1 spin. Informally, we
show that the uniform starting state is roughly at least twice faster compared to
all-plus, but perhaps surprisingly, almost every deterministic starting state is about
as slow as the worst one.

Formally, if μ
(x0)
t is the distribution of the dynamics at time t started from x0

then t
(x0)
MIX (ε) is the minimal t for which μ

(x0)
t is within distance ε from equilib-

rium, and t
(U)
MIX(ε) is the analogue for the average 2−n∑

x0
μ

(x0)
t (i.e., the annealed

version, as opposed to the quenched t
(X0)
MIX for a uniform X0).

THEOREM 2. Consider continuous-time heat-bath Glauber dynamics for the
Ising model on an n-vertex graph G with maximum degree at most some fixed
d > 0, and define tm as in (1.1). For every ε > 0, there exists β0 > 0 such that the
following hold for any 0 < β < β0 and any fixed 0 < α < 1 at large enough n:

1. (Annealed) Uniform initial state: t
(U)
MIX(α) ≤ (1

2 + ε)tm.
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FIG. 2. Flavor of information percolation for analyzing random initial states in 1D Ising model:
On the left, the standard framework (red clusters are those reaching t = 0) for worst-case analysis.
On the right, red clusters are redefined as those coalescing below t = 0 for the annealed analysis.

2. (Quenched) Deterministic initial state: t
(x0)
MIX (α) ≥ (1 − ε)tm for asymptoti-

cally almost every x0, while t
(+)
MIX(α) ∼ tm.

The delicate part in the proof of the above theorem is comparing the distribution
at time t directly to the Ising measure. One often bypasses this point by coupling
the distributions started at worst-case states; here, however, that would fail as we
are analyzing the dynamics well before these distributions can couple with high
probability. Instead (and as demonstrated in the companion paper for analyzing
the effect of initial states in the 1D Ising model), we appeal to the Coupling From
The Past method [31].

Rather than developing the information percolation clusters until reaching time
zero, we continue until time −∞, letting all clusters eventually die. The beautiful
Coupling From The Past argument implies that, if we ignore the initial state alto-
gether, the final configuration would be a perfect simulation of the Ising measure.
Thus, the natural coupling of the information percolation clusters allows one to
compare the dynamics with the Ising measure, simply by considering the effect
of replacing the spins generated along the interval (−∞,0] by those of the initial
state.

Specifically for the annealed analysis, even if a cluster survives to time zero (and
beyond) it might still be perfectly coupled to the stationary measure, for example,
a singleton strand (and more generally, a blue cluster) would receive a uniform spin
both from the Ising measure and from the random initial state. Hence, we modify
the framework by redefining red clusters as those in which at least two branches
of the cluster reach time zero, then proceed to merge in the interval (−∞,0), as
illustrated in Figure 2. It is this factor of 2 that eventually transforms into the
factor of 2 − ε improvement in the mixing time. It seems reasonable to expect
asymptotic factor is exactly 2 for β positive and sufficiently which has been shown
on the cycle [25] but the current analysis is not precise enough to establish it. Of
course, for β = 0, the annealed measure is already mixed.
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Organization. The rest of this paper is organized as follows. In Section 2, we
give the formal definitions of the above described framework, including several
modification needed here (e.g., custom update rules to be derived from a Fourier
expansion) and two lemmas analyzing the information percolation clusters. In Sec-
tion 3, we prove the cutoff result in Theorem 1 modulo these technical lemmas,
which are proved in Section 4. The final section, Section 5, is devoted to the effect
of the initial states on mixing and the proof of Theorem 2.

2. Information percolation for the Ising model.

2.1. Preliminaries. In what follows, we set up standard notation for analyzing
the mixing of Glauber dynamics for the Ising model; see [22, 25] and the refer-
ences therein for additional information.

Mixing time and cutoff. Let (Xt) be an ergodic finite Markov chain with sta-
tionary measure π . An important gauge in MCMC theory for measuring the con-
vergence of a Markov chain to stationarity is its total-variation mixing time. De-
noted tMIX(ε) for a precision parameter 0 < ε < 1, it is defined as

tMIX(ε)
�= inf
{
t : max

x0∈�

∥∥Px0(Xt ∈ ·) − π
∥∥

TV ≤ ε
}
,

where here and in what follows Px0 denotes the probability given X0 = x0, and the
total-variation distance ‖ · ‖TV between two probability measures ν1, ν2 on a finite
space � is given by

‖ν1 − ν2‖TV = max
A⊂�

∣∣ν1(A) − ν2(A)
∣∣= 1

2

∑
σ∈�

∣∣ν1(σ ) − ν2(σ )
∣∣,

that is, half the L1-distance between the two measures.
Addressing the role of the parameter ε, the cutoff phenomenon is essentially

the case where the choice of any fixed ε does not affect the asymptotics of tMIX(ε)

as the system size tends to infinity. Formally, a family of ergodic finite Markov
chains (Xt), indexed by an implicit parameter n, is said to exhibit cutoff (a concept
going back to the pioneering works [2, 11]) iff the following sharp transition in its
convergence to stationarity occurs:

(2.1) lim
n→∞

tMIX(ε)

tMIX(1 − ε)
= 1 for any 0 < ε < 1.

That is, tMIX(α) = (1 + o(1))tMIX(β) for any fixed 0 < α < β < 1. The cutoff win-
dow addresses the rate of convergence in (2.1): a sequence wn = o(tMIX(e−1)) is a
cutoff window if tMIX(ε) = tMIX(1 − ε) + O(wn) holds for any 0 < ε < 1 with an
implicit constant that may depend on ε. Equivalently, if tn and wn are sequences
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with wn = o(tn), we say that a sequence of chains exhibits cutoff at tn with window
wn if ⎧⎪⎨

⎪⎩
lim

γ→∞ lim inf
n→∞ max

x0∈�

∥∥Px0(Xtn−γwn ∈ ·) − π
∥∥

TV = 1,

lim
γ→∞ lim sup

n→∞
max
x0∈�

∥∥Px0(Xtn+γwn ∈ ·) − π
∥∥

TV = 0.

Verifying cutoff is often quite challenging, for example, even for simple random
walk on an expander graph, no examples were known prior to [20, 21] (while this
had been conjectured for almost all such graphs), and to date there is no known
transitive example (while conjectured to hold for all transitive expanders).

Glauber dynamics for the Ising model. Let G be a finite graph with vertex-set
V and edge-set E. The Ising model on G is a distribution over the set � = {±1}V
of possible configurations, each corresponding to an assignment of plus/minus
spins to the sites in V . The probability of σ ∈ � is given by

(2.2) π(σ) = Z−1eβ
∑

uv∈E σ(u)σ (v),

where the normalizer Z = Z(β,h) is the partition function. The parameter β is the
inverse-temperature, which we always to take to be nonnegative (ferromagnetic).
These definitions extend to infinite locally finite graphs (see, e.g., [19, 26]).

The Glauber dynamics for the Ising model (the Stochastic Ising model) is a
family of continuous-time Markov chains on the state space �, reversible w.r.t. the
Ising measure π , given by the generator

(2.3) (L f )(σ ) =∑
u

c(u,σ )
(
f
(
σu)− f (σ)

)
,

where σu for u ∈ V is the configuration σ with the spin at the vertex u flipped. We
will focus on the two most notable examples of Glauber dynamics, each having an
intuitive and useful graphical interpretation where each site experiences updates
via an associated i.i.d. rate-one Poisson clock:

(i) Metropolis: flip σ(u) if the new state σu has a lower energy (i.e., π(σu) ≥
π(σ)), otherwise perform the flip with probability π(σu)/π(σ ). This corresponds
to c(u,σ ) = exp(2βσ(u)

∑
v∼u σ (y)) ∧ 1.

(ii) Heat-bath: erase σ(u) and replace it with a sample from the conditional
distribution given the spins at its neighboring sites. This corresponds to c(u,σ ) =
1/[1 + exp(−2βσ(u)

∑
v∼u σ (v))].

It is easy to verify that these chains are indeed ergodic and reversible w.r.t. the
Ising distribution π . While our main results were all stated for the heat-bath chain,
we note that by using the same approach one can infer the analogous statements
for the Metropolis chain.

Until recently, sharp mixing results for this dynamics were obtained in relatively
few cases, with cutoff only known for the complete graph [6, 17] prior to the works
[22, 23].
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2.2. Red, green and blue information percolation clusters. We begin by de-
scribing the basic setting of the framework (cf. [24]) which will be enhanced
in Section 2.3 to support the setting of Theorem 1 (where the underlying ge-
ometry may feature an exponential growth rate and we consider β < κ/d).
This can be viewed as an extension of Harris’ graphical representation [14] (cf.
[19], Section III.6)—an instrumental tool in analyzing voter models and contact
processes—in the context of the Ising model, where our understanding of clusters
associated with particle interactions in the space-time slab is limited.

The update sequence of the Glauber dynamics along an interval (t0, t1] is the set
of tuples of the form (J,U, τ), where t0 < τ ≤ t1 is the update time, J ∈ V is the
site to be updated and U is a uniform unit variable. Given this update sequence,
Xt1 is a deterministic function of Xt0 , right-continuous w.r.t. t1.

We call a given update (J,U, τ) an oblivious update iff U ≤ θ for

(2.4) θ = θβ,d := 1 − tanh(βd),

since in that situation one can update the spin at J to plus/minus with equal prob-
ability (i.e., with probability θ/2 each) independently of the spins at the neighbors
of the vertex J , and a properly chosen rule for the case U > θ legally extends this
protocol to the Glauber dynamics.

Consider some designated target time t for analyzing the spin distribution of
the dynamics on G. The update history of Xt(v) going back to time t , denoted
Hv(t), is a subset A × {t} of the space-time slab V × {t}, such that one we can
determine Xt(v) from the update sequence and spin-set Xt(A). The most basic
way of defining {Hv(t) : 0 ≤ t ≤ t} is as follows:

• List the updates in reverse chronological order as {(Ji,Ui, ti)}i≥1 (i.e., ti > ti+1
for all i), and initialize the update history by Hv(t) = {v} for all t ∈ [t1, t].

• In step i ≥ 1, process the update (Ji,Ui, ti) to determine Hv(t) for t ∈ [ti+1, ti):
– If Ji /∈ Hv(ti) then the history is unchanged, that is, Hv(t) = Hv(ti) for all

t ∈ [ti+1, ti).
– If Ji ∈ Hv(ti) but Ui ≤ θ then Ji is removed, that is, Hv(t) = Hv(ti) \ {Ji}

for all t ∈ [ti+1, ti).
– Otherwise, replace Ji by its neighbors N(Ji), that is, Hv(t) = Hv(ti) ∪

N(Ji) \ {Ji} for all t ∈ [ti+1, ti).

The information percolation clusters are the transitive closure on the vertex set V

induced by a relation of u and v if Hu(t) ∩ Hv(t) �= ∅ for some t ≥ 0. Denote by
Cv the cluster containing v ∈ V .

We will also consider clusters in the context of the full space-time slab. The
cluster of a point (w, r) ∈ V ×[0, t], denoted Xw,r , is the connected component of⋃{Hv(t) : v ∈ V,0 ≤ t ≤ t} that contains (w, r). (Thus, the cluster Cv is identified
with the intersection of Xv,t with the slab V × {t}.) For any A ⊂ V , we use
the notation HA(t) =⋃v∈A Hv(t), as well as HA(t1, t2) =⋃t1≤t≤t2

HA(t) (both
cases describing subsets of V ).
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The clusters are classified into three classes (identifying for this purpose Cv and
Xv,t) as follows:

• A cluster C is RED if, given the update sequence, its final state Xt(C) is a
nontrivial function of the initial configuration X0; in particular, its history must
survive to time zero (HC(0) �= ∅).

• A cluster C is BLUE if it is a singleton—that is, C = {v} for some v ∈ V —whose
history does not survive to time zero (Hv(0) = ∅).

• Every other cluster C is GREEN.

Note that if a cluster is blue then its single spin at time t does not depend on
the initial state X0, and so, by symmetry, it is a uniform ±1 spin. (While a green
cluster is similarly independent of X0, as multiple update histories intersect, the
distribution of its spin set Xt(C) may become quite nontrivial.)

Let us briefly mention the structure of the clusters in a couple of special cases.
When β = 0, since all updates are oblivious, all clusters are singletons and so none
are green while the red vertices are those which recipe no updates. On the cycle
for β > 0, updates can be constructed in such a way that the set of histories of
the clusters form a collection of coalescing killed random walks (see [25]). Those
which survive to time 0 are red while those the which are killed before merging
are blue and those which merge and are subsequently killed are green.

Let VRED denote the union of the red clusters, and let HRED be the its collec-
tive history—the union of Hv(t) for all v ∈ VRED and 0 ≤ t ≤ t (with analogous
definitions for blue/green).

A beautiful short lemma of Miller and Peres [30] shows that, if a measure μ on
{±1}V is given by sampling a variable R ⊂ V and using an arbitrary law for its
spins and a product of Bernoulli( 1

2 ) for V \ R, then the L2-distance of μ from the

uniform measure is at most E2|R∩R′| − 1 for i.i.d. copies R,R′. (See Lemma 3.1
below; also see [25], Lemma 4.3, for a generalization of this to a product of general
measures, which becomes imperative for the information percolation framework at
β near criticality.) Applied to our setting, if we condition on HGREEN and look at
the spins of V \ VGREEN then VRED can assume the role of the variable R, as the
remaining blue clusters are a product of Bernoulli(1

2) variables.
In this conditional space, since the law of the spins of VGREEN, albeit potentially

complicated, is independent of the initial state, we can safely project the config-
urations on V \ VGREEN without it increasing the total-variation distance between
the distributions started at the two extreme states. Hence, a sharp upper bound on
worst-case mixing will follow by showing for this exponential moment

(2.5) E
[
2|VRED∩V ′

RED| | HGREEN

]→ 1 in probability as n → ∞,

by coupling the distribution of the dynamics at time t from any initial state to
the uniform measure. Finally, with the green clusters out of the picture by the
conditioning (which has its own toll, forcing various updates along history so that
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no other cluster would intersect with those nor become green), we can bound the
probability that a subset of sites would become a red cluster by its ratio with the
probability of all sites being blue clusters. Being red entails connecting the subset
in the space-time slab, hence the exponential decay needed for (2.5).

2.3. Enhancements of the framework: Custom update rules and modified last
unit interval. We will consider the information percolation clusters developed as
above from the designated time

t = tm + s for s = C log(1/ε),

where C > 0 will be specified later, and ε > 0 is the parameter for the mixing
time. However, instead of the standard procedure of developing the history, where
an update at v either deletes it from the history (via an oblivious update) or re-
places it by its set of neighbors N(v), we will allow v to be replaced (with varying
probabilities) by any subset of its neighbors, in the following way.

Recall that an update of the form (J,U, t) ∈ V × [0,1] × [0, t] results in re-
placing the spin at J at time t by some deterministic function ϒ(x,U), where
x =∑u∈N(J ) Xt (u). We introduce the notion of a generalized update rule in or-
der to establish the right dependence on β in Theorem 1 by having rules updates
which typically only observe a small number of neighboring vertices. The updates
are of the form (J,A,U, t) where (J,U, t) is as before and the additional variable
A ⊂ [d] corresponds to a subset of the neighbors of vertex J . The new update rule
exposes the spins {σ1, . . . , σ|A|} of these neighbors at time t , then generates the
new spin at J via �A(σ1, . . . , σ|A|,U).

With this generalized update rule, one unfolds the update history of a vertex
{Hv(t) : 0 ≤ t ≤ t} as before, with the one difference that an update (Ji,Ai,Ui, ti)

for which Ji ∈ Hv(ti) now results in Hv(t) = Hv(ti) ∪ Ai \ {Ji} for all t ∈
[ti+1, ti). The functions {�A : A ⊂ [d]}, as well as the probability distribution over
the subsets A ⊂ [d] to be exposed, will be derived from a discrete Fourier expan-
sion of the original rule ϒ (see Lemma 4.1), so that the new update procedure
would, on one hand, couple with the Glauber dynamics, and on the other, gener-
ally use small subsets A which endows our percolation clusters with a subcritical
behavior giving a better dependence on β .

A final ingredient needed for coping with the arbitrary underlying geometry is
a modification of the update history, denoted by Ĥ : in the modified version, ev-
ery vertex v ∈ V receives an (extra) update at time t, and no vertex is removed
from the history along the unit interval (t − 1, t]. Since we do not remove ver-
tices, there is no issue of ordering of the vertices. Note that this construction no
longer corresponds to the dynamics, it generates a set of information percolation
clusters which dominate the original histories. The purpose of this construction is
that forbidding vertices to die in the first unit interval will be useful in the context
of conditioning on other clusters. We will write Ĉ, X̂ , as well as ĤA(t) etc. for the
corresponding notation w.r.t. the modified history Ĥ .
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We end this section with two results on the information percolation clusters—
Lemmas 2.1 and 2.2—which will be central in the proof of Theorem 1. The proofs
of these lemmas are postponed to Section 4.

Let us denote the collective history of the complement of a set A ⊂ V as

H −
A = {Hv(t) : v /∈ A, t ≤ t

}
.

As explained following the definition of the three cluster types, at the heart of the
matter is estimating an exponential moment of the size of the red clusters given
HGREEN, the joint history of all green clusters. To this end, we consider the fol-
lowing conditional probability that a subset A is a red cluster. Define

(2.6) �A = sup
H

P
(
A ∈ RED | H −

A = H, {A ∈ RED} ∪ {A ⊂ VBLUE}),
noting that, toward estimating the probability of A ∈ RED, the effect of condition-
ing on H −

A amounts to requiring that HA must not intersect H −
A . We should note

that the event A ∈ RED means that A is a single red cluster, not a collection of
them.

LEMMA 2.1. If β < 1/(5d) then for any A ⊂ V and v ∈ A,

�A ≤ 2|A|
E

[
1{A⊂Ĉv}e

τ̂v
∑
w

1{w∈ĤA(t−τ̂v,t)}mt(w)

]
,

where τ̂v is the time it takes the history of Ĉv to first coalesce into a single point (if
at all), that is,

(2.7) τ̂v = min
{
t ≥ 1 : ∣∣ĤĈv

(t − t)
∣∣= 1
}∧ t.

It is worthwhile noting in the context of the parameter τ̂v that, when developing
the update history backward in time, τ̂v is not a stopping time, since Ĉv is affected
by any potential coalescence points for t < t− τ̂v ; instead, one can determine τ̂v as
soon as ĤĈv

(t) = ∅. Also observe that τ̂v = 1 iff |Ĉv| = 1. Finally, the coalescence

point w at time t = t − τ̂v (when t > 0) need not belong to Ĥv , for example, we
may have Ĥv(t) = ∅ while w ∈ Ĥu for some u �= v whose history intersected that
of v at time t ′ > t .

The subcritical nature of the information percolation clusters (prompted by our
modified update functions �A) allows one to control exponential moments of the
cluster sizes, as in the following lemma.

LEMMA 2.2. Fix 0 < η < 1 and λ > 0. There exist constants κ, γ > 0 such
that the following holds. For any point (w0, t0) in the space-time slab V × (0, t],
if β < κ/d then

E
[
exp
(
ηL(X̂w0,t0) + λ|ĤX̂w0,t0

|)]< γ,
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where

L(X̂ ) =∑
u∈V

∫ t

0
1{(u,t)∈X̂ } dt.

The above lemma, the proof of which follows standard arguments from percola-
tion theory, will be applied for absolute constants η and λ in the proof of Theorem
1 (any 1/2 < η < 1 and λ > log 8 would do), leading to the absolute constant κ

in the statement of that theorem. The above formulation will be important in the
context of Theorem 2, where one requires η that may be very close to 1 (as a func-
tion of ε from the statement of that theorem) and λ that depends on the maximum
degree.

3. Cutoff with constant window from a worst starting state. In this section
we prove Theorem 1 via the framework defined in Section 2. As is often the case
in proofs of cutoff, the upper bound will require the lion’s share of the efforts.

3.1. Upper bound modulo Lemmas 2.1 and 2.2. Define the coupling distance
d̄TV(t) to be

d̄TV(t) = max
x0,y0

∥∥Px0(Xt ∈ ·) − Py0(Xt ∈ ·)∥∥TV

(so that 1
2 d̄TV(t) ≤ maxx0 ‖Px0(Xt ∈ ·) − π(·)‖TV ≤ d̄TV(t)), and observe that

d̄TV(t) ≤ E

[
max
x0,y0

∥∥Px0(Xt ∈ · | HGREEN) − Py0(Xt ∈ · | HGREEN)
∥∥

TV

]
≤ sup

HGREEN

max
x0,y0

∥∥Px0

(
Xt(V \ VGREEN) ∈ · | HGREEN

)
− Py0

(
Xt(V \ VGREEN) ∈ · | HGREEN

)∥∥
TV,

where the first inequality follows by Jensen’s inequality and the second follows
since Xt(VGREEN) is independent of the initial condition and so taking a projection
onto V \VGREEN does not change the total-variation distance between the distribu-
tions started at x0 and y0. Thus,

d̄TV(t) ≤ 2 sup
HGREEN

max
x0

∥∥Px0

(
Xt(V \ VGREEN) ∈ · | HGREEN

)
(3.1)

− νV \VGREEN

∥∥
TV,

where νA is the uniform measure on configurations on the sites in A. At this point,
we appeal to the exponential-moment bound of [30], the short proof of which is
included here for completeness.

LEMMA 3.1 ([30]). Let � = {±1}V for a finite set V . For each S ⊂ V , let
ϕS be a measure on {±1}S . Let ν be the uniform measure on �, and let μ be
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the measure on � obtained by sampling a subset S ⊂ V via some measure μ̃,
generating the spins of S via ϕS , and finally sampling V \ S uniformly. Then

‖μ − ν‖2
L2(ν)

≤ E
[
2|S∩S′|]− 1,

where the variables S and S′ are i.i.d. with law μ̃.

PROOF. Write n = |V |, and let xS (S ⊂ V ) denote the projection of x onto S.
With this notation, by definition of the L2(ν) metric (see, e.g., [33]) one has that
‖μ − ν‖2

L2(ν)
+ 1 = ∫ |μ/ν − 1|2 dν + 1 equals

∑
x∈�

μ2(x)

ν(x)
= 2n
∑
x∈�

∑
S

μ̃(S)
ϕS(xS)

2n−|S|
∑
S′

μ̃
(
S′)ϕS′(xS′)

2n−|S′|

by the definition of μ. Since
∑

x ϕS(xS)ϕS′(xS′) ≤ 2n−|S∪S′| it then follows that

∑
x∈�

μ2(x)

ν(x)
≤∑

S,S′
2|S|+|S′|−|S∪S′|μ̃(S)μ̃

(
S′)=∑

S,S′
2|S∩S′|μ̃(S)μ̃

(
S′).

�

REMARK 3.2. In the special case where the distribution ϕS is a point-mass
on all-plus for every S, the single inequality in the above proof is an equality
(since then

∑
x ϕS(xS)ϕS′(xS′) = #{x : xS∪S′ ≡ 1}) and so in that situation the L2-

distance ‖μ − ν‖2
L2(ν)

is precisely equal to E[2|S∩S′|] − 1.
For example, consider Glauber dynamics for an n-vertex graph at β = 0 (i.e.,

continuous-time lazy random walk on the hypercube {±1}n) starting (say) from
all-plus, and let S be the set of coordinates which were not updated: here P(v ∈
S) = e−t at time t , and ‖P(X+

t ∈ ·) − ν‖2
L2(ν)

= (1 + e−2t )n − 1.

Applying the above lemma to the right-hand side of (3.1), while recalling that
any two measures μ and ν on a finite probability space satisfy ‖μ−ν‖TV = 1

2‖μ−
ν‖L1(ν) ≤ 1

2‖μ − ν‖L2(ν), we find that

d̄TV(t) ≤
(

sup
HGREEN

E
[
2|VRED∩VRED′ | | HGREEN

]− 1
)1/2

,(3.2)

where VRED and VRED′ are i.i.d. copies of the variable
⋃{v ∈ V : Cv ∈ RED}.

Let {YA,A′ : A,A′ ⊂ V } be a family of independent indicators satisfying

(3.3) P(YA,A′ = 1) = �A�A′ for any A,A′ ⊂ V .

We claim that it is possible to couple the conditional distribution of (VRED,VRED′)
given HGREEN to the variables YA,A′ in such a way that

|VRED ∩ VRED′ | ≤ ∑
A∩A′ �=∅

∣∣A ∪ A′∣∣YA,A′ .
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To do so, let {(Al,A
′
l)}l≥1 denote all pairs of intersecting subsets (A,A′ ⊂ V \

VGREEN with A ∩ A′ �= ∅) arbitrarily ordered, associate each pair with a variable
Rl initially set to 0, then process these in order:

• If (Al,A
′
l) is such that, for some j < l, one has Rj = 1 and either Aj ∩ Al �= ∅

or A′
j ∩ A′

l �= ∅, then skip this pair (keeping Rl = 0).
• Otherwise, set Rl to the indicator of {Al ∈ RED,A′

l ∈ RED′}.
The claim is that P(Rl = 1 | Fl−1) ≤ P(YAl,A

′
l
= 1) for all l, where Fl denotes the

natural filtration associated to the above process. Indeed, consider some (Al,A
′
l)

for which we are about to set Rl to the value of 1{Al∈RED,A′
l∈RED′}, and take any Aj

(j < l) such that Aj ∩Al �=∅ and 1{Aj∈RED,A′
j∈RED′} was revealed (and necessarily

found to be zero, by definition of the above process). The supremum over H −
Al

in
the definition of �Al

implies that we need only consider the information Fl−1

offers on HAl
:

• If Aj ∩ Al �= Al , then the event {Aj ∈ RED} does not intersect the event {Al ∈
RED} ∪ {Al ⊂ VBLUE} (on which we condition in �Al

) as it requires Aj to be a
full red cluster (so a strict subset of Aj cannot belong to a separate red cluster,
nor can it contain any blue singleton).

• If Aj = Al , conditioning on {Aj ∈ RED,A′
j ∈ RED′}c will not increase the prob-

ability of {Al ∈ RED}.
Either way, P(Al ∈ RED | Fl−1) ≤ �Al

. Similarly, P(A′
l ∈ RED′ | Fl−1,

1{Al∈RED}) ≤ �A′
l
, and together these inequalities support the desired coupling,

since if v ∈ VRED ∩VRED′ then there is some l for which v ∈ Al ∪A′
l and Al ∈ RED,

A′
l ∈ RED′, in which case every Aj intersecting Al nontrivially will receive Rj = 0

(it cannot be red) and the first j with Aj = Al to receive Rj = 1 will account for v

in Aj ∪ A′
j .

Relaxing |A ∪ A′| into |A| + |A′| (which will be convenient for factorization),
we get

sup
HGREEN

E
[
2|VRED∩VRED′ | | HGREEN

]≤ E
[
2
∑

A∩A′ �=∅
(|A|+|A′|)YA,A′ ]

= ∏
A∩A′ �=∅

E
[
2(|A|+|A′|)YA,A′ ],

with the equality due to the independence of the YA,A′ ’s. By the definition of these
indicators in (3.3), this last expression is at most

∏
v

∏
A,A′

v∈A∩A′

((
2|A|+|A′| − 1

)
�A�A′ + 1

)≤ exp
[∑

v

(∑
A�v

2|A|�A

)2]
,
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and so, revisiting (3.2), we conclude that

(3.4) d̄TV(t)
2 ≤
(

exp
[∑

v

(∑
A�v

2|A|�A

)2]
− 1
)

∧ 1 ≤ 2
∑
v

(∑
A�v

2|A|�A

)2
,

where we used that ex − 1 ≤ 2x for x ∈ [0,1]. We have thus reduced the upper
bound in Theorem 1 into showing that the right-hand side of (3.4) is at most ε if
s = C log(1/ε) for some large enough C = C(β).

Plugging the bound on �A from Lemma 2.1 shows that the sum in the right-
hand side of (3.4) is at most

∑
v

(∑
A�v

4|A|
E

[
1{A⊂Ĉv}e

τ̂v
∑
w

1{w∈ĤA(t−τ̂v,t)}mt(w)

])2
.

In each of the two sums over A � v, we can specify the size of Ĉv , and then relax
{w ∈ ĤA(t − τ̂v, t)} into {w ∈ ĤĈv

} (thus permitting all 2|Ĉv | subsets to play the
role of A); thus, the last display is at most∑

v

∑
k,k′

∑
w,w′

8k
E
[
1
{|Ĉv| = k,w ∈ ĤĈv

}
eτ̂vmt(w)

]
(3.5)

· 8k′
E
[
1
{|Ĉv| = k′,w′ ∈ ĤĈv

}
eτ̂vmt

(
w′)].

Denoting the indicators above by �(v,w, k) and �(v,w′, k′), respectively, and
using the fact that

∑
w,w′

mt (w)mt

(
w′)≤ 1

2

∑
w,w′

(
mt (w)2 +mt

(
w′)2)= ∑

w,w′
mt (w)2

in (3.5) culminates in the following bound on sum in the right-hand side of (3.4):

∑
v

(∑
A�v

2|A|�A

)2
≤∑

w

mt(w)2
∑
k

∑
v

E
[
8k�(v,w, k)eτ̂v

]
(3.6)

×∑
k′

E

[
eτ̂v
∑
w′

8k′
�
(
v,w′, k′)].

For the summation over k′ in (3.6), we combine the facts that τ̂v ≤ 1
2L(ĤĈv

(t −
τ̂v, t)) + 1 ≤ 1

2L(ĤĈv
) + 1 (either |Ĉv| = 1 and then τ̂v = 1, or |Ĉv| ≥ 2 whence

at least two strands survive for a period of τ̂v), that at most |ĤĈv
| choices for w′

support �(v,w′, k′) = 1 and that
∑

k′ �(v,w′, k′) ≤ 1, to get

∑
k′

E

[
eτ̂v
∑
w′

8k′
�
(
v,w′, k′)]≤ E

[|ĤĈv
|8|ĤĈv

|
e

1
2L(ĤĈv

)+1]≤ γ1(3.7)

for some absolute constant γ1 > 0, where the last inequality applied Lemma 2.2.
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Next, to treat the summation over k in (3.6), recall that X̂w,r for (w, r) ∈
V × [0, t] is the information percolation cluster containing the point (w, r) in
the space-time slab (i.e., the cluster is exposed from time r instead of time t and
the process of developing it moves both forward and backward in time). Further,
write X̂+

w,r = limt→r+ X̂w,t and X̂−
w,r = limt→r− X̂w,t .

Note that whenever �(v,w, k) = 1, necessarily (v, t) ∈ X̂−
w,r for some r ∈ �w ,

where �w records the update times for the vertex w (always including t, by defi-
nition of Ĥ ). Indeed, if w ∈ ĤĈv

(t − τ̂v, t) then by definition we can find some
q ∈ (t − τ̂v, t) such that (w,q) shares the same information percolation clus-
ter as (v, t). Furthermore, if r is the earliest update of w after time q then the
cluster of (w, t) for any t ∈ (q, r) will contain (w,q), and thus (v, t) as-well.
(It is for this reason that we addressed X̂−

w,r , in case the update at (w, r) should
cut its information percolation cluster from (w,q).) For that r , we further have
t − r ≤ τ̂v ≤ 1

2L(X̂−
w,r) + 1, and so

∑
k

∑
v

E
[
8k�(v,w, k)eτ̂v

]

≤ E

[ ∑
r∈�w

|ĤX̂−
w,r

|8|ĤX̂−
w,r

|
e

1
2L(X̂−

w,r )1{ 1
2L(X̂−

w,r )≥t−r−1}
]

≤ E

[ ∑
r∈�w

|ĤX̂−
w,r

|8|ĤX̂−
w,r

|
e

3
4L(X̂−

w,r )− 1
2 (t−r−1)

]
,

which, recalling that �w is the union of {t} and a rate-1 Poisson process, is at
most

E
[|ĤĈw

|8|ĤĈw
|
e

3
4L(ĤĈw

)+ 1
2
]

+
∫ t

0
E
[|ĤX̂−

w,r
|8|ĤX̂−

w,r
|
e

3
4L(X̂−

w,r )− 1
2 (t−r−1) | r ∈ �w

]
dr

≤ √
eγ2

[
1 +
∫ t

0
e− 1

2 (t−r) dr

]
≤ 5γ2

for some absolute constant γ2 > 0, using Lemma 2.2 (with γ2 from that lemma)
for the first inequality.

Substituting the last two displays together with (3.7) in (3.6), while recalling
(3.4), finally gives

d̄TV(t)
2 ≤ 10γ1γ2

∑
w

mt(w)2.(3.8)

The proof will be concluded with the help of the next simple claim that establishes
a submultiplicative bound for the second moment of the magnetization.
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CLAIM 3.3. For any t, s > 0, we have

e−2s ≤
∑

w mt+s(w)2∑
w mt (w)2 ≤ e−2(1−βd)s .

PROOF. The lower bound follows from the straightforward fact that
mt+s(w) ≥ e−smt (w) for any s, t > 0 and w, since the probability of observing
no updates to w along the interval (t, t + s) (thus maintaining the magnetization
without a change) is e−s . It therefore remains to prove the upper bound.

When a vertex v is updated if σ is the sum of the spins of its neighbors,
then v is set to 1 with probability 1

2 + 1
2 tanh(βσ) and −1 otherwise. Thus, since

d
dx

tanh(x) ≤ 1 for all x ∈ R after an update of v at time t ,

P
(
X+

t (v) = 1
)− P
(
X−

t (v) = 1
)

= 1

2
E

[
tanh
(
β
∑
w∼v

X+
t (w)

)
− tanh

(
β
∑
w∼v

X−
t (w)

)]

≤ β

2
E

[∑
w∼v

X+
t (w) − X−

t (w)

]
= β
∑
w∼v

mt (w),

and so since updates arrive at rate 1, d
dt
mt (v) ≤ β

∑
w∼v mt (w) −mt (v). Hence,

d

dt

∑
v

mt (v)2 = 2
∑
v

mt (v)
d

dt
mt (v)

≤ −2
∑
v

mt (v)2 + 2β
∑
v

mt (v)
∑
w∼v

mt (w),

and using mt (v)mt (w) ≤ 1
2(mt (v)2 +mt (w)2) it follows that

d

dt

∑
v

mt (v)2 ≤ −2(1 − βd)
∑
v

mt (v)2,

which implies the desired upper bound. �

Recalling that t = tm + s, we apply the above claim for t = tm (at which point∑
w mtm(w)2 = 1 by definition) and s = s to find that

∑
w mt(w)2 ≤ exp(−2(1 −

βd)s) ≤ exp(−s), with the last inequality via βd ≤ 1
2 . By (3.8) (keeping in mind

that γ1 and γ2 are absolute constants), this implies that d̄TV(t) ≤ ε if we take
s ≥ C log(1/ε) for some absolute constant C > 0, as required. �

3.2. Lower bound. We now estimate the correlation of two vertices at an arbi-
trary time.
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CLAIM 3.4. There exist absolute constants κ, γ > 0 such that, for any initial
state x0, if β < κ/d then∑

u

Covx0

(
Xt(u),Xt(v)

)≤ γ for any t > 0 and v ∈ V .

PROOF. Let X′
t and X′′

t be two independent copies of the dynamics started
from x0. We claim that we may couple Xt with X′

t and X′′
t so that, on the event

{u /∈ Cv}, we have Xt(u) = X′
t (v) and Xt(v) = X′′

t (v). Couple the updates of Xt

and X′
t inside the history Hu. On the event {u /∈ Cv} couple the updates of Xt and

X′′
t inside the history Hv . This is permissable since these histories are disjoint and

the histories are measurable with respect to the updates inside them. Hence,

E
[
Xt(u)Xt(v)

]= E
[
X′

t (u)X′′
t (v) + (Xt(u)Xt(v) − X′

t (u)X′′
t (v)
)
1{u∈Cv}

]
≤ E
[
X′

t (u)
]
E
[
X′′

t (v)
]+ 2P(u ∈ Cv).

It follows that Cov(Xt(u),Xt(v)) ≤ 2P(u ∈ Cv) ≤ 2P(u ∈ Ĉv), and so∑
u

Cov
(
Xt(u),Xt(v)

)≤ 2E|Ĉv| ≤ γ,

with the final equality thanks to Lemma 2.2. �

We are now ready to prove the lower bound on the mixing time in Theorem 1.
To this end, we use the magnetization to generate a distinguishing statistic at time
t− = tm − s, given by

f (σ) =∑
v∈V

mt− (v)σ (v).

Putting Y = f (X+
t−

) for the dynamics started from all-plus and Y ′ = f (σ) with
σ drawn from the Ising distribution π , we combine Claim 3.3 with the fact that∑

v mtm(v)2 = 1 (by definition) to get

EY =∑
v

mt− (v)2 ≥ e2(1−βd)s
∑
v

mtm(v)2 = e2(1−βd)s ≥ es(3.9)

(the last inequality using βd ≤ 1
2 ), whereas EY ′ = 0 (as E[σ(v)] = 0 for any v).

For the variance estimate, observe that

Var(Y ) =∑
u,v

mt− (u)mt− (v)Cov
(
X+

t−
(u),X+

t−
(v)
)

≤ 1

2

∑
u,v

(
mt− (u)2 +mt− (v)2)Cov

(
X+

t−
(u),X+

t−
(v)
)

≤ γ
∑
v

mt− (v)2 = γEY,
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using Claim 3.4 for the inequality in the last line. Furthermore, since the law of Xt

converges as t → ∞ to that of σ , for any v ∈ V we have∑
u

Cov
(
σ(u), σ (v)

)= lim
t→∞
∑
u

Cov
(
Xt(u),Xt(v)

)≤ γ,

and so the same calculation in the above estimate for Var(Y ) shows that

Var
(
Y ′)≤ γEY.

Altogether, by Chebyshev’s inequality,

P

(
Y ≥ 2

3
EY

)
≥ 1 − 9γ /EY,

whereas

P

(
Y ′ ≤ 1

3
EY

)
≥ 1 − 9γ /EY.

Recalling (3.9), the expression 9γ /EY can be made less than ε/2 by choosing
s ≥ C log(1/ε) for some absolute constant C > 0, we have that

∥∥P+[Xt− ∈ ·] − π
∥∥

TV ≥ P

[
Y ≥ 1

2
EY

]
− P

[
Y ′ ≥ 1

2
EY

]
≥ 1 − ε,

concluding the proof of the lower bound. �

4. Analysis of percolation clusters.

4.1. Red clusters: Proof of Lemma 2.1. In estimating �A, we need to under-
stand the effect of conditioning on the fact that either A ∈ RED or A ⊂ VBLUE,
together with the collective history of every v /∈ A.

For a given subset S ⊂ V , let RED∗
S denote the red clusters that arise when

exposing the joint histories of HS (as opposed to all the histories HV ). Note
the events {A ∈ RED} and {A ∈ RED∗

A} ∩ {HA ∩ H −
A = ∅} are identical since

the event of A being a red cluster means the histories of A satisfy the proper-
ties of being a red cluster and they do not intersect the histories of any vertices
in the complement of A. Similarly, define BLUE∗

S , and by the same reasoning
{A ⊂ VBLUE} = {A ⊂ VBLUE∗

A
} ∩ {HA ∩ H −

A = ∅}.
Next, given H −

A = X , we need to ensure that the component of A avoids X .
This can be complicated by the fact that X could include parts of A for times before
t and so the event may be very unlikely. To take care of this possibility, let su =
su(X ) = max{s : (u, s) ∈ X } be the latest most time at which X contains u ∈ A.
This implies that any u with su ≤ t must receive an update in the interval (su, t] in
order to avoid X . We set A′ = {u ∈ A : su > t −1} and define U = U(A′, {su}u∈A′)
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as the event that each vertex v in A′ received an update in (t − 1, t]. We find
P(A ∈ RED | H −

A =X , {A ∈ RED} ∪ {A ⊂ VBLUE}) to be equal to

P(A ∈ RED∗
A,HA ∩X = ∅,U | H −

A =X )

P({A ∈ RED∗
A} ∪ {A ⊂ VBLUE∗

A
},HA ∩X = ∅,U | H −

A = X )
.

Since the event {A ∈ RED∗
A} ∩ {HA∩ ⊂ X = ∅} ∩ U is measurable in the σ -field

of updates within the space-time slab complement of X (thanks to the specifically
defined notion of RED∗

A), it is independent of {H −
A =X }, and the same applies to

the event ({A ∈ RED∗
A} ∪ {A ⊂ VBLUE∗

A
})∩ {HA∩ ⊂ X =∅} ∩U . Thus, the above

expression equals

P(A ∈ RED∗
A,HA ∩X = ∅ | U)

P({A ∈ RED∗
A} ∪ {A ⊂ VBLUE∗

A
},HA ∩X =∅ | U)

.

The numerator is at most P(A ∈ RED∗
A | U). As for the denominator, it is at least

the probability that, in the space conditioned on U , every u ∈ A gets updated in
the interval (su ∨ t − 1, t] and the last such update (i.e., the first we expose when
revealing Hu) is oblivious (implying A ⊂ VBLUE∗

A
)—which is θ |A|(1 − 1/e)|A\A′|.

As this is at least e−|A| for small enough β [recall the definition of θ in (2.4)],

�A ≤ e|A|
P
(
A ∈ RED∗

A | U).(4.1)

Recall that in order for A to form a complete red cluster, the update histories
{Hu : u ∈ A} must belong to the same connected component of the space-time
slab, and moreover, the configuration of A at time t must be a nontrivial function
of the initial configuration. Thus, either the histories {Hu : u ∈ A} coalesce to a
single point w at some time 1 ≤ T < t—and then the spin there must depend
nontrivially on the initial state, that is, X+

T (w) �= X−
T (w)—or the histories for all

u ∈ A all join into one cluster along (0, t] and at least one of these survives to
time 0. (The same would be true if we did not restrict the coalescence time to be
at least 1, yet in this way the conditioning on U , which only pertains to updates
along the interval (t − 1, t], does not cause any complications.) For the latter, we
denote by J (a, b) the event that the histories join in the interval (a, b), and for the
former we let

τ ′ = min
{
t ≥ 1 : ∣∣HA(t − t)

∣∣= 1
}∧ t, T = t − τ ′,

and note that the variable τ ′ is a stopping time w.r.t. the natural filtration associated
with exposing the update histories backward from time t; indeed, in contrast to
a definition of τv analogous to (2.7)—asking for {Hu : u ∈ Cv} to coalesce to a
single point—here one only requires this for {Hu : u ∈ A} (whereas Cv may be
affected by the histories along (0, T ] as these may admit additional vertices to it).
With this notation, we deduce from the above discussion that

P
(
A ∈ RED∗

A | U)≤ P

(⋃
w

{
J (T , t),w ∈ HA(T ),X+

T (w) �= X−
T (w)
} ∣∣∣ U).
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[If T = 0 and A ∈ RED∗
A then HA(0) �= ∅, whence X+

0 (w) �= X−
0 (w) trivially

holds for any w ∈ HA(0).] By conditioning on T as well as on HA(T , t), the first
two events on the right-hand side become measurable, while the event X+

T (w) �=
X−

T (w) only depends on the histories along (0, T ] and satisfies

P
(
X+

T (w) �= X−
T (w) | T ,HA(T , t)

)= mT (w) ≤ et−T mt(w),

where the final inequality used the fact, mentioned in the proof of Claim 3.3, that
mt+s(w) ≥ e−smt (w) for any s, t > 0 and w, as the probability of no updates to
w along the interval (t, t + s) (maintaining the magnetization without a change) is
e−s . Now, averaging over this conditional space yields

P
(
A ∈ RED∗

A | U)≤ E

[∑
w

1{J (T ,t)}1{w∈HA(T )}et−T mt(w)
∣∣∣ U]

≤ E

[∑
w

1{A⊂Cv}1{w∈HA(t−τ ′,t)}eτ ′
mt(w)

∣∣∣ U],
where we increased the event J (T , t) (the joining of HA along (T , t]) into A ⊂
Cv (valid for any v ∈ A) as well as the event {w ∈ HA(T )} into {w ∈ HA(T , t)},
and finally plugged in that T = t − τ ′. Since by definition τ ′ ≤ τv = min{t ≥ 1 :
|HCv (t − t)| = 1} ∧ t on the event A ⊂ Cv , we conclude that

P
(
A ∈ RED∗

A | U)≤ E

[∑
w

1{A⊂Cv}1{w∈HA(t−τv,t)}eτvmt(w)
∣∣∣ U].(4.2)

The final step is to eliminate the conditioning on U using the modified update
history Ĥ , which we recall does not remove vertices from the history along the
unit interval (t − 1, t] and grants each vertex an automatic update at time t. As
such, Hu(t) ⊂ Ĥu(t) for any vertex u and time t .

We claim that each of the terms in the right-hand side of (4.2) is increasing in the
percolation space-time slab (i.e., they can only increase when adding connections
to the update histories). Indeed, this trivially holds for {A ⊂ Cv}; the variable τv is
increasing as it may take only longer for Cv to coalesce to a single point; finally, as
the interval (t − τv, t] does not decrease and neither does HA along it, the event
{w ∈ HA(t − τv, t)} is also increasing.

Therefore, if we do not remove vertices from the update history along (t −1, t]
then the right-hand side of (4.2) could only increase. Further, observe that, as long
as no vertices are removed from the history along that unit interval, the connected
components of the update history at time t − 1 remain exactly the same were we
to modify the update times of any vertex there, while keeping them within that unit
interval. In particular, should a vertex at all be updated in that period, we can move
its latest update time to t.

In this version of the update history (retaining all vertices in the given unit in-
terval, and letting the latest most update, if it is in that interval, be performed
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at time t), the effect of conditioning on U in that every u ∈ A′ receives an up-
date at time t. The fact that Po(λ | · ≥ 1) � Po(λ) + 1 for any λ > 0 [as the ra-
tio P(Po(λ) = k)/P(Po(λ) > k) is monotone increasing in k] now implies [taking
λ ∈ (0,1)] that the number of updates that any u ∈ A′ receives along (t − 1, t]
conditioned on U as part of H is stochastically dominated by the corresponding
number of updates as part of Ĥ .

Altogether we conclude that the right-hand side of (4.2) can be increased to
yield

P
(
A ∈ RED∗

A | U)≤ E

[∑
w

1{A⊂Ĉv}1{w∈ĤA(t−τ̂v,t)}e
τ̂vmt(w)

]
,

and combining this with (4.1) completes the proof. �

4.2. Discrete Fourier expansion for the update rules. The following lemma,
which constructs the modified update rules �A (as described in Section 2), will
play a key role in the proof of Lemma 2.2.

LEMMA 4.1. For every ε > 0, there exists some κ > 0 such that the following
holds provided βd < κ . For any r ≤ d , there are nonnegative reals {pk,r : k =
0, . . . , r} satisfying

p0,r ≥ 1 − ε,
∑
k

(
r

k

)
pk,r = 1, and

(
r

k

)
pk,r ≤ D0(2βr)k

(4.3)
for all k,

where D0 is an absolute constant, such that the Glauber dynamics can be coupled
to an update function � that selects a subset A ⊂ [r] of the neighbors of a degree-
r vertex with probability p|A|,r and applies to it a symmetric monotone boolean
function �A [i.e., �A(−x) = −�A(x) and �A(x) is increasing in x].

PROOF. Setting

f (x) = 1

2

(
tanh(x) + 1

)= ex

ex + e−x

we have that the Glauber dynamics update function at a given site with neighbors
σ1, . . . , σr assigns it a new spin of 1 with probability f (β

∑r
i=1 σi). Writing the

Taylor series expansion f (x) =∑∞
�=0 B�x

�, with

B� = 1

�!
d�f

dx�
(0),

and so, bearing in mind that tanh(z) has no singularities in the open disc of radius
π/2 around 0 in C and thus

∑
B� converges absolutely,

B0 = B1 = 1/2 and
∑ |B�| = B for some absolute constant B > 0.
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Next, since σi ∈ {±1} the power series is multi-linear in σi , whence we can write

(
β
∑

σi

)� = ∑
A⊂[r]
|A|≤�

C�,A

∏
i∈A

σi =
�∧r∑
k=1

C�,k

∑
|A|=k

∏
i∈A

σi,

where we used that the nonnegative coefficient C�,A depends by symmetry on |A|
rather than A itself, thus we can write C�,k for |A| = k. (Note that for � = 1 we
have C1,1 = β .)

Now, for any particular k ≤ � ∧ r , we can put σ1 = · · · = σr = 1 to find that

(βr)� =
�∧r∑
i=0

∑
|A|=i

C�,i ≥ ∑
|A|=k

C�,k =
(
r

k

)
C�,k,

and so

(4.4) 0 ≤ C�,k ≤ (βr)�(r
k

) .

Therefore, letting

Ck =
∞∑

�=k

C�,kB� for k ≥ 1

and recalling that
∑ |B�| = B , we see that

(4.5) |Ck| ≤ B
∑
�≥k

(βr)�(r
k

) ≤ 2B
(βr)k(r

k

) ,

with the last inequality valid as long as βr ≤ 1/2.
We now define pk,r as follows:

(4.6) pk,r =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2|Ck|(k + 1) k ≥ 2,

2
(
C1 − ∑

A′�1
|A′|≥2

|C|A′||
)

k = 1,

1 −∑
k≥1

(
r

k

)
pk,r k = 0.

Our first step in verifying that this definition satisfies (4.6) is to show that 0 <

p1,r < 1. For the upper bound, using (4.5) we have p1,r ≤ 2|C1| ≤ 4Bβ < 1 for
β small enough. For the lower bound, observe that since B1 = 1/2, C1,1 = β and
C�,1 ≤ (βr)�/r using (4.4),

(4.7) C1 ≥ β

2
−

∞∑
�=2

C�,1|B�| ≥ β

2
− B

r

∑
�≥2

(βr)� ≥ β

(
1

2
− 2βrB

)
> β/4.
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as long as β < 1/(4rB). On the other hand, again appealing to (4.5),

∑
A′�1

|A′|≥2

|C|A′|| =
r∑

k=2

(
r − 1

k − 1

)
|Ck| ≤ 2B

r∑
k=2

k

r
(βr)k

(4.8)

= 2Bβ

r∑
k=2

k(βr)k−1 ≤ β/8

provided βr is sufficiently small. Combining the last two displays yields p1,r ≥
β/8.

Next, we wish to verify that
(r
k

)
pk,r ≤ D0(2βr)k for some absolute constant

D0 and all k. Let D0 = 4B and note that for k = 0 the sought inequality is trivial
since D0 > 1 (recall B ≥ B0 + B1 = 1) whereas p0,r < 1 (we have shown that
p1,r > 0 and clearly pk,r ≥ 0 for all k ≥ 2). For k = 1, we again recall from (4.5)
that rp1,r ≤ 2r|C1| ≤ 4βrB < D0(2βr), and similarly, for k ≥ 2 we have(

r

k

)
pk,r = 2

(
r

k

)
|Ck|(k + 1) ≤ 4B(k + 1)(βr)k ≤ 4B(2βr)k = D0(2βr)k.

For any sufficiently small βr , this of course also shows that pk,r ≤ 1 for all k, as
well as the final fact that p0,d ≥ 1 − ε since

∑
k≥1

(
r

k

)
pk,r ≤ D0

∑
k≥1

(2βr)k < 4βrD0 < ε(4.9)

for a small enough βr .
Having established that desired properties for {pk,r : 0 ≤ k ≤ r}, define the new

update function � which will examine a random subset A of the r neighbors of a
vertex, selected with probability p|A|,r (giving a proper distribution over the sub-
sets of [r] since

∑
k

(r
k

)
pk,r = 1 as shown above), then apply the following function

�A to determine the probability of a plus update given σA = {σi : i ∈ A}:

(4.10) �A(σA) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2
A = ∅,

1

2
+ 1

2
σi A = {i},

1

2
+ 1

2(|A| + 1)

[∑
i∈A

σi + sign(C|A|)
∏
i∈A

σi

]
|A| ≥ 2.

In order to establish that � can be coupled to the Glauber dynamics, we need
to show that f (β

∑r
i=1 σi) identifies with E[�(σ1, . . . , σr)] over all inputs {σi}.

Since B0 = 1/2, we must show that E[�] − 1/2 is equal to
∑∞

�=1 B�(β
∑

σi)
�.
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Indeed,

E[�] − 1

2
=∑

i

σi

(
C1 − ∑

A′�i
|A′|≥2

C|A′|
)

+ ∑
|A|≥2

|C|A||
(∑

i∈A

σi + sign(C|A|)
∏
i∈A

σi

)

= ∑
|A|≥1

C|A|
∏
i∈A

σi =
∞∑

�=1

�∧r∑
k=1

∑
|A|=k

C�,kB�

∏
i∈A

σi =
∞∑

�=1

B�

(
β
∑

σi

)�
,

with the last two equalities following from the definition of Ck and C�,k . This
completes the proof. �

4.3. Exponential decay of cluster sizes: Proof of Lemma 2.2. Using the update
rule from Lemma 4.1, the probability that an update of a vertex v of degree r ≤ d

will examine precisely k of its neighbors is(
r

k

)
pk,r ≤ D0(2βr)k ≤ D0(2βd)k,

with the inequality thanks to (4.3). The probability that a given neighbor of v, with
degree some r ′ ≤ d , receives an update in which it examines both v and k − 1
additional neighbors is at most

max
r ′≤d

pk,r ′

(
r ′ − 1

k − 1

)
≤ max

r ′≤d

k

r ′ D0
(
2βr ′)k = 1

d
D0(3βd)k,

using that x1/x ≤ e1/e < 3/2 for all x ≥ 2. Hence, the rate at which the history of
the vertex v expands to k additional vertices along the time interval (0, t) is at
most

D0(1 + r/d)(3βd)k ≤ 2D0(3βd)k.

By the same reasoning, the extra update at time t that is applied to v in Ĥ con-
nects it to k of its neighbors (k = 0, . . . , r) with probability at most D0(2βd)k ,
while each of its r neighbors contributes at most k new points with probability at
most D0(3βd)k/d .

We now develop the cluster of the vertex (w0, t0) in the space-time slab by
exploring the branch at w0, both forward and backward in time, examining which
connections it has to new vertices—either through its own updates or through those
which examine it—until it terminates via oblivious updates in both directions. We
then repeat this process with one of the points discovered in the exploration process
(arbitrary chosen), until all such points are exhausted and the cluster is completely
revealed.

Let Ym denote the number of vertices explored in this way after iteration m [i.e.,
Y1 is the number of vertices discovered via the branch incident to (w0, t0), etc.],
and let Zm be the total length of edges in the time dimension [i.e., (z, a), (z, b) for
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z ∈ V and 0 ≤ a < b ≤ t] explored by then. We can stochastically dominate these
by a process (Ȳm, Z̄m) � (Ym,Zm) given as follows.

First, for the length variable, we apply Lemma 4.1 with ε = (1 − η)/4, and put

Z̄0 = 0,

Z̄m = Z̄m−1 + Wm where Wm ∼ 1 + �(2,1 − ε),

with the gamma variable �(2,1 − ε) measuring the time until the explored branch
terminates (in both ends) using the key estimate p0,r ≥ 1 − ε from Lemma 4.1,
translated by 1 to account for the unit interval (t − 1, t] in which vertices are not
removed from Ĥ .

For the vertex count variable, with the above discussion in mind, observe that
conditioned on Wm the number of new vertices exposed along the new branch is
dominated by

∑d
k=1 V

(k)
m , in which

V (k)
m ∼ k Po

(
2D0(3βd)kWm

)
(k = 1, . . . , d)

are mutually independent, while the extra update at time t (should the branch
extend to that time) introduces at most

∑d
k=0 V̂

(k)
m additional vertices, where all

V
(k)
m and V̂

(k)
m are independent, given by

P
(
V̂ (0)

m = j
)≤ D0(2βd)j , P

(
V̂ (k)

m = j
)≤ D0(3βd)j /d (k = 1, . . . , d).

Therefore, with this notation, we write

Ȳ0 = 1,

Ȳm = Ȳm−1 + Um where Um =
d∑

k=1

V (k)
m +

d∑
k=0

V̂ (k)
m .

Letting τ ≥ 1 be the iteration after which the exploration process exhausts all new
vertices [so τ = 1 iff both ends of the branch of (v0, t0) terminated before intro-
ducing any new vertices to the cluster], we wish to show that

E
[
exp(ηZ̄τ + λȲτ )

]≤ γ(4.11)

for γ (λ, η) < ∞. We may assume without loss of generality—recalling that ε =
(1 − η)/4 ≤ 1

4 —that

(4.12) λ ≥ 4 log(1/ε),

as the left-hand side of (4.11) is monotone increasing in λ. Observe that as long as
3βdeλ < 1/2 we have

E
[
exp
(
λV̂ (0)

m

)]≤ 1 + D0
∑
k≥1

(
2βdeλ)k ≤ 1 + 4D0βdeλ
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as well as
d∏

k=1

E
[
exp
(
λV̂ (k)

m

)]≤ 1 + 2D0
∑
k≥1

(
3βdeλ)k ≤ 1 + 12D0βdeλ,

and similarly,

d∏
k=1

E
[
exp
(
λV (k)

m

) | Wm

]= exp

[
2WmD0

d∑
k=1

(
eλk − 1

)
(3βd)k

]

≤ exp
[
12WmD0βdeλ].

We can further assume that

h(λ) := D0βdeλ satisfies 12h(λ) < (1 − η)/2 = 1 − 2ε − η,

achievable by letting βd be sufficiently small. With this notation,

E
[
eλUm+ηWm | Wm

]≤ e(12h(λ)+η)Wm+16h(λ),

and upon taking expectation over Wm, having 12h(λ) + η < 1 − 2ε implies that
the moment-generating function of the gamma distribution will only contribute a
polynomial factor, giving that

(4.13) E
[
eλUm+ηWm

]≤ e28h(λ)+η

(
1 − 12h(λ) + η

1 − ε

)−2
≤ ε−2e28h(λ).

Combining this with our definition of Ȳm = 1 +∑m
i=1 Ui and Z̄m =∑m

i=1 Wi , we
find that

E
[
eλȲτ +ηZ̄τ

]= E

[ ∞∑
m=1

e−λm+2λȲm+ηZ̄m1{τ=m}
]

≤
∞∑

m=1

e−λm
E
[
e2λȲm+ηZ̄m

]

=
∞∑

m=1

eλ(2−m)(
E
[
e2λU1+ηW1

])m
,

which, recalling (4.13) and plugging in the expression for h(2λ), is at most

e2λ
∞∑

m=1

exp
[
m

(
−λ + 2 log

(
4

1 − η

)
+ 28h(2λ)

)]

≤ e2λ
∞∑

m=1

exp
[
m
(−λ/2 + 28h(2λ)

)]= γ < ∞

using (4.12) for the first inequality and, say, that 28h(2λ) ≤ λ/3 (achieved by tak-
ing βd small enough) for the second one. [Note that γ = γ (λ, η), as the assump-
tion (4.12) introduces a dependence on η.] This establishes (4.11) and thereby
completes the proof. �
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5. The effect of initial conditions on mixing. In this section, we consider
random initial conditions (both quenched and annealed), and prove Theorem 2.
The first observation is that, thanks to Theorem 1, the worst-case mixing time
satisfies

tMIX(α) = tm + O(1) for any fixed 0 < α < 1,

with tm as defined in (1.1), and moreover, the same holds for t
(+)
MIX(α), the mixing

time started from all-plus. By Claim 3.3, we have 1
2 logn ≤ tm ≤ (1

2 + εβ) logn

with εβ = βd/(2 − 2βd) vanishing as β ↓ 0. Thus, we may prove the bounds on
the annealed/quenched mixing times when replacing tm by 1

2 logn.

5.1. Annealed analysis. As mentioned in the Introduction, rather than com-
paring two worst case boundary conditions we will compare a random one directly
with the stationary distribution: By considering updates in the range t ∈ (−∞, tm]
we can use the coupling from the past construction to generate a coupling with
the stationary distribution. Let Xt denote the process started from uniform initial
conditions at time 0 and let Yt be the process generated by coupling from the past.

The information percolation clusters of V will now be defined as the connected
components of the graph on the vertex set V where (u, v) is an edge iff Hu(t) ∩
Hv(t) �= ∅ for some −∞ < t ≤ tm (in contrast to the previous definition where
we had 0 < t ≤ tm). The notion of being a red cluster is redefined to be any Cv

such that |⋃u∈Cv
Hu(t

′)| ≥ 2 for all 0 ≤ t ′ ≤ tm. Blue clusters will be defined as
before and green clusters will again be the remaining clusters. We claim that we
can couple the spins at time tm of all nonred clusters. Indeed, if a cluster Cv is
not red, then there is some time t ′ > 0 such that |⋃u∈Cv

Hu(t
′)| = 1. Call this

vertex w. By symmetry, both Xt ′(w) and Yt ′(w) are equally likely to be plus or
minus and so we may couple them to be equal independently of the spins of the
other clusters. We may then also couple the spins in that cluster to be the same in
both Xt and Yt to be equal for all t > t ′. Thus, the configurations will agree outside
of the red clusters.

Let W(A) denote the size of the smallest connected set of vertices (animal)
containing A. In a graph of maximum degree d , the number of trees of size k con-
taining the vertex v is bounded above by (ed)k , and hence the number of animals
A containing a specified vertex with W(A) = k is at most (ed)k .

LEMMA 5.1. For any d,C, ε > 0 there exists β0 > 0 such that the following
holds for large enough n. If 0 < β < β0 and t = (1

4 + ε) logn then for any A,

sup
H −

A

P
(
A ∈ RED | H −

A , {A ∈ RED} ∪ {A ⊂ VBLUE})≤ 1√
n logn

e−CW(A).
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PROOF. The line of reasoning in the proof of Lemma 2.1 establishing equation
(4.1) remains unchanged with the modified definition of red clusters so again we
have

P
(
A ∈ RED | H −

A , {A ∈ RED} ∪ {A ⊂ VBLUE})≤ 2|A|
P(A ∈ RED | U),

where U is unchanged from the proof of Lemma 2.1. Then for any v ∈ A,

P(A ∈ RED | U) ≤ P
(|HCv | ≥ W(A),L(Xv,0) ≥ 2t | U),

since the total length of a red cluster must be at least 2t and it must contain at least
W(A) vertices. Both |HCv | and L(Xv,0) are increasing in the component sizes, and
so, by the same monotonicity argument as Lemma 2.1, we have that

P
(
A ∈ RED | H −

A , {A ∈ RED} ∪ {A ⊂ VBLUE})
≤ 2|A|

P
(|ĤĈv

| ≥W(A),L(X̂v,0) ≥ 2t
)
.

Taking λ = log 2 + C and 1
4(1

4 + ε)−1 < η < 1 in Lemma 2.2 then shows that, for
β0 small enough,

P
(|ĤĈv

| ≥ W(A),L(X̂v,0) ≥ 2t
)

≤ E[exp(ηL(X̂v,0) + λ|ĤĈv
|)]

exp(2ηt + λW(A))

≤ γ exp
(
−2η

(
1

4
+ ε

)
logn − (log 2 + C)W(A)

)

≤ 1√
n logn

2−W(A)e−CW(A)

(with room, as we could have replaced the
√

n logn by some n1/2+ε′
), which com-

pletes the proof. �

We now establish an upper bound on t
(U)
MIX, the mixing time starting from the

uniform distribution.

PROPOSITION 5.2. For any d, ε > 0, there exists β0 > 0 such that the follow-
ing holds. If 0 < β < β0 and t = (1

4 + ε) logn, then ‖P(Xt ∈ ·) − π‖TV → 0 as
n → ∞.

PROOF. Having coupled Xt and Yt as described above we have that∥∥P(Xt ∈ ·) − P(Yt ∈ ·)∥∥TV

≤ E
[∥∥P(Xt(V \ VGREEN) ∈ · | HGREEN

)− νV \VGREEN

∥∥
TV

]
+E
[∥∥P(Yt(V \ VGREEN) ∈ · | HGREEN

)− νV \VGREEN

∥∥
TV

]
,
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where νA is the uniform measure on the configurations on A. Similar to the argu-
ment used to derive equation (3.2), we find that

∥∥P(Xt ∈ ·) − P(Yt ∈ ·)∥∥TV ≤
(

sup
HGREEN

E
[
2|VRED∩VRED′ | | HGREEN

]− 1
)1/2

.

With the same coupling as in the proof of Theorem 1, analogously to equation
(3.4), we have

(5.1)
∥∥P(Xt ∈ ·) − P(Yt ∈ ·)∥∥2TV ≤ 2

∑
v

(∑
A�v

2|A|�A

)2
.

Applying Lemma 5.1 with C = �log(4ed)� [while recalling that #{A � v :
W(A) = k} ≤ (ed)k], we get

∑
A�v

2|A|�A ≤∑
k

∑
A:W(A)=k

v∈A

2ke−Ck

√
n logn

≤∑
k

(2ed)ke−Ck

√
n logn

≤ 1√
n logn

,

provided that β > β0 with β0 from that lemma. It follows that∥∥P(Xt ∈ ·) − P(Yt ∈ ·)∥∥TV ≤ O
(
log−2 n

)
,

and in particular ‖P(Xt ∈ ·) − π‖TV = o(1), as required. �

REMARK 5.3. In the above proof, one could instead carry the analysis as in
the proof of Theorem 1 (partitioning the event in Lemma 2.1 according to the
events {|Ĉv| = k} when estimating the sum over v � A), that way replacing the
factor of (ed)k lattice animals by 2k subsets of Ĉv . Consequently, the statement
of Proposition 5.2 remains valid for any β < c0/d where c0 depends on ε but not
on d .

5.2. Quenched analysis. Here, we show that the mixing time from a typical
random initial state is at most a factor of 1 + εβ faster than that from the worst
starting state. As before, let Xt be started from a uniformly chosen initial state X0
and let Yt be started from the stationary distribution π .

PROPOSITION 5.4. Let t− = 1
2 logn − wn for some wn ↑ ∞. Then

‖PX0(Xt− ∈ ·) − π‖TV
p→ 1 as n → ∞.

PROOF. Note that by the monotonicity of the update rules, for any update
history of u, the spin at u is a monotone function of X0. With probability e−t ,
the vertex u is never updated in which case Xt(u) = X0(u). Since by symmetry
E[Xt(u)] = 0, it follows that

E
[
Xt(u) | X0(u) = +1

]≥ e−t , E
[
Xt(u) | X0(u) = −1

]≤ −e−t .
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Thus we have that E[X0(u)Xt(u)] ≥ e−t and so

E

[∑
u

X0(u)Xt− (u)

]
≥ ne−t− = √

newn.

Let Eu,v be the event that u ∈ Cv or v ∈ Hu(0) or u ∈ Hv(0) for the history devel-
oped from time t− . Similar to Claim 3.4, let X′

t and X′′
t be two independent copies

of the dynamics. By exploring the histories, we may couple Xt with X′
t and X′′

t so
that, on the event Ec

u,v , the history of v in Xt is equal to the history of v in X′
t and

the history of u in Xt is equal to the history of u in X′′
t . Hence,

E
[
X0(u)Xt− (u)X0(v)Xt− (v)

]≤ E
[
X′

0(u)X′
t−

(u)
]
E
[
X′′

0(v)X′′
t−

(v)
]+ 2P(Eu,v),

yielding Cov(X0(u)Xt− (u),X0(v)Xt− (v)) ≤ 2P(Eu,v). By Lemma 2.2,∑
u

Cov
(
X0(u)Xt− (u),X0(v)Xt− (v)

)≤ c1.

and so

Var
(∑

u

X0(u)Xt− (u)

)
≤ c1n.

Thus, by Chebyshev’s inequality we infer that

P

(∑
u

X0(u)Xt− (u) >
1

2

√
newn

)
≥ 1 − O

(
e−2wn

)
,

and so by Markov’s inequality,

P

(
P

(∑
u

X0(u)Xt− (u) >
1

2

√
newn

∣∣∣X0

)
≥ 1 − e−wn

)
(5.2)

≥ 1 − O
(
e−wn
)→ 1.

By the exponential decay of correlations of Y and the fact that it is independent
of X, we have that

Var
(∑

u

X0(u)Yt− (u)
∣∣∣X0

)
≤ c2n

for some c2 > 0. Thus, since E[∑u X0(u)Yt− (u) | X0] = 0, it follows that

(5.3) P

(∑
u

X0(u)Yt− (u) >
1

2

√
newn

∣∣∣X0

)
= O
(
e−2wn

)→ 0

uniformly in X0. Comparing equations (5.2) and (5.3) completes the result. �
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