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STABILITY OF GEODESICS IN THE BROWNIAN MAP

BY OMER ANGEL∗,1, BRETT KOLESNIK∗,2 AND GRÉGORY MIERMONT†,‡,3

University of British Columbia∗, École Normale Supérieure de Lyon† and
Institut Universitaire de France‡

The Brownian map is a random geodesic metric space arising as the scal-
ing limit of random planar maps. We strengthen the so-called confluence of
geodesics phenomenon observed at the root of the map, and with this, reveal
several properties of its rich geodesic structure.

Our main result is the continuity of the cut locus at typical points. A small
shift from such a point results in a small, local modification to the cut locus.
Moreover, the cut locus is uniformly stable, in the sense that any two cut loci
coincide outside a closed, nowhere dense set of zero measure.

We obtain similar stability results for the set of points inside geodesics to
a fixed point. Furthermore, we show that the set of points inside geodesics of
the map is of first Baire category. Hence, most points in the Brownian map
are endpoints.

Finally, we classify the types of geodesic networks which are dense. For
each k ∈ {1,2,3,4,6,9}, there is a dense set of pairs of points which are
joined by networks of exactly k geodesics and of a specific topological form.
We find the Hausdorff dimension of the set of pairs joined by each type of
network. All other geodesic networks are nowhere dense.

1. Introduction. A universal scaling limit of random planar maps has re-
cently been identified by Le Gall [30] (triangulations and 2k-angulations, k > 1)
and Miermont [37] (quadrangulations) as a random geodesic metric space called
the Brownian map (M,d). In this work, we establish properties of the Brownian
map which are a step towards a complete understanding of its geodesic structure.

The works of Cori and Vauquelin [16] and Schaeffer [41] describe a bijection
from well-labelled plane trees to rooted planar maps. The Brownian map is ob-
tained as a quotient of Aldous’ [3, 4] continuum random tree, or CRT, by assign-
ing Brownian labels to the CRT and then identifying some of its non-cut-points, or
leaves, according to a continuum analogue of the CVS-bijection (see Section 2.1).
The resulting object is homeomorphic to the sphere S

2 (Le Gall and Paulin [33]
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and Miermont [35]) and of Hausdorff dimension 4 (Le Gall [28]) and is thus in a
sense a random, fractal, spherical surface.

Le Gall [29] classifies the geodesics to the root, which is a certain distinguished
point of the Brownian map (see Section 2.1), in terms of the label process on the
CRT (see Section 2.2). Moreover, the Brownian map is shown to be invariant in
distribution under uniform re-rooting from the volume measure λ on M (see Sec-
tion 2.1). Hence, geodesics to typical points exhibit a similar structure as those to
the root. It thus remains to investigate geodesics from special points of the Brow-
nian map.

1.1. Geodesic nets. A striking consequence of Le Gall’s description of
geodesics to the root is that any two such geodesics are bound to meet and then
coalesce before reaching the root, a phenomenon referred to as the confluence of
geodesics (see Section 2.3). In fact, the set of points in the relative interior of a
geodesic to the root is a small subset which is homeomorphic to an R-tree and of
Hausdorff dimension 1 (see [29]).

DEFINITION 1. We call a subset γ ⊂ M a geodesic segment if (γ, d) is iso-
metric to a compact interval. The extremities of the geodesic segment are the im-
ages, say x and y, of the extremities of the source interval, and we say that γ is a
geodesic segment between x and y (or from x to y if we insist on distinguishing
one orientation of γ ).

We will often denote a particular geodesic segment between x, y ∈ M as [x, y],
and denote its relative interior by (x, y) = [x, y] − {x, y}. (Since there might be
more than one such geodesic segment, we will be careful in lifting any ambiguity
that might arise from this notation.) We define [x, y) and (x, y] similarly.

DEFINITION 2. For x ∈ M , the geodesic net of x, denoted G(x), is the set of
points y ∈ M that are contained in the relative interior of a geodesic segment to x.

Although geodesics to the root of the Brownian map are understood, the struc-
ture of geodesics to general points remains largely mysterious. Indeed, the main
obstacle in establishing the existence of the Brownian map is to relate a geodesic
between a pair of typical points to geodesics to the root. A compactness argu-
ment of Le Gall [28] yields scaling limits of planar maps along subsequences;
however, the question of uniqueness remained unresolved for some time. Finally,
making use of Le Gall’s description of geodesics to the root, Le Gall [30] and
Miermont [37] show that distances to the root provide enough information to char-
acterize the Brownian map metric. Let γ be a geodesic between points selected
uniformly according to λ. (By the confluence of geodesics phenomenon, the root
of the map is almost surely disjoint from γ .) In [30, 37], the set of points z ∈ γ

such that the relative interior of any geodesic from z to the root is disjoint from γ
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is shown to be small compared to γ . Hence, roughly speaking, “most” points in
“most” geodesics of the Brownian map are in a geodesic to the root. (See the dis-
cussion around equation (2) in [30] and [37], Section 2.3, for precise statements.)

In this work, we show that for any two points x, y ∈ M , points which are in a
geodesic to x but not in a geodesic to y are exceptional. Hence, to a considerable
extent, the geodesic structure of the Brownian map is similar as viewed from any
point of the map, providing further evidence that it is, to quote Le Gall [31], “very
regular in its irregularity”.

THEOREM 1. Almost surely, for all x, y ∈ M , G(x) and G(y) coincide outside
a closed, nowhere dense set of zero λ-measure.

Furthermore, for most points x ∈ M , the effect of small perturbations of x on
G(x) is localized.

THEOREM 2. Almost surely, the function x �→ G(x) is continuous almost ev-
erywhere in the following sense.

For λ-almost every x ∈ M , for any neighbourhood N of x, there is a sub-
neighbourhood N ′ ⊂ N so that G(x′) − N is the same for all x′ ∈ N ′.

The uniform infinite planar triangulation, or UIPT, introduced by Angel and
Schramm [5], is a random lattice which arises as the local limit of random trian-
gulations of the sphere. The case of quadrangulations, giving rise to the UIPQ, is
due to Krikun [26]. We remark that Theorem 2 is in a sense a continuum analogue
to a result of Krikun [27] (see also Curien, Ménard, and Miermont [20]) which
shows that the “Schaeffer’s tree” of the UIPQ only changes locally after relocating
its root.

Next, we find that the union of all geodesic nets is relatively small.

DEFINITION 3. Let F = ⋃
x∈M G(x) denote the set of points in the relative

interior of a geodesic in (M,d). We refer to F as the geodesic framework and
E = Fc as the endpoints of the Brownian map.

THEOREM 3. Almost surely, the geodesic framework of the Brownian map,
F ⊂ M , is of first Baire category.

Hence, the endpoints of the Brownian map, E ⊂ M , is a residual subset. This
property of the Brownian map is reminiscent of a result of Zamfirescu [44], which
states that for most convex surfaces—that is, for all surfaces in a residual subset of
the Baire space of convex surfaces in R

n endowed with the Hausdorff metric—the
endpoints form a residual set.



3454 O. ANGEL, B. KOLESNIK AND G. MIERMONT

1.2. Cut loci. Recall that the cut locus of a point p in a Riemannian
manifold—first examined by Poincaré [40]—is the set of points q �= p which are
endpoints of maximal (minimizing) geodesics from p. This collection of points is
more subtle than merely the set of points with multiple geodesics to p, and in fact,
is generally the closure thereof (see Klingenberg [25], Section 2.1.14).

In the Brownian map, this equivalence breaks completely. Indeed, almost all (in
the sense of volume, by the confluence of geodesics phenomenon and invariance
under re-rooting) and most (in the sense of Baire category, by Theorem 3) points
are the end of a maximal geodesic, and every point is joined by multiple geodesics
to a dense set of points (see the note after the proof of Proposition 27). Moreover,
whereas in the Brownian map there are points with multiple geodesics to the root
which coalesce before reaching the root, in a Riemannian manifold any (minimiz-
ing) geodesic which is not the unique geodesic between its endpoints cannot be
extended (see, e.g., the “short-cut principle” discussed in Shiohama, Shioya and
Tanaka [42], Remark 1.8.1).

We introduce the following notions of cut locus for the Brownian map.

DEFINITION 4. For x ∈ M , the weak cut locus of x, denoted S(x), is the set
of points y ∈ M with multiple geodesics to x. The strong cut locus of x, denoted
C(x), is the set of points y ∈ M to which there are at least two geodesics from x

that are disjoint in a neighbourhood of y.

We will see that for most points x, it holds that S(x) = C(x) (Proposition 28).
However, in some sense, C(x) is better-behaved than S(x) for the remaining ex-
ceptional points, and we will argue in Section 4.3 below that C(x) is more effective
at capturing the essence of a cut-locus for the metric space (M,d).

The construction of the Brownian map as a quotient of the CRT gives a natural
mapping from the CRT to the map. Let ρ denote the root of the map. Cut-points
of the CRT correspond to a dense subset S(ρ) ⊂ M of Hausdorff dimension 2
(see [29]). Le Gall’s description of geodesics reveals that S(ρ) is almost surely
exactly the set of points with multiple geodesics to ρ (see Section 2.2). More
specifically, for any y ∈ M , the number of connected components of S(ρ) − {y} is
precisely the number of geodesics from y to ρ. This is similar to the case of a com-
plete, analytic Riemannian surface homeomorphic to the sphere (see Poincaré [40]
and Myers [39]) where the cut locus S of a point x is a tree and the number of
“branches” emanating from a point in S is exactly the number of geodesics to x.

Since the strong cut locus of the root of the Brownian map corresponds to the
CRT minus its leaves—that is, almost surely S(ρ) = C(ρ), where ρ is the root (see
Section 2.2)—it is a fundamental subset of the map.

We obtain analogues of Theorems 1, 2 for the strong cut locus.

THEOREM 4. Almost surely, for all x, y ∈ M , C(x) and C(y) coincide outside
a closed, nowhere dense set of zero λ-measure.
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THEOREM 5. Almost surely, the function x �→ C(x) is continuous almost ev-
erywhere in the following sense.

For λ-almost every x ∈ M , for any neighbourhood N of x, there is a sub-
neighbourhood N ′ ⊂ N so that C(x′) − N is the same for all x′ ∈ N ′.

Theorem 5 brings to mind the results of Buchner [14] and Wall [43], which
show that the cut locus of a fixed point in a compact manifold is continuously
stable under perturbations of the metric on an open, dense subset of its Riemannian
metrics (endowed with the Whitney topology).

As for the geodesic nets in Theorem 3, we show that the union of all strong cut
loci is a small subset of the map.

THEOREM 6. Almost surely,
⋃

x∈M C(x) is of first Baire category.

We remark that Gruber [22] (see also Zamfirescu [45]) shows that for most (in
the sense of Baire category) convex surfaces X, for any point x ∈ X, the set of
points with multiple geodesics to x is of first Baire category. Since for typical
points x ∈ M , C(x) is exactly the set of points with multiple geodesics to x [i.e.,
C(x) = S(x) see Proposition 28], Theorem 6 shows that this property holds almost
surely for almost every point of the Brownian map. That being said, there is a dense
set of atypical points D such that every x ∈ D is connected to all points outside a
small neighbourhood of x by multiple geodesics (see Proposition 27).

1.3. Geodesic networks. Next, we investigate the structure of geodesic seg-
ments between pairs of points in the Brownian map.

DEFINITION 5. For x, y ∈ M , the geodesic network between x and y, denoted
G(x,y), is the set of points in some geodesic segment between x and y.

Geodesic networks with one endpoint being the root of the map (or a typical
point by invariance under re-rooting) are well understood. As discussed in Sec-
tion 1.2, for any y ∈ M , the number of connected components in S(ρ) − {y} gives
the number of geodesics from y to ρ. Hence, by properties of the CRT, almost
surely there is a dense set with Hausdorff dimension 2 of points with exactly two
geodesics to the root; a dense, countable set of points with exactly three geodesics
to the root; and no points connected to the root by more than three geodesics. By
invariance under re-rooting, it follows that the set of pairs that are joined by mul-
tiple geodesics is a zero-volume subset of (M2, λ ⊗ λ) (see also Miermont [36]).
Hence, the vast majority of networks in the Brownian map consist of a single
geodesic segment. Furthermore, by Le Gall’s description of geodesics to the root
and invariance under re-rooting, geodesic segments from a typical point of the
Brownian map have a specific topological structure.

For x ∈ M , let B(x, ε) denote the open ball of radius ε centred at x.
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DEFINITION 6. We say that the ordered pair of distinct points (x, y) is regular
if any two distinct geodesic segments between x and y are disjoint inside, and co-
incide outside, a punctured ball centred at y of radius less than d(x, y). Formally, if
γ and γ ′ are geodesic segments between x and y, then there exists r ∈ (0, d(x, y))

such that γ ∩ γ ′ ∩ B(y, r) = {y} and γ − B(y, r) = γ ′ − B(y, r).

For typical points x, all pairs (x, y) are regular (see Section 2.2).
We note that this notion is not symmetric, that is, (x, y) being regular does not

imply that (y, x) is regular. In fact, observe that (x, y) and (y, x) are regular if and
only if there is a unique geodesic from x to y.

A key property is the following.

LEMMA 7. If (x, y) is regular and γ is a geodesic segment between x and y,
then for any point z in the relative interior of γ , the segment [x, z] ⊂ γ is the
unique geodesic segment between x and z. Hence, any points z �= z′ in the relative
interior of γ are joined by a unique geodesic.

Consequently, any geodesic segment γ ′ to x that intersects the relative inte-
rior of γ at some point z coalesces with γ from that point on, that is, γ ∩
B(x, d(x, z)) = γ ′ ∩ B(x, d(x, z)).

PROOF. Let (x, y) be regular and let γ be a geodesic segment between x and
y. Assume that there are two distinct geodesic segments γ1, γ2 between z and x,
where z is some point in the relative interior of γ . By adding the sub-segment
[y, z] ⊂ γ to γ1 and γ2, we obtain two distinct geodesic segments between y and
x that coincide in the nonempty neighbourhood B(y, d(y, z)) of y, contradicting
the definition of regularity for (x, y). This gives the first part of the statement, and
the second part is a straightforward consequence. �

We find that all except very few geodesic networks in the Brownian map are, in
the following sense, a concatenation of two regular networks.

DEFINITION 7. For (x, y) ∈ M2 and j, k ∈ N, we say that (x, y) induces a
normal (j, k)-network, and write (x, y) ∈ N(j, k), if for some z in the relative
interior of all geodesic segments between x and y, (z, x) and (z, y) are regular and
z is connected to x and y by exactly j and k geodesic segments, respectively.

In particular, note if x, y are joined by exactly k geodesics and (x, y) is regular,
then (x, y) ∈ N(1, k). (Take z to be a point in the relative interior of the geodesic
segment contained in all k segments from x to y.)

Not all networks are normal (j, k)-networks. For instance, if (x, y) ∈ N(j, k)

and j > 1, then there is a point u ∈ G(x,y) so that u is joined to x by two geodesics
with disjoint relative interiors. See Figure 1. That being said, most pairs induce
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FIG. 1. As depicted, (x, y) ∈ N(2,3). Note that (u, x) does not induce a normal (j, k)-network.

normal (j, k)-networks. Moreover, for each j, k ∈ {1,2,3}, there are many nor-
mal (j, k)-networks in the map. Hence, in particular, we establish the existence of
atypical networks comprised of more than three geodesics (and up to nine).

THEOREM 8. The following hold almost surely:

(i) For any j, k ∈ {1,2,3}, N(j, k) is dense in M2.
(ii) M2 − ⋃

j,k∈{1,2,3} N(j, k) is nowhere dense in M2.

By Theorem 8, there are essentially only six types of geodesic networks which
are dense in the Brownian map. See Figure 2.

Since the geodesic net of the root, or a typical point by invariance under re-
rooting, is a binary tree—which follows by the uniqueness of local minima of the
label process Z (see [33], Lemma 3.1), and since G(ρ) is the tree [0,1]/{dZ = 0}
(see Section 2.2)—it can be shown using ideas in the proof of Theorem 9 below
that the pairs of small dots near the large dots in the 3rd, 5th and 6th networks in
Figure 2 are indeed distinct points (i.e., Theorem 8 would still hold if we were to
further require that normal networks have this additional property). For instance,
in Figure 7 below, note that all geodesic segments from y to y ′ are sub-segments
of geodesics from y to the typical point zn, and hence do not coalesce at the same
point. We omit further discussion on this small detail.

It remains an interesting open problem to fully classify the types of geodesic
networks in the Brownian map.

FIG. 2. Theorem 8: Classification of networks which are dense in the Brownian map (up to symme-
tries and homeomorphisms of the sphere).
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Additionally, we obtain the dimension of the sets N(j, k), j, k ≤ 3.
For a set A ⊂ M , let dimA and dimP A denote its Hausdorff and packing di-

mensions, respectively.

THEOREM 9. Almost surely, we have that dimN(j, k) = dimP N(j, k) =
2(6 − j − k), for all j, k ∈ {1,2,3}. Moreover, N(3,3) is countable.

We remark that since N(j, k), for any j, k ∈ {1,2,3}, is dense in M2 (by Theo-
rem 8) its Minkowski dimension is that of M2, which by Proposition 19 below is
almost surely equal to 8.

DEFINITION 8. For each k ∈ N, let P(k) ⊂ M2 denote the set of pairs of
points that are connected by exactly k geodesics.

Theorems 8 and 9 imply the following results.

COROLLARY 10. Put K = {1,2,3,4,6,9}. The following hold almost surely:

(i) For each k ∈ K , P(k) is dense in M2.
(ii) M2 − ⋃

k∈K P (k) is nowhere dense in M2.

COROLLARY 11. Almost surely, we have that dimP(2) ≥ 6, dimP(3) ≥ 4,
dimP(4) ≥ 4 and dimP(6) ≥ 2.

We expect the lower bounds in Corollary 11 to give the correct Hausdorff di-
mensions of the sets P(k), k ∈ K − {1,9}. As discussed in Section 1.2, P(1) is
of full volume, and hence dimP(1) = 8. We suspect that P(9) is countable. It
would be of interest to determine if the set P(k) is nonempty for some k /∈ K , and
whether there is any k /∈ K for which it has positive dimension. We hope to address
these issues in future work.

1.4. Confluence points. Our key tool is a strengthening of the confluence of
geodesics phenomenon of Le Gall [29] (see Section 2.3). We find that for any
neighbourhood N of a typical point in the Brownian map, there is a confluence
point x0 between a sub-neighbourhood N ′ ⊂ N and the complement of N . See
Figure 3.

PROPOSITION 12. Almost surely, for λ-almost every x ∈ M , the following
holds. For any neighbourhood N of x, there is a sub-neighbourhood N ′ ⊂ N and
some x0 ∈ N − N ′ so that all geodesics between any points x′ ∈ N ′ and y ∈ Nc

pass through x0.

DEFINITION 9. We say that a sequence of geodesic segments γn converges to
a geodesic segment γ , and write γn → γ , if γn converges to γ with respect to the
Hausdorff topology.
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FIG. 3. Proposition 12: All geodesics from points in N ′ to points in the complement of N ⊃ N ′
pass through a confluence point x0.

Since (M,d) is almost surely homeomorphic to S
2, and hence almost surely

compact, the following lemma is a straightforward consequence of the Arzelà–
Ascoli theorem (see, e.g., Bridson and Haefliger [13], Corollary 3.11).

LEMMA 13. Almost surely, the set of geodesic segments in (M,d) is compact
(with respect to the Hausdorff topology).

Our key result, Proposition 12, is related to the fact that many sequences of
geodesic segments in the Brownian map converge in a stronger sense.

DEFINITION 10. We say that a sequence of geodesic segments [xn, yn] con-
verges strongly to [x, y], and write [xn, yn] ⇒ [x, y], if xn → x, yn → y, and
for any geodesic segment [x′, y′] ⊂ (x, y) (excluding the endpoints) we have that
[x′, y′] ⊂ [xn, yn] for all sufficiently large n.

Strong convergence is stronger than convergence in the Hausdorff topology. In-
deed, if x′, y′ are ε away from x, y along [x, y], then for large n [x′, y′] ⊂ [xn, yn].
Moreover, since d(xn, x

′) ≤ d(xn, x) + ε for all such n, [xn, x
′] is eventually con-

tained in B(x,2ε). Similarly, [y′, yn] is eventually contained in B(y,2ε). In the
Euclidean plane, or generic smooth manifolds, strong convergence does not occur.
In contrast, in the Brownian map it is the norm, as we shall see below. In light of
this, we also make the following definition.

DEFINITION 11. A geodesic segment γ is called a stable geodesic if when-
ever [xn, yn] → γ we also have [xn, yn] ⇒ γ . Otherwise, γ is called a ghost
geodesic.

PROPOSITION 14. Almost surely, for λ-almost every x ∈ M , for all y ∈ M , all
sub-segments of all geodesic segments [x, y] are stable.

Proposition 12 follows by Proposition 14, the confluence of geodesics phe-
nomenon, and the fact that (M,d) is almost surely compact (see Section 3).
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In closing, we remark that it would be interesting to know if Proposition 14
holds for all x ∈ M , that is, are all geodesics in M stable, or are there any ghost
geodesics? Ghost geodesics have various properties, and in particular they intersect
every other geodesic in at most one point. It would be quite surprising if such
geodesics exist, and we hope to rule them out in future work. We thus expect an
analogue of Proposition 12 to hold for all x ∈ M . If so, then as a consequence, we
would obtain the following result.

CONJECTURE 1. Almost surely, the geodesic framework of the Brownian
map, F ⊂ M , is of Hausdorff dimension 1.

In this way, we suspect that although the Brownian map is a complicated object
of Hausdorff dimension 4, it has a relatively simple geodesic framework which is
of first Baire category (Theorem 3) and Hausdorff dimension 1.

2. Preliminaries. In this section, we briefly recount the construction of the
Brownian map and what is known regarding its geodesics.

2.1. The Brownian map. Fix q ∈ {3}∪2(N+1) and set cq equal to 61/4 if q =
3 or (9/q(q − 2))1/4 if q > 3. Let Mn denote a uniform q-angulation of the sphere
(see Le Gall and Miermont [32]) with n faces, and dn the graph distance on Mn

scaled by cqn−1/4. The works of Le Gall [30] and Miermont [37] (for q = 4) show
that in the Gromov–Hausdorff topology on isometry classes of compact metric
spaces (see Burago, Burago and Ivanov [15]), (Mn, dn) converges in distribution
to a random metric space called the Brownian map (M,d).

The Brownian map has also been identified as the scaling limit of several other
types of maps; see [1, 2, 6, 10, 30].

The construction of the Brownian map involves a normalized Brownian excur-
sion e = {et : t ∈ [0,1]}, a random R-tree (Te, de) indexed by e, and a Brownian
label process Z = {Za : a ∈ Te}. More specifically, define Te = [0,1]/{de = 0} as
the quotient under the pseudo-distance

de(s, t) = es + et − 2 · min
s∧t≤u≤s∨t

eu, s, t ∈ [0,1]
and equip it with the quotient distance, again denoted by de. The random metric
space (Te, de) is Aldous’ continuum random tree, or CRT. Let pe : [0,1] → Te
denote the canonical projection. Conditionally given e, Z is a centred Gaussian
process satisfying E[(Zs −Zt)

2] = de(s, t) for all s, t ∈ [0,1]. The random process
Z is the so-called head of the Brownian snake (see [32]). Note that Z is constant
on each equivalence class p−1

e (a), a ∈ Te. In this sense, Z is Brownian motion
indexed by the CRT.

Analogously to the definition of de, we put

dZ(s, t) = Zs + Zt − 2 · max
{

inf
u∈[s,t]Zu, inf

u∈[t,s]Zu

}
, s, t ∈ [0,1],
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where we set [s, t] = [0, t] ∪ [s,1] in the case that s > t . Then, to obtain a pseudo-
distance on [0,1], we define

D∗(s, t) = inf

{
k∑

i=1

dZ(si, ti) : s1 = s, tk = t, de(ti, si+1) = 0

}
, s, t ∈ [0,1].

Finally, we set M = [0,1]/{D∗ = 0} and endow it with the quotient distance
induced by D∗, which we denote by d . An easy property of the Brownian map is
that de(s, t) = 0 implies D∗(s, t) = 0, so that M can also be seen as a quotient of
Te, and we let � : Te → M denote the canonical projection, and put p = � ◦ pe.
Almost surely, the process Z attains a unique minimum on [0,1], say at t∗. We set
ρ = p(t∗). The random metric space (M,d) = (M,d,ρ) is called the Brownian
map and we call ρ its root. Being the Gromov–Hausdorff limit of geodesic spaces,
(M,d) is almost surely a geodesic space (see [15]).

Almost surely, for every pair of distinct points s �= t ∈ [0,1], at most one of
de(s, t) = 0 or dZ(s, t) = 0 holds, except in the particular case {s, t} = {0,1} where
both identities hold simultaneously (see [33], Lemma 3.2). Hence, only leaves (i.e.,
non-cut-points) of Te are identified in the construction of the Brownian map; and
this occurs if and only if they have the same label and along either the clockwise or
counter-clockwise, contour-ordered path around Te between them, one only finds
vertices of larger label. Thus, as mentioned at the beginning of Section 1, in the
construction of the Brownian map, (Te,Z) is a continuum analogue for a well-
labelled plane tree, and the quotient by {D∗ = 0} for the CVS-bijection (which,
as discussed in Section 1, identifies well-labelled plane trees with rooted planar
maps). See Section 2.2 for more details.

Lastly, we note that although the Brownian map is a rooted metric space, it
is not so dependent on its root. The volume measure λ on M is defined as the
push-forward of Lebesgue measure on [0,1] via p. Le Gall [29] shows that the
Brownian map is invariant under re-rooting in the sense that if U is uniformly
distributed over [0,1] and independent of (M,d), then (M,d,ρ) and (M,d,p(U))

are equal in law. Hence, to some extent, the root of the map is but an artifact of its
construction.

2.2. Simple geodesics. Recall that a corner of a vertex v in a discrete plane
tree T is a sector centred at v and delimited by edges which precede and fol-
low v along a contour-ordered path around T . Leaves of a tree have exactly one
corner, and in general, the number of corners of v is equal to the number of con-
nected components in T − {v}. Similarly, we may view the R-tree Te as having
corners; however, in this continuum setting all sectors reduce to points. Hence, for
the purpose of the following (informal) discussion, let us think of each t ∈ [0,1]
as corresponding to a corner of Te with label Zt .

Put Z∗ = Zt∗ . As it turns out, d(ρ,p(t)) = Zt −Z∗ for all t ∈ [0,1] (see [28]). In
other words, up to a shift by the minimum label Z∗, the Brownian label of a point
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in Te is precisely the distance to ρ from the corresponding point in the Brownian
map.

All geodesics to ρ are simple geodesics, constructed as follows. For t ∈ [0,1]
and � ∈ [0,Zt − Z∗], let st (�) denote the point in [0,1] corresponding to the first
corner with label Zt − � in the clockwise, contour-ordered path around Te begin-
ning at the corner corresponding to t . For each such t , the image of the function
�t : [0,Zt − Z∗] → M taking � to p(st (�)) is a geodesic segment from p(t) to ρ.
Moreover, the main result of [29] shows that all geodesics to ρ are of this form.
Hence, the geodesic net of the root, G(ρ), is precisely the set of cut-points of the
R-tree TZ = [0,1]/{dZ = 0} projected into M .

These results mirror the fact that from each corner of a labelled, discrete plane
tree, the CVS-bijection draws geodesics to the root of the resulting map in such a
way that the label of a vertex visited by any such geodesic equals the distance to
the root. See [29, 31] for further details.

Moreover, since the cut-points of Te are its vertices with multiple corners, we
see that the set S(ρ) (discussed in Section 1.2) of points with multiple geodesics
to ρ is exactly the set of cut-points of the R-tree Te = [0,1]/{de = 0} projected
into M .

Furthermore, since points in S(ρ) correspond to leaves of TZ (see [33],
Lemma 3.2), geodesics to the root of the map (or a typical point, by invariance un-
der re-rooting) have a particular topological structure, as discussed in Section 1.3.
We state this here for the record.

PROPOSITION 15. Almost surely, for λ-almost every x, for all y ∈ M , (x, y)

is regular.

Hence, as mentioned in Section 1.2, we have that S(ρ) = C(ρ). That is, all
points with multiple geodesics to the root are in the strong cut locus of the root.

2.3. Confluence at the root. As discussed in Section 1.1, a confluence of
geodesics is observed at the root of the Brownian map. Combining this with in-
variance under re-rooting, the following result is obtained.

LEMMA 16 (Le Gall [29], Corollary 7.7). Almost surely, for λ-almost every
x ∈ M , the following holds. For every ε > 0 there is an η ∈ (0, ε) so that if y, y′ ∈
B(x, ε)c, then any pair of geodesics from x to y and y′ coincide inside of B(x,η).

Moreover, geodesics to the root of the map tend to coalesce quickly.
For t ∈ [0,1], let γt denote the image of the simple geodesic �t from p(t) to the

root of the map ρ (see Section 2.2).

LEMMA 17 (Miermont [37], Lemma 5). Almost surely, for all s, t ∈ [0,1], γs

and γt coincide outside of B(p(s), dZ(s, t)).
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We require the following lemma.

LEMMA 18. Almost surely, for λ-almost every x ∈ M , the following holds.
For any y ∈ M and neighbourhood N of y, there is a sub-neighbourhood N ′ ⊂ N

so that if y′ ∈ N ′, then any geodesic from x to y′ coincides with a geodesic from x

to y outside of N .

PROOF. Let ρ denote the root of the map. Let y ∈ M and a neighbourhood N

of y be given. Select ε > 0 so that B(y, ε) ⊂ N . Let Nε denote the set of points
y′ ∈ M with the property that for all t ′ ∈ [0,1] for which p(t ′) = y′, there exists
some t ∈ [0,1] so that p(t) = y and dZ(t, t ′) < ε. As discussed in Section 2.2, Le
Gall [29] shows that all geodesics to ρ are simple geodesics. Hence, by Lemma 17,
any geodesic from ρ to a point y′ ∈ Nε coincides with some geodesic from ρ to y

outside of N .
We claim that Nε is a neighbourhood of y. To see this, note that if p(tn) =

yn → y in (M,d), then there is a subsequence tnk
so that for some ty ∈ [0,1], we

have that tnk
→ ty as k → ∞. Hence, dZ(ty, tnk

) < ε for all large k, and since p
is continuous (see [29]), p(ty) = y. Therefore, for any yn → y in (M,d), yn /∈ Nε

for at most finitely many n, giving the claim.
Hence, the lemma follows by invariance under re-rooting. �

We remark that the size of N ′ in Lemma 18 depends strongly on x and y. For
instance, for a fixed ε > 0 and convergent sequences of typical points xn (i.e.,
points satisfying the statement of Lemma 18) and general points yn, for each n

let ηn > 0 be such that the statement of the lemma holds for the pair xn, yn with
Nn = B(yn, ε) and N ′

n = B(yn, ηn). It is quite possible that ηn → 0 as n → ∞.

2.4. Dimensions. Finally, we collect some facts about the dimension of vari-
ous subsets of the Brownian map. These statements are easily derived from estab-
lished results, but are not explicitly stated in the literature.

For a metric space X ⊂ M , let dimX denote its Hausdorff dimension, dimP X its
packing dimension, and DimX (resp., DimX) its lower (resp., upper) Minkowski
dimension. If the lower and upper Minkowski dimensions coincide, we denote
their common value by DimX. We note that for any metric space X we have

dimX ≤ DimX ≤ DimX and dimX ≤ dimP X ≤ DimX.

See Mattila [34], for instance, for detailed definitions and other properties of these
dimensions.

We require the following result, which is implicit in Le Gall’s [28] proof that
dimM = 4. For completeness, we include a proof via the uniform volume esti-
mates of balls in the Brownian map.

PROPOSITION 19. Almost surely, for any nonempty, open subset U ⊂ M , we
have that λ(U) > 0 (hence λ has full support) and dimU = dimP U = DimU = 4.



3464 O. ANGEL, B. KOLESNIK AND G. MIERMONT

PROOF. Let a nonempty, open subset U ⊂ M be given. Fix some arbitrary
η > 0.

By [37], Lemma 15, there is a c ∈ (0,∞) and ε0 > 0 so that for all ε ∈ (0, ε0)

and x ∈ M , we have that λ(B(x, ε)) ≥ cε4+η. In particular, λ(U) > 0. For ε >

0, let N(ε) denote the number of balls of radius ε required to cover M . By a
standard argument, it follows that there exists a c′ ∈ (0,∞) so that for all ε ∈
(0,2ε0) we have N(ε) ≤ c′ε−(4+η). It follows directly that DimM ≤ 4 + η, and
the same bound holds for U ⊂ M .

On the other hand, by [37], Lemma 14 (a consequence of [28], Corollary 6.2),
there is a C ∈ (0,∞) so that for all ε > 0 and x ∈ M , we have that λ(B(x, ε)) ≤
Cε4−η. In particular, for all ε > 0 and x ∈ U we have λ(B(x, ε) ∩ U) ≤ Cε4−η. It
follows that dimU ≥ 4 − η (see, e.g., Falconer [21], Exercise 1.8).

Since η > 0 is arbitrary, the general dimension inequalities imply the claim. �

DEFINITION 12. For x ∈ M , and k ≥ 1 or k = ∞, let Sk(x) denote the set of
points y ∈ M with exactly k geodesics to x.

We believe that S∞(x) is empty for all x. In fact, it is plausible that all Sk(x)

are empty for all k > k0 (perhaps even k0 = 9).
In particular, the weak cut locus S(x), as defined in Section 1.2, is equal to

S∞(x) ∪ ⋃
k≥2 Sk(x). As discussed in Section 1.3, by Le Gall’s description of

geodesics to the root, properties of the CRT, and invariance under re-rooting, we
have the following result.

PROPOSITION 20. Almost surely, for λ-almost every x ∈ M :

(i) S(x) = S2(x) ∪ S3(x);
(ii) S2(x) is dense, and has Hausdorff dimension 2 (and measure 0);

(iii) S3(x) is dense and countable.

We observe that the proof in [29], Proposition 3.3, that S(ρ) is almost surely of
Hausdorff dimension 2 gives additional information.

PROPOSITION 21. Almost surely, for λ-almost every x ∈ M , for any nonempty,
open set U ⊂ M and each k ∈ {1,2,3}, we have that

dim
(
Sk(x) ∩ U

) = dimP
(
Sk(x) ∩ U

) = 2(3 − k).

PROOF. By invariance under re-rooting, it suffices to prove the claim holds
almost surely when x = ρ is the root of the map.

Let a nonempty, open subset U ⊂ M be given.
Let S = S(x) and Si = Si(x) for i = 1,2,3. By Proposition 20(i), S = S2 ∪ S3

and M − {x} = S1 ∪ S.
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First, we note that by Proposition 20(iii), S3 ∩ U is countable, and so has Haus-
dorff and packing dimension 0.

From [29], we have that S is the image of the cut-points (or skeleton) of the CRT,
Sk ⊂ Te, under the projection � : Te → M . Moreover, � is Hölder continuous with
exponent 1/2 − ε for any ε > 0, and restricted to Sk, � is a homeomorphism from
Sk onto S.

Note that Sk is of packing dimension 1, being the countable union of sets which
are isometric to line segments (recall that the packing dimension of a countable
union of sets is the supremum of the dimension of the sets). Hence, by the Hölder
continuity of �, it follows that dimP S ≤ 2 (see, for instance, [34], Exercise 6,
page 108) and so in particular, we find that dimP(S ∩ U) ≤ 2.

On the other hand, by the density of S in M and since � is a homeomorphism
from Sk to S, we see that there is a geodesic segment in Sk that is projected to a
path in S ∩ U . In the proof of [29], Proposition 3.3, it is shown that the Hausdorff
dimension of any such path is at least 2. Hence, dim(S ∩ U) ≥ 2.

Altogether, by the general dimension inequality dimA ≤ dimP A, we find that
S ∩ U has Hausdorff and packing dimension 2.

Therefore, since S3 ∩ U has Hausdorff and packing dimension 0 and S = S2 ∪
S3, it follows that S2 ∩U has Hausdorff and packing dimension 2. Moreover, since
by Proposition 19, U has Hausdorff and packing dimension 4 and M − {x} =
S1 ∪ S, we find that S1 ∩ U has Hausdorff and packing dimension 4. �

In closing, we note that Propositions 20, 21 imply the following result.

PROPOSITION 22. Almost surely, for λ-almost every x ∈ M , S(x) is dense,
dimS(x) = dimP S(x) = 2, and λ(S(x)) = 0.

3. Confluence near the root. We show that a confluence of geodesics is ob-
served near the root of the Brownian map, strengthening the results discussed in
Section 2.3. Specifically, we establish the following result.

LEMMA 23. Almost surely, for λ-almost every x ∈ M , the following holds.
For any y ∈ M and neighbourhoods Nx of x and Ny of y, there are sub-
neighbourhoods N ′

x and N ′
y so that if x′ ∈ N ′

x and y′ ∈ N ′
y , then any geodesic

segment from x′ to y′ coincides with some geodesic segment from x to y outside of
Nx ∪ Ny .

We note that Lemma 23 strengthens Lemma 18 in that it allows for perturbations
of both endpoints of a geodesic.

Once Lemma 23 is established, our key result follows easily by Lemma 16 and
the fact that the Brownian map is almost surely compact.

PROOF OF PROPOSITION 12. By invariance under re-rooting, it suffices to
prove the claim when x = ρ is the root of the map. Let an (open) neighbourhood
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N of x be given. By Lemma 16, there is a point x0 ∈ N −{x} which is contained in
all geodesic segments between x and points y ∈ Nc. Hence, by Lemma 23, for each
y ∈ Nc there is an ηy > 0 so that x0 is contained in all geodesic segments between
points x′ ∈ B(x,ηy) and y′ ∈ B(y,ηy). Since Nc is compact, it can be covered
by finitely many balls B(y,ηy), say with y ∈ Y . Put N ′ = B(x,miny∈Y ηy). If
y0 ∈ Nc, then y0 ∈ B(y,ηy) for some y ∈ Y , and thus all geodesics from points
x′ ∈ N ′ ⊂ B(x,ηy) to y0 pass through x0. �

The rest of this section contains the proof of Lemma 23. By invariance under
re-rooting, we may and will assume that x is in fact the root of the Brownian map.
In rough terms, we must rule out the existence of a sequence of geodesic segments
[xn, yn] converging to a geodesic segment [x, y], but not converging strongly in
the sense given in Section 1.4.

For the remainder of this section, we fix a realization of the Brownian map
exhibiting the almost sure properties of the random metric space (M,d) that will
be required below, notably the fact that M is homeomorphic to the 2-dimensional
sphere. Slightly abusing notation, let us refer to this realization as (M,d). We also
fix a point y �= x ∈ M and a geodesic segment γ = [x, y] between x and y.

We utilize a dense subset T ⊂ M of points, which we refer to as typical points,
containing the root x, and such that:

(i) the claims of Proposition 15 and Lemma 18 hold for all u ∈ T ;
(ii) for each u, v ∈ T , there is a unique geodesic from u to v.

Such a set exists almost surely. For example, the set of equivalence classes con-
taining rational points almost surely works. We may assume that T exists for the
particular realization of (M,d) we have selected. It is in fact possible to choose T

to have full λ-measure, but for now, we only need it to be dense in M .
In what follows, we will at times shift our attention to the homeomorphic image

of a neighbourhood of γ in which our arguments are more transparent. Whenever
doing so, we will appeal only to topological properties of the map. We let dE be
the Euclidean distance on C, and for w ∈ C and r > 0, we let BE(w, r) be the open
Euclidean ball centered at w with radius r .

Fix a homeomorphism τ from M to Ĉ. The image of γ under τ is a simple arc
in Ĉ. Let φ be a homeomorphism from this arc onto the unit interval I = [0,1] ⊂
R ⊂ C, with φ(τ(x)) = 0, and thus φ(τ(y)) = 1. By a variation of the Jordan–
Schönflies theorem (see Mohar and Thomassen [38], Theorem 2.2.6), φ can be
extended to a homeomorphism from Ĉ onto Ĉ. Hence, φ ◦ τ |γ can be extended to
a homeomorphism from M to Ĉ sending γ onto I . We fix such a homeomorphism,
and denote it by ψ .

Since M is homeomorphic to Ĉ, once the geodesic γ is fixed we can think of
the Brownian map as just Ĉ with a random metric (for which [0,1] is a geodesic).
The reader may well do this, and then ψ becomes the identity. We do not take this



STABILITY OF GEODESICS IN THE BROWNIAN MAP 3467

FIG. 4. Lemma 24: [u�, v�] − γ is contained in (B(u, δ) ∪ B(v, δ)) ∩ L (as viewed through the
homeomorphism ψ ).

route, since that would require showing that ψ can be constructed in a measurable
way, which we prefer to avoid.

DEFINITION 13. Let H+ = {w ∈ C : Imw > 0} (resp., H− = {w ∈ C :
Imw < 0}) denote the open upper (resp., lower) half-plane of C. We refer to
L = ψ−1(H+) [resp., R = ψ−1(H−)] as the left (resp., right) side of γ .

LEMMA 24. Let u, v ∈ γ . For all δ > 0, there are typical points u� ∈ B(u, δ)∩
L ∩ T and v� ∈ B(v, δ) ∩ L ∩ T so that [u�, v�] − γ is contained in (B(u, δ) ∪
B(v, δ)) ∩ L. (See Figure 4.) An analogous statement holds replacing L with R.

PROOF. Let δ > 0 and u, v ∈ γ be given. We only discuss the argument for the
left side of γ , since the two cases are symmetrical. Moreover, we may assume that
u, v, x, y are all distinct. Indeed, suppose the lemma holds with distinct u, v, x, y.
If we shift u, v along γ by at most η > 0 and apply the lemma with δ′ = δ − η, the
resulting u�, v� will satisfy the requirements of the lemma for u, v and δ. Without
loss of generality, we further assume x,u, v, y appear on γ in that order.

We may and will assume that δ < d(u, x) ∧ d(v, y). In particular, B(u, δ) and
B(v, δ) do not contain the extremities x, y of γ . Let δ′ > 0 be small enough so that
BE(ψ(v), δ′) ⊂ ψ(B(v, δ)). Note that the Euclidean ball BE(ψ(v), δ′) does not
contain 0,1 ∈ C, and so N = ψ−1(BE(ψ(v), δ′)) does not intersect the extremities
x, y of γ .

Let us apply Lemma 18 to the points x, v (using the fact that x is typical) and
the neighbourhood N = ψ−1(BE(ψ(v), δ′)) of v defined above. According to this
lemma, there exists a neighbourhood N ′ ⊂ N of v such that any geodesic segment
γ ′ between a point v′ ∈ N ′ and x coincides with some geodesic between v and x

outside N . Since x, y /∈ N , γ ′ must first encounter γ (if we see γ ′ as parameterized
from v′ to x) at a point w in the relative interior of γ . Since (x, y) is regular, we
apply Lemma 7 to conclude that γ and γ ′ coincide between w and x and are
disjoint elsewhere.

If we further assume that v′ ∈ N ′ ∩ L is in the left side of γ , then we claim
that the sub-arc [v′,w) ⊂ γ ′ is contained in L. Indeed, ψ([v′,w)) is contained in
the Euclidean ball BE(ψ(v), δ′), starts in H+, and is disjoint of I , and so, it is
contained in the upper half of the ball.
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Since T is dense in M , we can take some typical v� ∈ N ′ ∩ L ∩ T . For this
choice, the geodesic segment [x, v�] is unique, and [x, v�] − γ is included in
B(v, δ) ∩ L.

Assume also δ < 1
2 d(u, v). By a similar argument, in which v� assumes the

role of x (which is a valid assumption since v� ∈ T ), for any u′ close enough to u,
any geodesic [u′, v�] coalesces with [x, v�] within B(u, δ). Taking such a u′ = u�

in T ∩ L, we get that [v�, u�] − [v�, x] ⊂ B(u, δ) ∩ L, and hence [u�, v�] − γ ⊂
(B(u, δ) ∪ B(v, δ)) ∩ L, as required. �

In the next lemma, recall the two notions of convergence (standard and strong)
of geodesic segments given in Section 1.4.

LEMMA 25. Suppose that [x′, y′] ⊂ γ and [xn, yn] → [x′, y′] as n → ∞.
Then we have the strong convergence [xn, yn] ⇒ [x′, y′].

The proof is somewhat involved. The idea of the proof is to use Lemma 24 to
obtain geodesic segments γ� = [u�, v�] and γr = [ur, vr ] between typical points in
the left and right sides of γ , whose intersection γ� ∩ γr contains a large segment
from γ . Since γ� and γr are the unique geodesics between their (typical) endpoints,
we deduce that γn contains γ� ∩ γr for all large n. See Figure 5.

PROOF. Let γn = [xn, yn] and γ ′ = [x′, y′], such that γn → γ ′, as in the
lemma be given.

Let ε > 0 and put γ ′
ε = γ ′ − (B(x′, ε) ∪ B(y′, ε)). We show that γn contains γ ′

ε

for all large n. Since γn → γ ′ (and hence xn → x′ and yn → y′) this implies that
γn ⇒ γ ′, as required.

We may assume that ε < 2−1 d(x′, y′). Let u (resp., v) denote the point in
γ ′ at distance ε/2 from x′ (resp., y′). By Lemma 24, there are points u� ∈

FIG. 5. Given [x′, y′] ⊂ γ we find a geodesic γ� = [u�, v�] which intersects γ in [u′′
� , v′′

� ], which
is almost all of [x′, y′], and similarly [ur , vr ]. These are used to define the sets Vη (shaded), and
subsets H� and Hr (dark gray). For large n, the geodesics γn are included in Vη and cannot enter
H� ∪ Hr , leading to strong convergence. The points u,v,u′

r , u
′′
r , v′

r , v
′′
r , u′′, v′′ are not shown. For

clarity, we omitted ψ(·) from all points [besides ψ(x) = 0 and ψ(y) = 1] named in the figure.
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B(u, ε/4) ∩ L ∩ T and v� ∈ B(v, ε/4) ∩ L ∩ T such that [u�, v�] − γ is contained
in (B(u, ε/4)∪B(v, ε/4))∩L. We also let ur, vr be defined similarly, replacing L

by R everywhere. Note that the geodesic segments [u�, v�] and [ur, vr ] are unique
since the extremities are all in T . Moreover, by our choice of ε,u, v, the segments
[u�, v�] and [ur, vr ] intersect γ and are disjoint from {x′, y′}. Put

δ = 1

2
min

{
d(u�, γ ), d(v�, γ ), d(ur, γ ), d(vr, γ )

}
and note that δ > 0. Let [γ ]δ = {z ∈ M : d(z, γ ) < δ} be the δ-neighbourhood of γ

in M .
For η > 0, let us write Vη = {w ∈ C : dE(w, I ) < η} for the η-neighbourhood

of I in C. Let η1 > 0 be such that Vη1 ⊂ ψ([γ ]δ). Such an η1 exists since, oth-
erwise, we could find a sequence (zn) of points in M such that d(zn, γ ) ≥ δ but
dE(ψ(zn), I ) → 0 as n → ∞, a clear contradiction since ψ(γ ) = I and (zn) has
convergent subsequences.

Note that ψ(u�),ψ(v�),ψ(ur),ψ(vr) /∈ Vη1 by the definition of δ. Put I� =
ψ([u�, v�]), and fix η2 > 0 such that

η2 < dE
(
ψ

(
x′), I�

) ∧ dE
(
ψ

(
y′), I�

)
,

which is possible since [u�, v�] does not intersect {x′, y′}. Finally, we let η� =
η1 ∧ η2, and similarly define ηr , and set η = η� ∧ ηr .

Consider I� as a parametrized simple path from ψ(u�) to ψ(v�). This path con-
tains a single segment of I , since the geodesic [u�, v�] is unique. Let u′′

�, v
′′
� be

defined by I� ∩ I = [ψ(u′′
�),ψ(v′′

� )], with u′′
� the endpoint closer to x. Let the last

point at which I� enters (the closure of) Vη before hitting I be ψ(u′
�). Let the first

point it exits Vη after separating from I be ψ(v′
�). See Figure 5. Let H� denote

the connected component of Vη − ψ([u′
�, v

′
�]) that is contained in H+. Replacing

u�, v� with ur, vr in the arguments above, we obtain u′′
r , v′′

r , Hr . Note that our
choice of η implies that ψ(x′) and ψ(y′) are farther than η away (with respect to
dE) from H�,Hr .

Since γn → γ ′, we have that for every n large enough, ψ(γn) ⊂ Vη, ψ(xn) ∈
BE(ψ(x′), η), and ψ(yn) ∈ BE(ψ(y′), η). By our choice of η, for such an n, the
extremities ψ(xn),ψ(yn) of ψ(γn) do not belong to H� ∪ Hr .

We claim that, for all such n, ψ(γn)∩H� =∅. Indeed, if ψ(γn) were to intersect
H�, then by the Jordan curve theorem it would intersect ψ([u′

�, v
′
�]) at two points

ψ(u0),ψ(v0) such that the segment ψ((u0, v0)) ⊂ ψ(γn) is contained in H�. Since
H� ∩ ψ([u′

�, v
′
�]) = ∅, it would then follow that there are distinct geodesics be-

tween u0, v0 ∈ [u�,ur ], contradicting the uniqueness [u�,ur ]. Similarly, for all
such n, ψ(γn) ∩ Hr = ∅.

Let [u′′, v′′] = [u′′
�, v

′′
� ] ∩ [u′′

r , v
′′
r ], with u′′ the endpoint closer to x. Recall-

ing (from the third paragraph of the proof) that d(x′, u) = ε/2, d(y′, v) = ε/2,
u� ∈ B(u, ε/4), v� ∈ B(v, ε/4), and [u�, v�] − γ = [u�,u

′′
�) ∪ (v′′

� , v�] is con-
tained in B(u, ε/4) ∪ B(v, ε/4), it follows that d(u′′

�, x
′), d(v′′

� , y′) < ε. Similarly,
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since ur ∈ B(u, ε/4), vr ∈ B(v, ε/4), and [ur, vr ] − γ = [ur, u
′′
r ) ∪ (v′′

r , vr ] is
contained in B(u, ε/4) ∪ B(v, ε/4), we have that d(u′′

r , x
′), d(v′′

r , y′) < ε. Hence,
d(u′′, x′), d(v′′, y′) < ε, and so γ ′

ε ⊂ [u′′, v′′].
To conclude recall that, for all large n, we have that ψ(γn) ⊂ Vη, ψ(xn) ∈

BE(ψ(x′), η), ψ(yn) ∈ BE(ψ(y′), η), and ψ(γn) ∩ (H� ∪ Hr) = ∅. By the Jor-
dan curve theorem, it moreover follows that [u′′, v′′] ⊂ γn, and hence γ ′

ε ⊂ γn,
completing the proof. �

PROOF OF PROPOSITION 14. Since γ = [x, y] is a general geodesic segment
from the root of the map, we obtain Proposition 14 immediately by Lemma 25 and
invariance under re-rooting. �

With Proposition 14 at hand, Lemma 23 follows easily.

PROOF OF LEMMA 23. By invariance under re-rooting, we may restrict to
the case that x is the root of M . Let y ∈ M and neighbourhoods Nx of x and Ny

of y be given. Almost surely, there are at most 3 geodesics from x to y, which
we call γi , for i = 1, . . . , k with k ≤ 3. Suppose that [xn, yn] is a sequence of
geodesic segments with xn → x and yn → y in (M,d). If [xnk

, ynk
] is a convergent

subsequence of [xn, yn], then by Lemma 13, [xnk
, ynk

] converges to some γi . By
Proposition 14, it follows that [xnk

, ynk
] − (Nx ∪ Ny) is contained in γi for all

large k. We conclude that for any sequence [xn, yn] as above, for all sufficiently
large n we have that [xn, yn] − (Nx ∪ Ny) is contained in some geodesic segment
from x to y. Hence, sub-neighbourhoods N ′

x and N ′
y as in the lemma exist. �

4. Proof of main results. In this section, we use Proposition 12 to establish
our main results.

4.1. Typical points. To simplify the proofs below, we make use of a set of
typical points T ⊂ M (we slightly abuse notation by keeping the same notation as
in Section 3). The set T will satisfy the following:

(i) λ(T c) = 0;
(ii) Proposition 14 (and weaker results such as Proposition 12 and Lemmas 16,

18, 23) holds for all x ∈ T ;
(iii) Proposition 15 holds for all x ∈ T ;
(iv) Proposition 20 holds for all x ∈ T ;
(v) Proposition 21 holds for all x ∈ T ;

(vi) For each x, y ∈ T , there is a unique geodesic from x to y.

To be precise, when we say above that a proposition holds for all x ∈ T , we mean
that the property in the proposition, known to hold for λ-almost every point, holds
for every point of T .
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The almost sure existence of a set T satisfying (i)–(v) follows by invariance
under re-rooting (and results cited or proved thus far). We note that property (vi)
follows by (iii), since as mentioned in Section 1.3, if (x, y) and (y, x) are regular
then there is a unique geodesic from x to y.

Hence, in the sections which follow, to show that various properties hold almost
surely for λ-almost every x ∈ M , it suffices to confirm that they hold for points
in T .

4.2. Geodesic nets. Theorems 1, 2 follow by Proposition 12.

PROOF OF THEOREM 1. Let x, y ∈ M and u ∈ T − {x, y} be given. Proposi-
tion 12 provides an (open) neighbourhood Uu of u and a point u0 outside Uu so
that all geodesics from any v ∈ Uu to either x or y pass through u0. In particular,
any geodesic [v, x], with v ∈ Uu, can be written as [v,u0] ∪ [u0, x]. By the choice
of u0, replacing the second segment by some [u0, y] gives a geodesic from v to y.
The same holds with x, y reversed. Consequently, G(x) ∩ Uu = G(y) ∩ Uu.

Thus, G(x) and G(y) coincide in
⋃

u∈T −{x,y} Uu. Since T is dense and has full
measure, the theorem follows. �

PROOF OF THEOREM 2. Let x ∈ T and a neighbourhood N of x be given.
Select ε > 0 so that B(x,2ε) ⊂ N . Let N ′ ⊂ B(x, ε) and x0 ∈ B(x, ε) − N ′ be
as in Proposition 12. By the choice of x0, for any y0 ∈ Nc and x′ ∈ N ′, observe
that y0 ∈ G(x′) if and only if there is some y ∈ B(x, ε)c and geodesic [x0, y] so
that y0 ∈ [x0, y). This condition is independent of x′. Hence, all G(x′), x′ ∈ N ′,
coincide on Nc. �

In support of our conjecture in Section 1.4, we show that the union of most
geodesic nets is of Hausdorff dimension 1.

PROPOSITION 26. Almost surely, there is a subset � ⊂ M of full volume,
λ(�c) = 0, satisfying dim

⋃
x∈� G(x) = 1.

PROOF. We prove the claim with � = T , which has full measure.
By property (ii) of points in T , there is a confluence of geodesics to all points

x ∈ T (i.e., the statement of Lemma 16 holds). As discussed in Section 1.1, we
thus have that dimG(x) = 1 for all x ∈ T .

Let ε > 0 be given. For each x ∈ T , put Gε(x) = G(x) − B(x, ε). By Theo-
rem 2, for each x ∈ T there is an ηx ∈ (0, ε) such that G2ε(x

′) ⊂ Gε(x) for all
x′ ∈ B(x,ηx). Since (M,d) is a separable metric space, and hence strongly Lin-
delöf (i.e., all open subspaces of (M,d) are Lindelöf), there is a countable subset
Tε ⊂ T such that

⋃
x∈Tε

B(x, ηx) is equal to
⋃

x∈T B(x, ηx), and in particular, con-
tains T . Hence, by the choice of Tε ,

⋃
x∈T G2ε(x) is contained in

⋃
x∈Tε

Gε(x), a
countable union of 1-dimensional sets, and so is 1-dimensional.

Taking a countable union over ε = 1/n, we see that dim
⋃

x∈T G(x) = 1, which
yields the claim. �
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4.3. Cut loci. As discussed in Section 1.2, Le Gall’s study of geodesics re-
veals a correspondence between cut-points of the CRT and points with multiple
geodesics to the root of the Brownian map. Hence, Le Gall [29] states that S(ρ)

“exactly corresponds to the cut locus of [the Brownian map] relative to the root”.

4.3.1. Weak cut loci. The main way in which the weak cut locus is badly be-
haved is that there is a dense set of points for which the weak cut locus has positive
volume and full dimension (whereas typically it is much smaller, see Proposi-
tion 22).

PROPOSITION 27. Almost surely, for λ-almost every x ∈ M , for any neigh-
bourhood N of x, there is a set D with dimD = 2, dense in some neighbourhood
N ′ ⊂ N of x, such that Nc ⊂ S(x′) for all x′ ∈ D.

PROOF. Let x ∈ T and a neighbourhood N of x be given. Let N ′ ⊂ N and
x0 ∈ N −N ′ be as in Proposition 12. Fix some u ∈ Nc ∩T , and put D = N ′ ∩S(u)

so that by properties (iv), (v) of points in T , we have that D is dense in N ′ and
satisfies dimD = 2. By property (vi) of points in T , there is a unique geodesic
from u to x. Since this geodesic passes through x0, it follows that there is a unique
geodesic from u to x0. Hence, by the choice of D and x0, we see that there are
multiple geodesics from each point x′ ∈ D to x0. We conclude, by the choice of
x0, that Nc ⊂ S(x′), for all x′ ∈ D. �

Since the weak cut locus relation is symmetric—that is, y ∈ S(x) if and only
if x ∈ S(y)—we note that it follows immediately by Proposition 27 that almost
surely, for all x ∈ M , S(x) is dense in M (as mentioned in Section 1.2) and
dimS(x) ≥ 2.

By the proof of Proposition 27, we find that S(x) does not effectively capture
the essence of a cut locus of a general point x ∈ M . Therein, observe that although
all points y ∈ Nc are in S(x′), x′ ∈ D, this is due to the structure of the map near x′
(namely the multiple geodesics to the confluence point x0) and does not reflect on
the map near y. For this reason, we also define a strong cut locus for the Brownian
map, see Section 1.2.

4.3.2. Strong cut loci. By Le Gall’s description of geodesics to the root and in-
variance under re-rooting, and in particular Proposition 15, we immediately obtain
the following.

PROPOSITION 28. Almost surely, for λ-almost every x ∈ M , S(x) = C(x),
that is, the weak and strong cut loci coincide.

We remark that the strong cut locus relation, unlike the weak cut locus, is not
symmetric in x and y, that is, y ∈ C(x) does not imply that x ∈ C(y). See Figure 6.
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FIG. 6. Asymmetry of the strong cut locus relation: For a regular pair (x, y) joined by two
geodesics, we have y ∈ C(x), however x /∈ C(y), since all geodesics from y to x coincide near x.

Although more in tune with the singular geometry of the Brownian map, not
all properties of cut loci in smooth manifolds apply for the Brownian map. For in-
stance, C(x) is much smaller than the closure of all points with multiple geodesics
to x (as is the case with the cut locus of a smooth surface, see Klingenberg [25],
Section 2.1.14) since the set of such points is dense in M (as noted after the proof
of Proposition 27). Moreover, it is not necessarily the case that all points y ∈ C(x)

are endpoints relative to x (i.e., extremities y of a geodesic [x, y] which cannot be
extended to a geodesic [x, y ′] ⊃ [x, y] for any y′ �= y; in other words, y /∈ G(x)).
For instance, if γ, γ ′ are distinct geodesics from the root of the map ρ to some
point x, with a common initial segment [ρ,y] = γ ∩γ ′, then note that y is in C(x)

(by Proposition 15), however not an endpoint relative to x, being in the relative
interior of γ .

Despite such differences, we propose that the set C(x) is a more interesting
notion of cut locus in our setting than S(x) or, say, the set of all endpoints relative
to x (i.e., G(x)c − {x}), which by Theorem 3 is a residual subset of the map.

As stated in Section 1.2, analogues of Theorems 1, 2 hold for the strong cut
locus. The proofs are very similar to those of Theorems 1, 2.

PROOF OF THEOREM 4. Let x, y ∈ M and u ∈ T − {x, y} be given. Proposi-
tion 12 provides an (open) neighbourhood Uu of u and a point u0 outside Uu so
that all geodesics from any v ∈ Uu to either x or y pass through u0. In particular,
any geodesic [v,u0] can be extended to each of x, y.

Since v ∈ C(x) is determined by the structure of geodesics [v, x] near v, a
point v ∈ Uu is in C(x) if and only if v ∈ C(y). Thus, C(x) and C(y) agree in⋃

u∈T −{x,y} Uu. The result follows, since T is dense and has full measure. �

PROOF OF THEOREM 5. Let x ∈ T and a neighbourhood N of x be given. Let
N ′ ⊂ N and x0 ∈ N − N ′ be as in Proposition 12. For any x′ ∈ N ′ and y ∈ Nc,
y ∈ C(x′) if and only if there are multiple geodesics from x0 to y which are distinct
near y. Since this condition is independent of x′, we conclude that all C(x′), x′ ∈
N ′, coincide on Nc. �

Analogously to Proposition 26, we find that the union over most strong cut loci
is of Hausdorff dimension 2.

PROPOSITION 29. Almost surely, there is a subset � ⊂ M of full volume,
λ(�c) = 0, satisfying dim

⋃
x∈� C(x) = 2.
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PROOF. The proposition follows by the proof of Proposition 26, but replacing
its use of Theorem 2 with that of Theorem 5, and noting, by property (iv) of points
in T , that dimC(x) = 2 for all x ∈ T . We omit the details. �

It would be interesting to know if almost surely
⋃

x∈M C(x) is of Hausdorff
dimension 2.

4.4. Geodesic stars. A geodesic star is a formation of geodesic segments
which share a common endpoint and are otherwise pairwise disjoint. Geodesic
stars play a important role in [37]. While every point is the centre of a geodesic
star with a single ray, almost every point is not the centre of a star with any more
rays.

DEFINITION 14. For ε > 0, let Z(ε) denote the set of points x ∈ M such that
for some y, y′ ∈ B(x, ε)c and geodesic segments [x, y] and [x, y′], we have that
(x, y] ∩ (x, y′] = ∅. We call a point in Z(ε) the centre of a geodesic ε-star with
two rays.

Note that any point in the interior of a geodesic is in Z(ε) for some ε > 0, but
the converse need not hold.

PROPOSITION 30. Almost surely, for any ε > 0, Z(ε) is nowhere dense in M .

PROOF. Let ε > 0 and x ∈ T be given. Put N = B(x, ε/2). Let N ′ ⊂ N and
x0 ∈ N − N ′ be as in Proposition 12. Since N ⊂ B(x′, ε) for all x′ ∈ N ′, x0 is
contained in all geodesic segments of length ε from points x′ ∈ N ′. Hence Z(ε) ∩
N ′ = ∅. The result thus follows by the density of T . �

PROOF OF THEOREMS 3, 6. Note that if a point is either in the relative interior
of a geodesic or in the strong cut locus of a point, then it is the centre of a geodesic
ε-star with two rays, for some ε > 0. Therefore,

⋃
x∈M G(x) and

⋃
x∈M C(x) are

contained in
⋃

n≥1 Z(n−1), a set of first Baire category by Proposition 30. The
theorems follow. �

4.5. Geodesic networks. In this section, we classify the types of geodesic net-
works which are dense in the Brownian map and calculate the dimension of the set
of pairs with each type of network.

PROOF OF THEOREM 8. Let u �= v ∈ T be given. By property (vi) of points
in T , there is a unique geodesic [u, v]. Put ε = 1

3 d(u, v). By property (ii) of points
in T , we have by Lemma 23 that there is an η > 0 so that if U = B(u,η) and V =
B(v,η), then for any u′ ∈ U and v′ ∈ V , any geodesic segment [u′, v′] coincides
with [u, v] outside of B(u, ε) ∪ B(v, ε).
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Let z denote the midpoint of [u, v]. By the choice of η and since u ∈ T , we have
by properties (iii), (iv) for points in T that for all v′ ∈ V , the pair (z, v′) is regular
and joined by at most three geodesics. Hence, we split V = V1 ∪ V2 ∪ V3, where
Vk consists of v′ ∈ V for which (z, v′) ∈ N(1, k). Similarly, we decompose U =
U1 ∪ U2 ∪ U3 according to the number of geodesics between z and u′ ∈ U . Since
u, v ∈ T , we see by property (iv) of points in T that all Uj ,Vk are dense in U,V .

Finally, by the choice of η, observe that Uj × Vk ⊂ N(j, k), for all j, k ∈
{1,2,3}. Hence, parts (i), (ii) of the theorem follow by the density of T . �

For the proof of Theorem 9, we require the following result concerning the
dimension of cartesian products in arbitrary metric spaces.

LEMMA 31 (Howroyd [23, 24]). For any metric spaces X,Y we have that:

(i) (dimX) + (dimY) ≤ dim(X × Y);
(ii) dimP(X × Y) ≤ (dimP X) + (dimP Y),

where the metric on X × Y is the L1 metric on the product.

PROOF OF THEOREM 9. Let u �= v ∈ T and Uj ,Vk , j, k ∈ {1,2,3}, be as in
the proof of Theorem 8. Since u, v ∈ T , we have by properties (iv), (v) of points in
T that for all j, k ∈ {1,2,3}, dimUj = dimP Uj = 2(3 − j), dimVk = dimP Vk =
2(3 − k), and moreover, the sets U3,V3 are countable.

Recall that in the proof of Theorem 8, it is shown that for all j, k ∈ {1,2,3},
Uj × Vk ⊂ N(j, k). We thus obtain the lower bounds dimN(j, k) ≥ 2(6 − j − k)

by Lemma 31(i). In particular, since dimA ≤ dimP A, we obtain 8 ≤ dimN(1,1) ≤
dimP N(1,1) ≤ dimP M2 ≤ 8, where the last inequality follows by Proposition 19
and Lemma 31(ii). Hence, we find that dimN(1,1) = dimP N(1,1) = 8.

It remains to give an upper bound on the dimensions of N(j, k) when j, k are
not both 1, in which case the complement of the geodesic network G(x,y) is
disconnected. By symmetry, we assume j �= 1, so that there are multiple geodesics
leaving x. Let [x′, y′] be the closure of the intersection of all relative interiors
(x, y) of geodesics from x to y. (Since j �= 1, it follows that x �= x ′. If k = 1 then
y = y′.)

Fix a countable, dense subset T0 ⊂ T . Take some x0 ∈ T0 in a component Ux of
G(x,y)c whose closure contains x but not [x′, y′]. (See Figure 7.) By the Jordan

FIG. 7. Theorem 9: As depicted, (x, y) ∈ N(2,3). A typical point x0 ∈ Ux gives normal geodesics
[x0, y]. For some zn ∈ T0 sufficiently close to z, we have that (zn, x) ∈ N(1,2) and (zn, y) ∈ N(1,3),
and hence (x, y) ∈ S2(zn) × S3(zn).
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curve theorem and the choice of [x′, y′], for any geodesic [x0, y] we have that
[x0, y] − Ux is contained in some geodesic from x to y, and in particular, contains
[x′, y′]. Since x0 is typical, by property (ii) of points in T , we have that all sub-
segments of all geodesics [x0, y] are stable. Let z denote the midpoint of [x′, y′].
Note that, in particular, [x′, z] ⊂ [x′, y′] and [z, y′] ⊂ [x′, y′] are stable.

Take a sequence of points zn ∈ T0 converging to z. Any subsequential limit
of geodesics [x, zn] converges to some geodesic [x, z], which, by the choice of
[x′, y′], contains [x′, z]. Since [x′, z] is stable, for large enough n the geodesics
[x, zn] intersect [x′, z], and therefore (viewing [x, zn] as parametrized from x to
zn) necessarily coincide with one of the geodesics [x, x′], and then continue along
[x′, y′] before branching off towards zn. It follows that for such n, we have that
(x, zn) ∈ N(j,1). Similarly, since [z, y′] is stable, for large enough n the geodesics
[zn, y] all go through y′, and hence (zn, y) ∈ N(1, k).

By property (iii) of points in T , we note that for any u ∈ T and i ∈ {1,2,3},
Si(u) (as defined in Section 2.4) is equal to {v : (u, v) ∈ N(1, i)}. Furthermore, by
properties (iv), (v) of points in T , we have that dimP Si(u) = 6−2i, and moreover,
S3(u) is countable.

The above argument shows that for every (x, y) ∈ N(j, k) we have that (zn, x) ∈
N(1, j) and (zn, y) ∈ N(1, k) for some zn ∈ T0. Thus,

N(j, k) ⊂ ⋃
u∈T0

Sj (u) × Sk(u).

Therefore, since T0 is countable, we see by Lemma 31(ii) that dimP N(j, k) ≤
(6 − 2j) + (6 − 2k), giving the requisite upper bound. Moreover, we find that
N(3,3) is countable.

Altogether, since dimA ≤ dimP A, we conclude that N(j, k) has Hausdorff and
packing dimension 2(6 − j − k). �

PROOF OF COROLLARIES 10, 11. Noting that N(j, k) ⊂ P(jk), for all j, k ∈
N, we observe that Theorems 8, 9 immediately yield Corollaries 10, 11. �

5. Related models. Our results have implications for the geodesic structure
of models related to the Brownian map.

An infinite volume version of the Brownian map, the Brownian plane (P,D),
has been introduced by Curien and Le Gall [19]. The random metric space (P,D)

is homeomorphic to the plane R
2 and arises as the local Gromov–Hausdorff scal-

ing limit of the UIPQ (discussed in Section 1.1). The Brownian plane has an addi-
tional scale invariance property which makes it more amenable to analysis; see the
recent works of Curien and Le Gall [17, 18]. As discussed in [31], almost surely
there are isometric neighbourhoods of the roots of (M,d) and (P,D). Using this
fact and scale invariance, properties of the Brownian plane can be deduced from
those of the Brownian map.
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In a series of works, Bettinelli [7–9] investigates Brownian surfaces of positive
genus. In [7], subsequential Gromov–Hausdorff convergence of uniform random
bipartite quadrangulations of the g-torus Tg is established (also general orientable
surfaces with a boundary are analyzed in [9]), and it is an ongoing work of Bet-
tinelli and Miermont [11, 12] to confirm that a unique scaling limit exists. Some
properties hold independently of which subsequence is extracted. For instance, a
scaling limit of bipartite quadrangulations of Tg is homeomorphic to Tg (see [8])
and has Hausdorff dimension 4 (see [7]). Also, a confluence of geodesics is ob-
served at typical points of the surface (see [9]). Our results imply further proper-
ties of geodesics in such surfaces, although in these settings there are additional
technicalities to be addressed.
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