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THE FEYNMAN–KAC FORMULA AND HARNACK INEQUALITY
FOR DEGENERATE DIFFUSIONS
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University of Pennsylvania and University of Minnesota

We study various probabilistic and analytical properties of a class of
degenerate diffusion operators arising in population genetics, the so-called
generalized Kimura diffusion operators Epstein and Mazzeo [SIAM J. Math.
Anal. 42 (2010) 568–608; Degenerate Diffusion Operators Arising in Popu-
lation Biology (2013) Princeton University Press; Applied Mathematics Re-
search Express (2016)]. Our main results are a stochastic representation of
weak solutions to a degenerate parabolic equation with singular lower-order
coefficients and the proof of the scale-invariant Harnack inequality for non-
negative solutions to the Kimura parabolic equation. The stochastic represen-
tation of solutions that we establish is a considerable generalization of the
classical results on Feynman–Kac formulas concerning the assumptions on
the degeneracy of the diffusion matrix, the boundedness of the drift coeffi-
cients and the a priori regularity of the weak solutions.

1. Introduction. Generalized Kimura diffusion operators are a class of de-
generate elliptic operators arising in Population Genetics as the infinitesimal gen-
erators of continuous limits of Markov chains Kimura (1957, 1964); Shimakura
(1981); Ethier and Kurtz (1986); Karlin and Taylor (1981). A thorough study of
the parabolic equations defined by generalized Kimura operators was initiated by
C. Epstein and R. Mazzeo in Epstein and Mazzeo (2010, 2013), where the authors
construct anisotropic Hölder spaces to prove existence, uniqueness and optimal
regularity of solutions to the parabolic Kimura equation. In general, Kimura op-
erators act on functions defined on manifolds with corners [Epstein and Mazzeo
(2013), Section 2.1]. In adapted local coordinates, z = (x, y) ∈ Sn,m, the general-
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ized Kimura operator takes the form

(1.1)

L̂u =
n∑

i=1

(
xiâii(x, y)uxixi

+ b̂i (x, y)uxi

)+ n∑
i,j=1

xixj āij (x, y)uxixj

+
n∑

i=1

m∑
l=1

xi ĉil(x, y)uxiyl
+

m∑
k,l=1

d̂kl(x, y)uykyl
+

m∑
l=1

êl(x, y)uyl
,

in a neighborhood of (0,0), for u ∈ C2(Sn,m). We let Sn,m := Rn+ × Rm, R+ :=
(0,∞), with n and m nonnegative integers such that n + m ≥ 1. The hypersurface
boundary components of Sn,m are defined by {xi = 0}, for i = 1, . . . , n.

With x̂i = (x1, . . . , xi−1, xi+1, . . . , xn), we denote the restriction

βi(x̂i , y) = b̂i (x, y)|{xi=0}.
In normalized coordinates aii = 1, for all i. In these coordinates, the functions,
{βi}, are invariantly defined on ∂Sn,m, and are called the weights of the Kimura
operator L̂. In applications to Genetics, a weight βi(x̂i , y) is the aggregate mu-
tation rate into the type i when xi = 0 and the remaining types have frequencies
(x̂i , y). If these weights are all constant, then the analysis is considerably simpler.
Such operators have been examined in many important cases in Shimakura (1981).
This is not a natural hypothesis, as it implies that the rates of mutation into a given
type depend only on the target and not on the source.

In Epstein and Mazzeo (2016), an operator L closely related to L̂ is introduced,
which is defined by a Dirichlet form. If the weights are all strictly positive, then
the measure appearing in the Dirichlet form is a doubling measure, and one can
establish that the Dirichlet form satisfies a scale-invariant L2-Poincaré inequality.
Using techniques of Moser as elaborated by Saloff-Coste, Grigor’yan and Sturm,
one can then establish that nonnegative local solutions to ut − Lu = 0 satisfy a
Harnack inequality, as well as pointwise estimates for the heat kernel. The differ-
ence L − L̂ is a vector field tangent to the boundary, which is, in a precise sense,
a lower order perturbation; see Section 5.2. If the weight βi(x̂i , y) is nonconstant
along the boundary component {xi = 0}, then the coefficients of this vector field
blow-up like lnxi . This explains the origin of the class of operators, defined in
(1.10), whose study we continue in this paper. To illustrate the structure of the
operator L̂, we begin with an example of the Wright–Fisher model for gene fre-
quencies, which leads to a particular example of a Kimura diffusion.

EXAMPLE 1.1 (A Wright–Fisher model [Karlin and Taylor (1981), Chapter 15,
Problem 33]). We consider a Wright–Fisher model for the frequencies of 3 types
with mutation and no selection. The stochastic differential equation that describes
the dynamics of the frequencies of 2 of the types, {X(t), Y (t)}t≥0, is given by

dX(t) = (
α − (α + γ )X(t)

)
dt +

√
X(t)

(
1 − X(t)

)
dW1(t),

dY (t) = (
β − (β + γ )Y (t)

)
dt +

√
Y(t)

(
1 − Y(t)

)
dW2(t),
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where α,β, γ are nonnegative constants determined by the mutation rates, and
{Wi(t)}t≥0, for i = 1,2, are one-dimensional Brownian motions with correlation
coefficient,

dW1(t) · dW2(t) =√
X(t)Y (t)/

√(
1 − X(t)

)(
1 − Y(t)

)
dt.

Because the drift coefficients of the processes {X(t)}t≥0 and {Y(t)}t≥0 are zero or
point inside of the interval [0,1] at the endpoints 0 and 1, where the variance of the
processes vanishes, standard properties of one-dimensional diffusions imply that,
almost surely,

0 ≤ X(t), Y (t) ≤ 1, ∀t ≥ 0.

Moreover, an application of Itô’s rule gives us that the process Z(t) := X(t)+Y(t)

satisfies

dZ(t) = (
α + β − (α + γ )X(t) − (β + γ )Y (t)

)
dt +

√
Z(t)

(
1 − Z(t)

)
dW3(t),

where {W3(t)}t≥0 is a one-dimensional Brownian motion defined by {W1,W2}.
The same argument as above gives us that 0 ≤ Z(t) ≤ 1, a.s. for all t ≥ 0. It is now
clear that we can model the frequency of the third type by the process 1 − X(t) −
Y(t), and to understand this model, it is sufficient to characterize the dynamics of
the process {X(t), Y (t)}t≥0, whose state space is the two-dimensional simplex,

�2 := {
(x, y) ∈ R2 : 0 ≤ x, y;x + y ≤ 1

}
,

which is an example of a compact manifold with corners.
To understand the dynamics of the type frequency process, we study the in-

finitesimal generator of the process, which is given by

(1.2)
L̂u = 1

2
x(1 − x)uxx − xyuxy + 1

2
y(1 − y)uyy

+ [α − (α + γ )x
]
ux + [β − (β + γ )y

]
uy, ∀(x, y) ∈ �2.

The study of the operator L̂ is nonstandard only in a neighborhood of the boundary
of the domain. To facilitate this analysis, depending on the point that we fix on the
boundary of �2, we choose suitable adapted local coordinates to write the operator
L̂ in the general form described in (1.1). For example, the form L̂ given in equation
(1.2) is used in a neighborhood of the point (0,0). In a neighborhood of the corner
point (0,1), the operator L̂ given by (1.2) does not obviously have the form (1.1),
but a change of local coordinates, (x′, y′) = (1 − (x + y), y), allows us to rewrite
L̂ as

L̂′v = 1

2
x′(1 − x′)vx′x′ − x′y′vx′y′

+ 1

2
y′(1 − y′)vy′y′ + [

β − (β + γ )y′]vy′(1.3)

+ [β + γ + (α + γ )x′ + (α + β − 2γ )y′]vx′, ∀(x′, y′) ∈ �2,

which is clearly of the more general form (1.1).
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The weights of L̂, defined in (1.2), along {x = 0} and {y = 0} are the constants
α and β , respectively. Along x′ = 0, the weight β +γ + (α +β −2γ )y ′ is noncon-
stant. It is the nonconstancy of weights that leads to the log-terms appearing below
in the definition of generalized Kimura operators. If α,β,β + γ,α + 2β − γ are
positive, then results in Epstein and Mazzeo (2013, 2016) imply that the process
has a unique stationary measure, ν, which can be written

(1.4) ν = w(x, y)xα−1yβ−1(1 − x − y)β+γ+(α+β−2γ )y dx dy,

for a bounded, nonnegative function w(x, y).
In neighborhoods of the corner points (0,0) and (0,1), the operators L̂ given

by (1.2), and L̂′ given by (1.3) can be extended to the space Sn,m, with n = 2 and
m = 0. When choosing a boundary point of the form (0,1/2), it is not difficult
to see that the operator L̂ in (1.2) can be written in the form (1.1), and then ex-
tended to Sn,m, but now with n = m = 1. Since the focus of this article is on local
properties of solutions, it is natural to study Kimura operators (1.1) defined on the
extended space Sn,m.

The main feature of the operator L̂ is that it is not strictly elliptic as we approach
the boundary of the domain Sn,m, and not self-adjoint with respect to any obvious
choice of measure. Hence, standard methods do not apply to understand the reg-
ularity properties of solutions to equations defined by L̂. The coefficient matrix
corresponding to the second-order derivatives of the operator L̂ degenerates be-
cause the smallest eigenvalue of the second-order coefficient matrix tends to 0 at a
rate proportional to the distance to the boundary of the domain. For this reason, the
signs of the coefficient functions b̂i(z) along ∂Sn,m play a crucial role in the regu-
larity of solutions. In this article, we always assume that, for i = 1, . . . , n, the drift
coefficient b̂i(z) is a strictly positive function along {xi = 0} ⊂ ∂Sn,m. The precise
technical conditions imposed on the coefficients of the operator L̂ are described in
Assumption 5.1.

The initial motivation of our article was to prove that nonnegative solutions to
the parabolic equation defined by generalized Kimura operators,

(1.5) ut − L̂u = 0 on (0,∞) × Sn,m,

satisfy a scale-invariant Harnack inequality.

THEOREM 1.2 (A scale-invariant Harnack inequality). Suppose that Assump-
tion 5.1 holds and let c ∈ (

√
2/3,1). Then there are positive constants, α, β , γ and

H = H(b̄, δ,K,K0,	,T ), such that α > β and the following hold. Let 
 ⊆ Sn,m

be an open set and (t1, t2) ⊂ R+. Let Q := (t1, t2) × 
. Assume that u is a non-
negative, continuous probabilistic solution to the equation ut − L̂u = 0 on Q, in
the sense of Definition 5.5. Then for all (s, z) ∈ Q and all R > 0 such that

(1.6)
(
s − 4R2, s + R2)× B4R(z) ⊂ Q,
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we have that

(1.7) sup
Q−

ρ (s,z)

u ≤ H inf
Q+

ρ (s,z)
u ∀ρ ∈ (0, cR),

where we let

Q−
ρ (s, z) := (

s − αρ2, s − βρ2)× Bρ(z),(1.8)

Q+
ρ (s, z) := (

s, s + γρ2)× Bρ(z).(1.9)

A different proof of Theorem 1.2, based on Moser’s iteration method Moser
(1961, 1964), is given in Epstein and Mazzeo (2016). The main difference be-
tween our method of proof and that of Epstein and Mazzeo (2016) is that we use
a probabilistic approach due to K.-T. Sturm (1994), in which we view the operator
L̂ as a lower-order perturbation of the self-adjoint generalized Kimura operator, L,
defined by

Lu =
n∑

i=1

(xiaiiuxixi
+ biaiiuxi

) +
n∑

i,j=1

xixj ãij uxixj

+
n∑

i=1

m∑
l=1

2xiciluxiyl
+

m∑
k,l=1

dlkuylyk

+
n∑

i=1

xi

(
∂xi

aii +
n∑

j=1

(
ãij + δij ãii + xj∂xj

ãij + ãij (bj − 1)
)

+
m∑

l=1

∂yl
cil

)
uxi

(1.10)

+
n∑

i=1

xi

[
n∑

j=1

(
∂xi

bj +
n∑

k=1

xkãik∂xk
bj +

m∑
l=1

cil∂yl
bj

)
lnxj

]
uxi

+
m∑

l=1

[
n∑

i=1

(xi∂xi
cil + bicil)

+
m∑

k=1

∂yk
dlk +

n∑
j=1

(
n∑

i=1

xicil∂xi
bj +

m∑
k=1

dlk∂yk
bj

)
lnxj

]
uyl

,

where u ∈ C2(Sn,m) and δij denotes the Kronecker delta symbol. The precise re-
lationnship between the operators L and L̂ is described in §5.2. The difference
L− L̂ is a vector field tangent to the boundary, with possibly singular coefficients.
The operator L is defined by a symmetric Dirichlet form [see (2.1)]; if the weights
are nonconstant, then log-terms arise from integration by parts.
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While the results in Epstein and Mazzeo (2016) apply both to the operators L

and L̂, in our work we appeal only to those results concerning the self-adjoint
operator L, and not L̂. We believe that this observation is important because this
suggests that it may be possible to generalize our approach to more general oper-
ators Â, which can be written as a sum of a self-adjoint operator A and a lower-
order, possibly singular, perturbation E, and exploit the fact that properties of self-
adjoint operators are, generally speaking, easier to derive than those for nonself-
adjoint operators.

We next comment on the main difficulty in adapting Sturm’s approach to our
framework in order to motivate two further results in our article, which are de-
scribed in Theorems 1.3 and 1.6. The probabilistic proof of the Harnack inequality
in Theorem 1.2 requires that we know that the solutions to the parabolic problems
defined by the operators L and L̂ have a stochastic representation. This is partic-
ularly problematic for the generalized Kimura operator L, because as proven in
Section 2.2, the weak solutions to the problem (2.10) only belong to a suitable
weighted H 1 space. In particular, we do not know the regularity properties of the
second-order derivatives of the solutions up to the boundary of the domain Sn,m.
Their properties are not easy to derive as we can see that the operator L contains
singular logarithmic terms. Thus, it is not possible to directly apply Itô’s rule to
establish the stochastic representation of solutions. Instead, we take a different ap-
proach, which circumvents the application of Itô’s rule and uses a combination of
probabilistic and analytic arguments described in Section 4.

To give the statement of the stochastic representation of solutions, we first need
to define the generalized Kimura stochastic differential equation associated to the
operator L:

(1.11)

dXi(t) =
(
gi

(
Z(t)

)+ Xi(t)

n∑
j=1

fij

(
Z(t)

)
lnXj(t)

)
dt

+√Xi(t)

n+m∑
j=1

σij

(
Z(t)

)
dWj(t),

dYl(t) =
(
el

(
Z(t)

)+ n∑
j=1

fl+n,j

(
Z(t)

)
lnXj(t)

)
dt

+
n+m∑
j=1

σl+n,j

(
Z(t)

)
dWj(t),

for all i = 1, . . . , n and l = 1, . . . ,m, where {W(t)}t≥0 is a (n + m)-dimensional
Brownian motion, and we denote Z = (X,Y ). The relation between the general-
ized Kimura operator L, defined in (1.10), and the generalized Kimura stochastic
differential equation (1.11) is described in Section 4.1. The existence and unique-
ness of weak Markov solutions to the generalized Kimura equation (1.11) is estab-
lished in Pop (2017a), Theorems 3.1 and 3.7.
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Let 
 ⊆ Sn,m and denote 
 := 
 ∪ (∂
 ∩ ∂Sn,m). We also need to introduce
the weighted Sobolev space L2(
;dμ), which consists of measurable functions,
u : 
 →R, that are L2-integrable with respect to the measure dμ(z), defined by

dμ(z) :=
(

n∏
i=1

x
bi(z)−1
i

)
dz, ∀z = (x, y) ∈ Sn,m.(1.12)

If the weights of L (or L̂) are positive, then the unique stationary measure for the
associated process is locally of the form w(z)dμ(z), with w a bounded function;
see (1.4). If L̂ is a standard Kimura diffusion, with weights {b̂i (x, y)} that are
nonconstant along some boundary components, then the natural representation of
the dual operator L̂t acting on measures of the form f (z) dμ(z) includes a first-
order tangent vector field with logarithmically divergent coefficients. This provides
a second reason why it is natural to consider operators with singular coefficients,
such as those appearing in definition (1.10).

We establish the stochastic representation of weak solutions.

THEOREM 1.3 (Stochastic representation of weak solutions). Suppose that
the coefficients of the operator L satisfy Assumption 2.1. Let 
 ⊆ Sn,m be an open
set. Given any function, f ∈ L2(
;dμ), there is a set, N ⊂ 
, of zero μ-measure,
such that

(1.13) u(t, z) = EPz

[
f
(
Z(t)

)
1{t<τ
}

]
, ∀t ≥ 0,∀z ∈ 
\N,

where τ
 is defined by

(1.14) τ
 := inf
{
t > 0 : Z(t) /∈ 


}
.

Pz is the probability distribution of the unique weak Markov solution, {Z(t)}t≥0,
to the Kimura equation (1.11), with initial condition Z(0) = z, and u is the unique
weak solution to the initial-value problem,

(1.15)
ut − Lu = 0 on (0,∞) × 
,

u = f on {0} × 
.

REMARK 1.4. In Section 2.2, we prove that the solutions to the initial-value
problem (1.15) define a strongly continuous, contraction semigroup, {T 


t }t≥0, on
the weighted Sobolev space L2(
;dμ). In other words, for all f ∈ L2(
;dμ),
the solution u to (1.15) can be represented in the form u(t) = T 


t f . Thus, the
stochastic representation formula (1.13) is equivalent to

(1.16) T 

t f (z) = EPz

[
f
(
Z(t)

)
1{t<τ
}

]
, ∀t ≥ 0,∀z ∈ 
\N.

REMARK 1.5. With more effort it can be shown that the set, N , of zero μ-
measure appearing in the statement of Theorem 1.3 can be chosen to be the empty
set; see Epstein and Pop (2014), Theorem 1.3, and Remark 4.5.
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Our next result is a probabilistic reformulation of the Harnack inequality Epstein
and Mazzeo (2016), Theorem 4.1, for nonnegative solutions to the parabolic equa-
tion defined by the operator L. The main difference between Epstein and Mazzeo
(2016), Theorem 4.1, and our Theorem 1.6 is that, in the former result, the Harnack
inequality (1.19) applies to functions belonging to suitable weighted H 1 Sobolev
spaces (as defined in Section 2), while in the latter result, (1.19) applies to func-
tions satisfying the stochastic representation (1.18). Thus, the a priori regularity
properties of the functions u(t, z) defined by (1.18) are not obvious. Along with
Theorem 1.3, Theorem 1.6 is a key ingredient in our probabilistic proof of the
Harnack inequality in Theorem 1.2. To state Theorem 1.6, we need the following
notation. Let Q := (t1, t2) × 
, and let

(1.17) ðQ := ([t1, t2] × ∂1

)∪ ({t1} × 


)
,

where ∂1
 := ∂
 ∩ Sn,m. We can now state the following.

THEOREM 1.6 (Harnack inequality for solutions defined by a stochastic repre-
sentation). Suppose that the coefficients of the operator L satisfy Assumption 2.1.
There is a positive constant, K0, such that the following hold. Let g ∈ C(ðQ) be a
nonnegative function, and let u be the function defined by the stochastic represen-
tation

(1.18) u(t, z) := EPz

[
g
(
t − (t − t1) ∧ τ


)
,Z
(
(t − t1) ∧ τ


)
)
] ∀(t, z) ∈ Q̄,

where {Z(t)}t≥0 is the unique weak Markov solution to the generalized Kimura
stochastic differential equation (1.11), with initial condition Z(0) = z, and τ
 is
as in (1.14). Then the function u satisfies the scale-invariant Harnack inequality,
that is, for all (t0, z0) ∈ Q̄ and r > 0, such that Q2r (t

0, z0) ⊂ Q, we have that

(1.19) ess sup
Qr(t0−2r2,z0)

u ≤ K0 ess inf
Qr(t0,z0)

u,

where the parabolic cylinder Qr(t
0, z0) is defined in (4.16).

Our results, Theorems 1.3 and 1.6, are a considerable generalization of similar
results concerning stochastic representation of solutions. In our article, the stochas-
tic representation (1.13) holds for weak solutions u, with the property that u and
uxi

belong to a suitable weighted Sobolev space, and ut is understood in a distri-
butional sense (as described in Section 2.2). In particular, we do not have informa-
tion about the regularity of the second-order derivatives uxixj

, and so the standard
method of applying Itô’s rule to a sequence of regularized solutions to prove a
stochastic representation formula is not applicable in our framework. The results
known to us in the literature apply to functions having C1,2 regularity [Karatzas
and Shreve (1991), Theorem 5.7.6; Friedman (1975/1976), Theorem 6.5.1; Feehan
and Pop (2015), Theorems 1.14, 1.15 and 1.17], or W 1,2

p regularity [Sturm (1994),
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Theorem 4; Bensoussan and Lions (1982), Theorems 2.7.3 and 2.7.4; Portenko
(1976), Section II.3], that is u, ut , uxi

and uxixj
are continuous functions, or they

belong to a Lp space. Moreover, the operators considered in the aforementioned
articles are strictly elliptic and the lower-order terms are bounded, measurable
functions, while our operator L is degenerate and the lower-order terms have log-
arithmic singularities. The main advance in Theorem 1.3, over known results, is in
the relaxation of the regularity assumptions of the solutions for which we establish
the stochastic representation (1.13).

Stochastic representation of solutions defined by semigroups can also be de-
rived in terms of Hunt processes [Fukushima, Oshima and Takeda (2011), Theo-
rems 7.2.1 and 7.2.2], as opposed to solutions to stochastic differential equations.
In the application of Theorem 1.3 to the proof of the Harnack inequality, we need
to have the stochastic representation (1.13) in terms of the solutions to the stochas-
tic differential equation. It is a nontrivial problem to prove that the Hunt process
arising in the stochastic representation implied by Fukushima, Oshima and Takeda
(2011), Theorem 7.2.1, is also a solution to a stochastic differential equation. In
our proof of Theorem 1.3, given in Section 4.2 and Section 4.3, we establish that
the Hunt process associated to the semigroup of solutions u(t) = T 


t f , where
u(0) = f , given by Fukushima, Oshima and Takeda (2011), Theorem 7.2.1, has
the same law as the unique weak Markov solution to the generalized Kimura equa-
tion (1.11), stopped upon leaving the region 
. We are not aware of a reference to
analogous results in the literature.

1.1. Outline of the article. The rest of our article is organized as follows. Our
main results concerning the stochastic representation of solutions, Theorems 1.3
and 1.6, are proved in Section 4, while the Harnack inequality stated in Theo-
rem 1.2 is proved in Section 5. Sections 2 and 3 contain results that lead to the
proofs of our main results.

In Section 2, we introduce the parabolic problem defined by the generalized
Kimura operator L on sub-domains 
 of Sn,m and the notion of weak solution in
Definition 2.2. We prove the existence and uniqueness of weak solutions in suit-
able weighted Sobolev spaces and we show that the weak solutions to the homo-
geneous initial-value problem (1.15) generate a strongly continuous, contraction
semigroup, {T 


t }t≥0. We also discuss the Dirichlet form associated to the general-
ized Kimura operator L and the semigroup {T 


t }t≥0. Concepts from the theory of
Dirichlet forms are used in Section 4.3 to give the proof of Theorem 1.3.

In Section 3, we study the properties of the fundamental solution for the semi-
group {Tt }t≥0, which play a key role in Section 4 to give the proofs of Theorems 1.3
and 1.6. Section 4 is organized into several parts. In Section 4.1, we describe the re-
lation between the generalized Kimura operator L, defined in (1.10), and the gen-
eralized Kimura stochastic differential equation (1.11). In Section 4.2, we prove
Theorem 1.3 in the particular case when 
 = Sn,m. Because Theorem 1.3 cannot
be obtained by a direct application of Itô’s rule, due to the lack of regularity of
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the solutions u(t) = T 

t f , we adopt a different approach. We first establish the

stochastic representation (1.13) by replacing {Z(t)}t≥0 by a suitable Hunt process,
{Z0(t)}t≥0, and then using the formalism of the martingale problem of Stroock
and Varadhan, we show that the Hunt process {Z0(t)}t≥0 induces the same prob-
ability law on the canonical space as the unique weak Markov solution {Z(t)}t≥0
to the Kimura stochastic equation (1.11). Theorem 4.1 is then obtained as a conse-
quence of Proposition 4.2. We obtain the more general statement of Theorem 1.3 in
Section 4.3, by combining Theorem 4.1 with a localization procedure from Sn,m to
sub-domains, 
 ⊂ Sn,m. The localization procedure consists in studying the part of
the Dirichlet form (Q,H 1

0 (S̄n,m;dμ)) on 
 ⊂ Sn,m; see Fukushima, Oshima and
Takeda (2011), Section 4.4. We conclude Section 4 with the proof of Theorem 1.6
in Section 4.4.

In Section 5, we adapt the method of the proof of Sturm (1994) to our framework
to obtain the Harnack inequality for the Kimura operator L̂, defined in (1.1). In
Section 1.2, we summarize the notation and conventions that are used throughout
the article.

1.2. Notation and conventions. Let Q+ denote the set of positive rationals
and N := {0,1,2, . . .}. For all n,m and k positive integers, and U ⊂ Rn an open
set, we denote by Ck(U ;Rm) the set of functions u : U → Rm that are k times
continuously differentiable on U . We let Ck(Ū ;Rm) be the set of functions in
Ck(U ;Rm) with the property that all derivatives up to order k can be extended by
continuity on Ū and the norm

‖u‖Ck(Ū ;Rm) := ∑
α∈Nn

|α|≤k

∥∥Dαu
∥∥
C(Ū ;Rm) < ∞,

where |α| = α1 + · · · + αn, for all α = (α1, . . . , αn) ∈Nn. Let a, b ∈ R. We denote
a ∧ b := min{a, b} and a ∨ b := max{a, b}.

2. Initial-value problems, semigroups and Dirichlet forms. In this section,
we state in Assumption 2.1 the conditions satisfied by the coefficients of the sin-
gular Kimura operator L given by (1.10). We then introduce in Definition 2.2 the
notion of weak solution to the parabolic problem defined by the singular Kimura
operator on a domain 
 ⊆ Sn,m and we recall the existence and uniqueness re-
sults for weak solutions to the initial-value problems defined by L. This allows us
to introduce the semigroup, {T 


t }t≥0, determined by the weak solutions and the
associated Dirichlet form, Q
(u, v).

2.1. Assumptions on the coefficients of the singular Kimura operator L. The
particular choice of the operator L in Epstein and Mazzeo (2016) and in our work
is motivated by the fact that it can be written in divergence form [L is a self-adjoint
operator on L2(S̄n,m;dμ)]. That is, for all u, v ∈ C2

c (S̄n,m), we have that

−(Lu, v)L2(S̄n,m;dμ) = Q(u,v),
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where we recall that the weighted Sobolev space L2(S̄n,m;dμ) consists of mea-
surable functions, u : S̄n,m →R, that are L2-integrable with respect to the measure
dμ(z), defined by (1.12), and the symmetric bilinear form, Q(u,v), is given by

(2.1) Q(u,v) =
∫
Sn,m

q(u, v)(z) dμ(z),

where we let

(2.2)

q(u, v)(z) :=
n∑

i=1

xiaii(z)uxi
vxi

+
n∑

i,j=1

xixj ãij (z)uxi
vxj

+
n∑

i=1

m∑
l=1

xicil(z)(uxi
vyl

+ uyl
vxi

) +
m∑

l,k=1

dlk(z)uyl
vyk

.

To state the technical assumptions satisfied by the bilinear form Q(u,v), we intro-
duce the following notation. For a set of indices, I ⊆ {1, . . . , n}, we let

MI := {
z = (x, y) ∈ Sn,m : xi ∈ (0,1) for all i ∈ I,

(2.3)
and xj ∈ [1,∞) for all j ∈ I c},

where we denote I c := {1, . . . , n}\I . We make the following assumptions about
the coefficients of the bilinear form Q(u,v) given by (2.1).

ASSUMPTION 2.1 (Coefficients of the operator L). There are positive con-
stants, b̄, δ and K , such that:

1. The coefficients diag(aii(z)), (ã(z)) and (c(z)) are chosen such that, for all
z ∈ M̄{1,...,n}, ξ ∈Rn and η ∈ Rm, we have that

δ
(|ξ |2 + |η|2)≤ n∑

i=1

aii(z)ξ
2
i +

n∑
i,j=1

ãij (z)ξiξj

(2.4)

+ 2
n∑

i=1

m∑
l=1

cil(z)ξiηl +
m∑

l,k=1

dlk(z)ηlηk.

Compare condition (2.4) with Pop (2017a), Condition (2.18) and Epstein and
Mazzeo (2016), Condition (35).

2. Let I � {1, . . . , n}, 1 ≤ i, j ≤ n, 1 ≤ l, k ≤ m, h ∈ I , and h′ ∈ I c. For all
z ∈ M̄I , we assume that

(2.5)
ãij (z) = 0, cil(z) = 0, dlk(z) = δlk, bi(z) = 1,

δ ≤ ahh(z), xh′ah′h′(z) = 1.

3. The coefficients bi(z) satisfy, for all i = 1, . . . , n,

bi(z) ≥ b̄ > 0, ∀z ∈ ∂Sn,m ∩ {xi = 0}.(2.6)
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4. The coefficients aii(z), ãij (z), bi(z), cik(z), dkl(z) together with their deriva-
tives of any order are smooth and bounded functions on S̄n,m, for all 1 ≤ i, j ≤ n

and for all 1 ≤ k, l ≤ m, and we have that

(2.7) ‖aii‖C(S̄n,m) +‖ãij‖C(S̄n,m) +‖cik‖C(S̄n,m) +‖dlk‖C(S̄n,m) +‖bi‖C(S̄n,m) ≤ K.

The conditions imposed on the coefficients of the operator L in Assumption 2.1
ensure that they also satisfy the conditions assumed in Pop (2017a) and Epstein
and Mazzeo (2016).

2.2. The initial-value problem defined by the singular Kimura operator. To
formulate the notion of weak solution to the inhomogeneous initial-value problem,

(2.8)
ut − Lu = g on I × 
,

u = f on {t1} × 
,

where 
 ⊆ Sn,m is an open set and I := (t1, t2) ⊂ R+, we need to introduce
suitable function spaces. We denote ∂0
 the relative interior of ∂
 ∩ ∂Sn,m,
∂1
 := ∂
 ∩ Sn,m, and 
 := 
 ∪ ∂0
, and we introduce a bilinear form on the
open set 
:

Q
(u, v) :=
∫



q(u, v)(z) dμ(z), ∀u, v ∈ H 1
0 (
;dμ).

When 
 = Sn,m, we simply denote Q
 by Q. We follow Sturm (1995), Sec-
tion 1.3 A, letting H := L2(
;dμ), and F := H 1

0 (
;dμ) be the closure of C1

functions with compact support in 
, C1
c (
), with respect to the norm,

‖u‖H 1(
;dμ) := (
Q
(u,u) + ‖u‖2

H
)1/2

.

Let C(Ī ,H) be the space of continuous functions, u : Ī → H, endowed with the
norm

‖u‖C(Ī ,H) := sup
t∈Ī

∥∥u(t)
∥∥
H < ∞.

The space of functions C(Ī ,F) is defined similarly to C(Ī ,H) by replacing the
space H with F in the preceding definition. We let L2(I,F) denote the space of
measurable functions, u, on I × 
 endowed with the norm,

‖u‖L2(I,F) :=
(∫

I

∥∥u(t)
∥∥2
F dt

)1/2
< ∞.

Let F∗ denote the dual space of F with respect to the extension of the L2(
;dμ)-
pairing to F × F∗. H 1(I,F∗) is the space of distributions, u, such that u ∈
L2(I,F∗) and the distributional time derivative, du

dt
, also belongs to L2(I,F∗).

We endow the space H 1(I,F∗) with the norm(∫
I

(∥∥u(t)
∥∥2
F∗ +

∥∥∥∥du(t)

dt

∥∥∥∥2

F∗

)
dt

)1/2
< ∞.
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Finally, we let F(I × 
) := L2(I,F) ∩ H 1(I,F∗). Following Sturm (1995), Sec-
tion 1.4 A, Evans (1998), Section 7.1.1 b., Brezis (2011), Theorem 10.9, we define
the notion of a weak solution as follows.

DEFINITION 2.2 (Weak solution). Let f ∈ H and g ∈ L2(I,F∗). A function
u ∈ F(I × 
) is a solution to the inhomogeneous initial-value problem (2.8) if:

1. For all v ∈ F(I × 
), we have that

(2.9)
∫
I
Q


(
u(t), v(t)

)
dt +

∫
I

(
du(t)

dt
, v(t)

)
dt =

∫
I

(
g(t), v(t)

)
dt,

where (·, ·) denotes the dual pairing of F∗ and F .
2. The initial condition is satisfied in the H-sense, that is, ‖u(t) − f ‖H → 0 as

t ↓ t1.

It is clear that the bilinear form Q
(u, v) is coercive and continuous when
u, v ∈ F . Thus, we can apply Sturm (1995), Proposition 1.2, to obtain that for
all f ∈ H there is a unique weak solution, u ∈ F(I × 
), to the homogeneous
initial-value problem:

(2.10)
ut − Lu = 0 on I × 
,

u = f on {t1} × 
.

Moreover, there is a strongly continuous, symmetric, contraction semigroup on H,
{T 


t }t≥0, such that the unique weak solution u can be represented in the form
u(t + t1) = T 


t f , for all t ∈ (0, t2 − t1). For brevity, when 
 = Sn,m we denote T 

t

by Tt . Using (2.1) directly, and the definitions in Fukushima, Oshima and Takeda
(2011), Properties (E .1)-(E .7), it is easy to verify that the bilinear form Q
(u, v)

defines a Dirichlet form on the Hilbert space H 1
0 (
;dμ) ⊂ L2(
;dμ), which is

regular and strongly local.
From Sturm (1995), Proposition 1.2, and Duhamel’s principle, we obtain the

existence and uniqueness of a weak solution to the inhomogeneous initial-value
problem (2.8). We state the result in the form that we need for later use.

LEMMA 2.3 (Existence and uniqueness of solutions to the inhomogeneous
problem [Lions and Magenes (1972), Theorem 3.4.1 and Remark 3.4.3, Brezis
(2011), Theorem 10.9]). Let f ∈ H and g ∈ L2(I,H). Then there is a unique
weak solution, u ∈ F(I × 
), to the inhomogeneous initial-value problem (2.8),
and we have that

(2.11) u(t + t1) = T 

t f +

∫ t

0
T 


t−sg(s + t1, ·) ds, ∀t ∈ [0, t2 − t1].
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3. Properties of the fundamental solution. In this section, we prove the ex-
istence of the fundamental solution associated to the semigroup {Tt }t≥0, and some
of its regularity properties that are extensively used in the sequel. In Lemmas 3.1,
3.2 and 3.4, we establish the main properties of the fundamental solution, which al-
low us to associate in Section 4.2 a suitable Hunt process to the semigroup {Tt }t≥0.
In Propositions 3.6 and 3.7, we prove a Hölder estimate and a Lq -distribution es-
timate satisfied by the fundamental solution, which enable us to establish that the
Hunt process associated to the semigroup {Tt }t≥0 is a solution to the generalized
Kimura stochastic differential equation (1.11).

LEMMA 3.1 (Measurability of the fundamental solution). There is a measur-
able function, p : (0,∞) × S̄n,m × S̄n,m → [0,∞), such that

(3.1) p(t, z, ·) ∈ L2(S̄n,m;dμ), ∀(t, z) ∈ (0,∞) × S̄n,m,

and we have that

Ttf (z) =
∫
Sn,m

p(t, z,w)f (w)dμ(w),

(3.2)
∀(t, z) ∈ (0,∞) × S̄n,m,∀f ∈ L2(S̄n,m;dμ).

LEMMA 3.2 (Regularity of the fundamental solution). The fundamental so-
lution, p, admits a modification, p̄, that belongs to C((0,∞) × S̄n,m × S̄n,m),
and satisfies properties (3.1) and (3.2), with p replaced by p̄, and the Chapman–
Kolmogorov equations,

p̄
(
t + s, z, z0)= ∫

Sn,m

p̄(t, z,w)p̄
(
s,w, z0)dμ(w),

(3.3)
∀t, s > 0,∀z, z0 ∈ S̄n,m.

REMARK 3.3. The following results in our article refer to the continuous
modification of the fundamental solution, denoted by p̄ in Lemma 3.2. In order
to simplify notation, we denote the continuous modification p̄ by p from now on.

LEMMA 3.4 (Transition probability densities). For all (t, z) ∈ (0,∞) × S̄n,m,
we have that p(t, z, ·) ∈ L1(S̄n,m;dμ). Moreover, p is a nonnegative function, and
satisfies

(3.4)
∫
Sn,m

p(t, z,w)dμ(w) = 1, ∀(t, z) ∈ (0,∞) × S̄n,m.

The functions p(t, z,w)dμ(w) can therefore be viewed as transition probabil-
ity densities.
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REMARK 3.5. We note that partial statements of Lemmas 3.1 and 3.2 are
established in Sturm (1995), Proposition 2.3(i) and (iii), where identities (3.2)
and (3.3) are established for all t > 0 and for μ-a.e. z, z0 ∈ Sn,m. In our proof
of Lemmas 3.1 and 3.2, we prove the results for all z, z0 ∈ Sn,m, which is impor-
tant in the proof of Theorem 4.1, which is turn implies the main Theorem 1.3.
The fact that identities hold for all t > 0 and for all z, z0 ∈ Sn,m allows us to view
p(t, z, ·) dμ as transition probability densities and apply the Daniell–Kolmogorov
theorem Baudoin (2014), Theorem 3.14, in the proof of Theorem 4.1.

To state the Hölder distribution estimates, we first need to introduce the in-
trinsic distance, ρ, induced by the bilinear form Q(u,v) on S̄n,m; see also Pop
(2017a), inequality (2.15), and Epstein and Mazzeo (2016), Identity (42). Given
Assumption 2.1, there is a positive constant, c, such that for all sets of indices
I, J ⊆ {1, . . . , n} and all z0 ∈ M̄I and z ∈ M̄J , we have

c
(

max
i∈I∩J

∣∣∣√x0
i − √

xi

∣∣∣+ max
k∈(I∩J )c

∣∣x0
k − xk

∣∣+ max
l∈{1,...,m}

∣∣y0
l − yl

∣∣)
≤ ρ

(
z0, z

)
(3.5)

≤ c−1
(

max
i∈I∩J

∣∣∣√x0
i − √

xi

∣∣∣+ max
k∈(I∩J )c

∣∣x0
k − xk

∣∣
+ max

l∈{1,...,m}
∣∣y0

l − yl

∣∣).
For z0 ∈ S̄n,m and r > 0, we let

(3.6) Br

(
z0) := {

z ∈ S̄n,m : ρ(z0, z
)
< r

}
,

denote the ball with center z0 and radius r , with respect to the distance function ρ.
When z0 = (0,0), we write for brevity Br instead of Br(0,0). We can now state
the following.

PROPOSITION 3.6 (Hölder distribution estimates). There is a positive con-
stant, α0 = α0(K,m,n), so that for all α ∈ (α0,∞), there is a positive con-
stant, γ = γ (α,K,m,n), such that for all T > 0, we can find a positive constant,
C = C(α, b̄,‖b‖C1(S̄n,m;Rn),m,n,T ), with the property that∫

Sn,m

ρα(z0, z
)
p
(
t, z0, z

)
dμ(z) ≤ Ctn+m+γ ,

(3.7)
∀t ∈ (0, T ],∀z0 ∈ S̄n,m.

We also have
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PROPOSITION 3.7 (Lq -distribution estimates). There is a positive constant,
q0 = q0(K,m,n) ∈ (1,2), such that the following hold. For all q ∈ [1, q0), there is
a positive constant, β = β(q) < 1, and for all T > 0, there is a positive constant,
C0 = C0(b̄,‖b‖C1(S̄n,m;Rn),m,n, q, T ), such that∥∥p(t, z0, ·)∥∥Lq(S̄n,m;dμ) ≤ C0t

−β, ∀z0 ∈ S̄n,m,∀t ∈ (0, T ],(3.8)

and ∫ T

0

∥∥p(t, z0, ·)∥∥Lq(S̄n,m;dμ) dt ≤ C0, ∀z0 ∈ S̄n,m.(3.9)

REMARK 3.8. For comparison, we recall the analogous estimate for standard
Brownian motion. For n-dimensional Brownian motion, direct calculations give us
that, for all α,q > 0, there is a positive constant, C = C(α,n), such that∫

Rn

∣∣z − z0∣∣αp
(
t, z0, z

)
dz = Ctα/2,

∫
Rn

∣∣p(t, z0, z
)∣∣q dz = (2π)n(1−q)/2

qn/2 t (1−q)n/2,(3.10)

∀z0 ∈ Rn,∀t > 0.

Thus, the conclusion of Propositions 3.6 and 3.7 hold in the case of Brownian
motion, when α > 2n and q ∈ [1, (n + 2)/n).

The remainder of the section contains the technical proofs of Lemmas 3.1, 3.2
and 3.4, and of Propositions 3.6 and 3.7, which can be omitted on a first reading.
We begin with the following.

PROOF OF LEMMA 3.1. By Lemma 2.3, for every function f ∈ L2(S̄n,m;dμ),
the homogeneous initial-value problem (2.8) has a unique solution, u ∈ F((0,

∞) × S̄n,m), which can be represented by u(t) = Ttf , for all t ≥ 0. By Epstein
and Mazzeo (2016), Corollary 4.1, the solution u is Hölder continuous on (0,∞)×
S̄n,m, and so, the function Ttf (z) is well defined at all points (t, z) ∈ (0,∞)× S̄n,m.
By Sturm (1995), Theorem 2.1, for all 0 < t1 < t2 and all compact sets, K ⊂ S̄n,m,
there is a positive constant, C = C(t1, t2,K), such that for all t ∈ [t1, t2] and all
z ∈ K , we have that∣∣Ttf (z)

∣∣≤ C

(∫ t2

t1/2
‖Tsf ‖2

L2(S̄n,m;dμ)
ds

)1/2

(3.11)

≤ C

(
t2 − t1

2

)1/2
‖f ‖L2(S̄n,m;dμ),

where in the second inequality we used the contraction property of {Tt }t≥0. It
follows that the map L2(S̄n,m;dμ) � f �→ Ttf (z) is continuous, and so, there
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is a Borel measurable function, p(t, z, ·) ∈ L2(S̄n,m;dμ), such that identity (3.2)
holds. Moreover, using the fact that∥∥p(t, z, ·)∥∥L2(S̄n,m;dμ) = sup

‖f ‖
L2(S̄n,m;dμ)

=1

∣∣Ttf (z)
∣∣,

inequality (3.11) gives us that∥∥p(t, z, ·)∥∥L2(S̄n,m;dμ) ≤ C, ∀(t, z) ∈ [t1, t2] × K.(3.12)

Let (t0, z0) ∈ (0,∞) × S̄n,m and r > 0 be such that t0 − 4r2 > 0. We denote
Qr(t

0, z0) := (t0 − r2, t0)×Br(z
0). Let (t ′, z′) and (t ′′z′′) be points in Qr(t

0, z0).
By Epstein and Mazzeo (2016), Corollary 4.1, there are positive constants, α ∈
(0,1) and C = C(t0, z0, r), such that∣∣Tt ′f

(
z′)− Tt ′′f

(
z′′)∣∣≤ C‖Ttf ‖L∞(Q2r (t

0,z0))

(
ρ
(
z′, z′′)+√∣∣t ′ − t ′′

∣∣)α.

From inequality (3.11), it follows that

(3.13)
∣∣Tt ′f

(
z′)− Tt ′′f

(
z′′)∣∣≤ C‖f ‖L2(S̄n,m;dμ)

(
ρ
(
z′, z′′)+√∣∣t ′ − t ′′

∣∣)α.

Using the fact that∥∥p(t ′, z′, ·)− p
(
t ′′, z′′, ·)∥∥L2(S̄n,m;dμ) = sup

‖f ‖
L2(S̄n,m;dμ)

=1

∣∣Tt ′f
(
z′)− Tt ′′f

(
z′′)∣∣,

inequality (3.13) gives us that, for all (t ′, z′), (t ′′, z′′) ∈ Qr(t
0, z0), we have∥∥p(t ′, z′, ·)− p

(
t ′′, z′′, ·)∥∥L2(S̄n,m;dμ) ≤ C

(
ρ
(
z′, z′′)+√∣∣t ′ − t ′′

∣∣)α.

Because the point (t0, z0) ∈ (0,∞) × S̄n,m was arbitrarily chosen, the preceding
inequality implies that the function p : (0,∞)× S̄n,m × S̄n,m → [0,∞) is measur-
able, and satisfies property (3.1) and identity (3.2). �

PROOF OF LEMMA 3.2. For all ϕ ∈ C∞
c (S̄n,m), using the semigroup property

and Epstein and Mazzeo (2016), Corollary 4.1, we have that TtTsϕ(z) = Tt+sϕ(z),
for all t, s > 0 and all z ∈ S̄n,m. From (3.2), we can write the equality TtTsϕ(z) =
Tt+sϕ(z) in the form,∫

Sn,m

p(t, z,w)

∫
Sn,m

p
(
s,w, z0)ϕ(z0)dμ

(
z0)dμ(w)

(3.14)
=
∫
Sn,m

p
(
t + s, z, z0)ϕ(z0)dμ

(
z0),

and so, identity (3.3) holds for all t, s > 0, and all z ∈ S̄n,m, and for μ-almost every
z0 ∈ S̄n,m. The symmetry property of the semigroup yields that

p
(
t, z, z0)= p

(
t, z0, z

)
,

(3.15)
∀t ∈ (0,∞), for (μ × μ)-almost all

(
z0, z

) ∈ S̄n,m × S̄n,m.

To obtain the conclusion of Lemma 3.2, we first prove the following.
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CLAIM 3.9. There is a set N ⊂ S̄n,m of zero μ-measure such that for all t ∈
Q+ and z0 ∈ S̄n,m\N , we have

(3.16) p
(
t,w, z0)= p

(
t, z0,w

)
, for μ-a.e. w ∈ S̄n,m,

and there is a countable and dense set, A ⊂ S̄n,m, such that A ∩ N = ∅ and such
that for all t, s ∈ Q+, z ∈ A and z0 ∈ S̄n,m\N , we have

(3.17) p
(
t + s, z, z0)= ∫

Sn,m

p(t, z,w)p
(
s,w, z0)dμ(w).

PROOF. For t ∈ Q+, let Nt ⊂ S̄n,m × S̄n,m be a measurable set with zero (μ ×
μ)-measure, such that identity (3.15) holds, for all (z, z0) /∈ Nt . Denote by N0 :=⋃

t∈Q+ Nt . Then N0 also has zero (μ × μ)-measure, and identity (3.15) holds, for
all (z, z0) /∈ N0 and all t ∈Q+. For all k ∈ N, we let Kk := [0, k]n ×[−k, k]m, and
we see that

(μ × μ)
(
K2

k \N0)= (μ × μ)
(
K2

k

)
< ∞.

We denote Sz0 := {z ∈ Kk : (z, z0) ∈ K2
k \N0}, and applying Folland (1999),

Proposition 2.36, it follows that μ(Sz0) = μ(Kk), for μ-a.e. z0 ∈ Kk . Thus, there
is a set N1

k ⊂ S̄n,m with zero μ-measure such that

p
(
t,w, z0)= p

(
t, z0,w

)
, ∀t ∈ Q+, for μ-a.e. w ∈ Kk,∀z0 ∈ Kk\N1

k .

Letting now N1 := ∪{N1
k : k ∈ N}, we have that N1 has zero μ-measure, and

p
(
t,w, z0)= p

(
t, z0,w

)
,

(3.18)
∀t ∈Q+, for μ-a.e. w ∈ S̄n,m,∀z0 ∈ S̄n,m\N1.

We now turn to the proof of the Chapman–Kolmogorov equations (3.17). Us-
ing the fact that identity (3.3) holds for all t, s > 0, and all z ∈ S̄n,m, and for μ-
almost every z0 ∈ Sn,m, we choose a countable and dense set, A ⊂ S̄n,m, such
that A ∩ N1 = ∅, and for all t, s ∈ Q+ and z ∈ A, we choose a set N2

t,s,z

with zero μ-measure such that A ∩ N2
t,s,z = ∅ and identity (3.3) holds at all

points z0 ∈ S̄n,m\N2
t,s,z. We can now set N2 := ∪{N2

t,s,z : t, s ∈ Q+, z ∈ A}, and
N := N1 ∪ N2, and we obtain that both identities (3.16) and (3.17) hold. We no-
tice also that A ∩ N = ∅. This completes the proof of the claim. �

Let t, s ∈ Q+, z ∈ A, z0 ∈ S̄n,m\N , where the sets A and N are as in
Claim 3.9. Because p(s, z0, ·) ∈ L2(S̄n,m;dμ), there is a unique weak solution,
u ∈F((0, T )× S̄n,m), where T > 0, to the homogeneous equation (2.8) with initial
condition f = p(s, z0, ·). Using Epstein and Mazzeo (2016), Corollary 4.1, it fol-
lows that the solution u is continuous on (0, T ) × S̄n,m. Since u(t) = Ttp(s, z0, ·),
the semigroup property (3.2) gives us that

u(t, z) =
∫
Sn,m

p(t, z,w)p
(
s, z0,w

)
dμ(w),
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and properties (3.16) and (3.17) imply that u(t, z) = p(t +s, z, z0). Estimate (3.13)
applied with f := p(s, z0, ·), and the property that∥∥p(s, z0, ·)∥∥L2(S̄n,m;dμ) ≤ 1,

for all (s, z0) ∈ (0,∞) × S̄n,m, show that for all t1, t2 > 0, and all compact
sets, K ⊂ S̄n,m, there are positive constants, α = α(t1, t2,K) ∈ (0,1) and C =
C(t1, t2,K), such that, for all t ′, t ′′ ∈ [t1, t2] ∩ Q+, and for all z′, z′′ ∈ K ∩ A and
all z0 ∈ S̄n,m\N , we have that

(3.19)
∣∣p(t ′, z′, z0)− p

(
t ′′, z′′, z0)∣∣≤ C

(
ρ
(
z′, z′′)+√∣∣t ′ − t ′′

∣∣)α.

The preceding inequality together with the symmetry property (3.17) and the fact
that Q+ ×A× (S̄n,m\N) is dense in (0,∞)× S̄n,m × S̄n,m and A∩N = ∅ give us
that p admits a continuous modification on (0,∞)× S̄n,m × S̄n,m, which is simply
the unique continuous extension of p from Q+ ×A×(S̄n,m\N) to (0,∞)× S̄n,m ×
S̄n,m. We denote the continuous modification of p by p̄. Inequality (3.19) yields
that for all t ′, t ′′ ∈ [t1, t2], and for all z′, z′′ ∈ K and all z0 ∈ S̄n,m,

(3.20)
∣∣p̄(t ′, z′, z0)− p̄

(
t ′′, z′′, z0)∣∣≤ C

(
ρ
(
z′, z′′)+√∣∣t ′ − t ′′

∣∣)α,

where C = C(t1, t2,K) > 0 and α = α(t1, t2,K) ∈ (0,1). Using (3.18), we also
have that

(3.21) p̄(t, z,w) = p̄(t,w, z), ∀t > 0,∀z,w ∈ S̄n,m.

It remains to show that the continuous extension p̄ satisfies properties (3.1), (3.2)
and (3.3), with p replaced by p̄. The previous argument together with the conti-
nuity estimate (3.20) and Epstein and Mazzeo (2016), Corollary 4.1, imply that p̄

satisfies (3.2). Using the fact that {Tt }t≥0 is a family of continuous operators on
L2(S̄n,m;dμ) and property (3.2), we obtain that (3.1) also holds for p̄. Finally,
property (3.17) gives us that p̄ verifies (3.3). This completes the proof. �

We now give the Proof of Lemma 3.4

PROOF OF LEMMA 3.4. The fact that p(t, z, ·) is a nonnegative function fol-
lows from Sturm (1995), Lemma 1.4. Using the contraction property in Sturm
(1995), Proposition 1.6, of the semigroup {Tt }t≥0 on L∞(S̄n,m;dμ), it follows
that p(t, z, ·) ∈ L1(S̄n,m;dμ). Property (3.4) is equivalent to

(3.22) Tt1(z) = 1, ∀(t, z) ∈ (0,∞) × S̄n,m.

Let {ϕk}k≥1 ⊂ C∞
c (S̄n,m) be a sequence of smooth functions such that 0 ≤ ϕk ≤ 1,

and ϕk(z) = 1 for z ∈ Be
k , and ϕk(z) = 0 for z ∈ S̄n,m\Be

2k , where we denote Be
r :=

{z ∈ S̄n,m : |z| < r}, for all r > 0. From (2.11), we have that the following identity
holds in the L2(S̄n,m;dμ)-sense:

Ttϕk = ϕk −
∫ t

0
TsLϕk ds.
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Using the contraction property [Sturm (1995), Proposition 1.6] of the semigroup
{Tt }t≥0 on Lp(S̄n,m;dμ), for all p ∈ [1,∞], and the preceding identity, we obtain
that

‖Ttϕk − ϕk‖Lp(S̄n,m;dμ) ≤ t‖Lϕk‖Lp(S̄n,m;dμ), ∀k ≥ 1.

From Assumption 2.1, it follows that there is a positive constant, C = C(K,m,

n,p), such that

‖Lϕk‖Lp(S̄n,m;dμ) ≤ Ck
n+m

p
−1

, ∀k ≥ 1.

Choosing p large enough, we obtain that ‖Lϕk‖Lp(S̄n,m;dμ) → 0, as k → ∞, and

so, there is a subsequence {Ttϕk − ϕk}k≥1 which converges to 0, μ-a.e. on S̄n,m.
Using the upper bound estimates of the fundamental solution [see (3.23) below],

it follows that for all compact sets, K ⊂ S̄n,m, and all t > 0, we have

sup
z∈K

∣∣Ttϕk(z) − Tt1(z)
∣∣→ 0, as k → ∞.

By Epstein and Mazzeo (2016), Corollary 4.1, the functions Ttϕk belong to
C(S̄n,m), for all k ≥ 1, and so the function Tt1 is continuous on S̄n,m. Since the
sequence (Ttϕk − ϕk) → 0, μ-a.e. on S̄n,m, as k → ∞, ϕk → 1 pointwise on Sn,m,
as k → ∞, and Tt1 is continuous on S̄n,m, it follows that identity (3.22) holds.
This concludes the proof of identity (3.4). �

Our next aim is to give the proofs of Propositions 3.6 and 3.7, with the aid of
the supremum estimate established in Epstein and Mazzeo (2016), Corollary 4.3:
there is a positive constant, C, such that

p
(
t, z0, z

)≤ C
e− 1

8t
ρ2(z0,z)√

μ(B√
t (z

0))μ(B√
t (z))

=: p̃(t, z0, z
)
,

(3.23)
∀t > 0,∀z0, z ∈ S̄n,m.

To prove Propositions 3.6 and 3.7, we need a last elementary result concerning the
μ-measure of balls with respect to the distance function ρ.

LEMMA 3.10 (Measure of the balls). Assume that the coefficient b ∈ C1(S̄n,m;
Rn) satisfies condition (2.6). Then there are positive constants, C and r0 depending
on b̄,‖b‖C1(S̄n,m;Rn),m,n, such that for all r ∈ (0, r0/2) and z0 ∈ S̄n,m, we have
that

1

C
rm+n

∏
i∈I (z0)

∣∣∣√x0
i ∨ r

∣∣∣2bi(z
0)−1 ≤ μ

(
Br

(
z0))

(3.24)

≤ Crm+n
∏

i∈I (z0)

∣∣∣√x0
i ∨ r

∣∣∣2bi(z
0)−1

,
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where we let

(3.25) I
(
z0) := {

i ∈ {1, . . . , n} : x0
i ∈ [0, r0]}.

PROOF. Because we assume that the coefficient b belongs to C1(S̄n,m;Rn)

and that condition (2.6) holds, there are positive constant, c and r1 such that, for
all i = 1, . . . , n, we have that bi(z) ≥ b̄/2, for all z = (x, y) ∈ S̄n,m such that xi ∈
(0, r1), and |bi(z) − bi(z

0)| ≤ cr , for all z ∈ Br(z
0) and r > 0. Thus, there is a

positive constant, r0 = r0(b̄,‖b‖C1(S̄n,m;Rn),m,n), small enough so that

b̄

4
< βi − cr ≤ bi(z) ≤ βi + cr,

(3.26)
∀z ∈ Br

(
z0),∀r ∈ (0, r0/2),∀i ∈ I

(
z0),

where we denote βi := bi(z
0), for all i = 1, . . . , n. We prove the first inequality in

(3.24). From the preceding inequality, it follows that

μ
(
Br

(
z0))≥ ∫

Br(z0)

n∏
i∈I (z0)

x
βi+cr−1
i dxi

n∏
i∈I c(z0)

x
bi(z)−1
i dxi

m∏
l=1

dyl,

(3.27)
∀r ∈ (0, r0/2),

where we let I c(z0) := {1, . . . , n}\I (z0). Using property (3.5) of the distance func-
tion ρ, it follows from the preceding inequality that there is a positive constant,
C1 = C1(r0,‖b‖C(S̄n,m),m,n), such that

μ
(
Br

(
z0))≥ C1r

m+|I c(z0)| ∏
i∈I (z0)

∫
{|√xi−

√
x0
i |<r}

x
βi+cr−1
i dxi,

from where the left-hand side of inequality (3.24) immediately follows. The right-
hand side of inequality (3.24) is proved by a similar argument, and so, we omit the
detailed proof. �

We now give the proof of Proposition 3.6.

PROOF OF PROPOSITION 3.6. Using (3.23), we see that it is sufficient to prove
estimate (3.7) for p̃(t, z0, z) instead of p(t, z0, z). Notice that the positive constant
T can be chosen as small as we like. Let r0 be the positive constant appearing in
the conclusion of Lemma 3.10. Without loss of generality, we may assume that T

satisfies inequality (3.37). It follows from the left-hand side of inequality (3.24),
using (3.37), that there is a positive constant, C = C(b̄,‖b‖C1(S̄n,m;Rn),m,n), such
that

μ
(
B√

t (z)
)≥ Ct(m+n)/2tnK, ∀z ∈ S̄n,m,∀t ∈ (0, T ],
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where we recall that ‖bi‖C(S̄n,m) ≤ K from condition (2.7). The supremum bound
of the fundamental solution (3.23), together with the preceding inequality, gives us
that ∫

Sn,m

ρα(z0, z
)
p̃
(
t, z0, z

)
dμ(z)

(3.28)
≤ Ct−(m+n)/2−nK

∫
Sn,m

ρα(z0, z
)
e− 1

8t
ρ2(z0,z) dμ(z).

We see that there is a positive constant, C = C(α,m,n), such that∫
Sn,m

ρα(z0, z
)
e− 1

8t
ρ2(z0,z) dμ(z) ≤ C

n∑
j=1

∫
Sn,m

ρα(x0
j , xj

)
e− 1

8t
ρ2(z0,z) dμ(z)

+ C

m∑
k=1

∫
Sn,m

ρα(y0
k , yk

)
e− 1

8t
ρ2(z0,z) dμ(z).

We estimate each term on the right-hand side of the preceding inequality. We show
that there is a positive constant, C = C(α, b̄,‖b‖C1(S̄n,m;Rn),m,n), such that for all
j = 1, . . . , n, we have

(3.29)
∫
Sn,m

ρα(x0
j , xj

)
e− 1

8t
ρ2(z0,z) dμ(z) ≤ Ct(m+α)/2,

and, for all indices k = 1, . . . ,m, we have that

(3.30)
∫
Sn,m

ρα(y0
k , yk

)
e− 1

8t
ρ2(z0,z) dμ(z) ≤ Ct(m+α)/2.

We outline the proof of estimate (3.29), but inequality (3.30) can be deduced by a
similar argument, and so, we do not include the detailed proof.

Inequality (3.42) and definition (1.12) of the measure dμ(z) yield that there is
a positive constant, c = c(m,n), such that∫

Sn,m

ρα(x0
j , xj

)
e− 1

8t
ρ2(z0,z) dμ(z)

≤
∫ ∞

0
ρα(x0

j , xj

)
e
− c

8t
ρ2(x0

j ,xj )
ϕ(xj ) dxj(3.31)

×
n∏

i=1
i �=j

∫ ∞
0

e− c
8t

ρ2(x0
i ,xi )ϕ(xi) dxi

m∏
k=1

∫
R

e− c|y0
k
−yk |2
8t dyk,

where we recall the definition of the function ϕ in (3.43). From inequality (3.10)
applied with α = 0, we have that

(3.32)
∫
R

e− c|y0
k
−yk |2
8t dyk ≤ Ct1/2, ∀k = 1, . . . ,m,
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while using again identity (3.10) and property (3.5) of the distance function ρ,
there is a positive constant, C = C(b̄,K,m,n,T ), such that for all t ∈ (0, T ], we
have that

(3.33)
∫ ∞

0
e− c

8t
ρ2(x0

i ,xi )ϕ(xi) dxi ≤ C, ∀i = 1, . . . , n, i �= j.

Thus, using the preceding two inequalities, estimate (3.31) becomes∫
Sn,m

ρα(x0
j , xj

)
e− c

8t
ρ2(z0,z) dμ(z)

(3.34)
≤ Ctm/2

∫ ∞
0

ρα(x0
j , xj

)
e
− c

8t
ρ2(x0

j ,xj )
ϕ(xj ) dxj .

It remains to estimate the integral on the right-hand side of the preceding inequal-
ity. Using definition (3.43) of the function ϕ(xj ), we write the integral on the
right-hand side of inequality (3.34) as a sum of three integrals, I1 + I2 + I3, where
the integral I1 is taken over the interval (0, r0/2), the integral I2 is over (r0/2,1),
and the last integral is over (1,∞). We estimate integral I1, which satisfies the
inequality

I1 ≤ Ctα/2
∫ r0/2

0

(ρ(x0
j , xj )√
t

)α

e
− 8

c
(
ρ(x0

j
,xj )√
t

)2

x
b̄/4−1
j dxj ,

where C = C(α,m,n) is a positive constant. Because the function s �→ sαe−s2
is

bounded on R̄+ and the function s �→ sb̄/4−1 is integrable on (0,1), we see that
there is a positive constant, C = C(b̄, r0,m,n), such that I1 ≤ Ctα/2. A similar
argument can be applied to estimate integrals I2 and I3 to prove that they satisfy
the same estimate as I1. Thus, using inequalities (3.34), (3.33) and (3.32), it fol-
lows that there is a positive constant, C = C(α, b̄,‖b‖C1(S̄n,m;Rn),m,n), such that
estimate (3.29) holds. A similar argument can be applied to prove that estimate
(3.30) holds. Using (3.29) and (3.30) in inequality (3.28) gives us that∫

Sn,m

ρα(z0, z
)
p̃
(
t, z0, z

)
dμ(z) ≤ Ct(α−n(2+K))/2.(3.35)

Choosing α0 := 2(n + m) + n(2 + K), the preceding inequality shows that, for all
α ∈ (α0,∞), there are positive constants, C = C(α, b̄,‖b‖C1(S̄n,m;Rn),m,n) and
γ = γ (α,K,m,n), such that estimate (3.7) holds. This completes the proof. �

We also have the following.

PROOF OF PROPOSITION 3.7. Notice that inequality (3.9) is a consequence
of inequality (3.8), and so it is sufficient to prove that (3.8) holds. Using the supre-
mum bound (3.23), it is sufficient to prove estimate (3.8) for p̃(t, z0, z). Thus, we
will prove that there is a positive constant, q0 = q0(K,m,n) ∈ (1,2), such that for
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all q ∈ [1, q0), there are positive constants, C = C(b̄,‖b‖C1(S̄n,m;Rn),m,n, q, T )

and β = β(q) < 1, such that we have∥∥p̃(t, z0, ·)∥∥Lq(Sn,m;dμ) ≤ C0t
−β, ∀z0 ∈ S̄n,m,∀t ∈ (0, T ].(3.36)

Moreover, notice that the positive constant T can be chosen as small as we like. Let
r0 be the positive constant appearing in the conclusion of Lemma 3.10. Without
loss of generality, we may assume that

(3.37)
√

T ≤ r0

2
.

It follows from the left-hand side of inequality (3.24), using (3.37), that there is a
positive constant, C = C(b̄,‖b‖C1(S̄n,m;Rn),m,n), such that

μ
(
B√

t (z)
)≥ Ct(m+n)/2

∏
i∈I (z)

(xi ∨ t)bi(z)−1/2,

(3.38)
∀z ∈ S̄n,m,∀t ∈ (0, T ],

where we recall the definition of the set of indices I (z) in (3.25). To estimate
‖p̃(t, z0, ·)‖Lq(Sn,m;dμ), we consider the set

At

(
z0) := {

z = (x, y) ∈ Sn,m :
∣∣∣√xi −

√
x0
i

∣∣∣< tα for i ∈ I
(
z0),∣∣xi − x0

i

∣∣< tα for i ∈ I c(z0), and
∣∣yl − y0

l

∣∣< tα for l ∈ {1 . . . ,m}
}
,

where we choose α ∈ (0,1/2), and we denote Ac
t (z

0) := Sn,m\At(z
0). We split

the proof into two steps in which we estimate ‖p̃(t, z0, ·)‖Lq(Ac
t (z

0);dμ) and

‖p̃(t, z0, ·)‖Lq(At (z0);dμ), respectively.

STEP 1 (Estimate of ‖p̃(t, z0, ·)‖Lq(Ac
t (z

0);dμ)). In this step, we prove that

there are positive constants, C = C(b̄,‖b‖C1(S̄n,m;Rn),m,n) and c = c(m,n), such
that

(3.39)
∥∥p̃(t, z0, ·)∥∥Lq(Ac

t (z
0);dμ) ≤ Ct−q(m+n)/2−qnKe

− qc

t1−2α .

From inequalities (3.38) and (3.23), we have that∥∥p̃(t, z0, ·)∥∥q
Lq(Ac

t (z
0);dμ)

≤ Ct−q(m+n)/2
∏

i∈I (z0)

(
x0
i ∨ t

)−q(bi(z
0)−1/2)/2(3.40)

×
∫
Ac

t (z
0)

∏
j∈I (z)

(xj ∨ t)−q(bj (z)−1/2)/2e− qρ2(z,z0)
8t dμ(z),
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which, with the aid of inequality (2.7), gives us

(3.41)
∥∥p̃(t, z0, ·)∥∥q

Lq(Ac
t (z

0);dμ)
≤ Ct−q(m+n)/2t−qnK

∫
Ac

t (z
0)

e− qρ2(z,z0)
8t dμ(z).

Using the first inequality in (3.26), together with (2.5), (2.6) and (2.7), we obtain
for all i = 1, . . . , n that

x
bi(z)−1
i ≤ x

b̄/4−1
i 1{xi∈(0,r0/2)} + x−K−1

i 1{xi∈[r0/2,1)}
(3.42)

+ 1{xi∈[1,∞)}, ∀z ∈ Sn,m,

and we denote the function on the right-hand side of the preceding inequality by

ϕ(xi) = x
b̄/4−1
i 1{xi∈(0,r0/2)} + x−K−1

i 1{xi∈[r0/2,1)}
(3.43)

+ 1{xi∈[1,∞)}, ∀z ∈ Sn,m.

Using property (3.5) of the distance function ρ(z, z0), together with definition
(1.12) of the measure dμ(z), we obtain from (3.41) that there is a positive con-
stant, c = c(m,n), such that∥∥p̃(t, z0, ·)∥∥q

Lq(Ac
t (z

0);dμ)

≤ Ct−q(m+n)/2−qnK

×
( ∑

i∈I (z0)

∫
{|√xi−

√
x0
i |>tα}

e− qcρ2(xi ,x
0
i
)

8t ϕ(xi) dxi

×
n∏

j=1
j �=i

∫ ∞
0

e− qcρ2(xj ,x0
j
)

8t ϕ(xj ) dxj

m∏
l=1

∫
R

e− qcρ2(yl ,y
0
l
)

8t dyl

(3.44)

+ ∑
i∈I c(z0)

∫
{|xi−x0

i |>tα}
e− qcρ2(xi ,x

0
i
)

8t ϕ(xi) dxi

×
n∏

j=1
j �=i

∫ ∞
0

e− qcρ2(xj ,x0
j
)

8t ϕ(xj ) dxj

m∏
l=1

∫
R

e− qcρ2(yl ,y
0
l
)

8t dyl

+
m∑

l=1

n∏
i=1

∫ ∞
0

e− qcρ2(xi ,x
0
i
)

8t ϕ(xi) dxi

×
∫
{|yl−y0

l |>tα}
e− qcρ2(yl ,y

0
l
)

8t dyl

m∏
k=1
k �=l

∫
R

e− qcρ2(yk,y0
k
)

8t dyk

)
.



THE FEYNMAN–KAC FORMULA FOR DEGENERATE DIFFUSIONS 3361

For brevity, we denoted by ρ(x0
i , xi) the distance between the points z0 and z

that have the ith coordinates equal to x0
i and xi , respectively, and all the other

coordinates are equal, for all i = 1, . . . , n, and x0
i , xi ∈ R̄+. We define similarly

ρ(y0
l , yl), for all y0

l , yl ∈R and all l = 1, . . . ,m. The parenthesis on the right-hand
side of inequality (3.44) can be written as the sum of three terms, I1 + I2 + I3.
We show that there are positive constants, C = C(b̄,‖b‖C1(S̄n,m;Rn),m,n) and c =
c(m,n), such that

(3.45) I1 + I2 + I3 ≤ Ce
− cq

t1−2α ,

which implies estimate (3.39) by inequality (3.44). We will only give the detailed
proof of the fact that

(3.46) I1 ≤ Ce
− cq

t1−2α ,

because the estimates for the integrals I2 and I3 can be obtained by a similar ar-
gument. Let i ∈ I (z0). Using property (3.5) of the distance function ρ, there are
positive constants, C = C(b̄,‖b‖C1(S̄n,m;Rn),m,n) and c = c(m,n), such that∫

{|√xi−
√

x0
i |>tα}

e− qcρ2(xi ,x
0
i
)

8t x
b̄/4−1
i 1{xi∈(0,r0/2)} dxi ≤ e

− qc

8t1−2α

∫ r0/2

0
x

b̄/4−1
i dxi

≤ Ce
− qc

t1−2α .

Similarly, we obtain that∫
{|√xi−

√
x0
i |>tα}

e− qcρ2(xi ,x
0
i
)

8t x−K−1
i 1{xi∈[r0/2,1)} dxi ≤ e

− qc

8t1−2α

∫ 1

r0/2
x−K−1
i dxi

≤ Ce
− qc

t1−2α ,

and we also have that∫
{|√xi−

√
x0
i |>tα}

e− qcρ2(xi ,x
0
i
)

8t 1{xi∈[1,∞)} dxi ≤
∫ ∞

1
e− qc|xi−x0

i
|2

8t dxi

≤ Ce− qc
t ,

for some positive constant, c = c(m,n). In the last inequality, we used the fact
that |xi − x0

i | ≥ |1 − r0| > 0, since xi ∈ [1,∞) and xi
0 ∈ (0, r0), where we re-

call that i ∈ I (z0) and the set of indices I (z0) is defined in (3.25). Using def-
inition (3.43) of the function ϕ(xi), we see that there are positive constants,
C = C(b̄,‖b‖C1(S̄n,m;Rn),m,n) and c = c(m,n), such that∫

{|√xi−
√

x0
i |>tα}

e− qcρ2(xi ,x
0
i
)

8t ϕ(xi) dxi ≤ Ce
− qc

t1−2α .
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We notice that, for all j ∈ {1, . . . , n} and l ∈ {1, . . . ,m}, we also have the very
rough estimates∫ ∞

0
e− qcρ2(xj ,x0

j
)

8t ϕ(xj ) dxj +
∫
R

e− qcρ2(yl ,y
0
l
)

8t dyl ≤ C,

where C = C(b̄,‖b‖C1(S̄n,m;Rn),m,n) is a positive constant. Thus, combining the
preceding three inequalities it follows that estimate (3.46) holds. A similar argu-
ment implies estimate (3.45), and inequality (3.44) yields estimate (3.39). This
completes the proof of Step 1.

STEP 2 (Estimate of ‖p̃(t, z0, ·)‖Lq(At (z0);dμ)). In this step, we prove that there
is a positive constant, C = C(b̄,‖b‖C1(S̄n,m;Rn),m,n), such that∥∥p̃(t, z0, ·)∥∥q

Lq(At (z0);dμ)
(3.47)

≤ Ct(m+n)(α−q/2)(tnK(−q/2−αq+2α) + t2nK(1−q)),
for all t ∈ (0, T ], where the positive constant T is chosen to satisfy conditions
(3.49) and (3.52) below. From inequality (3.37), we may assume without loss of
generality that the positive constant r0 is small enough such that there is a positive
constant, C1 = C1(b̄,‖b‖C1(S̄n,m;Rn),m,n), with the property that xi ≥ C1, for all

z = (x, y) ∈ At(z0), i ∈ I c(z0) and t ∈ [0, T ]. Using the fact that the coefficient
function b(z) belongs to C1(S̄n,m;Rn), and letting c1 = ‖b‖C1(S̄n,m;Rn), we have
that

(3.48)
∣∣bi(z) − bi

(
z0)∣∣≤ c1t

α, ∀z ∈ At

(
z0),∀i = 1, . . . , n.

From the first inequality in (3.26), we have that bi(z
0) ≥ b̄/4, for all i ∈ I (z0).

Choosing the positive constant T such that

(3.49) T ≤
(

b̄

8c2

)1/α

,

we have that

bi

(
z0)− c2t

α ≥ b̄

8
> 0, ∀z = (x, y) ∈ At

(
z0),∀i ∈ I

(
z0),∀t ∈ [0, T ],

where T satisfies the bounds (3.37) and (3.49). From (3.48), it follows that

bi

(
z0)+ c2t

α ≥ bi(z) ≥ bi

(
z0)− c2t

α > 0,
(3.50)

∀z = (x, y) ∈ At

(
z0),∀i ∈ I

(
z0).

Choosing now i ∈ I c(z0), we have that x0
i ≥ r0, and so, it follows that

(3.51) xi ≥ x0
i − tα ≥ r0 − tα ≥ r0

2
, ∀z = (x, y) ∈ At

(
z0),∀t ∈ [0, T ],
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where we choose T such that it satisfies the upper bound

(3.52) T ≤
(

r0

2

)1/α

.

Inequality (3.40) holds with Ac
t (z

0) replaced by At(z
0), and so, using property

(3.5) of the distance function ρ(z, z0), definition (1.12) of the measure dμ(z), and
inequalities (3.50) and (3.51), we obtain that there are positive constants, C =
C(b̄,‖b‖C1(S̄n,m;Rn),m,n) and c = c(m,n), such that∥∥p̃(t, z0, ·)∥∥q

Lq(At (z0);dμ)

≤ Ct−q(m+n)/2
∏

i∈I (z0)

(
x0
i ∨ t

)−q(bi(z
0)−1/2)/2

× ∏
i∈I (z0)

∫
{|√xi−

√
x0
i |≤tα}

(xi ∨ t)−q(bi(z
0)+c2t

α−1/2)/2

× e− qc|√xi−
√

x0
i
|2

8t x
bi(z

0)−c2t
α−1

i dxi

× ∏
j∈I c(z0)

∫
{|xj−x0

j |≤tα}
e− qc|xj −x0

j
|2

8t dxj

m∏
l=1

∫
{|yl−y0

l |≤tα}
e− qc|yl−y0

l
|2

8t dyl.

The preceding inequality holds for all t ∈ (0, T ], where T satisfies both inequali-
ties (3.49) and (3.52). The integrals in the last two product terms of the preceding
inequality can all be bounded by tα , and so, it follows that∥∥p̃(t, z0, ·)∥∥q

Lq(At (z0);dμ)

≤ Ct−q(m+n)/2tα(|I c(z0)|+m)tq|I (z0)|/2
∏

i∈I (z0)

(
x0
i ∨ t

)−qbi(z
0)/2

× ∏
i∈I (z0)

∫
{|√xi−

√
x0
i |≤tα}

(xi ∨ t)−q(bi(z
0)+c2t

α)/2x
bi(z

0)−c2t
α−1

i dxi .

Direct calculations give us that there is a positive constant,

C = C
(
b̄,‖b‖C1(S̄n,m;Rn),m,n

)
,

such that for all i ∈ I (z0), we have that∫
{|√xi−

√
x0
i |≤tα}

(xi ∨ t)−q(bi(z
0)+c2t

α)/2x
bi(z

0)−c2t
α−1

i dxi

≤ C
(√

x0
i + tα

)−qbi(z
0)+2bi(z

0)
.
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The preceding two inequalities yield∥∥p̃(t, z0, ·)∥∥q
Lq(At (z0);dμ)

≤ Ct(m+|I c(z0)|)(α−q/2)(3.53)

× ∏
i∈I (z0)

(
x0
i ∨ t

)−qbi(z
0)/2
(√

x0
i + tα

)−qbi(z
0)+2bi(z

0)
.

Using condition (2.7) for the coefficients bi(z), we see that if 0 ≤ x0
i ≤ √

t , we
have that

(
x0
i ∨ t

)−qbi(z
0)/2
(√

x0
i + tα

)−qbi(z
0)+2bi(z

0) ≤ CtK(−q/2−αq+2α),

while if
√

t < x0
i ≤ r0, we obtain

(
x0
i ∨ t

)−qbi(z
0)/2
(√

x0
i + tα

)−qbi(z
0)+2bi(z

0) ≤ Ct2αK(1−q).

The preceding two inequalities together with estimate (3.53) imply that∥∥p̃(t, z0, ·)∥∥q
Lq(At (z0);dμ)

(3.54)
≤ Ct(m+n)(α−q/2)(tnK(−q/2−αq+2α) + t2αnK(1−q)),

which immediately implies inequality (3.47) since we assume that α ∈ (0,1/2)

and q ∈ [1,∞). This completes the proof of Step 2.

Combining inequalities (3.39) and (3.47), there are positive constants, q0 =
q0(K,m,n) ∈ (1,2) and α ∈ (0,1/2), such that for all q ∈ [1, q0), there are posi-
tive constants, C = C(b̄,‖b‖C1(S̄n,m;Rn),m,n, q) and β = β(q) < 1, such that es-
timate (3.8) holds. This completes the proof. �

4. Stochastic representation of solutions. This section contains the proofs
of Theorems 1.3 and 1.6. We describe in Section 4.1 the relationship between
the generalized Kimura operator L, defined in (1.10), and the generalized Kimura
stochastic differential equation (1.11). We recall that the stochastic representation
in Theorem 1.3 cannot be obtained by a direct application of Itô’s rule, and so
our strategy of the proof is to first establish in Section 4.2 that the statement of
Theorem 1.3 holds when 
 = Sn,m, and then to extend this result in Section 4.3
to arbitrary sub-domains 
 of Sn,m, by using the part of a Dirichlet form; see
Fukushima, Oshima and Takeda (2011), Section 4.4. Theorem 1.6 is proved in
Section 4.4.
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4.1. The generalized Kimura stochastic differential equation. We discuss the
stochastic differential equation (1.11) and the relationship with the Kimura oper-
ator L defined in (1.10). The coefficients of the stochastic differential equation
(1.11) are related to the coefficients of the differential operator L defined in (1.10),
as follows. For all i = 1, . . . , n, j = 1, . . . , n + m, and l = 1, . . . ,m, we let

gi(z) := biaii + xi

(
∂xi

aii +
n∑

j=1

(
ãij + δij ãii

+ xj∂xj
ãij + ãij (bj − 1)

)+ m∑
l=1

∂yl
cil

)
,

el(z) :=
n∑

i=1

(xi∂xi
cil + bicil) +

m∑
k=1

∂yk
dlk,(4.1)

fij (z) :=
n∑

j=1

(
∂xi

bj +
n∑

k=1

xkãik∂xk
bj +

m∑
l=1

cil∂yl
bj

)
,

fn+l,j (z) :=
n∑

i=1

xicil∂xi
bj +

m∑
k=1

dlk∂yk
bj .

To construct the dispersion coefficient matrix, (σ (z)), appearing in (1.11), we
introduce the diffusion matrix, (D(z)), by letting, for all i, j = 1, . . . , n and all
l, k = 1, . . . ,m,

Dii(z) := 2
(
aii(z) + xiãii(z)

)
,

Dij (z) := 2
√

xixj ãij (z), i �= j,(4.2)

Di,n+l(z) = Dn+l,i (z) := 4
√

xicil(z), Dn+l,n+k(z) = 2dlk(z).

We now argue that there is a matrix (σ (z)) such that

(4.3)
(
σσ ∗)(z) = D(z), ∀z ∈ S̄n,m.

Notice that conditions (2.4) and (2.5) imply that the matrix (D(z)) is strictly el-
liptic. From Assumption 2.1, it follows that the coefficients aii , ãij , cil and dlk

are smooth functions of the variable z = (x, y) on S̄n,m, and in particular they are
smooth functions of the variable (

√
x, y) on S̄n,m, where we denote

(4.4)
√

x = (
√

x1,
√

x2, . . . ,
√

xn), ∀x ∈Rn+.

We obtain that the matrix D defined in (4.2) is smooth in the variables (
√

x, y)

on S̄n,m. We let D̃(
√

x, y) = D(x,y), for all (x, y) ∈ S̄n,m. Because the ma-
trix D̃ is strictly elliptic and smooth, we can build an extension from S̄n,m to
Rn+m, which we denote the same as the matrix D̃, such that the extended ma-
trix remains strictly elliptic and smooth on Rn+m. We can now apply Friedman
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(1975/1976), Lemma 6.1.1, to the matrix D̃, to obtain that there is a matrix σ̃ ∈
C∞(Rn+m;Rn+m ×Rn+m), such that σ̃ σ̃ ∗ = D̃. Letting now σ(x2, y) := σ̃ (x, y),
we obtain identity (4.3) and that σ is a smooth function in the variables (

√
x, y)

on S̄n,m. The choice of the ‘square root’, (σ (z)), of the positive-definite matrix
(D(z)) is irrelevant for the question of existence and uniqueness of weak solu-
tions to the stochastic differential equations (1.11), as Karatzas and Shreve (1991),
Problem 5.4.7, shows.

The preceding analysis, together with Assumption 2.1, implies that the hypothe-
ses of Pop (2017a), Theorems 3.1 and 3.7, are verified. Thus, we obtain that, for
all z ∈ S̄n,m, the generalized Kimura equation (1.11) has a unique weak solution,
{Z(t)}t≥0, with initial condition Z(0) = z, that satisfies the strong Markov prop-
erty. We denote by Pz the probability law of the process {Z(t)}t≥0, with initial
condition Z(0) = z.

4.2. Stochastic representation of solutions on Sn,m. We prove Theorem 1.3
in the particular case when 
 = Sn,m. We obtain a slightly stronger statement
because we obtain that the set N of zero μ-measure set, appearing in the statement
of Theorem 1.3, is empty when 
 = Sn,m.

THEOREM 4.1 (Stochastic representation of weak solutions on Sn,m). Sup-
pose that the coefficients of the operator L satisfy Assumption 2.1. Given any func-
tion, f ∈ L2(S̄n,m;dμ), we have that

(4.5) Ttf (z) = EPz

[
f
(
Z(t)

)]
, ∀t ≥ 0,∀z ∈ S̄n,m.

Before we can give the proof of Theorem 4.1, we need to establish several inter-
mediate results. We first prove that the stochastic representation (4.5) holds when
the weak solution to the Kimura equation (1.11), {Z(t)}t≥0, is replaced by a suit-
able Hunt process, {Z0(t)}t≥0.

PROPOSITION 4.2 (Stochastic representation using a Hunt process). Suppose
that the coefficients of the operator L satisfy Assumption 2.1. Then there is a fil-
tered probability space, (Z,F, {Ft }t≥0, {P0,z}z∈S̄n,m

), and a progressively measur-

able process, Z0 : [0,∞) ×Z → S̄n,m, such that the following hold:

(i) For all z ∈ S̄n,m, almost surely with respect to the probability measure P0,z,
we have that Z0(0) = z and {Z0(t)}t≥0 has continuous paths.

(ii) The process {Z0(t)}t≥0 has the strong Markov property.
(iii) For all functions, f ∈ L2(S̄n,m;dμ), we have

(4.6) Ttf (z) = EP0,z

[
f
(
Z0(t)

)]
, ∀t ≥ 0,∀z ∈ S̄n,m.

PROOF. Lemmas 3.2 and 3.4 give us that the set {p(t, z,w)dμ(w)} forms a
family of consistent transition probability densities on S̄n,m, and so the Daniell–
Kolmogorov theorem implies that property (i) holds. Proposition 3.6 allows us
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to apply the Centsov–Kolmogorov theorem in Karatzas and Shreve (1991), The-
orem 2.2.8, to conclude that we can assume without loss of generality that the
process {Z0(t)}t≥0 has continuous paths. Moreover, the process {Z0(t)}t≥0 sat-
isfies the Markov property and property (iii) holds when f : Sn,m → R is a
bounded, Borel measurable function. The continuity of the fundamental solu-
tion {p(t, z,w)}, established in Lemma 3.2, together with the supremum estimate
(3.23), and the continuity of the paths of the process {Z0(t)}t≥0, allows us to ap-
ply Blumenthal and Getoor (1968), Theorem 1.8.11, to conclude that the process
also has the strong Markov property. It remains to prove that property (iii) holds,
not only when f : Sn,m → R is a bounded, Borel measurable function, but also
for all f ∈ L2(S̄n,m;dμ). This follows by an approximation procedure by choos-
ing a sequence of bounded, Borel measurable functions {fk}k∈N that converges in
L2(S̄n,m;dμ) to f . We omit the remaining details of the proof. �

We see that Theorem 4.1 follows from Proposition 4.2, if we prove that the
law Pz of the unique weak solution, {Z(t)}t≥0, to the Kimura equation (1.11),
coincides with the law P0,z of the Hunt process, {Z0(t)}t≥0, constructed in Propo-
sition 4.2. We achieve this by using the formalism of the martingale problem as-
sociated to the operator L. Let X := C([0,∞); S̄n,m) be the space of continuous
functions, ω : [0,∞) → S̄n,m. For all t ≥ 0, let Bt be the σ -algebra on X generated
by the cylinder sets,

C := {
ω ∈ X : ω(ti) ∈ Bi,Bi ⊆ S̄n,m Borel measurable,∀i = 1, . . . , k

}
,

where k ∈ N, and 0 ≤ t1 < · · · < tk ≤ t . We let B :=⋃
t≥0 Bt . We can now intro-

duce the following.

DEFINITION 4.3 (A martingale problem associated to the operator L). Let z ∈
S̄n,m. A probability measure, Qz, on the filtered probability space (X , {Bt }t≥0,B)

is a solution to the martingale problem associated to the operator L, if for all func-
tions ϕ ∈ C∞

c (S̄n,m), the process defined by

(4.7) Mϕ(t,ω) := ϕ
(
ω(t)

)− ϕ
(
ω(0)

)− ∫ t

0
Lϕ
(
ω(r)

)
dr, ∀t ≥ 0,∀ω ∈ X ,

is a Qz-martingale with respect to the filtration {Bt }t≥0, and Qz(ω(0) = z) = 1.

PROPOSITION 4.4 (Solutions to the martingale problem). Let z ∈ S̄n,m. Then
there is a solution, Qz, to the martingale problem in Definition 4.3. Moreover,
we can choose Qz so that it coincides with the probability law of the process
{Z0(t)}t≥0, constructed in Proposition 4.2.

PROOF. Let Qz be the probability measure induced on the space X by the
probability measure P0,z constructed in Proposition 4.2. It is sufficient to show
that the processes defined in (4.7) are Qz-martingales. We split the proof into two
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steps. For ϕ ∈ C∞
c (S̄n,m), we see that Lϕ is unbounded on Sn,m in general, and so

we first prove that

(4.8) EQz

[∫ t

0

∣∣Lϕ
(
ω(r)

)∣∣dr

]
< ∞, ∀t ≥ 0,

using the Lq -distribution estimates established in Proposition 3.7. In the second
step, we prove that the process {Mϕ(t)}t≥0 defined by (4.7) is indeed a Qz-
martingale with respect to the filtration {Bt }t≥0.

From the expression (1.10) of the differential operator L and the fact that ϕ ∈
C∞

c (S̄n,m), we see that Lϕ ∈ Lp(S̄n,m;dμ), for all finite p ≥ 1. Let q0 ∈ (1,2) be
the constant appearing in the conclusion of Proposition 3.7 and choose q ∈ (1, q0).
Let p ∈ (1,∞) be the conjugate exponent of q . Using properties (4.6) and (3.2),
we have that

EQz

[∫ t

0

∣∣Lϕ
(
ω(r)

)∣∣dr

]
=
∫ t

0

∫
Sn,m

∣∣Lϕ(w)
∣∣p(r, z,w)dμ(w)dr,

and by Hölder’s inequality, we obtain

EQz

[∫ t

0

∣∣Lϕ
(
ω(r)

)∣∣dr

]
≤
∫ t

0
‖Lϕ‖Lp(S̄n,m;dμ)

∥∥p(r, z, ·)∥∥Lq(S̄n,m;dμ) dr.

Inequality (3.9) shows that there is a positive constant, C0, such that

EQz

[∫ t

0

∣∣Lϕ
(
ω(r)

)∣∣dr

]
≤ C0‖Lϕ‖Lp(S̄n,m;dμ),

which concludes the proof of inequality (4.8).
To prove that the process {Mϕ(t)}t≥0 defined by (4.7) is indeed a Qz-martingale

it is sufficient to prove that, for all 0 ≤ s ≤ t , we have

(4.9) EQz

[
ϕ
(
ω(t)

)|Bs

]= ϕ
(
ω(s)

)+EQz

[∫ t

s
Lϕ
(
ω(r)

)
dr
∣∣∣Bs

]
, Qz-a.s.,

which can be rewritten in the form

(4.10) Tt−sϕ
(
ω(s)

)− ϕ
(
ω(s)

)= ∫ t−s

0
TrLϕ

(
ω(s)

)
dr.

Applying Ethier and Kurtz (1986), Proposition 1.1.5, we know that the equality

(4.11) Tt−sϕ − ϕ =
∫ t−s

0
TrLϕ dr

holds in the L2(S̄n,m;dμ)-sense. Lemma 3.1 and our construction of the prob-
ability measure Qz show that the marginal distributions of Qz are given by
p(t, z, ·) dμ, and so they are absolutely continuous with respect to the weight dμ.
Thus, identity (4.11) implies (4.10). This concludes the proof. �

We can now prove Theorem 4.1.
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PROOF OF THEOREM 4.1. Applying the method of the proof of Karatzas and
Shreve (1991), Proposition 5.4.6, adapted to our framework, we obtain that the
solution, Qz, to the martingale problem constructed in Proposition 4.4 induces a
solution, {Z(t)}t≥0, to the Kimura equation (1.11), which has the same law as Qz.
From part (ii) of Proposition 4.2, it follows that the process {Z(t)}t≥0 has the
strong Markov property, and so by Pop (2017a), Theorem 3.7, it is the unique
weak solution to the Kimura equation (1.11) that has the strong Markov property
and satisfies the initial condition Z(0) = z. Moreover, identity (4.6) implies (4.5).
This completes the proof. �

4.3. Stochastic representation of solutions on sub-domains of Sn,m. In this
section, we use Theorem 4.1 together with the formalism of Dirichlet forms to
give the proof of Theorem 1.3.

PROOF OF THEOREM 1.3. We prove the stochastic representation formula
(1.13) with the aid of the part of the Dirichlet form (Q,H 1

0 (S̄n,m;dμ)) on 
; see
Fukushima, Oshima and Takeda (2011), Section 4.4. Let

F
 := {
u ∈ H 1

0 (S̄n,m;dμ) : u = 0 q.e. on S̄n,m\
},
where u = 0 q.e. on S̄n,m\
 means that the equality holds quasi-everywhere, that
is, except for sets of capacity zero; see Fukushima, Oshima and Takeda (2011),
Section 2.1, for the definition of the capacity of a set. By the observation following
the proof of Fukushima, Oshima and Takeda (2011), Theorem 4.4.2, because the
set S̄n,m\
 is relatively open with respect to S̄n,m, it follows that the hypotheses
of Fukushima, Oshima and Takeda (2011), Theorem 4.4.2, are satisfied, and so
(Q
,F
) defines a Dirichlet form on L2(
;dμ). Because sets of capacity zero
have zero μ-measure, it follows that

F
 ⊆ {
u ∈ H 1

0 (S̄n,m;dμ) : u = 0 μ-a.e. on S̄n,m\
},
and using the fact that the right-hand side from the preceding inclusion is equal
to H 1

0 (
;dμ), it follows that F
 ⊆ H 1
0 (
;dμ). Since (Q
,H 1

0 (
;dμ)) is the
smallest closed extension of Q
 on L2(
;dμ) with core C∞

c (
), it follows
that F
 = H 1

0 (
;dμ). Thus, (Q
,H 1
0 (
;dμ)) is the part of the Dirichlet form

(Q,H 1
0 (S̄n,m;dμ)) on the subset 
. From Theorem 4.1 and Fukushima, Oshima

and Takeda (2011), Theorem A.2.10, it follows that, for all f ∈ L2(
;dμ) and all
t > 0, we have

(4.12) T 

t f (z) = EPz

[
f
(
Z(t)

)
1{t<τ
}

]
for μ-a.e. z ∈ 
.

We now fix f ∈ L2(
;dμ). It remains to prove that there is a measurable set
N ⊂ 
 with zero μ-measure, such that identity (1.13) holds, where we recall that
u(t, z) = (T 


t f )(z). For all t ∈ Q+, using (4.12), there is a set Nt ⊂ 
 with zero



3370 C. L. EPSTEIN AND C. A. POP

μ-measure, such that (1.13) holds, for all z ∈ 
\Nt . Letting N = ∪{Nt : t ∈ Q+},
we have that N has zero μ-measure, and that

(4.13) T 

t f (z) = EPz

[
f
(
Z(t)

)
1{t<τ
}

]
, ∀t ∈ Q+,∀z ∈ 
\N.

We first show that the preceding identity holds at all t > 0 and z ∈ 
\N , when
f ∈ L2(
;dμ) is a continuous function. Let (t, z) ∈ (0,∞) × (
\N), and let
{tk}k∈N ⊂ Q+ be a decreasing sequence converging to t . By Epstein and Mazzeo
(2016), Corollary 4.1, we have that (T 


tk
f )(z) converges to (T 


t f )(z), as tk tends
to t , for all z ∈ 
, and so we only need to show that

(4.14) EPz

[
f
(
Z(tk)

)
1{tk<τ
}

]→ EPz

[
f
(
Z(t)

)
1{t<τ
}

]
as k → ∞.

Because {tk}k∈N ⊂ Q+ is a decreasing sequence converging to t , we have that
1{tk<τ
} → 1{t<τ
}, and because f is continuous and the paths of the process
{Z(t)}t≥0 are continuous, we have that f (Z(tk)) → f (Z(t)). Thus, we have the
Pz-a.s. convergence,

(4.15) f
(
Z(tk)

)
1{tk<τ
} → f

(
Z(t)

)
1{t<τ
}, Pz-a.s.

We next show that the random variables {f (Z(tk))1{tk<τ
}}k∈N are uniformly in-
tegrable. We see that, by choosing q ∈ (1,2),

EPz

[∣∣f (Z(tk)
)
1{tk<τ
}

∣∣q]≤ ∫
Sn,m

p(tk, z,w)
∣∣f (w)

∣∣q dμ(w),

where we extend f to S̄n,m by letting f = 0 on S̄n,m\
, and Hölder’s inequality
gives us that

EPz

[∣∣f (Z(tk)
)
1{tk<τ
}

∣∣q]≤ ‖f ‖L2(
;dμ)

∥∥p(tk, z, ·)
∥∥
L2/(2−q)(S̄n,m;dμ).

The supremum estimate (3.23) gives us that there is a positive constant, C =
C(q, t, z), such that∥∥p(tk, z, ·)

∥∥
L2/(2−q)(S̄n,m;dμ) ≤ C, ∀k ∈ N,

which yields

EPz

[∣∣f (Z(tk)
)
1{tk<τ
}

∣∣q]≤ C‖f ‖L2(
;dμ), ∀k ∈ N,

and so the family of random variables {f (Z(tk))1{tk<τ
}}k∈N is uniformly in-
tegrable, by the observation following Billingsley (1995), Theorem 16.13. Us-
ing (4.15) and the previous property, it follows from Billingsley (1995), Theo-
rem 16.13, that (4.14) holds when f ∈ L2(
;dμ) is continuous.

We now let f be an arbitrary function in L2(
;dμ), and prove that there is
a set N ⊂ 
 with zero μ-measure, such that identity (1.13) holds, for all t > 0
and z ∈ 
\N . Let {fk}k∈N ⊂ L2(
;dμ) be a sequence of continuous functions
that converge in L2(
;dμ) to f . Let Nk ⊂ 
 be a set of zero μ-measure such
that (1.13) holds with f replaced by fk , for all t > 0 and z ∈ 
\Nk . Setting N :=
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∪{Nk : k ∈ N}, we obtain a set of zero μ-measure. By Sturm (1995), Theorem 2.1,
for all 0 < t1 < t2 and all compact sets, K ⊂ S̄n,m, there is a positive constant,
C = C(t1, t2,K), such that for all t ∈ [t1, t2] and all z ∈ K , we have that

∣∣T 

t (fk − f )(z)

∣∣≤ C

(∫ t2

t1/2

∥∥T 

s (fk − f )

∥∥2
L2(
;dμ) ds

)1/2

≤ C

(
t2 − t1

2

)1/2
‖fk − f ‖L2(
;dμ),

where in the second inequality we used the contraction property of the semigroup
{T 


t }t≥0. Thus, we clearly have that T 

t fk(z) → T 


t f (z), for all t > 0 and all
z ∈ 
\N . We also have∣∣EPz

[
fk

(
Z(t)

)
1{t<τ
}

]−EPz

[
f
(
Z(t)

)
1{t<τ
}

]∣∣ ≤ EPz

[∣∣fk

(
Z(t)

)− f
(
Z(t)

)∣∣]
= Tt |fk − f |(z) (by (4.5))

≤ ‖fk − f ‖L2(S̄n,m;dμ),

where in the last inequality we used the contraction property of {Tt }t≥0, and we
extend fk and f by zero outside 
. Thus, we also have that

EPz

[
fk

(
Z(t)

)
1{t<τ
}

]→ EPz

[
f
(
Z(t)

)
1{t<τ
}

]
as k → ∞.

This concludes the proof that (1.13) holds, for all t > 0 and z ∈ 
\N . �

REMARK 4.5 (The set of measure zero appearing in Theorem 1.3). In our
original proof of Theorem 1.3 in Epstein and Pop (2014), Theorem 1.3, we obtain
the stochastic representation (1.13) with N = ∅. The appearance of the set N with
zero μ-measure in Theorem 1.3 is due to our use of results from the theory of
Dirichlet forms, while in Epstein and Pop (2014), Theorem 1.3, we apply more
elementary methods, which allow us to obtain a stronger result. The stochastic
representation (1.13), holding modulo a set of zero μ-measure, suffices for our
purposes and in most of the probabilistic applications, but from an analytic point
of view, it is often useful to know that the stochastic representation (1.13) holds at
all points in the domain.

4.4. Stochastic representation of weak solutions and the Harnack inequality.
We now give the proof of Theorem 1.6, which establishes that functions defined
by the stochastic representation (1.18) satisfy a scale-invariant Harnack inequal-
ity (1.19). We let Q := (t1, t2) × 
, and recall that the parabolic portion of the
boundary ðQ is defined in (1.17). For a point (t0, z0) ∈ R × S̄n,m, and a positive
constant, r , we let

(4.16) Qr

(
t0, z0) := (

t0 − r2, t0)× Br

(
z0).
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PROOF OF THEOREM 1.6. We choose a sequence of nonnegative functions,
{gk}k≥0 ⊂ C∞(Q̄), such that

(4.17) ‖gk − g‖C(ðQ) → 0, as k → ∞,

and analogously to the representation (1.18), we define

uk(t, z) := EPz

[
gk

(
t − (t − t1) ∧ τ
,Z

(
(t − t1) ∧ τ


))]
,

(4.18)
∀(t, z) ∈ Q̄,∀k ≥ 0.

Using property (4.17), it immediately follows from the preceding equality that
‖uk − u‖L∞(Q̄) → 0, as k → ∞, and so to establish (1.18), it is sufficient to prove
that the Harnack inequality, (1.19), holds for each nonnegative function uk . We
now prove that uk is a local weak solution to the equation ut − Lu = 0 on Q.
While the previous statement is usually trivial in standard proofs of this result,
because the solutions are assumed to be regular enough, in our case we prove
this fact with the aid of the stochastic representation (1.16) as follows. Applying
Epstein and Mazzeo (2016), Theorem 4.1, we obtain that the Harnack inequality
holds for uk . Letting

(4.19) hk(t, z) := ∂tgk(t, z) − Lgk(t, z), ∀(t, z) ∈ Q̄,∀k ∈ N,

we apply Itô’s rule to the process {gk(t − r,Z(r))}0≤r≤t−t1 and we obtain that

gk(t, z) = EPz

[
gk

(
t − (t − t1) ∧ τ
,Z

(
(t − t1) ∧ τ


))]
+EPz

[∫ (t−t1)∧τ


0
hk

(
t − r,Z(r)

)
dr

]
.

Using definition (4.18) of the function uk(t, z) and property (1.16), we have that

uk(t, z) = gk(t, z) −
∫ t−t1

0
T 


t−(r+t1)
hk(r + t1, ·)(z) dr,

∀t ∈ (t1, t2), for μ-a.e. z ∈ 
.

From (4.19), we know that gk ∈ C∞(Q̄) solves the equation ut − Lu = hk on Q.
Using the fact that hk ∈ L2((t1, t2),L

2(
;dμ)), it follows by Lemma 2.3 that the
integral term on the right-hand side of the preceding identity is a weak solution to
the inhomogeneous problem ut −Lu = −hk on Q. Thus, the function uk is a weak
solution to the homogeneous problem ut −Lu = 0 on Q, and applying Epstein and
Mazzeo (2016), Theorem 4.1, we obtain that uk satisfies the Harnack inequality.
Letting k tend to ∞ in (4.18) and using the fact that ‖uk − u‖L∞(Q̄) → 0, as
k → ∞, it follows that the function u defined by (1.18) also satisfies the Harnack
inequality (1.19). This completes the proof. �

We have the following corollary of Theorem 1.6. This is a technical result
needed in the proof of Lemma 5.8.



THE FEYNMAN–KAC FORMULA FOR DEGENERATE DIFFUSIONS 3373

COROLLARY 4.6. There is a positive constant, K0, such that the following
hold. Let T > t1 and let g ∈ C(ðQ) be a nonnegative function, and let

u(t, z) := EPz

[
g
(
t − (t − t1) ∧ τ
,Z

(
(t − t1) ∧ τ


))
1{(t−t1)∧τ
<T −t1}

]
,

(4.20)
∀(t, z) ∈ Q̄.

Then the function u satisfies the scale-invariant Harnack inequality, that is, for all
(t0, z0) ∈ Q̄ and r > 0, such that Q2r (t

0, z0) ⊂ Q, we have that the scale-invariant
Harnack inequality (1.19) holds.

PROOF. Similar to the proof of Theorem 1.6, we let {gk}k≥0 ⊂ C∞(Q̄) be a
sequence of nonnegative, smooth functions, such that

(4.21)
‖g − gk‖C(Q̄∩{t<T }) → 0 as k → ∞,

‖gk‖C(Q̄∩{t>T }) → 0 as k → ∞.

Theorem 1.6 yields that the sequence of functions {uk}k≥0 defined by (4.18)
satisfies the Harnack inequality (1.19), and it is sufficient to prove that ‖uk −
u‖L∞(Q̄) → 0, as k → ∞, in order to conclude that u defined by (4.20) also sat-
isfies the Harnack inequality (1.19). From definition (4.20) of the function u(t, z)

and property (4.21), there is a positive constant, C, such that for all (t, z) ∈ Q̄, we
have that ∣∣u(t, z) − uk(t, z)

∣∣≤ ‖g − gk‖C(Q̄∩{t<T }) + ‖gk‖C(Q̄∩{t>T })
(4.22)

+ CPz((t − t1) ∧ τ
 = T − t1
)
.

We can assume without loss of generality that t ≥ T , and so Pz((t − t1) ∧ τ
 =
T − t1) = Pz(τ
 = T − t1). Let v ∈ F((0, t − T + 1) × 
) be the unique weak
solution to the homogeneous initial-value problem (2.10) with initial condition
v(0, ·) ≡ 1 given by Sturm (1995), Proposition 1.2. Then Theorem 1.3 gives us
that v(s, z) = Pz(τ
 > s), for all (s, z) ∈ (0, t − T + 1) × 
. Using the fact that

Pz(τ
 = s) = lim
ε↓0

Pz(τ
 > s − ε) − Pz(τ
 > s) = lim
ε↓0

v(s − ε, z) − v(s, z),

and that the function v is continuous by Epstein and Mazzeo (2016), Corollary 4.1,
it follows that Pz(τ
 = s) = 0. Thus, the preceding inequality together with (4.21)
and (4.22) yield that ‖uk − u‖L∞(Q̄) → 0, as k → ∞. We can now conclude that
the function u defined in (4.20) satisfies the Harnack inequality (1.19), since each
element of the sequence {uk}k∈N also satisfies (1.19). This completes the proof.

�
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5. Harnack’s inequality for standard Kimura operators. In this section,
we give a probabilistic proof to Theorem 1.2 by adapting the argument used to
establish Sturm (1994), Theorem 1. We organize this section into three parts. In
Section 5.1, we introduce the assumptions imposed on the coefficients of the op-
erator L̂ and we review some properties of the solutions to the parabolic equation
(1.5). In Section 5.2, we establish the connection between the differential operators
L and L̂, and we introduce the notion of a probabilistic solution in Definition 5.5,
which we then use in Section 5.3 to give the proof of Harnack’s inequality in The-
orem 5.6, and of the scale-invariant Harnack inequality in Theorem 1.2.

5.1. Properties of solutions to the parabolic equation ut − L̂u = 0. We first
introduce Assumption 5.1, which describes the conditions that we impose on the
coefficients of the standard Kimura differential operator L̂. We then review the
existence, uniqueness and regularity of solutions in anisotropic Hölder spaces to
the inhomogeneous initial-value problem defined by the operator L̂,

(5.1)

{
ut − L̂u = g on (0,∞) × Sn,m,

u(0, ·) = f on Sn,m,

obtained in Epstein and Mazzeo (2014) and Pop (2017b). In Lemma 5.2, we es-
tablish the stochastic representation of the solutions in anisotropic Hölder spaces
to problem (5.1).

ASSUMPTION 5.1 (Coefficients of the operator L̂). The coefficients (â(z)),
(ā(z)), (b̂(z)), (ĉ(z)) and (d̂(z)) satisfy Assumption 2.1 imposed on (a(z)), (ã(z)),
(b(z)), (c(z)) and (d(z)), respectively.

The stochastic differential equations associated to the standard Kimura diffusion
operator L̂ can be written in the form

(5.2)

dX̂i(t) = b̂i

(
Ẑ(t)

)
dt +

√
X̂i(t)

n+m∑
j=1

σ̂ij

(
Ẑ(t)

)
dŴj (t), ∀t > 0,

dŶl(t) = êl

(
Ẑ(t)

)
dt +

n+m∑
j=1

σ̂l+n,j

(
Ẑ(t)

)
dŴj (t), ∀t > 0,

for all i = 1, . . . , n and l = 1, . . . ,m, where {Ŵ (t)}t≥0 is a (n + m)-dimensional
Brownian motion. We denote Ẑ(t) = (X̂(t), Ŷ (t)). Similarly to the construction of
the matrix (σ (z)) in Section 4.1, there is (σ̂ (z)) such that (σ̂ σ̂ ∗)(z) = D̂(z), where
for all z ∈ S̄n,m, i, j = 1, . . . , n, and l, k = 1, . . . ,m, we let

(5.3)

D̂ii(z) := 2
(
âii(z) + xi āii(z)

)
,

D̂ij (z) := 2
√

xixj âii(z), i �= j,

D̂n+l,i (z) = D̂i,n+l(z) := 4
√

xi ĉil(z), D̂n+l,n+k(z) := 2d̂lk(z).
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It follows that the coefficients of the stochastic differential equation (5.2) satisfy
Pop (2017a), Assumptions 2.1 and 2.6. We may then apply Pop (2017a), Proposi-
tions 2.2 and 2.4, to conclude that the standard Kimura stochastic differential equa-
tion (5.2) has a unique weak solution, (Ẑ(t))t≥0, on a probability space, (�̂, P̂z),
for any initial condition Ẑ(0) = z, where z ∈ S̄n,m.

In order to prove the stochastic representation of solutions to the initial-value
problem (5.1), we first recall the existence, uniqueness and regularity of solutions
in anisotropic Hölder spaces to equation (5.1) obtained in Pop (2017b). We remark
that such results are also established in Epstein and Mazzeo (2016), Theorem 1.1,
Epstein and Mazzeo (2014), Proposition 2.1, and Epstein and Mazzeo (2013), The-
orem 10.0.2, but the framework in Pop (2017b) is closer to this article.

To define the anisotropic Hölder spaces, let α ∈ (0,1), k ∈ N, T > 0, and
U ⊆ Sn,m. We let Cα

WF([0, T ] × Ū ) be the Hölder space consisting of continuous
functions, u : [0, T ] × Ū →R, such that the norm

‖u‖Cα
WF([0,T ]×Ū) := ‖u‖C([0,T ]×Ū)

(5.4)

+ sup
(t0,z0),(t,z)∈[0,T ]×Ū

(t0,z0) �=(t,z)

|u(t0, z0) − u(t, z)|
ρα((t0, z0), (t, z))

< ∞.

For I ⊆ {1, . . . , n}, let U ⊆ MI be an open set. We let C2+α
WF ([0, T ] × Ū ) denote

the Hölder space of functions, u ∈ C2([0, T ] × U), such that

u,uxi
, ut ∈ Cα

WF

([0, T ] × Ū
)
, ∀i = 1, . . . , n,

√
xixjuxixj

,
√

xiuxiyl
, uylyk

∈ Cα
WF

([0, T ] × Ū
)
, ∀i, j ∈ I,∀l, k = 1, . . . ,m,

√
xiuxixj

, uxj xk
∈ Cα

WF

([0, T ] × Ū
)
, ∀i ∈ I,∀j, k ∈ I c.

We now let U is an arbitrary open set in Sn,m. We let C2+α
WF ([0, T ]× Ū ) denote the

Hölder space consisting of functions u ∈ C2([0, T ] × U), satisfying the property
that

u �Ū∩M̄I
∈ C2+α

WF

([0, T ] × (Ū ∩ M̄I )
)
, ∀I ⊆ {1, . . . , n}.

The elliptic Hölder spaces Cα(Ū) and C2+α
WF (Ū) are defined analogously to their

parabolic counterparts, and so we omit their definitions for brevity.
From Assumption 5.1, it follows that the coefficients of the differential op-

erator (1.1) satisfy the hypotheses of Pop (2017b), Theorem 1.4. Thus, given
f ∈ C2+α

WF (S̄n,m) and g ∈ Cα
WF([0,∞) × S̄n,m), the inhomogeneous initial-value

problem (5.1) has a unique solution, u, that belongs to C2+α
WF ([0,∞) × S̄n,m). We

can now prove the following.

LEMMA 5.2 (Stochastic representation of solutions to equation (5.1) with re-
spect to P̂z). Let α ∈ (0,1), f ∈ C2+α

WF (S̄n,m), g ∈ Cα
WF([0,∞) × S̄n,m), and
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u ∈ C2+α
WF ([0,∞) × S̄n,m) be the unique solution to the inhomogeneous initial-

value problem (5.1). Let 
 ⊆ Sn,m be an open set, I = (t1, t2) ⊂ R+ be a bounded
interval, and Q := I × 
. Then we have that

u(t, z) = EP̂z

[
u
(
t − (t − t1) ∧ τ̂
, Ẑ

(
(t − t1) ∧ τ̂


))]
+EP̂z

[∫ (t−t1)∧τ̂


0
g
(
t − s, Ẑ(s)

)
ds

]
,

for all (t, z) ∈ Q̄, where the stopping time τ̂
 is defined by

(5.5) τ̂
 := inf
{
t > 0 : Ẑ(t) /∈ 


}
,

and the process {Ẑ(t)}t≥0 is the unique weak solution to the standard Kimura
stochastic differential equation (5.2), with initial condition Ẑ(0) = z.

PROOF. The proof is a direct consequence of Itô’s rule applicable to the frame-
work of Kimura stochastic differential equations and established in Pop (2017a),
Proposition 2.10. We omit the detailed proof for brevity. �

5.2. Connection between the differential operators L and L̂. Lemma 5.2
shows that the homogeneous initial-value problem (5.1) admits solutions that can
be expressed using the probability distribution, P̂z, of the unique weak solution,
{Ẑ(t)}, to the standard Kimura stochastic differential equation equation (5.2). In
this section, using Girsanov’s Theorem, we prove in Lemma 5.4 that the solu-
tions to the homogeneous initial-value problem (5.1) have a stochastic represen-
tation that uses the probability distribution, Pz, of the unique Markovian solution
to a suitable Kimura stochastic differential equation with singular drift of the form
(1.11), as opposed to that of weak solutions to the stochastic differential equation
(5.2). This shows that our Definition 5.5 of probabilistic solutions is not vacuous.
In Section 5.3, we use Definition 5.5 to prove in Theorem 5.6 that the Harnack
inequality holds for nonnegative probabilistic solutions to equation (1.5).

We make a specific choice of the differential operator L of the form given by
(1.10). We define the coefficients of the operator L in terms of the coefficients of
the operator L̂ such that for all i, j = 1, . . . , n and all l, k = 1, . . . ,m, we have

aii(z) := âii(z), ãij (z) := āij (z),

cil(z) := 1

2
ĉil(z), dlk(z) := d̂lk(z),

and we choose the coefficients bi(z) in (1.10), such that gi(z) = b̂i(z), where the
coefficients gi(z) are defined in (4.1). With this choice of the coefficients bi(z)

and aij (z), we define fij (z) as in (4.1), and so the stochastic differential equation
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(1.11) becomes, for all i = 1, . . . , n and all l = 1, . . . ,m,

(5.6)

dXi(t) =
(
b̂i

(
Z(t)

)+ Xi(t)

n∑
j=1

fij

(
Z(t)

)
lnXj(t)

)
dt

+√Xi(t)

n+m∑
j=1

σ̂ij

(
Z(t)

)
dWj(t),

dYl(t) =
(
el

(
Z(t)

)+ n∑
j=1

fl+n,j

(
Z(t)

)
lnXj(t)

)
dt

+
n+m∑
j=1

σ̂l+n,j

(
Z(t)

)
dWj(t),

where {W(t)}t≥0 is a (n + m)-dimensional Brownian motion. Because the coeffi-
cients of the differential operator (1.1) satisfy Assumption 5.1, it follows that the
preceding choice of the coefficients of the stochastic differential equation (5.2) sat-
isfy Pop (2017a), Assumption 3.2. We may then apply Pop (2017a), Theorems 3.1
and 3.7, to conclude that the Kimura stochastic differential equation with logarith-
mic drift (5.6) has a unique Markov solution, (Z(t))t≥0, on a probability space,
(�,Pz), for any initial condition Z(0) = z, where z ∈ S̄n,m.

Applying Pop (2017a), Lemma 3.3, we obtain that the matrix σ̂ (z) is invertible.
We denote by θ(z) := (θ1(z), . . . , θn+m(z)) the unique solution to the system of
linear equations:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

n+m∑
k=1

σ̂ik(z)θk(z) = √
xi

n∑
j=1

fij (z) lnxj , ∀i = 1, . . . , n

n+m∑
k=1

σ̂n+l,k(z)θk(z) =
n∑

j=1

fn+l,j (z) lnxj + êl(z) − el(z), ∀l = 1, . . . ,m,

for all z ∈ S̄n,m. It follows from Pop (2017a), Lemma 3.5, that:

LEMMA 5.3. Suppose that the coefficients of the differential operator (1.1)
satisfy Assumption 5.1. Then for all T > 0, there is a positive constant, 	 =
	(b̄, δ,K,m,n,T ), such that

(5.7) EP̂z

[
e9
∫ T

0 |θ(Ẑ(t))|2 dt ]≤ 	, ∀z ∈ S̄n,m,

where {Ẑ(t)}t≥0 is the unique weak solution to the standard Kimura equation (5.2),
with initial condition Ẑ(0) = z.

We obtain from Lemma 5.3 and Karatzas and Shreve (1991), Proposition 3.5.12
and Corollary 3.5.13, that the process

M̂(t) := e
∫ t

0 θ(Ẑ(s))·dŴ(s)− 1
2

∫ t
0 |θ(Ẑ(s))|2 ds, ∀t ∈ [0, T ],
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is a P̂z-martingale. From Girsanov’s theorem [Karatzas and Shreve (1991), Theo-
rem 3.5.1], by letting

(5.8) W(t) := Ŵ (t) −
∫ t

0
θ
(
Ẑ(s)

)
ds, ∀t ∈ [0, T ],

and defining a new probability measure Pz by

(5.9)
dPz

dP̂z
= M(T ),

we obtain that {W(t)}t≥0 is a Pz-Brownian motion. We also have that (Z(t) :=
Ẑ(t),W(t)) is a weak solution to the generalized Kimura equation (5.6), with ini-
tial condition Z(0) = z, for all 0 ≤ t ≤ T . Because Z(t) := Ẑ(t), for all 0 ≤ t ≤ T ,
we also have that τ
 = τ̂
, for all open sets 
 ⊆ Sn,m, where the preceding two
stopping times are defined by (1.14) and (5.5), respectively. From Pop (2017a),
Lemma 3.8, it follows that the process

(5.10) M(t) := e− ∫ t
0 θ(Z(s))·dW(s)− 1

2

∫ t
0 |θ(Z(s))|2 ds, ∀t ∈ [0, T ],

is a Pz-martingale.
We can now state the stochastic representation of solution to the homogeneous

initial-value problem with respect to the probability distribution Pz. Identity (5.9)
and Lemma 5.2 imply the following.

LEMMA 5.4 (Stochastic representation of solutions to equation (5.1) with re-
spect to Pz). Suppose that the hypotheses of Lemma 5.2 hold. Then we have that

u(t, z) = EPz

[
M
(
(t − t1) ∧ τ


)
u
(
t − (t − t1) ∧ τ
,Z

(
(t − t1) ∧ τ


))]
,

+EPz

[
M
(
(t − t1) ∧ τ


) ∫ (t−t1)∧τ


0
g
(
t − s,Z(s)

)
ds

]
,(5.11)

∀(t, z) ∈ Q̄,

where the process {Z(t)}t≥0 is the unique weak Markov solution to the generalized
Kimura equation (5.6), with initial condition Z(0) = z.

The stochastic representation (5.11) shows that the parabolic problem ut −L̂u =
0 admits probabilistic solutions in the sense of Sturm (1994), Definition (2.1).
Thus, the following definition of probabilistic solutions to the Kimura equation
(1.5) is not vacuous.

DEFINITION 5.5 (Probabilistic solution). Let 
 ⊆ Sn,m be an open set and
(t1, t2) ⊂ R+. Let Q := (t1, t2)×
. We say that a continuous function, u : Q →R,
is a probabilistic solution to the parabolic equation ut − L̂u = 0 on Q, if for all
open sets Q′ := (t ′1, t ′2) × 
′ ⊆ Q, we have, ∀(t, z) ∈ Q̄′, that

(5.12) u(t, z) = EPz

[
M
((

t − t ′1
)∧ τ
′

)
u
(
t − (

t − t ′1
)∧ τ
′,Z

((
t − t ′1

)∧ τ
′
))]

,



THE FEYNMAN–KAC FORMULA FOR DEGENERATE DIFFUSIONS 3379

where Pz is the probability distribution of the unique weak Markov solution,
{Z(t)}t≥0, to the Kimura equation (1.11), with initial condition Z(0) = z, and the
martingale {M(t)}t≥0 is defined in (5.10).

5.3. The proof of Harnack’s inequality. We use Definition 5.5 to prove that the
Harnack inequality holds for nonnegative probabilistic solutions to equation (1.5).
We have the following analogue of Sturm (1994), Theorem 1.

THEOREM 5.6 (Harnack inequality). Suppose that Assumption 5.1 holds. Let
c ∈ (

√
2/3,1) and T > 0. Then there is a positive constant, H = H(b̄, δ,K,K0,

	,T ), such that for all (s, z) ∈ (0, T ) × S̄n,m and for all R ∈ (0,
√

s), if u is a
nonnegative, continuous probabilistic solution to the parabolic equation (1.5) on
QR(s, z), we have that

(5.13) u(t,w) ≤ Hu(s, z), ∀(t,w) ∈ (s − c2R2, s − 2R2/3
)× BcR(s, z).

Theorem 1.2 is essentially a direct consequence of Theorem 5.6.

PROOF OF THEOREM 1.2. Let (s, z) ∈ Q and R > 0 be such that inclusion
(1.6) holds. Let c ∈ (

√
2/3,1). Inequality (5.13) gives us, for all r ∈ (0,R), that

u(t,w) ≤ Hu(s, z), ∀(t,w) ∈ (s − c2r2, s − 2r2/3
)× Bcr(s, z),

and by denoting ρ := cr , we obtain that for all ρ ∈ (0, cR), we have that

(5.14) u(t,w) ≤ Hu(s, z), ∀(t,w) ∈
(
s − ρ2, s − 2

3c2 ρ2
)

× Bρ(s, z).

Let d be a positive constant chosen such that

(5.15) d2 < max
{

1,4 − 8

3c2

}
,

and let (s′, z′) ∈ (s, s + d2) × Bρ(z), where we assume that ρ ∈ (0, cR). Inclusion
(1.6) and our choice of the point (s′, z′) allows us to apply inequality (5.14) with
(s′, z′) replacing (s, z) and 2ρ replacing ρ to obtain that

u
(
t ′,w′)≤ Hu

(
s′, z′),

(5.16)

∀(t ′,w′) ∈ (s′ − 4ρ2, s′ − 8
3c2 ρ2

)
× B2ρ

(
z′).

Notice that (
s − 8

3c2 ρ2, s − (4 − d2)ρ2
)

× Bρ(z)

(5.17)

⊆ ∩
(
s′ − 4ρ2, s′ − 8

3c2 ρ2
)

× B2ρ

(
z′),
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where the preceding intersection is taken over all points (s′, z′) in the set (s, s +
d2ρ2) × Bρ(z). We now set

α := 8

3c2 , β := 4 − d2, and γ := d2,

and notice that our choice of the positive constant d in (5.15) implies that α > β .
Then inequality (5.16) and property (5.17) give us that the scale-invariant Harnack
inequality (1.7) holds. This completes the proof of Theorem 1.2. �

We prove Theorem 5.6 with the aid of a series of lemmas. Our proof closely
follows the arguments in Sturm (1994), Section 2, used to prove Sturm (1994),
Theorem 1, and so we only include the details that are different from the ones in
Sturm (1994). Complete proofs of these auxiliary results can be found in Epstein
and Pop (2014), Section 7.3.

Let T be a positive constant, (s, z) ∈ (0, T ) × S̄n,m, and let r ∈ (0,
√

s). We let
τr be the stopping time defined by

(5.18) τr := inf
{
t ≥ 0 : Z(t) /∈ B̄r (z)

}
.

From identity (5.12), we obtain that the probabilistic solutions to the parabolic
equation (1.5) on QR(s, z), can be written in the form

u(t,w) = EPw

[
M
((

t − s + r2)∧ τr

)
u
(
t − (

t − s + r2)∧ τr ,
(5.19)

Z
((

t − s + r2)∧ τr

))]
,

for all r ∈ (0,R) and all (t,w) ∈ Qr(s, z).
We begin with the analogue of Sturm (1994), Lemma 1.

LEMMA 5.7 (An estimate from below). Assume that the hypotheses of Theo-
rem 5.6 hold. We then have that

(5.20) u1/3(s, z) ≥ 	−1/6EPz

[
1

R

∫ R

0
u1/3(s − r2 ∧ τr ,Z

(
r2 ∧ τr

))
dr

]
.

PROOF. To prove estimate (5.20), we can follow the same argument as in the
proof of Sturm (1994), Lemma 1, replacing the use of Sturm (1994), inequality
(2.2), with our Lemma 5.3. �

Let K0 be the positive constant appearing in the statement of Theorem 1.6. For
simplicity, given ρ ∈ (0, r) and r ∈ (0,R), we denote

(5.21) Qr
ρ(s, z) := Qρ(s, z) ∩ (0, s − 2r2/3

)× Sn,m.

We have the following analogue of Sturm (1994), Lemma 3.
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LEMMA 5.8 (Iterated Harnack inequality). There are positive constants, C =
C(K0) and m = m(K0), such that the following hold. Assume that the hypotheses
of Theorem 5.6 hold. Let r ∈ (

√
2R/

√
3,R) and for all (t,w) ∈ Qr(s, z) let

v(t,w) := EPw

[
u6(t − (

t − s + r2)∧ τr ,Z
((

t − s + r2)∧ τr

))
(5.22)

× 1{t−(t−s+r2)∧τr<s−2R2/3}
]
.

Then, for all ρ ∈ (
√

2R/
√

3, r), we have that

(5.23) v(t,w) ≤ C

(
r

r − ρ

)m

v(s, z), ∀(t,w) ∈ QR
ρ (s, z).

PROOF. Because the function u is assumed to be continuous by the hypotheses
of Theorem 5.6, it follows from Corollary 4.6 that the function v defined in (5.22)
satisfies the Harnack inequality (1.19). Using now an induction argument similar to
that used to prove Sturm (1994), Inequality (2.8), we obtain the estimate in (5.23).
We omit the detailed proof. �

We now have the analogue of Sturm (1994), Lemma 2.

LEMMA 5.9 (An intermediate estimate from above). There are positive con-
stants, C = C(K0) and m = m(K0), such that the following hold. Assume that
the hypotheses of Theorem 5.6 hold. Then, for all ρ ∈ (

√
2R/

√
3,R) and all

η ∈ (ρ,R), we have that

(5.24)

u6(t,w) ≤ C	3 ηm+1

(η − ρ)m+1

×EPz

[
1

η

∫ η

0
u6(s − r2 ∧ τr ,Z

(
r2 ∧ τr

))
× 1{s−r2∧τr≤s−2R2/3} dr

]
,

for all (t,w) ∈ QR
ρ (s, z).

PROOF. To prove estimate (5.24), we proceed exactly as in the proof of Sturm
(1994), Lemma 2, replacing the use of Sturm (1994), inequality (2.4), with our
Lemma 5.3, and that of Sturm (1994), Lemma 3, with that of Lemma 5.8. �

We conclude with the analogue of Sturm (1994), Lemma 4.

LEMMA 5.10 (An estimate from above). Let c ∈ (
√

2/
√

3,1). Then there is a
positive constant, C = C(c,K0,	), such that the following hold. Assume that the
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hypotheses of Theorem 5.6 hold. Then we have, for all (t,w) ∈ QR
cR(s, z),

u1/3(t,w) ≤ CEPz

[
1

R

∫ R

0
u1/3(s − r2 ∧ τr ,Z

(
r2 ∧ τr

))
(5.25)

× 1{s−r2∧τr≤s−2R2/3} dr

]
.

PROOF. The method of the proof is based on that of Sturm (1994), Lemma 4,
which in turn uses ideas of the Fabes and Stroock (1984), Proof of Lemma 3.2. We
first remark that the factor 1/R was apparently omitted from Sturm (1994), Es-
timate (2.10). As written it cannot hold because, as R ↓ 0, the right-hand side
in Sturm (1994), Estimate (2.10), converges to 0, while the left-hand side re-
mains fixed, and possibly positive. The right-hand side of Sturm (1994), Esti-
mate (2.10), should be replaced by an averaging over r ∈ (0,R) as follows: for
all ρ ∈ (

√
2R/

√
3,R), we let

IR

(
ρ

R

)
:= EPz

[
1

ρ

∫ ρ

0
u6(s − r2 ∧ τr ,Z

(
r2 ∧ τr

))
1{s−r2∧τr≤s−2R2/3} dr

]1/6
.

A close inspection of the arguments used to prove Sturm (1994), Lemma 4, allows
us to see that they immediately adapt to this definition of IR as above, and we
conclude that estimate (5.25) holds. We omit the details of the proof. �

We can now give the following.

PROOF OF THEOREM 5.6. Inequality (5.13) follows from estimates (5.20) and
(5.25). �
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