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Consider the minimum spanning tree (MST) of the complete graph with
n vertices, when edges are assigned independent random weights. Endow
this tree with the graph distance renormalized by n1/3 and with the uni-
form measure on its vertices. We show that the resulting space converges
in distribution as n → ∞ to a random compact measured metric space in the
Gromov–Hausdorff–Prokhorov topology. We additionally show that the limit
is a random binary R-tree and has Minkowski dimension 3 almost surely.
In particular, its law is mutually singular with that of the Brownian contin-
uum random tree or any rescaled version thereof. Our approach relies on a
coupling between the MST problem and the Erdős–Rényi random graph. We
exploit the explicit description of the scaling limit of the Erdős–Rényi ran-
dom graph in the so-called critical window, established in [Probab. Theory
Related Fields 152 (2012) 367–406], and provide a similar description of the
scaling limit for a “critical minimum spanning forest” contained within the
MST. In order to accomplish this, we introduce the notion of R-graphs, which
generalise R-trees, and are of independent interest.
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1. Introduction.

1.1. A brief history of minimum spanning trees. The minimum spanning tree
(MST) problem is one of the first and foundational problems in the field of com-
binatorial optimisation. In its initial formulation by Borůvka [24], one is given
distinct, positive edge weights (or lengths) for Kn, the complete graph on vertices
labelled by the elements of {1, . . . , n}. Writing {we, e ∈ E(Kn)} for this collec-
tion of edge weights, one then seeks the unique connected subgraph T of Kn with
vertex set V (T ) = {1, . . . , n} that minimizes the total length

(1.1)
∑

e∈E(T )

we.

Algorithmically, the MST problem is among the easiest in combinatorial optimi-
sation: procedures for building the MST are both easily described and provably
efficient. The most widely known MST algorithms are commonly called Kruskal’s
algorithm and Prim’s algorithm.6 Both procedures are important in this work; as
their descriptions are short, we provide them immediately.

6Both of these names are misnomers or, at the very least, obscure aspects of the subject’s develop-
ment; see Graham and Hell [37] or Schriver [68] for careful historical accounts.
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KRUSKAL’S ALGORITHM. Start from a forest of n isolated vertices {1, . . . , n}.
At each step, add the unique edge of smallest weight joining two distinct compo-
nents of the current forest. Stop when all vertices are connected.

PRIM’S ALGORITHM. Fix a starting vertex i. At each step, consider all edges
joining the component currently containing i with its complement, and from
among these add the unique edge of smallest weight. Stop when all vertices are
connected.

Unfortunately, efficient procedures for constructing MSTs do not automatically
yield efficient methods for understanding the typical structure of the resulting ob-
jects. To address this, a common approach in combinatorial optimisation is to study
a procedure by examining how it behaves when given random input; this is often
called average case or probabilistic analysis.

The probabilistic analysis of MSTs dates back at least as far as Beardwood,
Halton and Hammersley [21] who studied the Euclidean MST of n points in R

d .
Suppose that μ is an absolutely continuous measure on R

d with bounded support,
and let (Pi, i ≥ 1) be independent and identically distributed (i.i.d.) samples from
μ. For edge e = {i, j}, take we to be the Euclidean distance between Pi and Pj .
Then there exists a constant c = c(μ) such that if Xn is the total length of the
minimum spanning tree, then

Xn

n(d−1)/d

a.s.→ c.

This law of large numbers for Euclidean MSTs spurred a massive amount of re-
search: on more general laws of large numbers [65, 69, 71, 80], on central limit
theorems [16, 44, 46, 47, 64, 82], and on the large-n scaling of various other “lo-
calizable” functionals of random Euclidean MSTs [45, 60, 61, 63, 72]. (The above
references are representative, rather than exhaustive. The books of Penrose [59]
and of Yukich [81] are comprehensive compendia of the known results and tech-
niques for such problems.)

From the perspective of Borůvka’s original formulation, the most natural proba-
bilistic model for the MST problem may be the following. Weight the edges of the
complete graph Kn with i.i.d. random edge weights {We : e ∈ E(Kn)} whose com-
mon distribution μ is atomless and has support contained in [0,∞), and let Mn be
the resulting random MST. The conditions on μ ensure that all edge weights are
positive and distinct. Frieze [34] showed that if the common distribution function
F is differentiable at 0+ and F ′(0+) > 0, then the total weight Xn satisfies

(1.2) F ′(0+) ·E[Xn] → ζ(3),

whenever the edge weights have finite mean. It is also known that F ′(0+) · Xn
p→

ζ(3) without any moment assumptions for the edge weights [34, 70]. Results anal-
ogous to (1.2) have been established for other graphs, including the hypercube
[62], high-degree expanders and graphs of large girth [22], and others [33, 35].
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Returning to the complete graph Kn, Aldous [8] proved a distributional con-
vergence result corresponding to (1.2) in a very general setting where the edge
weight distribution is allowed to vary with n, extending earlier, related results [20,
75]. Janson [39] showed that for i.i.d. Uniform[0,1] edge weights on the com-
plete graph, n1/2(Xn − ζ(3)) is asymptotically normally distributed, and gave an
expression for the variance that was later shown [42] to equal 6ζ(4) − 4ζ(3).

If one is interested in the graph theoretic structure of the tree M
n rather than in

information about its edge weights, the choice of distribution μ is irrelevant. To see
this, observe that the behaviour of both Kruskal’s algorithm and Prim’s algorithm is
fully determined once we order the edges in increasing order of weight, and for any
distribution μ as above, ordering the edges by weight yields a uniformly random
permutation of the edges. We are thus free to choose whichever distribution μ

is most convenient, or simply to choose a uniformly random permutation of the
edges. Taking μ to be uniform on [0,1] yields a particularly fruitful connection to
the now-classical Erdős–Rényi random graph process. This connection has proved
fundamental to the detailed understanding of the global structure of Mn and is at
the heart of the present paper, so we now explain it.

Let the edge weights {We : e ∈ E(Kn)} be i.i.d. Uniform[0,1] random vari-
ables. The Erdős–Rényi graph process (G(n,p),0 ≤ p ≤ 1) is the increasing
graph process obtained by letting G(n,p) have vertices {1, . . . , n} and edges
{e ∈ E(Kn) : We ≤ p}.7 For fixed p, each edge of Kn is independently present with
probability p. Observing the process as p increases from zero to one, the edges of
Kn are added one at a time in exchangeable random order. This provides a natural
coupling with the behaviour of Kruskal’s algorithm for the same weights, in which
edges are considered one at a time in exchangeable random order, and added pre-
cisely if they join two distinct components. More precisely, for 0 < p < 1 write
M(n,p) for the subgraph of the MST M

n with edge set {e ∈ E(Mn) : We ≤ p}.
Then for every 0 < p < 1, the connected components of M(n,p) and of G(n,p)

have the same vertex sets.
In their foundational paper on the subject [29], Erdős and Rényi described the

percolation phase transition for their eponymous graph process. They showed that
for p = c/n with c fixed, if c < 1 (the subcritical case) then G(n,p) has largest
component of size O(logn) in probability, whereas if c > 1 (the supercritical case)
then the largest component of G(n,p) has size (1 + op(1))γ (c)n, where γ (c) is
the survival probability of a Poisson(c) branching process. They also showed that
for c > 1, all components aside from the largest have size O(logn) in probability.

In view of the above coupling between the graph process and Kruskal’s algo-
rithm, the results of the preceding paragraph strongly suggest that “most of” the
global structure of the MST M

n should already be present in the largest component

7Later, it will be convenient to allow p ∈ R, and we note that the definition of G(n,p) still makes
sense in this case.
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FIG. 1. A simulation of the minimum spanning tree on Kn for n = 3000. Black edges have weights
less than 1/n; for coloured edges, weights increase as colours vary from from red to purple.

of M(n, c/n), for any c > 1. In order to understand M
n, then a natural approach

is to delve into the structure of the forest M(n,p) for p ∼ 1/n (the near-critical
regime) and, more specifically, to study how the components of this forest attach to
one another as p increases through the critical window. (This is the reason for the
colour-coding in Figure 1.) In this paper, we use such a strategy to show that after
suitable rescaling of distances and of mass, the tree Mn, viewed as a measured met-
ric space, converges in distribution to a random compact measured metric space
M of total mass measure one, which is a random R-tree in the sense of [30, 49].

The space M is the scaling limit of the minimum spanning tree on the complete
graph. It is binary and its mass measure is concentrated on the leaves of M . The
space M shares all these features with the first and most famous random R-tree,
the Brownian continuum random tree or CRT [9–11, 49]. However, M is not the
CRT; we rule out this possibility by showing that M almost surely has Minkowski
dimension 3. Since the CRT has both Minkowski dimension 2 [28] and Hausdorff
dimension 2 [28, 38], this shows that the law of M is mutually singular with that
of the CRT, or any rescaled version thereof.

The remainder of the Introduction is structured as follows. First, in Section 1.2,
below, we provide the precise statement of our results. Second, in Section 1.3 we
provide an overview of our proof techniques. Finally, in Section 1.4, we situate
our results with respect to the large body of work by the probability and statistical
physics communities on the convergence of minimum spanning trees, and briefly
address the question of universality.
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1.2. The main results of this paper. Before stating our results, a brief word on
the spaces in which we work is necessary. We formally introduce these spaces
in Section 2, and here only provide a brief summary. First, let M be the set
of measured isometry-equivalence classes of compact measured metric spaces,
and let dGHP denote the Gromov–Hausdorff–Prokhorov distance on M; the pair
(M,dGHP) forms a Polish space.

We wish to think of Mn as an element of (M,dGHP). In order to do this, we
introduce a measured metric space Mn obtained from M

n by rescaling distances
by n−1/3 and assigning mass 1/n to each vertex. The main contribution of this
paper is the following theorem.

THEOREM 1.1. There exists a random, compact measured metric space M
such that, as n → ∞,

Mn d→ M

in the space (M,dGHP). The limit M is a random R-tree. It is almost surely binary,
and its mass measure is concentrated on the leaves of M . Furthermore, almost
surely, the Minkowski dimension of M exists and is equal to 3.

A consequence of the last statement is that M is not a rescaled version of the
Brownian CRT T , in the sense that for any nonnegative random variable A, the
laws of M and the space T , in which all distances are multiplied by A, are mutu-
ally singular. Indeed, the Brownian tree has Minkowski dimension 2 almost surely.
The assertions of Theorem 1.1 are contained within the union of Theorems 4.9 and
5.1 and Corollary 5.3, below.

In a preprint [2], the first author of this paper shows that the unscaled tree M
n,

when rooted at vertex 1, converges in the local weak sense to a random infinite
tree, and that this limit almost surely has cubic volume growth. The results of [2]
form a natural complement to Theorem 1.1.

As mentioned earlier, we approach the study of Mn and of its scaling limit M
via a detailed description of the graph G(n,p) and of the forest M(n,p), for p

near 1/n. As is by this point well known, it turns out that the right scaling for the
“critical window” is given by taking p = 1/n + λ/n4/3, for λ ∈R, and for such p,
the largest components of G(n,p) typically have size of order n2/3 and possess a
bounded number of cycles [12, 52]. Adopting this parametrisation, for λ ∈R write(

G
n,i
λ , i ≥ 1

)
for the components of G(n,1/n + λ/n4/3) listed in decreasing order of size
(among components of equal size, list components in increasing order of small-
est vertex label, say). For each i ≥ 1, we then write G

n,i
λ for the measured metric

space obtained from G
n,i
λ by rescaling distances by n−1/3 and giving each vertex

mass n−2/3, and let

Gn
λ = (

G
n,i
λ , i ≥ 1

)
.



THE SCALING LIMIT OF THE MST OF THE COMPLETE GRAPH 3081

We likewise define a sequence (M
n,i
λ , i ≥ 1) of graphs, and a sequence Mn

λ =
(M

n,i
λ , i ≥ 1) of measured metric spaces, starting from M(n,1/n+λ/n4/3) instead

of G(n,1/n + λ/n4/3).
In order to compare sequences X = (Xi , i ≥ 1) of elements of M (i.e., elements

of MN), we let Lp , for p ≥ 1, be the set of sequences X ∈ MN with∑
i≥1

diam(Xi )
p + ∑

i≥1

μi(Xi)
p < ∞,

and for two such sequences X = (Xi , i ≥ 1) and X′ = (X′
i , i ≥ 1), we let

distpGHP

(
X,X′) =

(∑
i≥1

dGHP
(
Xi ,X′

i

)p)1/p

.

The resulting metric space (Lp,distpGHP) is a Polish space. Convergence in this
space in particular implies convergence of the first coordinates with respect to the
product topology, but is stronger as it additionally yields information about the
tails of the sequences.

The second main result of this paper is the following (see Theorems 4.4 and 4.9
below).

THEOREM 1.2. Fix λ ∈ R. Then there exists a random sequence Mλ =
(M i

λ, i ≥ 1) of compact measured metric spaces, such that as n → ∞,

(1.3) Mn
λ

d→ Mλ

in the space (L4,dist4GHP). Furthermore, let M̂ 1
λ be the first term M 1

λ of the limit
sequence Mλ, with its measure renormalized to be a probability. Then as λ → ∞,
M̂ 1

λ converges in distribution to M in the space (M,dGHP).

1.3. An overview of the proof. Theorem 1 of [4] states that for each λ ∈ R,
there is a random sequence

Gλ = (
G i

λ, i ≥ 1
)

of compact measured metric spaces, such that

(1.4) Gn
λ

d→ Gλ,

in the space (L4,dist4GHP). (Theorem 1 of [4] is, in fact, slightly weaker than this
because the metric spaces there are considered without their accompanying mea-
sures, but it is easily strengthened; see Section 4.) The limiting spaces are similar
to R-trees; we call them R-graphs. The introduction of R-graphs, and a descrip-
tion of some of their basic properties, is one of the conceptual contributions of
this paper. We expect this generalisation of the theory of R-trees to find further
applications.
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In Section 2, we provide an an overview of the theory of R-graphs. In particular,
in Section 2.3 we develop a decomposition of R-graphs analogous to the classical
“core and kernel” decomposition for finite connected graphs (see, e.g., [41]). The
more technical aspects of the proofs are deferred to Section 6. The main results
of [3] provide precise distributional descriptions of the cores and kernels of the
components of Gλ, which may now be phrased as statements about the laws of
random R-graphs.

It turns out that, having understood the distribution of Gn
λ, we can access the dis-

tribution of Mn
λ by using a minimum spanning tree algorithm called cycle breaking.

This algorithm finds the minimum weight spanning tree of a graph by listing edges
in decreasing order of weight, then considering each edge in turn and removing it
if its removal leaves the graph connected.

The continuum analogue of cycle breaking involves removing points from an
R-graph, an operation we call cutting. Ensuring that this operation is well defined
and commutes with the appropriate limits is somewhat involved. We describe cycle
breaking for graphs, and cutting for R-graphs, in Section 3. Once again, proofs of
some of the more challenging assertions are postponed, this time to Section 7.

In Section 4, using the convergence in (1.4) and an analysis of the cycle breaking
algorithm, we will establish Theorem 1.2. The sequence Mλ is constructed from
Gλ by cutting at appropriately sampled random points.

For fixed n, the process (M
n,1
λ , λ ∈ R) is eventually constant, and we note that

M
n = limλ→∞M

n,1
λ In order to establish that Mn converges in distribution in the

space (M,dGHP) as n → ∞, we rely on two ingredients. First, the convergence in
(1.3) implies that the first component M

n,1
λ converges in distribution as n → ∞ to

a limit M 1
λ in the space (M,dGHP).

Second, the results in [5] entail Lemma 4.5, which in particular implies that for
any ε > 0,

(1.5) lim
λ→∞ lim sup

n→∞
P

(
dGH

(
M

n,1
λ ,Mn) ≥ ε

) = 0.

This is enough to prove a version of our main result for the metric spaces without
their measures. In Proposition 4.8, below, we strengthen this statement. Let M̂

n,1
λ

be the measured metric space obtained from M
n,1
λ by rescaling so that the total

mass is one [in M
n,1
λ we gave each vertex mass n−2/3; now we give each vertex

mass |V (M
n,1
λ )|−1]. We show that for any ε > 0,

(1.6) lim
λ→∞ lim sup

n→∞
P

(
dGHP

(
M̂

n,1
λ ,Mn) ≥ ε

) = 0.

Since (M,dGHP) is a complete, separable space, the so-called principle of accom-
panying laws entails that

Mn d→ M
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in the space (M,dGHP) for some limiting random measured metric space M
which is thus the scaling limit of the minimum spanning tree on the complete
graph. Furthermore, still as a consequence of the principle of accompanying laws,
M is also the limit in distribution of M 1

λ as λ → ∞ in the space (M,dGHP).
Section 5 is focussed on the properties of M . Many of the results in this section

follow easily from the results on convergence established in Section 4.
First, for fixed λ ∈ R, it follows from the distributional construction of Mλ given

in Section 4.2 that the trees of the forest Mλ are almost surely binary. Since M is
compact and (if the measure is ignored) is an increasing limit of M 1

λ as λ → ∞,
we shall deduce that M is almost surely binary; see Theorem 5.1.

Next, to prove that the mass measure is concentrated on the leaves of M , we
use a result of Łuczak [50] on the size of the largest component in the barely
supercritical regime. This result in particular implies that for all ε > 0,

(1.7) lim
λ→∞ lim sup

n→∞
P

(∣∣∣∣ |V (M
n,1
λ )|

2λn2/3 − 1
∣∣∣∣ > ε

)
= 0.

Since Mn,1∞ has n vertices, it follows that for any λ ∈ R, the proportion of the mass
of Mn,1∞ “already present in M

n,1
λ ” is asymptotically negligible. But (1.5) tells us

that for λ large, with high probability every point of Mn,1∞ not in M
n,1
λ has distance

oλ→∞(1) from a point of M
n,1
λ , so has distance oλ→∞(1) from a leaf of Mn,1∞ .

Equation (1.7) then implies that essentially all the mass lies close to the leaves of
M

n,1∞ . Passing this argument to the limit, it will follow that M almost surely places
all its mass on its leaves.

Finally, the statement on the Minkowski dimension of M , which appears in
Proposition 5.2, depends crucially on an explicit description of the components
of Gλ from [3], which allows us to estimate the number of balls needed to cover
M 1

λ . Along with a refined version of (1.5), which yields an estimate of the distance
between M 1

λ and M , we are able to obtain bounds on the covering number of M .
This is the most technical aspect of Section 5. We give further intuition for our
argument just after the statement of Proposition 5.2.

This completes our overview, and we now proceed with a brief discussion of
related work, before turning to details.

1.4. Related work. In the majority of existing work on convergence of MSTs,
the limiting object is a noncompact infinite tree or forest. As detailed above, the
study bifurcates into the “geometric” case in which the points lie in a Euclidean
space R

d , and the “mean-field” case where the underlying graph is Kn with i.i.d.
edge weights. In both cases, a standard approach is to pass directly to an infinite
underlying graph or point set, and define the minimum spanning tree (or forest)
directly on such a point set.

It is not a priori obvious how to define the minimum spanning tree, or forest,
of an infinite graph, as neither of the algorithms described above are necessar-
ily well-defined (there may be no smallest weight edge leaving a given vertex or
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component). However, it is known [13] that given an infinite locally finite graph
G = (V ,E) and distinct edge weights w = {we, e ∈ E}, the following variant of
Prim’s algorithm is well-defined and builds a forest, each component of which is
an infinite tree.

INVASION PERCOLATION. For each v ∈ V , run Prim’s algorithm starting
from v and call the resulting set of edges Ev . Then let MSF(G,w) be the graph
with vertices V and edges

⋃
v∈V Ev .

The graph MSF(G,w) is also described by the following rule, which is con-
ceptually based on the coupling between Kruskal’s algorithm and the percola-
tion process, described above. For each r > 0, let Gr be the subgraph with edges
{e ∈ E : we < r}. Then an edge e = uv ∈ E with we = r is an edge of MSF(G,w)

if and only if u and v are in distinct components of Gr and one of these compo-
nents is finite.

The latter characterisation again allows the MSF to be studied by coupling with
a percolation process. This connection was exploited by Alexander and Molchanov
[17] in their proof that the MSF almost surely consists of a single, one-ended
tree for the square, triangular and hexagonal lattices with i.i.d. Uniform[0,1] edge
weights and, later, to prove the same result for the MSF of the points of a homo-
geneous Poisson process in R

2 [15]. Newman [57] has also shown that in lattice
models in R

d , the critical percolation probability θ(pc) is equal to 0 if and only
if Prim’s algorithm a.s. only explores a vanishing proportion of the lattice (i.e.,
if for any fixed v ∈ Z

d , almost surely |Ev ∩ [−r, r]d |/rd → 0). Lyons, Peres and
Schramm [53] developed the connection with critical percolation. Among several
other results, they showed that if G is any Cayley graph for which θ(pc(G)) = 0,
then the component trees in the MSF all have one end almost surely, and that
almost surely every component tree of the MSF itself has percolation thresh-
old pc = 1. (See also [74] for subsequent work on a similar model.) For two-
dimensional lattice models, more detailed results about the behaviour of the so-
called “invasion percolation tree”, constructed by running Prim’s algorithm once
from a fixed vertex, have also recently been obtained [26, 27].

In the mean-field case, one common approach is to study the MST or MSF from
the perspective of local weak convergence [14]. This leads one to investigate the
minimum spanning forest of Aldous’ Poisson-weighted infinite tree (PWIT). Such
an approach is used implicitly in [54] in studying the first O(

√
n) steps of Prim’s

algorithm on Kn. Aldous [8] establishes a local weak limit for the subtree of the
MST of Kn obtained as follows. Delete the (typically unique) edge whose removal
minimizes the size of the component containing vertex 1 in the resulting graph,
then keep only the component containing 1. The behaviour of invasion percolation
on regular trees and on the PWIT has been studied in [6, 18, 19].

Almost nothing is known about compact scaling limits for whole MSTs. In two
dimensions, Aizenman, Burchard, Newman and Wilson [7] have shown tightness
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for the family of random sets given by considering the subtree of the MST connect-
ing a finite set of points (the family is obtained by varying the set of points), either
in the square, triangular or hexagonal lattice, or in a Poisson process. They also
studied the properties of subsequential limits for such families, showing, among
other results, that any limiting “tree” has Hausdorff dimension strictly between 1
and 2, and that the curves connecting points in such a tree are almost surely Hölder
continuous of order α for any α < 1/2. Recently, Garban, Pete, and Schramm [36]
proved the existence of a scaling limit for the MST of the 2D triangular lattice, and
showed that the limit is invariant under scalings, rotations and translations (the
limit is not expected to be conformally invariant; see [79]). In the mean-field case,
however, we are not aware of any previous work on scaling limits for the MST.
In short, the scaling limit M that we identify in this paper appears to be a novel
mathematical object, and is one of the first scaling limits to be identified for any
problem from combinatorial optimisation.

We expect M to be a universal object: the MST’s of a wide range of “high-
dimensional” graphs should also have M as a scaling limit. By way of analogy,
we mention two facts. First, Peres and Revelle [66] have shown the following uni-
versality result for uniform spanning trees (here informally stated). Let {Gn} be
a sequence of vertex transitive graphs of size tending to infinity. Suppose that (a)
the uniform mixing time of simple random walk on Gn is o(|G1/2

n |), and (b) Gn is
sufficiently “high-dimensional”, in that the expected number of meetings between
two random walks with the same starting point, in the first |Gn|1/2 steps, is uni-
formly bounded. Then after a suitable rescaling of distances, the spanning tree of
Gn converges to the CRT in the sense of finite-dimensional distributions. Second,
under a related set of conditions, van der Hofstad and Nachmias [76] have very re-
cently proved that the largest component of critical percolation on Gn in the barely
supercritical phase has the same scaling as in the Erdős–Rényi graph process (we
omit a precise statement of their result as it is rather technical, but mention that
their conditions are general enough to address the notable case of percolation on
the hypercube). However, a proof of an analogous result for the MST seems, at
this time, quite distant. As will be seen below, our proof requires detailed control
on the metric and mass structure of all components of the Kruskal process in the
critical window and, for the moment, this is not available for any other model. In
another direction, the recent paper by Bhamidi, Broutin, Sen and Wang [23] paves
the way for such universality results on models of random graphs, including inho-
mogeneous random graphs and the configuration model, by identifying the scaling
limit of critical percolation clusters for these models, hence generalizing the results
[4] which serve as a basis for the present work.

2. Metric spaces and types of convergence. The reader may wish to simply
skim this section on a first reading, referring back to it as needed. Interested readers
can find proofs of the various assertions regarding convergence of metric spaces
in, for example, [1, 30, 55].
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2.1. Notions of convergence.

The Gromov–Hausdorff distance. Given a metric space (X,d), we write [X,d]
for the isometry class of (X,d), and use the notation X for either (X,d) or
[X,d] when there is no risk of ambiguity. For a metric space (X,d), we write
diam((X,d)) = supx,y∈X d(x, y), which may be infinite.

Let X = (X,d) and X′ = (X′, d ′) be metric spaces. If C is a subset of X × X′,
the distortion dis(C) is defined by

dis(C) = sup
{∣∣d(x, y) − d ′(x′, y′)∣∣ : (

x, x′) ∈ C,
(
y, y′) ∈ C

}
.

A correspondence C between X and X′ is a measurable subset of X × X′
such that for every x ∈ X, there exists x′ ∈ X′ with (x, x′) ∈ C and vice versa.
Write C(X,X′) for the set of correspondences between X and X′. The Gromov–
Hausdorff distance dGH(X,X′) between the isometry classes of (X,d) and (X′, d ′)
is

dGH
(
X,X′) = 1

2
inf

{
dis(C) : C ∈ C

(
X,X′)},

and when X and X′ are compact, there is a correspondence which achieves this
infimum. (In fact, since our metric spaces are assumed separable, the requirement
that the correspondence be measurable is not strictly necessary.) It can be verified
that dGH is indeed a distance and, writing M̊ for the set of isometry classes of
compact metric spaces, that (M̊,dGH) is itself a complete separable metric space.
(We reserve the notation M for compact measured metric spaces.)

Let (X,d, (x1, . . . , xk)) and (X′, d ′, (x′
1, . . . , x

′
k)) be metric spaces, each with

an ordered set of k distinguished points (we call such spaces k-pointed metric
spaces).8 We say that these two k-pointed metric spaces are isometry-equivalent if
there exists an isometry φ : X → X′ such that φ(xi) = x′

i for every i ∈ {1, . . . , k}.
As before, we write [X,d, (x1, . . . , xk)] for the isometry equivalence class of
(X,d, (x1, . . . , xk)), and denote either by X when there is little chance of ambi-
guity.

The k-pointed Gromov–Hausdorff distance is defined as

dk
GH

(
X,X′) = 1

2
inf

{
dis(C) : C ∈ C

(
X,X′) s.t.

(
xi, x

′
i

) ∈ C,1 ≤ i ≤ k
}
.

Much as above, the space (M(k),dk
GH) of isometry classes of k-pointed compact

metric spaces is itself a complete separable metric space [55].

8When k = 1, we simply refer to pointed (rather than 1-pointed) metric spaces, and write (X,d, x)

rather than (X,d, (x)).
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The Gromov–Hausdorff–Prokhorov distance. A compact measured metric
space is a triple (X,d,μ) where (X,d) is a compact metric space and μ is a
(nonnegative) finite measure on (X,B), where B is the Borel σ -algebra on (X,d).
Given a measured metric space (X,d,μ), a metric space (X′, d ′) and a measurable
function φ : X → X′, we write φ∗μ for the push-forward of the measure μ to the
space (X′, d ′). Two compact measured metric spaces (X,d,μ) and (X′, d ′,μ′)
are called isometry-equivalent if there exists an isometry φ : (X,d) → (X′, d ′)
such that φ∗μ = μ′. The isometry-equivalence class of (X,d,μ) will be denoted
by [X,d,μ]. Again, both will often be denoted by X when there is little risk of
ambiguity. If X = (X,d,μ), then we write mass(X) = μ(X).

There are several natural distances on compact measured metric spaces that
generalize the Gromov–Hausdorff distance; see, for instance, [1, 31, 55, 78]. The
presentation we adopt is still different from these references, but closest in spirit to
[1] since we are dealing with arbitrary finite measures rather than just probability
measures. In particular, it induces the same topology as the compact Gromov–
Hausdorff–Prokhorov metric of [1].

If (X,d) and (X′, d ′) are two metric spaces, let M(X,X′) be the set of finite
nonnegative Borel measures on X × X′. We will denote by p,p′ the canonical
projections from X × X′ to X and X′.

Let μ and μ′ be finite nonnegative Borel measures on X and X′, respectively.
The discrepancy of π ∈ M(X,X′) with respect to μ and μ′ is the quantity

D
(
π;μ,μ′) = ‖μ − p∗π‖ + ∥∥μ′ − p′∗π

∥∥,
where ‖ν‖ is the total variation of the signed measure ν. Since p∗π(X) = π(X ×
X′), we have ‖μ−p∗π‖ ≥ |μ(X)−π(X×X′)| by the definition of total variation.
By the triangle inequality it follows that D(π;μ,μ′) ≥ |μ(X) − μ′(X′)|. If μ and
μ′ are probability distributions (or have the same mass), a measure π ∈ M(X,X′)
with D(π;μ,μ′) = 0 is a coupling of μ and μ′ in the standard sense.

Recall that the Prokhorov distance between two finite nonnegative Borel mea-
sures μ and μ′ on the same metric space (X,d) is given by

inf
{
ε > 0 : μ(F) ≤ μ′(Fε) + ε and μ′(F ) ≤ μ

(
Fε) + ε for every closed F ⊆ X

}
.

An alternative distance, which generates the same topology but more easily ex-
tends to the setting where μ and μ′ are measures on different metric spaces, is
given by

inf
{
ε > 0 : D(

π;μ,μ′) < ε,π
({(

x, x′) ∈ X × X : d(
x, x′) ≥ ε

})
< ε

for some π ∈ M(X,X)
}
.

To extend this, we replace the condition on {(x, x′) ∈ X × X : d(x, x′) ≥ ε} by an
analogous condition on the measure of the set of pairs lying outside the correspon-
dence. More precisely, let X = (X,d,μ) and X′ = (X′, d ′,μ′) be measured metric
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spaces. The Gromov–Hausdorff–Prokhorov distance between X and X′ is defined
as

dGHP
(
X,X′) = inf

{
1

2
dis(C) ∨ D

(
π;μ,μ′) ∨ π

(
Cc)},

the infimum being taken over all C ∈ C(X,X′) and π ∈ M(X,X′). Here and else-
where, we write x ∨ y = max(x, y) [and, likewise, x ∧ y = min(x, y)].

Just as for dGH, it can be verified that dGHP is a distance and that writing M
for the set of measured isometry-equivalence classes of compact measured metric
spaces, (M,dGHP) is a complete separable metric space (see, e.g., [1]).

Note that dGHP((X,d,0), (X′, d ′,0)) = dGH((X,d), (X′, d ′)). In other words,
the mapping [X,d] �→ [X,d,0] is an isometric embedding of (M̊,dGH) into M,
and we will sometimes abuse notation by writing [X,d] ∈ M. Note also that

dGH
(
X,X′) ∨ ∣∣μ(X) − μ′(X′)∣∣ ≤ dGHP

(
X,X′)

≤ 1

2

(
diam(X) + diam

(
X′)) ∨ (

μ(X) + μ′(X′)).
In particular, if Z is the “zero” metric space consisting of a single point with mea-
sure 0, then

(2.1) dGHP(X,Z) = diam(X)

2
∨ μ(X) for every X = [X,d,μ].

Finally, we can define an analogue of dGHP for measured isometry-equivalence
class of spaces of the form (X,d,x,μ) where x = (x1, . . . , xk) are points of X and
μ = (μ1, . . . ,μl) are finite Borel measures on X. If (X,d,x,μ) and (X′, d ′,x′,μ′)
are such spaces, whose measured, pointed isometry classes are denoted by X and
X′, we let

dk,l
GHP

(
X,X′) = inf

{
1

2
dis(C) ∨ max

1≤j≤l

(
D

(
πj ;μj ,μ

′
j

) ∨ πj

(
Cc))},

where the infimum is over all C ∈ C(X,X′) such that (xi, x
′
i) ∈ C,1 ≤ i ≤ k and

all πj ∈ M(X,X′),1 ≤ j ≤ l. Writing Mk,l for the set of measured isometry-
equivalence classes of compact metric spaces equipped with k marked points
and l finite Borel measures, we again obtain a complete separable metric space
(Mk,l,dk,l

GHP). We will need the following fact, which is in essence [55], Propo-
sition 10, except that we have to take into account more measures and/or marks.
This is a minor modification of the setting of [55], and the proof is similar.

PROPOSITION 2.1. Suppose that Xn = (Xn, dn,xn,μn) converges to X∞ =
(X∞, d∞,x∞,μ∞) in Mk,l , and assume that the first measure μ1

n of μn is a
probability measure for every n ∈ N ∪ {∞}. Let yn be a random variable with
distribution μ1

n, and let x̃n = (x1
n, . . . , xk

n, yn). Then (Xn, dn, x̃n,μn) converges in
distribution to (X∞, d∞, x̃∞,μ∞) in Mk+1,l .
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Sequences of metric spaces. We now consider a natural metric on certain se-
quences of measured metric spaces. For p ≥ 1 and X = (Xi , i ≥ 1),X′ = (X′

i , i ≥
1) in MN, we let

distpGHP

(
X,X′) =

(∑
i≥1

dGHP
(
Xi ,X′

i

)p)1/p

.

If X ∈ Mn for some n ∈ N, we consider X as an element of MN by appending
to X an infinite sequence of copies of the “zero” metric space Z. This allows us
to use distpGHP to compare sequences of metric spaces with different numbers of
elements, and to compare finite sequences with infinite sequences. In particular,
let Z = (Z,Z, . . .), and recall from Section 1.2 that

Lp = {
X ∈ MN : distpGHP(X,Z) < ∞}

.

By (2.1), X ∈ Lp if and only if the sequences (diam(Xi ), i ≥ 1) and (μi(Xi), i ≥
1) are in �p(N).

2.2. Some general metric notions. Let (X,d) be a metric space. For x ∈ X and
r ≥ 0, we let Br(x) = {y ∈ X : d(x, y) < r} and Br(x) = {y ∈ X : d(x, y) ≤ r}.
We say (X,d) is degenerate if |X| = 1. As regards metric spaces, we mostly follow
[25] for our terminology.

Paths, length, cycles. Let C([a, b],X) be the set of continuous functions from
[a, b] to X, hereafter called paths with domain [a, b] or paths from a to b. The
image of a path is called an arc; it is a simple arc if the path is injective. If f ∈
C([a, b],X), the length of f is defined by

len(f ) = sup

{
k∑

i=1

d
(
f (ti−1), f (ti)

) : k ≥ 1, t0, . . . , tk ∈ [a, b], t0 ≤ · · · ≤ tk

}
.

If len(f ) < ∞, then the function ϕ : [a, b] → [0, len(f )] defined by ϕ(t) =
len(f |[a,t]) is nondecreasing and surjective. The function f ◦ ϕ−1, where ϕ−1 is
the right-continuous inverse of ϕ, is easily seen to be continuous, and we call it the
path f parameterized by arc-length.

The intrinsic distance (or intrinsic metric) associated with (X,d) is the function
dl defined by

dl(x, y) = inf
{
len(f ) : f ∈ C

([0,1],X)
, f (0) = x,f (1) = y

}
.

The function dl need not take finite values. When it does, then it defines a new
distance on X such that d ≤ dl . The metric space (X,d) is called intrinsic if d = dl .
Similarly, if Y ⊂ X then the intrinsic metric on Y is given by

dl(x, y) = inf
{
len(f ) : f ∈ C

([0,1], Y )
, f (0) = x,f (1) = y

}
.



3090 ADDARIO-BERRY, BROUTIN, GOLDSCHMIDT AND MIERMONT

Intrinsic metrics will play a key role when we consider the effect on the metric
structure of removing edges in a graph.

Given x, y ∈ X, a geodesic between x and y (also called a shortest path between
x and y) is an isometric embedding f : [a, b] → X such that f (a) = x and f (b) =
y [so that obviously len(f ) = b − a = d(x, y)]. In this case, we call the image
Im(f ) a geodesic arc between x and y.

A metric space (X,d) is called a geodesic space if for any two points x, y there
exists a geodesic between x and y. A geodesic space is obviously an intrinsic
space. If (X,d) is compact, then the two notions are in fact equivalent. Also note
that for every x in a geodesic space and r > 0, Br(x) is the closure of Br(x).
All of the limiting metric spaces (X,d) that we consider in this paper are in fact
compact geodesic spaces. When working with a graph, it is convenient to move
back and forth between two viewpoints: it may be viewed as a finite metric space
consisting of the vertex set equipped with the graph distance, or as a geodesic
space, by viewing edges as line segments of length one.

A path f ∈ C([a, b],X) is a local geodesic between x and y if f (a) = x, f (b) =
y, and for any t ∈ [a, b] there is a neighborhood V of t in [a, b] such that f |V is a
geodesic. It is then straightforward that b − a = len(f ). (Our terminology differs
from that of [25], where this would be called a geodesic. We also note that we do
not require x and y to be distinct.)

An embedded cycle is the image of a continuous injective function f : S1 →
X, where S1 = {z ∈ C : |z| = 1}. The length len(f ) is the length of the path g :
[0,1] → X defined by g(t) = f (e2iπt ) for 0 ≤ t ≤ 1. It is easy to see that this
length depends only on the embedded cycle c = Im(f ) rather than its particular
parametrisation. We call it the length of the embedded cycle, and write len(c) for
this length. A metric space with no embedded cycle is called acyclic, and a metric
space with exactly one embedded cycle is called unicyclic.

2.3. R-trees and R-graphs. A metric space X = (X,d) is an R-tree if it is an
acyclic geodesic metric space. If (X,d) is an R-tree then for x ∈ T , the degree
degX(x) of x is the number of connected components of X \ {x}. A leaf is a point
of degree 1; we let L(X) be the set of leaves of X.

A metric space (X,d) is an R-graph if it is locally an R-tree in the following
sense. Note that by definition an R-graph is connected, being a geodesic space.

DEFINITION 2.2. A compact geodesic metric space (X,d) is an R-graph if
for every x ∈ X, there exists ε = ε(x) > 0 such that (Bε(x), d|Bε(x)) is an R-tree.

Let X = (X,d) be an R-graph and fix x ∈ X. The degree of x, denoted by
degX(x) and with values in N∪ {∞}, is defined to be the degree of x in Bε(x) for
every ε small enough so that (Bε(x), d) is an R-tree, and this definition does not
depend on a particular choice of ε. If Y ⊂ X and x ∈ Y , we can likewise define the
degree degY (x) of x in Y as the degree of x in the R-tree (Bε(x) ∩ Y(x)) \ {x},
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where Y(x) is the connected component of Y that contains x, for any ε small
enough. Obviously, degY (x) ≤ degY ′(x) whenever Y ⊂ Y ′.

Let

L(X) = {
x ∈ X : degX(x) = 1

}
, skel(X) = {

x ∈ X : degX(x) ≥ 2
}
.

An element of L(X) is called a leaf of X, and the set skel(X) is called the skeleton
of X. A point with degree at least 3 is called a branchpoint of X. We let k(X) be
the set of branchpoints of X.

We provide two simple examples to help understand these definitions. First,
suppose that X is a cycle (i.e., is isometric to S

1). Then skel(X) = X, and there are
no branchpoints or leaves. Second, suppose that X is a lollipop (i.e. consists of a
cycle and a line segment joined to the cycle at one end). Then there is one branch-
point (the common point of the cycle and the line segment), which has degree 3,
and one leaf (the other end of the line segment); the leaf is also the only point not
in skel(X).

If X is, in fact, an R-tree, then skel(X) is the set of points whose removal dis-
connects the space, but this is not true in general. Alternatively, it is easy to see
that

skel(X) = ⋃
x,y∈X

c∈�(x,y)

c \ {x, y},

where for x, y ∈ X, �(x, y) denotes the collection of all geodesic arcs between
x and y. Since (X,d) is separable, this may be re-written as a countable union,
and so there is a unique σ -finite Borel measure � on X with �(Im(g)) = len(g)

for every injective path g, and such that �(X \ skel(X)) = 0. The measure � is the
Hausdorff measure of dimension 1 on X, and we refer to it as the length measure
on X. If (X,d) is an R-graph then the set {x ∈ X : degX(x) ≥ 3} is countable, and
hence this set has measure zero under �. To see that this set is countable, assume
(X,d) is an R-tree (otherwise consider a finite open cover of X by R-trees). Fix a
countable dense set of points Y ⊂ X, and let Z be the set of points of the subtree
spanned by Y . It is easily seen that the set {x ∈ Z : degX(x) ≥ 3} is countable. But
the closure of Z is X so all points of X \ Z must have degree 1.

DEFINITION 2.3. Let (X,d) be an R-graph. Its core, denoted by core(X), is
the union of all the simple arcs having both endpoints in embedded cycles of X. If
it is nonempty, then (core(X), d) is an R-graph with no leaves.

The last part of this definition is in fact a proposition, which is stated more
precisely and proved below as Proposition 6.2. Since the core of X encapsulates
all the embedded cycles of X, it is intuitively clear that when we remove core(X)

from X, we are left with a family of R-trees. This can be formalized as follows. Fix
x ∈ X \ core(X), and let f be a shortest path from x to core(X), that is, a geodesic



3092 ADDARIO-BERRY, BROUTIN, GOLDSCHMIDT AND MIERMONT

from x to y ∈ core(X), where y ∈ core(X) is chosen so that len(f ) is minimal
[recall that core(X) is a closed subspace of X]. This shortest path is unique, oth-
erwise we would easily be able to construct an embedded cycle c not contained
in core(X), contradicting the definition of core(X). Let α(x) be the endpoint of
this path not equal to x, which is thus the unique point of core(X) that is closest
to x. By convention, we let α(x) = x if x ∈ core(X). We call α(x) the point of
attachment of x.

PROPOSITION 2.4. The relation x ∼ y ⇐⇒ α(x) = α(y) is an equivalence
relation on X. If [x] is the equivalence class of x, then ([x], d) is a compact R-
tree. The equivalence class [x] of a point x ∈ core(X) is a singleton if and only if
degX(x) = degcore(X)(x).

PROOF. The fact that ∼ is an equivalence relation is obvious. Fix any equiva-
lence class [x]. Note that [x] ∩ core(X) contains only the point α(x), so that [x] is
connected and acyclic by definition. Hence, any two points of [x] are joined by a
unique simple arc (in [x]). This path is moreover a shortest path for the metric d ,
because a path starting and ending in [x], and visiting X \ [x], must pass at least
twice through α(x) [if this were not the case, we could find an embedded cycle not
contained in core(X)]. The last statement is easy and left to the reader. �

COROLLARY 2.5. If (X,d) is an R-graph, then core(X) is the maximal closed
subset of X having only points of degree greater than or equal to 2.

PROOF. If Y is closed and strictly contains core(X), then we can find x ∈ Y

such that d(x, core(X)) = d(x,α(x)) > 0 is maximal. Then Y ∩ [x] is included in
the set of points y ∈ [x] such that the geodesic arc from y to α(x) does not pass
through x. This set is an R-tree in which x is a leaf, so degY (x) ≤ 1. �

Note that this characterisation is very close to the definition of the core of a (dis-
crete) graph. Another important structural component is conn(X), the set of points
of core(X) such that X \ {x} is connected. Figure 2 summarizes the preceding def-
initions. The space conn(X) is not connected or closed in general. Clearly, a point
of conn(X) must be contained in an embedded cycle of X, but the converse is not
necessarily true. A partial converse is as follows.

PROPOSITION 2.6. Let x ∈ core(X) have degree degX(x) = 2 and suppose x

is contained in an embedded cycle of X. Then x ∈ conn(X).

PROOF. Let c be an embedded cycle containing x. Fix y, y′ ∈ X \ {x}, and let
φ,φ′ be geodesics from y, y′ to their respective closest points z, z′ ∈ c. Note that
z is distinct from x because otherwise, x would have degree at least 3. Likewise,
z′ �= x.
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FIG. 2. An example of an R-graph (X,d), emphasizing the structural components. conn(X) is in
thick red line, and core(X) \ conn(X) is in very thick black line. The point y is in core(X) but not
conn(X). The subtrees hanging from core(X) are in thin blue line. Kernel vertices are represented as
large dots. An example of the projection α : X → core(X) is provided.

Let φ′′ be a parametrisation of the arc of c between z and z′ that does not contain
x, then the concatenation of φ,φ′ and the time-reversal of the path φ′′ is a path
from y to y′, not passing through x. Hence, X \ {x} is connected. �

Let us now discuss the structure of core(X). Equivalently, we need to describe
R-graphs with no leaves, because such graphs are equal to their cores by Corol-
lary 2.5.

A graph with edge-lengths is a triple (V ,E, (l(e), e ∈ E)) where (V ,E) is a
finite connected multigraph, and l(e) ∈ (0,∞) for every e ∈ E. With every such
object, one can associate an R-graph without leaves, which is the metric graph
obtained by viewing the edges of (V ,E) as segments with respective lengths l(e).
Formally, this R-graph is the metric gluing of disjoint copies Y e of the real seg-
ments [0, l(e)], e ∈ E according to the graph structure of (V ,E). We refer the
reader to [25] for details on metric gluings and metric graphs.

THEOREM 2.7. An R-graph with no leaves is either a cycle, or is the metric
gluing of a finite connected multigraph with edge-lengths in which all vertices have
degree at least 3. The associated multigraph, without the edge-lengths, is called
the kernel of X, and denoted by ker(X) = (k(X), e(X)).
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The precise definition of ker(X), and the proof of Theorem 2.7, both appear in
Section 6.3.

For a connected multigraph G = (V ,E), the surplus s(G) is |E| − |V | + 1.
For an R-graph (X,d), we let s(X) = s(ker(X)) if ker(X) is nonempty. Otherwise,
either (X,d) is an R-tree or core(X) is a cycle. In the former case, we set s(X) = 0;
in the latter we set s(X) = 1. Since the degree of every vertex in ker(X) is at least
3, we have 2|e(X)| = ∑

v∈k(X) deg(v) ≥ 3|k(X)|, and so if s(X) ≥ 1 we have

(2.2)
∣∣k(X)

∣∣ ≤ 2s(X) − 2,

with equality precisely if ker(X) is 3-regular.

3. Cycle-breaking in discrete and continuous graphs.

3.1. The cycle-breaking algorithm. Let G = (V ,E) be a finite connected
multigraph. Let conn(G) be the set of of all edges e ∈ E such that G \ e =
(V ,E \ {e}) is connected.

If s(G) > 0, then G contains at least one cycle and conn(G) is nonempty. In this
case, let e be a uniform random edge in conn(G), and let K(G, ·) be the law of the
multigraph G \ e. If s(G) = 0, then K(G, ·) is the Dirac mass at G. By definition,
K is a Markov kernel from the set of graphs with surplus s to the set of graphs with
surplus (s −1)∨0. Writing Kn for the n-fold application of the kernel K , we have
that Kn(G, ·) does not depend on n for n ≥ s(G). We define the kernel K∞(G, ·)
to be equal to this common value: a graph has law K∞(G, ·) if it is obtained from
G by repeatedly removing uniform nondisconnecting edges.

PROPOSITION 3.1. The probability distribution K∞(G, ·) is the law of the
minimum spanning tree of G, when the edges E are given exchangeable, distinct
random edge-weights.

PROOF. We prove by induction on the surplus of G the stronger statement
that K∞(G, ·) is the law of the minimum spanning tree of G, when the weights of
conn(G) are given exchangeable, distinct random edge-weights [the edge weights
outside conn(G) may have arbitrary values]. For s(G) = 0, the result is obvious.

Assume the result holds for every graph of surplus s, and let G have s(G) =
s + 1. Let e be the edge of conn(G) with maximal weight, and condition on e and
its weight. Then note that the weights of the edges in conn(G) \ {e} are still in
exchangeable random order, and the same is true of the edges of conn(G \ e). By
the induction hypothesis, Ks(G \ e, ·) is the law of the minimum spanning tree of
G \ e. But e is not in the minimum spanning tree of G, because by definition we
can find a path between its endpoints that uses only edges having strictly smaller
weights. Hence, Ks(G \ e, ·) is the law of the minimum spanning tree of G. On
the other hand, by exchangeability, the edge e of conn(G) with largest weight
is uniform in conn(G), so the unconditional law of a random variable with law
Ks(G \ e, ·) is Ks+1(G, ·). �
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3.2. Cutting the cycles of an R-graph. There is a continuum analogue of the
cycle-breaking algorithm in the context of R-graphs, which we now explain. Recall
that conn(X) is the set of points x of the R-graph X = (X,d) such that x ∈ core(X)

and X \ {x} is connected. For x ∈ conn(X), we let (Xx, dx) be the space X “cut at
x”. Formally, it is the metric completion of (X \ {x}, dX\{x}), where dX\{x} is the
intrinsic distance: dX\{x}(y, z) is the minimal length of a path from y to z that does
not visit x.

DEFINITION 3.2. A point x ∈ X in a measured R-graph X = (X,d,μ) is
a regular point if x ∈ conn(X), and moreover μ({x}) = 0 and degX(x) = 2.
A marked space (X,d, x,μ) ∈ M1,1, where (X,d) is an R-graph and x is a regu-
lar point, is called safely pointed. We say that a pointed R-graph (X,d, x) is safely
pointed if (X,d, x,0) is safely pointed.

Before continuing, we briefly motivate the above definition. In Section 7, we
will consider the effect of cutting cycles in each element of a convergent sequence
of R-graphs, and we wish to ensure that the cutting operation behaves continuously
with respect to taking limits of such sequences. For a point x ∈ conn(X), enforcing
that degX(x) = 2 is equivalent to requiring that x /∈ k(X), which is enough to yield
continuity for the graph structure of the kernels. We insist that μ({x}) = 0 so that
μ induces a measure (still denoted by μ) on the space Xx with the same total mass.
We will give a precise description of the space Xx = (Xx, dx,μ) in Section 7.1: in
particular, it is a measured R-graph with s(Xx) = s(X) − 1.

Note that if s(X) > 0 and if

L = �
(· ∩ conn(X)

)
is the length measure restricted to conn(X), then L-almost every point is regular.
Also, L is a finite measure by Theorem 2.7. Therefore, it makes sense to let K(X, ·)
be the law of Xx , where x is a random point of X with law L/L(conn(X)). If
s(X) = 0, we let K(X, ·) = δ{X}. Again, K is a Markov kernel from the set of
measured R-graphs with surplus s to the set of measured R-graphs of surplus
(s − 1) ∨ 0, and Kn(X, ·) = Ks(X)(X, ·) for every n ≥ s(X): we denote this by
K∞(X, ·).

In Section 7, we will give details of the proofs of the aforementioned properties,
as well as of the following crucial result. For r ∈ (0,1) we let Ar be the set of
measured R-graphs with s(X) ≤ 1/r and whose core, seen as a graph with edge-
lengths (k(X), e(X), (�(e), e ∈ e(X))), is such that

min
e∈e(X)

�(e) ≥ r and
∑

e∈e(X)

�(e) ≤ 1/r

(if s(X) = 1, this should be understood as the fact that core(X) is a cycle with
length in [r,1/r]).
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THEOREM 3.3. Fix r ∈ (0,1). Let (Xn, dn,μn) be a sequence of measured
R-graphs in Ar , converging as n → ∞ to (X,d,μ) ∈ Ar in (M,dGHP). Then
K∞(Xn, ·) converges weakly to K∞(X, ·).

3.3. A relation between the discrete and continuum procedures. We can view
any finite connected multigraph G = (V ,E) as a metric space (V , d), where
d(u, v) is the least number of edges in any chain from u to v. We may also consider
the metric graph (m(G), dm(G)) associated with G by treating edges as segments of
length 1 (this is sometimes known as the cable system for the graph G [77]). Then
(m(G), dm(G)) is an R-graph. Note that dGH((V , d), (m(G), dm(G))) < 1 and, in
fact, (m(G), dm(G)) contains an isometric copy of (V , d). Also, temporarily writ-
ing H for the graph-theoretic core of G, that is, the maximal subgraph of G of
minimum degree two, it is straightforwardly checked that core(m(G)) is isometric
to (m(H), dm(H)).

Conversely, let (X,d) be an R-graph, and let SX be the set of points in X with
degree at least three. We say that (X,d) has integer lengths if all local geodesics
between points in SX have lengths in Z+. If G is a finite graph and the edges of
G are all viewed as having length 1, then cutting G at a point chosen according to
its length measure yields an R-graph with integer lengths. This is essentially the
reason why such objects will be useful to us.

Let

v(X) = {
x ∈ X : d(x,SX) ∈ Z+

}
,

and note that if (X,d) is compact and has integer lengths then necessarily |SX| <

∞ and |v(X)| < ∞. The removal of all points in v(X) separates X into a finite
collection of paths, each of which is either an open path of length one between two
points of v(X), or a half-open path of length strictly less than one between a point
of v(X) and a leaf. Create an edge between the endpoints of each such open path,
and call the collection of such edges e(X). Then let

g(X) = (
v(X), e(X)

);
we call the multigraph g(X) the graph corresponding to X (see Figure 3).

Now, fix an R-graph (X, d) which has integer lengths and surplus s(X). Let
x1, . . . , xs(X) be the points sampled by the successive applications of K to X: given
x1, . . . , xi , the point xi+1 is chosen according to L/L(X) on conn(Xx1,...,xi

), where
Xx1,...,xi

is the space X cut successively at x1, x2, . . . , xi . Note that xi can also
naturally be seen as a point of X for 1 ≤ i ≤ s(X). Since the length measure of
v(X) is 0, almost surely xi �= v(X) for all 1 ≤ i ≤ s(X). Thus, each point xi , 1 ≤
i ≤ s(X), falls in a path component of core(X) \ v(X) which itself corresponds
uniquely to an edge in ei ∈ e(X). Note that the edges ei , 1 ≤ i ≤ s(X), are distinct
by construction. Then let g0(X) = g(X), and for 1 ≤ i ≤ s(X), write

gi(X) = (
v(X), e(X) \ {e1, . . . , ei}).
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FIG. 3. Left: an R-graph with integer lengths. The points of degree at least three are larger and
blue, and the remaining points of v(X) are smaller and red. Centre: the collection of paths after the
points of v(X) are removed. The paths with noninteger lengths are thinner and are red. Right: the
graph g(X).

By construction, the graph gi(X) is connected and has surplus precisely s(X) − i,
and in particular gs(X)(X) is a spanning tree of g(X). Let cut(X) be the random
R-graph resulting from the application of K∞, that is obtained by cutting X at the
points x1, . . . , xs(X) in our setting.

PROPOSITION 3.4. We have dGH(cut(X), gs(X)(X)) < 1.

PROOF. First, notice that gs(X)(X) and g(cut(X)) are isomorphic as graphs, so
isometric as metric spaces. Also, as noted in greater generality at the start of the
subsection, we automatically have dGH(cut(X), g(cut(X))) < 1. �

PROPOSITION 3.5. The graph g(cut(X)) is identical in distribution to the
minimum-weight spanning tree of g(X) when the edges of e ∈ e(X) are given ex-
changeable, distinct random edge weights.

PROOF. When performing the discrete cycle-breaking on g(X), the set of
edges removed from g(X) is identical in distribution to the set {e1, . . . , es(X)} of
edges that are removed from g(X) to create gs(X)(X), so gs(X)(X) has the same dis-
tribution as the minimum spanning tree by Proposition 3.1. Furthermore, as noted
in the proof of the preceding proposition, gs(X)(X) and g(cut(X)) are isomorphic.

�

3.4. Gluing points in R-graphs. We end this section by mentioning the opera-
tion of gluing, which in a vague sense is dual to the cutting operation. If (X,d,μ)

is an R-graph and x, y are two distinct points of X, we let Xx,y be the quotient
metric space [25] of (X,d) by the smallest equivalence relation for which x and y

are equivalent. This space is endowed with the push-forward of μ by the canonical
projection p. It is not difficult to see that Xx,y is again an R-graph, and that the
class of the point z = p(x) = p(y) has degree degXx,y (z) = degX(x) + degX(y).
Similarly, if R is a finite set of unordered pairs {xi, yi} with xi �= yi in X, then one
can identify xi and yi for each i, resulting in an R-graph XR.
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4. Convergence of the MST. We are now ready to state and prove the main
results of this paper. We begin by recalling from the Introduction that we write Mn

for the MST of the complete graph on n vertices and Mn for the measured metric
space obtained from M

n by rescaling the graph distance by n−1/3 and assigning
mass 1/n to each vertex.

4.1. The scaling limit of the Erdős–Rényi random graph. Recall that G(n,p)

is the Erdős–Rényi random graph. For λ ∈R, we write

G
n
λ = (

G
n,i
λ , i ≥ 1

)
for the components of G(n,1/n + λ/n4/3) listed in decreasing order of size
(among components of equal size, list components in increasing order of small-
est vertex label, say). For each i ≥ 1, we then write G

n,i
λ for the measured metric

space obtained from G
n,i
λ by rescaling the graph distance by n−1/3 and giving each

vertex mass n−2/3, and let

Gn
λ = (

G
n,i
λ , i ≥ 1

)
.

In a moment, we will state a scaling limit result for Gn
λ; before we can do so,

however, we must introduce the limit sequence of measured metric spaces Gλ =
(G i

λ, i ≥ 1). We will do this somewhat briefly, and refer the interested reader to [3,
4] for more details and distributional properties.

First, consider the stochastic process (Wλ(t), t ≥ 0) defined by

Wλ(t) := W(t) + λt − t2

2
,

where (W(t), t ≥ 0) is a standard Brownian motion. Consider the excursions of
Wλ above its running minimum; in other words, the excursions of

Bλ(t) := Wλ(t) − min
0≤s≤t

Wλ(s)

above 0. We list these in decreasing order of length as (ε1, ε2, . . .) where, for
i ≥ 1, σ i is the length of εi . (We suppress the λ-dependence in the notation
for readability.) For definiteness, we shift the origin of each excursion to 0, so
that εi : [0, σ i] → R+ is a continuous function such that εi(0) = ei(σ i) = 0 and
εi(x) > 0 otherwise.

Now for i ≥ 1 and for x, x′ ∈ [0, σ i], define a pseudo-distance via

d̂ i(x, x′) = 2εi(x) + 2εi(x′) − 4 inf
x∧x′≤t≤x∨x′ ε

i(t).

Declare that x ∼ x′ if d̂ i(x, x′) = 0, so that ∼ is an equivalence relation on [0, σ i].
Now let T i = [0, σ i]/∼ and denote by τ i : [0, σ i] → T i the canonical projection.
Then d̂ i induces a distance on T i , still denoted by d̂ i , and it is standard (see, e.g.,
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[49]) that (T i , d̂i) is a compact R-tree. Write μ̂i for the push-forward of Lebesgue
measure on [0, σ i] by τ i , so that (T i , d̂ i , μ̂i) is a measured R-tree of total mass σ i .

We now decorate the process Bλ with the points of an independent homoge-
neous Poisson process in the plane. We can think of the points which fall under the
different excursions separately. In particular, to the excursion εi , we associate a
finite collection P i = {(xi,j , yi,j ),1 ≤ j ≤ si} of points of [0, σ i] × [0,∞) which
are the Poisson points shifted in the same way as the excursion εi . (For definite-
ness, we list the points of P i in increasing order of first co-ordinate.) Conditional
on ε1, ε2, . . . , the collections P1,P2, . . . of points are independent. Moreover,

by construction, given the excursion εi , we have si ∼ Poisson(
∫ σ i

0 εi(t)dt). Let
zi,j = inf{t ≥ xi,j : εi(t) = yi,j } and note that, by the continuity of εi , zi,j < σ i

almost surely. Let

Ri = {{
τ i(xi,j )

, τ i(zi,j )}
,1 ≤ j ≤ si}.

Then Ri is a collection of unordered pairs of points in the R-tree T i . We wish
to glue these points together in order to obtain an R-graph, as in Section 3.4. We
define a new equivalence relation ∼ by declaring x ∼ x′ in T i if {x, x′} ∈ Ri . Then
let X i be T i/∼, let di be the quotient metric [25], and let μi be the push-forward
of μ̂i to X i . Then set G i

λ = (X i , di,μi) and Gλ = (G i
λ, i ≥ 1). We note that for

each i ≥ 1, the measure μ̂i is almost surely concentrated on the leaves of T i since
the law of T i is absolutely continuous with respect to that of the Brownian CRT.
As a consequence, μi is almost surely concentrated on the leaves of X i .

Given an R-graph X, write r(X) for the minimal length of a core edge in X.
Then r(X) = inf{d(u, v) : u, v ∈ k(X)} whenever ker(X) is nonempty. We use the
convention that r(X) = ∞ if core(X) = ∅ and r(X) = �(c) if X has a unique
embedded cycle c. Recall also that s(X) denotes the surplus of X.

THEOREM 4.1. Fix λ ∈ R. Then as n → ∞, we have the following joint con-
vergence:

Gn
λ

d→ Gλ,(
s
(
G

n,i
λ

)
, i ≥ 1

) d→ (
s
(
G i

λ

)
, i ≥ 1

)
and(

r
(
G

n,i
λ

)
, i ≥ 1

) d→ (
r
(
G i

λ

)
, i ≥ 1

)
.

The first convergence takes place in the space (L4,dist4GHP). The others are in the
sense of finite-dimensional distributions.

Recall the definition of mass(X) for a measured metric space X, from Sec-
tion 2.1. Let �

↓
2 = {x = (x1, x2, . . .) : x1 ≥ x2 ≥ · · · ≥ 0,

∑∞
i=1 x2

i < ∞}. Corol-
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lary 2 of [12] gives the following joint convergence:

(4.1)

(
mass

(
G

n,i
λ

)
, i ≥ 1

) d→ (
mass

(
G i

λ

)
, i ≥ 1

)
and(

s
(
G

n,i
λ

)
, i ≥ 1

) d→ (
s
(
G i

λ

)
, i ≥ 1

)
,

where the first convergence is in (�
↓
2 ,‖ · ‖2) and the second is in the sense of finite-

dimensional distributions. [Of course, mass(G i
λ) = σ i and s(G i

λ) = si .] Theorem 1
of [4] extends this to give that, jointly,

(4.2)
(
G

n,i
λ , i ≥ 1

) d→ (
G i

λ, i ≥ 1
)

in the sense of dist4GH, where for X,Y ∈ M̊N, we let

dist4GH(X,Y) =
( ∞∑

i=1

dGH
(
Xi ,Yi)4

)1/4

.

We need to improve this convergence from dist4GH to dist4GHP. First, we show that
we can get GHP convergence componentwise. We do this in two lemmas.

LEMMA 4.2. Suppose that (T , d,μ) and (T ′, d ′,μ′) are measured R-trees,
that {(xi, yi),1 ≤ i ≤ k} are pairs of points in T and that {(x′

i , y
′
i),1 ≤ i ≤ k} are

pairs of points in T ′. Then if (T̂ , d̂, μ̂) and (T̂ ′, d̂ ′, μ̂′) are the measured metric
spaces obtained by identifying xi and yi in T and x′

i and y′
i in T ′, for all 1 ≤ i ≤ k,

we have

dGHP
(
(T̂ , d̂, μ̂),

(
T̂ ′, d̂ ′, μ̂′)) ≤ (k + 1)d2k,1

GHP

(
(T , d,x,μ),

(
T ′, d ′,x′,μ′)),

where x = (x1, . . . , xk, y1, . . . , yk), and similarly for x′.

PROOF. Let C and π be a correspondence and a measure which realise the
Gromov–Hausdorff–Prokhorov distance between (T , d,x,μ) and (T ′, d ′,x′,μ′);
write δ for this distance. Note that by definition, (xi, x

′
i ) ∈ C and (yi, y

′
i ) ∈ C for

1 ≤ i ≤ k. Now make the vertex identifications in order to obtain T̂ and T̂ ′; let
p : T → T̂ and p′ : T ′ → T̂ ′ be the corresponding canonical projections. Then

Ĉ = {(
p(x),p′(x′)) : (

x, x′) ∈R′}
is a correspondence between T̂ and T̂ ′. Let π̂ be the push-forward of the measure
π by (p,p′). Then D(π̂; μ̂, μ̂′) ≤ δ and π̂ (Ĉc) ≤ δ. Moreover, by Lemma 21 of
[4], we have dis(Ĉ) ≤ (k + 1)δ. The claimed result follows. �

LEMMA 4.3. Fix i ≥ 1. Then as n → ∞,

G
n,i
λ

d→ G i
λ

in (M,dGHP).
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PROOF. This proof is a fairly straightforward modification of the proof of The-
orem 22 in [4], so we will only sketch the argument. Consider the component Gn,i

λ .
Since we have fixed λ and i, let us drop them from the notation and simply write
G

n for the component, and similarly for other objects. Let �n = n−2/3|V (Gn)|
and write Sn ∈ Z+ for the surplus of Gn. We observe that �n = mass(Gn,i

λ ) and
Sn = s(G

n,i
λ ).

List the vertices of Gn in depth-first order, starting from the vertex of smallest
label, as v0, v1, . . . , vn2/3�n−1, and write T n for the depth-first tree of G

n, both
as defined in Section 2 of [4]. We note that T n is rooted at v0 and is a spanning
subtree of Gn. Let Hn(k) be the graph distance of vertex vk from v0 in T n, and
endow T n with a measure by letting each vertex of T n have mass n−2/3.

Next, let the pairs {i1, j1}, {i2, j2}, . . . , {iSn, jSn} give the indices of the surplus
edges required to obtain G

n from T n, listed in increasing order of first co-ordinate.
In other words, to build G

n from T n, we add an edge between vik and vjk
for each

1 ≤ k ≤ Sn (and re-multiply distances by n1/3). Recall that to get Gn from G
n,

we rescale the graph distance by n−1/3 and assign mass n−2/3 to each vertex. It is
straightforward that Gn is at GHP distance at most n−1/3Sn from the metric space
Ĝn obtained from T n by identifying vertices vik and vjk

for all 1 ≤ k ≤ Sn.
From the proof of Theorem 22 of [4], we have jointly(

�n,Sn) d→ (σ, s),(
n−1/3Hn(⌊

n2/3t
⌋)

,0 ≤ t < �n) d→ (
2ε(t),0 ≤ t < σ

)
,{{

n−2/3ik, n
−2/3jk

}
,0 ≤ k ≤ Sn} d→ {{

xk, zk},1 ≤ k ≤ s
}
.

By Skorokhod’s representation theorem, we may work on a probability space
where these convergences hold almost surely. Consider the R-tree (T , dT ) en-
coded by 2ε and recall that τ is the canonical projection [0, σ ] → T . We ex-
tend τ to a function on [0,∞) by letting τ(t) = τ(t ∧ σ). Let ηn : [0,∞) →
{v0, v1, . . . , vn2/3�n−1} be the function defined by ηn(t) = v�n2/3t�∧(n2/3�n−1). Set

Cn = {(
ηn(t), τ

(
t ′

)) : t, t ′ ∈ [
0,�n ∨ σ

]
,
∣∣t − t ′

∣∣ ≤ δn

}
,

where δn converges to 0 slowly enough, that is,

δn ≥ max
1≤k≤s

∣∣n−2/3ik − xk
∣∣ ∨ ∣∣n−2/3jk − zk

∣∣.
Then Cn is a correspondence between T n and T that contains (vik , x

k) and
(vjk

, zk) for every k ∈ {1,2, . . . , s}, and with distortion going to 0. Next, let πn be
the push-forward of Lebesgue measure on [0,�n ∧ σ ] under the mapping (ηn, τ ).
Then the discrepancy of πn with respect to the uniform measure μn on T n and the
image μ of Lebesgue measure by τ on T is |�n − σ |, and πn((Cn)c) = 0.
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For all large enough n, Sn = s, so let us assume henceforth that this holds. Then,
writing v = (vi1, . . . , vis , vj1, . . . , vjs ) and x = (x1, . . . , xk, z1, . . . , zk), we have

d2s,1
GHP

((
T n,v,μn

)
, (T ,x,μ)

) ≤
(

1

2
dis

(
Cn)) ∨ ∣∣�n − σ

∣∣ → 0

almost surely, as n → ∞. By Lemma 4.2, we thus have dGHP(Ĝn,G ) → 0 al-
most surely, as n → ∞. Since dGHP(Gn, Ĝn) ≤ n−1/3Sn → 0, it follows that
dGHP(Gn,G ) → 0 as well. �

PROOF OF THEOREM 4.1. By (4.1), (4.2), Lemma 4.3 and Skorokhod’s rep-
resentation theorem, we may work in a probability space in which the convergence
in (4.1) and in (4.2) occur almost surely, and in which for every i ≥ 1 we almost
surely have

(4.3) dGHP
(
G

n,i
λ ,G i

λ

) → 0

as n → ∞. Now, for each i ≥ 1,

dGHP
(
G

n,i
λ ,G i

λ

) ≤ 2 max
{
diam

(
G

n,i
λ

)
,diam

(
G i

λ

)
,mass

(
G

n,i
λ

)
,mass

(
G i

λ

)}
.

The proof of Theorem 24 from [4] shows that almost surely

lim
N→∞

∞∑
i=N

diam
(
G i

λ

)4 = 0,

and (4.2) then implies that almost surely

lim
N→∞ lim sup

n→∞

∞∑
i=N

diam
(
G

n,i
λ

)4 = 0.

The �
↓
2 convergence of the masses entails that almost surely

lim
N→∞

∞∑
i=N

mass
(
G i

λ

)4 = 0

and (4.1) then implies that almost surely

lim
N→∞ lim sup

n→∞

∞∑
i=N

mass
(
G

n,i
λ

)4 = 0.

Hence, on this probability space, we have

lim
N→∞ lim sup

n→∞

∞∑
i=N

dGHP
(
G

n,i
λ ,G i

λ

)4

≤ 16 lim
N→∞ lim sup

n→∞

∞∑
i=N

(
diam

(
G

n,i
λ

)4 + diam
(
G i

λ

)4



THE SCALING LIMIT OF THE MST OF THE COMPLETE GRAPH 3103

+ mass
(
G

n,i
λ

)4 + mass
(
G i

λ

)4)
= 0

almost surely. Combined with (4.3), this implies that in this space, almost surely

lim
n→∞ dist4GHP

(
Gn

λ,Gλ

) = 0.

The convergence of (s(G
n,i
λ ), i ≥ 1) to (s(G i

λ), i ≥ 1) follows from (4.1).
If i is such that s(G i

λ) = 1 then, by (4.1), we almost surely have s(G
n,i
λ ) = 1

for all n sufficiently large. In this case, r(G
n,i
λ ) and r(G i

λ) are the lengths of the
unique cycles in G

n,i
λ and in G i

λ , respectively. Now, G
n,i
λ → G i

λ almost surely in
(M̊,dGH), and it follows easily that in this space, r(G

n,i
λ ) → r(G i

λ) almost surely,
for i such that s(G i

λ) = 1.
Finally, by Theorem 4 of [52], min(r(G

n,i
λ ) : s(Gn,i

λ ) ≥ 2) is bounded away from
zero in probability. So by Skorokhod’s representation theorem, we may assume our
space is such that almost surely

lim inf
n→∞ min

(
r
(
G

n,i
λ

) : s(Gn,i
λ

) ≥ 2
)
> 0.

In particular, it follows from the above that, for any i ≥ 1 with s(G i
λ) ≥ 2, there is

almost surely r > 0 such that G i
λ ∈ Ar and G

n,i
λ ∈ Ar for all n sufficiently large.

Corollary 6.6(i) then yields that in this space, r(G
n,i
λ ) → r(G i

λ) almost surely.
Together, the two preceding paragraphs establish the final claimed convergence.

For completeness, we note that this final convergence may also be deduced without
recourse to the results of [52]; here is a brief sketch, using the notation of the
previous lemma. It is easily checked that the points of the kernels of G

n,i
λ and G i

λ

correspond to the identified vertices (vik , vjk
) and (xk, zk), and those vertices of

degree at least 3 in the subtrees of T n,T spanned by the points (vik , vjk
),1 ≤ k ≤ s

and (xk, zk),1 ≤ k ≤ s, respectively. These trees are combinatorially finite trees
(i.e., they are finite trees with edge-lengths), so the convergence of the marked
trees (T n,v) to (T ,x) entails in fact the convergence of the same trees marked not
only by v,x but also by the points of degree 3 on their skeletons. Write v′,x′ for
these enlarged collections of points. Then one concludes by noting that r(G

n,i
λ )

[resp., r(G i
λ)] is the minimum quotient distance, after the identifications (vik , vjk

)

[resp., (xk, zk)] between any two distinct elements of v′ (resp., x′). This entails
that r(G

n,i
λ ) converges almost surely to r(G i

λ) for each i ≥ 1. �

The above description of the sequence Gλ of random R-graphs does not make
the distribution of the cores and kernels of the components explicit. [Clearly, the
kernel of G i

λ is only nonempty if s(G i
λ) ≥ 2 and its core is only nonempty if

s(G i
λ) ≥ 1.] Such an explicit distributional description was provided in [3], and

will be partially detailed below in Section 5.
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4.2. Convergence of the minimum spanning forest. Recall that M(n,p) is the
minimum spanning forest of G(n,p) and that we write

M
n
λ = (

M
n,i
λ , i ≥ 1

)
for the components of M(n,1/n + λ/n4/3) listed in decreasing order of size. For
each i ≥ 1, we write M

n,i
λ for the measured metric space obtained from M

n,i
λ by

rescaling the graph distance by n−1/3 and giving each vertex mass n−2/3. We let

Mn
λ = (

M
n,i
λ , i ≥ 1

)
.

Recall the cutting procedure introduced in Section 3.2, and that for an R-graph
X, we write cut(X) for a random variable with distribution K∞(X, ·). For i ≥
1, if s(G i

λ) = 0, let M i
λ = G i

λ . Otherwise, let M i
λ = cut(G i

λ), where the cutting
mechanism is run independently for each i. We note for later use that the mass
measure on M i

λ is almost surely concentrated on the leaves of M i
λ , since this

property holds for G i
λ , and G i

λ may be obtained from M i
λ by making an almost

surely finite number of identifications.

THEOREM 4.4. Fix λ ∈ R. Then as n → ∞,

Mn
λ

d→ Mλ

in the space (L4,dist4GHP).

PROOF. Write

I = sup
{
i ≥ 1 : s(G i

λ

)
> 1

}
,

with the convention that I = 0 when {i ≥ 1 : s(G i
λ) > 1} = ∅. Likewise, for n ≥ 1

let In = {i ≥ 1 : s(Gn,i
λ ) > 1}. We work in a probability space in which the conver-

gence statements of Theorem 4.1 are all almost sure. In this probability space, by
Theorem 5.19 of [41] we have that I is almost surely finite and that In → I almost
surely.

By Theorem 4.1, almost surely r(G
n,i
λ ) is bounded away from zero for all i ≥ 1.

It follows from Theorem 3.3 that almost surely for every i ≥ 1 we have

dGHP
(
cut

(
G

n,i
λ

)
, cut

(
G i

λ

)) → 0.

Propositions 3.4 and 3.5 then imply that we may work in a probability space in
which almost surely, for every i ≥ 1,

(4.4) dGHP
(
M

n,i
λ ,M i

λ

) → 0.

Now, for each i ≥ 1, we have

dGHP
(
M

n,i
λ ,M i

λ

) ≤ 2 max
(
diam

(
M

n,i
λ

)
,diam

(
M i

λ

)
,mass

(
M

n,i
λ

)
,mass

(
M i

λ

))
.
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Moreover, for each i ≥ I the right-hand side is bounded above by

4 max
(
diam

(
G

n,i
λ

)
,diam

(
G i

λ

)
,mass

(
G

n,i
λ

)
,mass

(
G i

λ

))
.

Since I is almost surely finite, as in the proof of Theorem 4.1 we thus have that,
almost surely,

lim
N→∞ lim sup

n→∞

∞∑
i=N

dGHP
(
M

n,i
λ ,M i

λ

)4

≤ 64 lim
N→∞ lim sup

n→∞

∞∑
i=N

(
diam

(
G

n,i
λ

)4 + diam
(
G i

λ

)4

+ mass
(
G

n,i
λ

)4 + mass
(
G i

λ

)4)
= 0,

which combined with (4.4) shows that in this space, almost surely

lim
n→∞ dist4GHP

(
Mn

λ,Mλ

) = 0. �

4.3. The largest tree in the minimum spanning forest. In this section, we study
the largest component Mn,1

λ of the minimum spanning forest Mλ, as well as its ana-
logue G

n,1
λ for the random graph. It will be useful to consider the random variable

�n which is the smallest number λ ∈ R such that Gn,1
λ is a subgraph of Gn,1

λ′ for ev-
ery λ′ > λ. In other words, in the race of components, �n is the last instant where a
new component takes the lead. It follows from Theorem 7 of [50] that (�n,n ≥ 1)

is tight, that is,

(4.5) lim
λ→∞ lim sup

n→∞
P

(
�n > λ

) = 0.

This result is stated in [50] for random graphs with a fixed number of edges, rather
than with a fixed edge probability, but it is standard that results for the former have
equivalents for the latter; see [41] for more details.

In the following, if x �→ f (x) is a real function, we write f (x) = oe(x) if there
exist positive, finite constants c, c′, δ,A such that∣∣f (x)

∣∣ ≤ c exp
(−c′xδ) for every x > A.

In the following lemma, we write dH(M
n,1
λ ,Mn) for the Hausdorff distance be-

tween M
n,1
λ and Mn, seen as subspaces of Mn. Recall that edge lengths in

all these objects have been normalized by n−1/3. Obviously, dGH(M
n,1
λ ,Mn) ≤

dH(M
n,1
λ ,Mn).

LEMMA 4.5. For any ε ∈ (0,1) and λ0 large enough, we have

lim sup
n→∞

P

(
dH

(
M

n,1
λ ,Mn) ≥ 1

λ1−ε

∣∣∣�n ≤ λ0

)
= oe(λ).
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In the course of the proof of Lemma 4.5, we will need the following estimate
on the length of the longest path outside the largest component of a random graph
within the critical window.

LEMMA 4.6. For all 0 < ε < 1, there exists λ0 such that for all λ ≥ λ0 and all
n sufficiently large, the probability that a connected component of Gn

λ aside from

G
n,1
λ contains a simple path of length at least n1/3/λ1−ε is at most e−λε/2

.

The proof of Lemma 4.6 follows precisely the same steps as the proof of
Lemma 3(b) of [5], which is essentially the special case ε = 1/2.9 Since no new
idea is involved, we omit the details.

PROOF OF LEMMA 4.5. Fix f0 > 0 and for i ≥ 0, let fi = (5/4)i · f0. Let
t = t (n) be the smallest i for which fi ≥ n1/3/ logn. Lemma 4 of [5] (proved via
Prim’s algorithm) states that

E
[
diam

(
M

n) − diam
(
M

n,1
ft

)] = O
(
n1/6(logn)7/2);

this is established by proving the following stronger bound, which will be useful
in the sequel:

(4.6) P
(
dH

(
M

n,1
ft

,Mn)
> n−1/6(logn)7/2) ≤ 1

n
.

Let Bi be the event that some component of Gn
fi

aside from G
n,1
fi

contains a simple

path with more than n1/3/f 1−ε
i edges and let

In = max{i ≤ t : Bi occurs}.
Lemma 4.6 entails that, for f0 sufficiently large, for all n, and all 0 ≤ i ≤ t − 1,

P
(
i ≤ In ≤ t

) ≤ ∑
�≥i

e−f
ε/2
i ≤ 2e−f

ε/2
i ,

where the last inequality holds for all i sufficiently large. For fixed i < t , if �n ≤ fi

then for all λ ∈ [fi, ft ] we have

dH
(
M

n,1
λ ,M

n,1
ft

) ≤ dH
(
M

n,1
fi

,M
n,1
ft

)
.

If, moreover, In ≤ i, then we have

(4.7) dH
(
M

n,1
fi

,M
n,1
ft

) ≤
t∑

j=i+1

f ε−1
j ≤ f ε−1

i

1 − (4/5)1−ε
<

10

f 1−ε
i

,

9In [5], it was sufficient for the purpose of the authors to produce a path length bound of n1/3/λ1/2,
but their proof does imply the present stronger result. For the careful reader, the key point is that the
last estimate in Theorem 19 of [5] is a specialisation of a more general bound, Theorem 11(iii) of
[51]. Using the more general bound in the proof is the only modification required to yield the above
result.
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the latter inequality holding for ε < 1/2.
Finally, fix λ ∈ R and let i0 = i0(λ) be such that λ ∈ [fi0, fi0+1). Since ft → ∞

as n → ∞, we certainly have i0 < t for all n large enough. Furthermore,

P

(
dH

(
M

n,1
λ ,Mn) ≥ 1

λ1−ε

∣∣∣�n ≤ λ0

)
≤ P

(
dH

(
M

n,1
λ ,M

n,1
ft

) ≥ 1

2

1

λ1−ε

∣∣∣�n ≤ λ0

)
+ P

(
dH

(
M

n,1
ft

,Mn) ≥ 1

2

1

λ1−ε

∣∣∣�n > λ0

)
≤ 1

P(�n ≤ λ0)

(
P

(
dH

(
M

n,1
fi0

,M
n,1
ft

)
>

10

f
1−ε/2
i0

)
+ 1

n

)
,

for all λ large enough and all n such that 2λ ≤ n1/6(logn)−7/2, by (4.6). It then
follows from (4.7) and the tightness of (�n,n ≥ 1) that there exists a constant
C ∈ (0,∞) such that for all λ0 large enough,

P

(
dH

(
M

n,1
λ ,Mn) ≥ 1

λ1−ε

∣∣∣�n ≤ λ0

)
≤ P(i0(λ) ≤ In ≤ t) + 1

n

P(�n ≤ λ0)

≤ C

(
e
−f

ε/2
i0(λ) + 1

n

)
.

Letting n tend to infinity proves the lemma. �

We are now in a position to easily prove a partial version of our main result.
In what follows, we write M̊n, M̊

n,1
λ and M̊ 1

λ for the metric spaces obtained from
Mn, M

n,1
λ and M 1

λ by ignoring their measures.

LEMMA 4.7. There exists a random compact metric space M̊ such that, as
n → ∞,

M̊n d→ M̊ in (M̊,dGH).

Moreover, as λ → ∞,

M̊ 1
λ

d→ M̊ in (M̊,dGH).

PROOF. Recall that the metric space (M̊,dGH) is complete and separable.
Theorem 4.4 entails that

M̊
n,1
λ

d→ M̊ 1
λ

as n → ∞ in (M̊,dGH). The stated results then follow from this, Lemma 4.5 and
the principle of accompanying laws (see Theorem 3.1.14 of [73] or Theorem 9.1.13
in the second edition). �
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Let M̂
n,1
λ be the measured metric space obtained from M

n,1
λ by rescaling so that

the total mass is one [in M
n,1
λ we gave each vertex mass n−2/3; now we give each

vertex mass |V (M
n,1
λ )|−1].

PROPOSITION 4.8. For any ε > 0,

lim
λ→∞ lim sup

n→∞
P

(
dGHP

(
M̂

n,1
λ ,Mn) ≥ ε

) = 0.

The proof of this proposition contains several of the paper’s novel conceptual
contributions. Before turning to this, we use it to prove our main result. Let M̂ 1

λ

be the measured metric space obtained from M 1
λ by renormalising the measure to

be a probability.

THEOREM 4.9. There exists a random compact measured metric space M of
total mass 1 such that as n → ∞,

Mn d→ M

in the space (M,dGHP). Moreover, as λ → ∞,

M̂ 1
λ

d→ M

in the space (M,dGHP). Finally, writing M = (X,d,μ), we have (X,d)
d= M̊ in

(M,dGH), where M̊ is as in Lemma 4.7.

PROOF. Recall that the metric space (M,dGHP) is a complete and separable.
Theorem 4.4 entails that

M̂
n,1
λ

d→ M̂ 1
λ

as n → ∞ in (M,dGHP). The stated results then follow from this, Proposition 4.8
and the principle of accompanying laws (see Theorem 3.1.14 of [73] or Theo-
rem 9.1.13 in the second edition). �

Before proceeding to the proof of Proposition 4.8 we make a final remark about
the limit spaces, which we will use in the proof that M is almost surely binary.
Observe that, analogous to the fact that M

n,1
λ is a subspace of Mn, we can view M 1

λ

as a subspace of M . (We emphasize that this does not follow from Theorem 4.9.)
To this end, we briefly introduce the marked Gromov–Hausdorff topology of [55],
Section 6.4. Let M∗ be the set of ordered pairs of the form (X, Y ), where X =
(X,d) is a compact metric space and Y ⊂ X is a compact subset of X (such pairs
are considered up to isometries of X). A sequence (Xn, Yn) of such pairs converges
to a limit (X, Y ) if there exist correspondences Cn ∈ C(Xn,X) whose restrictions
to Yn × Y are correspondences between Yn and Y , and such that dis(Cn) → 0. (In
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particular, this implies that Yn converges to Y for the Gromov–Haudorff distance,
when these spaces are equipped with the restriction of the distances on Xn,X.)
Moreover, a set A ⊂ M∗ is relatively compact if and only if {X : (X, Y ) ∈ A} is
relatively compact for the Gromov–Hausdorff topology.

Recall the definition of the tight sequence of random variables (�n,n ≥ 1) at
the beginning of this section. By taking subsequences, we may assume that we
have the joint convergence in distribution(((

M̊n, M̊
n,1
λ

)
, λ ∈ Z

)
,�n) d→ (((

M̃ ,M̃ 1
λ

)
, λ ∈ Z

)
,�

)
,

for the product topology on MZ∗ × R.10 This coupling of course has the prop-

erties that M̃
d= M̊ and that M̃ 1

λ

d= M̊ 1
λ for every λ ∈ Z. Combining this with

Lemma 4.5 we easily obtain the following.

PROPOSITION 4.10. There exists a probability space on which one may define
a triple (

M̃ ,
(
M̃ 1

λ , λ ∈ Z
)
,�

)
with the following properties: (i) � is an a.s. finite random variable; (ii) M̃

d= M̊ ,

M̃ 1
λ

d= M̊ 1
λ and (M̃ ,M̃ 1

λ ) ∈M∗ for every λ ∈ Z; and (iii) for every ε ∈ (0,1) and
λ0 > 0 large enough,

P
(
dH

(
M̃ ,M̃ 1

λ

)
> λε−1|� ≤ λ0

) = oe(λ).

In particular, (M̃ ,M̃ 1
λ )

d→ (M̃ ,M̃ ) as λ → ∞ for the marked Gromov–
Hausdorff topology.

4.4. Proof of Proposition 4.8. In order to prove the proposition, we need some
notation and a rather substantial auxiliary lemma. Let Fn

λ be the subgraph of Mn

with edge set E(Mn) \ E(M
n,1
λ ). Then F

n
λ is a forest which we view as rooted by

taking the root of a component to be the unique vertex in that component which
was an element of Mn,1

λ . For v ∈ V (M
n,1
λ ), let Sn

λ(v) be the number of nodes in the
component Fn

λ(v) of Fn
λ rooted at v. The fact that the random variables (Sn

λ(v), v ∈
V (M

n,1
λ )) are exchangeable conditional on V (M

n,1
λ ) will play a key role in what

follows.

LEMMA 4.11. For any δ > 0,

(4.8) lim
λ→∞ lim sup

n→∞
P

(
max

v∈V (M
n,1
λ )

Sn
λ(v) > δn

)
= 0.

10This is a slight abuse of notation, in the sense that the limiting spaces M̃ on the right-hand side
should, in principle, depend on λ, but obviously these spaces are almost surely all isometric.
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PROOF. Let Un
λ be the event that vertices 1 and 2 lie in the same component of

F
n
λ. Note that, conditional on max

v∈V (M
n,1
λ )

Sn
λ(v) > δn, the event Un

λ occurs with

probability at least δ2/2 for sufficiently large n. So, in order to prove the lemma it
suffices to show that

(4.9) lim
λ→∞ lim sup

n
P

(
Un

λ

) = 0.

To prove (4.9), we consider the following modification of Prim’s algorithm. We
build the MST conditional on the collection M

n
λ of trees. We start from the compo-

nent containing vertex 1 in M
n
λ. To this component, we add the lowest weight edge

connecting it to a new vertex. This vertex lies in a new component of Mn
λ, which

we add in its entirety, before again seeking the lowest-weight edge leaving the tree
we have so far constructed. We continue in this way until we have constructed the
whole MST. (Observe that the components we add along the way may, of course,
be singletons.) Note that if we think of Prim’s algorithm as a discrete-time process,
with time given by the number of vertices added so far, then this is simply a time-
changed version which looks only at times when we add edges of weight strictly
greater than 1/n + λ/n4/3. This is because when Prim’s algorithm first touches a
component of Mn

λ, it necessarily adds all of its edges before adding any edges of
weight exceeding 1/n+λ/n4/3. For i ≥ 0, write Ci for the tree constructed by the
modified algorithm up to step i, where C0 is the component of vertex 1 in M

n
λ, and

let ei be the edge added at step i. The advantage of the modified approach is that,
for each i ≥ 1, we can calculate the probability that the endpoint of ei which does
not lie in Ci−1 touches Mn,1

λ , given that it has not at steps 0,1, . . . , i − 1.
Recall that, at each stage of Prim’s algorithm, we add the edge of minimal

weight leaving the current tree. We are thinking of this tree as a collection of com-
ponents of Mn

λ connected by edges of weight strictly greater than 1/n + λ/n4/3.
In general, different sections of the tree built so far are subject to different condi-
tionings depending on the weights of the connecting edges and the order in which
they were added. In particular, the endpoint of ei contained in Ci−1 is more likely
to be in a section with a lower weight-conditioning. However, the other endpoint
of ei is equally likely to be any of the vertices of {1,2, . . . , n} \ Ci−1 because all
that we know about them is that they lie in (given) components of Mn

λ.
Formally, let k = n − 1 − |E(Mn

λ)|. Let C0 be the component containing 1 in
M

n
λ. Recursively, for 1 ≤ i ≤ k, let:

• ei be the smallest-weight edge leaving Ci−1 and
• Ci be the component containing 1 in the graph with edge-set E(Mn

λ) ∪
{e1, . . . , ei}.

The graph with edge-set E(Mn
λ) ∪ {e1, . . . , ek} is precisely M

n. Let I1 be the first
index for which V (M

n,1
λ ) ⊂ V (CI1), so that I1 is the time at which the component

containing 1 attaches to M
n,1
λ . For each 1 ≤ i ≤ k, the endpoint of ei not in Ci−1



THE SCALING LIMIT OF THE MST OF THE COMPLETE GRAPH 3111

is uniformly distributed among all vertices of {1, . . . , n} \ Ci−1. So, conditionally
given M

n
λ, e1, . . . , ei−1 and on {I1 ≥ i}, the probability that I1 takes the value i is

|V (M
n,1
λ )|/(n − |V (Ci−1)|). Therefore,

(4.10) P
(
I1 > i|Mn

λ

) ≤
(

1 − |V (M
n,1
λ )|

n

)i

.

By Theorem 2 of [56] (see also Lemma 3 of [50]), for all δ > 0,

(4.11) lim
λ→∞ lim sup

n→∞
P

(∣∣∣∣ |V (M
n,1
λ )|

2λn2/3 − 1
∣∣∣∣ > δ

)
= 0.

Using (4.10) and (4.11), it follows that for any δ > 0, there exists B > 0 such that

(4.12) lim
λ→∞ lim sup

n→∞
P

(
I1 > Bn1/3/λ

)
< δ.

Next, let Z be a uniformly random element of {1, . . . , n} \ V (M
n,1
λ ), and let Lλ be

the size of the component of Mn
λ that contains Z. Theorem A1 of [40] shows that

lim
λ→∞ lim sup

n→∞
E

[∑∞
i=2 |V (M

n,i
λ )|2

n4/3/λ

]
< ∞,

which implies that

lim
λ→∞ lim sup

n→∞
E

[
Lλ

n1/3/λ

]
< ∞.

For each i ≥ 1, given that i < I1, the difference |V (Ci)| − |V (Ci−1)| is stochasti-
cally dominated by Lλ, so that

E
[∣∣V (CI1−1)

∣∣1{I1≤i}
] ≤ iE[Lλ].

By (4.12) and Markov’s inequality, there exists B ′ > 0 such that

(4.13) lim
λ→∞ lim sup

n→∞
P

(∣∣V (CI1−1)
∣∣ > B ′n2/3/λ2)

< δ.

The graph C∗ with edge-set E(CI1−1) ∪ {eI1} forms part of the component con-
taining 1 in F

n
λ; indeed, the endpoint of eI1 not contained in CI1−1 is the root of this

component. Write v1 for this root vertex. Now consider freezing the construction
of the MST via the modified version of Prim’s algorithm at time I1 and construct-
ing the rest of the MST using the modified version of Prim’s algorithm starting now
from vertex 2. Let � = n− 1 −|E(Mn

λ)|− I1. Let D0 be the component containing
2 in the graph with edge-set E(Mn

λ)∪{e1, . . . , eI1}. Recursively, for 1 ≤ j ≤ �, let:

• fj be the smallest-weight edge leaving Dj−1 and
• Dj be the component containing 2 in the graph with edge-set E(Mn

λ) ∪
{e1, . . . , eI1} ∪ {f1, . . . , fj }.
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Let I2 be the first index for which fI2 has an endpoint in V (M
n,1
λ ) \ {v1}, and let

J1 be the first index for which fJ1 has an endpoint in V (C∗).
Recall that Un

λ is the event that 1 and 2 lie in the same component of Fn
λ. If Un

λ

occurs, then we necessarily have J1 < I2. To prove (4.9), it therefore suffices to
show that

(4.14) lim
λ→∞ lim sup

n→∞
P(J1 < I2) = 0.

In order to do so, we first describe how the construction of CI1 conditions the
locations of attachment of the edges fi . As in the Introduction, for e ∈ E(Kn), We

is the weight of edge e, and unconditionally these weights are i.i.d. Uniform[0,1]
random variables.

Write A0 = V (C0), and for 1 ≤ i ≤ I1, let Ai = V (Ci) \V (Ci−1). In particular,
AI1 = V (M

n,1
λ ). After CI1 is constructed, for each 0 ≤ i ≤ I1, the conditioning on

edges incident to Ai is as follows:

(a) Every edge between V (Ci−1) and Ai has weight at least Wei
.

(b) For each i < j ≤ I1, every edge between Ai and [n] \ V (Cj ) has weight at
least max{Wej

, i < k ≤ j}.
In particular, (b) implies all edges from Ai to [n] \ V (CI1) are conditioned to
have weight at least max{Wej

, i < k ≤ I1}. This entails that components which are
added later have lower weight-conditioning. In particular, there is no conditioning
on edges from AI1 = V (M

n,1
λ ) to [n] \V (CI1) (except the initial conditioning, that

all such edges have weight at least 1/n + λ/n4/3, which comes from conditioning
on M

n
λ).

It follows that under the conditioning imposed by the construction of CI1 ,
it is not the case that for 1 ≤ j < �, the endpoint of fj+1 outside Dj is uni-
formly distributed among {1, . . . , n} \ Dj . However, the conditioning precisely
biases these endpoints away from the sets Ai with i < I1 [but not away from
AI1 = V (M

n,1
λ )]. As a consequence, for each 1 ≤ j ≤ �, conditional on the edge

set E(Mn
λ) ∪ {e1, . . . , eI1} ∪ {f1, . . . , fj } and on the event {J1 ≥ j} ∩ {I2 ≥ j},

the probability that j = I2 is at least (|V (M
n,1
λ )| − 1)/(n − |V (Dj−1)|) and the

probability that j = J1 is at most |V (C∗)|/(n − |V (Dj−1)|). Hence,

P
(
I2 > i|Mn

λ

) ≤
(

1 − |V (M
n,1
λ )| − 1

n

)i

and so, by (4.11), we obtain that for any δ > 0 there exists B ′′ > 0 such that

(4.15) lim
λ→∞ lim sup

n→∞
P

(
I2 > B ′′n1/3/λ

)
< δ.

Moreover,

P
(
J1 > i|Mn

λ

) ≥
(

1 − |V (C∗)|
n − |V (DJ1−1)|

)i

.
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Note that |V (C∗)| = |V (CI1−1)| + 1. Also, just as for the components Ci , given
that i < J1, the difference |V (Di)| − |V (Di−1)| is stochastically dominated by Lλ

and so we obtain the analogue of (4.13): there exists B ′′′ such that

lim
λ→∞ lim sup

n→∞
P

(∣∣V (DJ1−1)
∣∣ > B ′′′n2/3/λ2)

< δ.

Hence, from this and (4.13), we see that there exists B ′′′′ such that

(4.16) lim
λ→∞ lim sup

n→∞
P

(
J1 ≤ λ2n1/3/B ′′′′) < δ.

Together, (4.15) and (4.16) establish (4.14) and complete the proof. �

Armed with this lemma, we now turn to the proof of Proposition 4.8.

PROOF OF PROPOSITION 4.8. Fix ε > 0 and let Nn
ε be the minimal number of

open balls of radius ε/4 needed to cover the (finite) space Mn. This automatically
yields a covering of M

n,1
λ by Nn

ε open balls of radius ε/4 since M
n,1
λ is included in

Mn. From this covering, we can easily construct a new covering B
n,1
λ , . . . ,B

n,Nn
ε

λ

of M
n,1
λ by sets of diameter at most ε/2 which are pairwise disjoint. Let

B̃
n,i
λ = ⋃

v∈B
n,i
λ

F
n
λ(v), 1 ≤ i ≤ Nn

ε ,

and let Cn
λ = ⋃Nn

ε

i=1(B
n,i
λ × B̃

n,i
λ ), which defines a correspondence between M

n,1
λ

and Mn. Moreover, its distortion is clearly at most 2dH(M
n,1
λ ,Mn)+ ε. Therefore,

by Lemma 4.5,

(4.17) lim
λ→∞ lim sup

n→∞
P

(
dis

(
Cn

λ

)
> 2ε

) = 0.

Next, write V n
λ = |V (M

n,1
λ )| and take an arbitrary relabelling of the elements of

V (M
n,1
λ ) by {1,2, . . . , V λ

n }. Since, conditionally on V n
λ , (Sn

λ(1), . . . , Sn
λ(V n

λ )) are

exchangeable, and V n
λ

p→ ∞ as n → ∞, Theorem 16.23 of Kallenberg [43] entails
that for any δ > 0,

(4.18) lim
λ→∞ lim sup

n→∞
P

(
max

1≤i≤V n
λ

∣∣∣∣∣
i∑

j=1

Sn
λ(j)

n
− i

V n
λ

∣∣∣∣∣ > δ

)
= 0

as soon as we have that for all δ > 0,

lim
λ→∞ lim sup

n→∞
P

(
max

1≤i≤V n
λ

Sn
λ(i) > δn

)
= 0,

which is precisely the content of Lemma 4.11.
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Now define a measure πn on M
n,1
λ × Mn by

πn({
(u, v)

}) = 1

V n
λ |B̃n,i

λ | ∧ 1

n|Bn,i
λ | , (u, v) ∈ B

n,i
λ × B̃

n,i
λ ,1 ≤ i ≤ Nn

ε .

Note that πn
λ ((Cn

λ)c) = 0 by definition. Moreover, the marginals of πn are given
by

πn
(1)

({u}) = 1

V n
λ

∧ |B̃n,i
λ |

n|Bn,i
λ | , u ∈ B

n,i
λ ,1 ≤ i ≤ Nn

ε ,

and

πn
(2)

({v}) = 1

n
∧ |Bn,i

λ |
V n

λ |B̃n,i
λ | , v ∈ B̃

n,i
λ ,1 ≤ i ≤ Nε

n.

Therefore, the discrepancy D(πn
λ ) of πn

λ with respect to the uniform measures on
Mn and M

n,1
λ is at most

Nn
ε max

1≤i≤Nn
ε

∣∣∣∣ |B̃n,i
λ |
n

− |Bn,i
λ |

V n
λ

∣∣∣∣
which (by relabelling the elements of M

n,1
λ so that the vertices in each B

n,i
λ have

consecutive labels and using exchangeability) is bounded above by

2Nn
ε max

1≤i≤V n
λ

∣∣∣∣∣
i∑

j=1

Sn
λ(j)

n
− i

V n
λ

∣∣∣∣∣.
Then

P
(
dGHP

(
M̂

n,1
λ ,Mn) ≥ ε

)
≤ P

(
dis

(
Cn

λ

)
> 2ε

) + P
(
D

(
πn

λ

)
> ε

)
≤ P

(
dis

(
Cn

λ

)
> 2ε

) + P

(
Nn

ε max
1≤i≤V n

λ

∣∣∣∣∣
i∑

j=1

Sn
λ(j)

n
− i

V n
λ

∣∣∣∣∣ >
ε

2

)

≤ P
(
dis

(
Cn

λ

)
> 2ε

) + P

(
max

1≤i≤V n
λ

∣∣∣∣∣
i∑

j=1

Sn
λ(j)

n
− i

V n
λ

∣∣∣∣∣ >
ε

2K

)
+ P

(
Nn

ε > K
)
.

But now recall that Nn
ε is the minimal number of open balls of radius ε/4 needed

to cover Mn. Let Nε be the same quantity for M̊ . Then by Lemma 4.7, M̊n d→ M̊ ,
which easily implies that lim supn→∞P(Nn

ε > K) ≤ P(Nε > K). In particular, by
(4.17) and (4.18)

lim
λ→∞ lim sup

n→∞
P

(
dGHP

(
M̂

n,1
λ ,Mn) ≥ ε

) ≤ P(Nε > K)

and the right-hand side converges to 0 as K → ∞. �
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5. Properties of the scaling limit. In this section, we give some properties of
the limiting metric space M . We start with some general properties that M shares
with the Brownian CRT of Aldous [9–11].

THEOREM 5.1. M is a measured R-tree which is almost surely binary and
whose mass measure is concentrated on its leaves.

PROOF. By the second distributional convergence in Theorem 4.9, we may
(and will) work in a space in which almost surely limλ→∞ dGHP(M̂ 1

λ ,M ) = 0.
Since it is the Gromov–Hausdorff limit of the sequence of R-trees M 1

λ , M is
itself an R-tree (see for instance [30]). For fixed λ ∈ R, each component of Mλ

is obtained from Gλ, the scaling limit of Gn
λ, using the cutting process. From the

construction of Gλ detailed in Section 4.1, it is clear that G 1
λ almost surely does not

contain points of degree more than three, and so M 1
λ is almost surely binary.

Next, let us work with the coupling (M̃ , (M̃ 1
λ , λ ∈ Z)), of Proposition 4.10.

We can assume, using the last statement of this proposition and the Skorokhod
representation theorem, that (M̃ ,M̃ 1

λ ) → (M̃ ,M̃ ) a.s. in M∗. Now suppose that
M̃ has a point x0 of degree at least 4 with positive probability. On this event, we
can find four points x1, x2, x3, x4 of the skeleton of M̃ , each having degree 2, and
such that the geodesic paths from xi to x0 have strictly positive lengths and meet
only at x0. But for λ large enough, x0, x1, . . . , x4 all belong to M̃ 1

λ , as well as the
geodesic paths from x1, . . . , x4 to x0. This contradicts the fact that M 1

λ is binary.
Hence, M is binary almost surely.

Let x and xλ be sampled according to the probability measures on M and on
M̂ 1

λ , respectively. For the remainder of the proof, we abuse notation by writing
(M , x) and (M̂ 1

λ , xλ) for the marked spaces (random elements of M1,1) obtained
by marking at the points x and xλ. Then we may, in fact, work in a space in which
almost surely

lim
λ→∞ d1,1

GHP

(
(M , x),

(
M̂ 1

λ , xλ)) = 0.

As noted earlier, the mass measure on M̂ 1
λ is almost surely concentrated on the

leaves of M̂ 1
λ , and it follows that for each fixed λ, xλ is almost surely a leaf. Let

�(x) = sup
f

f −1(x) ∧ (
t − f −1(x)

)
,

where the supremum is over geodesics f : [0, t] → M with x ∈ Im(f ). In partic-
ular, �(x) = 0 precisely if x is a leaf. For each fixed λ, since xλ is almost surely a
leaf, it is straightforward to verify that almost surely

d1,1
GHP

(
(M , x),

(
M̂ 1

λ , xλ)) ≥ �(x)/2.

But then taking λ → ∞ along any countable sequence shows that �(x) = 0 almost
surely. �
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To distinguish M from Aldous’ CRT, we look at a natural notion of fractal di-
mension, the Minkowski (or box-counting) dimension [32]. Given a compact met-
ric space X and r > 0, let N(X, r) be the minimal number of open balls of radius
r needed to cover X.

We define the lower and upper Minkowski dimensions by

dimM(X) = lim inf
r↓0

logN(X, r)

log(1/r)
and dimM(X) = lim sup

r↓0

logN(X, r)

log(1/r)
.

If dimM(X) = dimM(X), then this value is called the Minkowski dimension and is
denoted dimM(X).

PROPOSITION 5.2. The Minkowski dimension of M exists and is equal to 3
almost surely.

Since the Brownian CRT T satisfies dimM(T ) = 2 almost surely ([28], Corol-
lary 5.3), we obtain the following result, which gives a negative answer to a con-
jecture of Aldous [8].

COROLLARY 5.3. For any random variable A > 0, the laws of M and of
AT , the metric space T with distances rescaled by A, are mutually singular.

Before turning to the proof of Proposition 5.2, let us give some intuition for
why it is true. We wish find how many open balls we need to cover M . Since we
can couple our trees in such a way that M 1

λ is a subspace of M , we may obtain a
lower bound by covering M 1

λ . Cutting can only increase distances, so we obtain a
further lower bound by covering G 1

λ . Finally, we again reduce the number of balls
needed by covering core(G 1

λ ).
We show below that core(G 1

λ ) typically has �(λ3) edges, each of expected
length �(1/λ). So to cover core(G 1

λ ) by balls of radius 1/λ requires �(λ3) balls.
Taking λ → ∞, this shows that 3 is a lower bound on the Minkowski dimension of
M . On the other hand, cutting can at most double the number of balls required for
covering since we cut at points of degree 2. Moreover, it turns out that the points
in subtrees pendant to core(G 1

λ ) are typically at distance �(1/λ) from core(G 1
λ ),

so by e.g. doubling the radius of the balls in the covering, we may also cover most
points in the pendant subtrees. By a refined version of this argument, a correspond-
ing upper bound for the covering number of M may be obtained.

To make these ideas rigorous, we rely on an explicit description of the compo-
nents of Gλ given in [3]. It turns out that, for any λ ∈ R and i ≥ 1, the distribution
of G i

λ depends on λ and i only through mass(G i
λ) and ker(G i

λ). Moreover, we only
need a description of G 1

λ in the sequel, and so we focus on this case.
Note that, given s(G 1

λ ) = k ≥ 2, the kernel ker(G 1
λ ) is a 3-regular multigraph

with 3k − 3 edges, and hence 2(k − 1) vertices. Fix λ ∈ R, σ ∈ (0,∞), k ≥ 2,



THE SCALING LIMIT OF THE MST OF THE COMPLETE GRAPH 3117

and K a 3-regular multigraph with 3k − 3 edges. In the following two proce-
dures, we condition on mass(G 1

λ ) = σ and ker(G 1
λ ) = K . Label the edges of K by

{1,2, . . . ,3k − 3} arbitrarily.

CONSTRUCTION 1 (core(G 1
λ )). Independently sample random variables

�k ∼ Gamma
(
(3k − 2)/2,1/2

)
and

(Y1, Y2, . . . , Y3k−3) ∼ Dirichlet(1,1, . . . ,1).

Attach a line-segment of length Yj

√
σ�k in the place of edge j in K , for 1 ≤ j ≤

3k − 3.

Before providing the second construction, we should recall some of the basic
properties of the CRT T , referring the reader to, for example, [48] for more de-
tails. If ε = (ε(s),0 ≤ s ≤ 1) is a standard normalized Brownian excursion then
T is the quotient space of [0,1] endowed with the pseudo-distance dε(s, t) =
2(ε(s) + ε(t) − 2 infs∧t≤u≤s∨t ε(u)), by the relation {dε = 0}. It is seen as a mea-
sured metric space by endowing it with the mass measure which is the image of
Lebesgue measure on [0,1] by the canonical projection p : [0,1] → T . It is also
naturally rooted at the point p(0). Likewise, the CRT with mass σ , denoted by
Tσ , is coded in a similar fashion by (twice) a Brownian excursion conditioned to
have duration σ . By scaling properties of Brownian excursion, this is the same as
multiplying distances by

√
σ in T , and multiplying the mass measure by σ .

CONSTRUCTION 2 (G 1
λ ). Sample

(X1,X2, . . . ,X3k−3) ∼ Dirichlet(1/2,1/2, . . . ,1/2)

and, given (X1, . . . ,X3k−3), let (T (1), . . . ,T (3k−3)) be independent CRT’s with
masses given by (σX1, . . . , σX3k−3), respectively. For 1 ≤ i ≤ 3k − 3, let (xi, x

′
i)

be two independent points in T (i), chosen according to the normalized mass mea-
sure. Take the metric gluing of (T (i),1 ≤ i ≤ 3k − 3) induced by the graph struc-
ture of K , by viewing xi, x

′
i as the extremities of the edge i.

PROPOSITION 5.4 ([3]). The metric space obtained by Construction 1 (resp.
Construction 2) has same distribution as core(G 1

λ ) (resp. G 1
λ ), given mass(G 1

λ ) = σ

and ker(G 1
λ ) = K .

The proof of Proposition 5.2 builds on this result and requires a couple of lem-
mas. Recall the notation Xx from Section 3.2.

LEMMA 5.5. Let X = (X,d, x) be a safely pointed R-graph and fix r > 0.
Then N(X, r) ≤ N(Xx, r) ≤ N(X, r) + 2.
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This lemma will be proved in Section 7.1, where we give a more precise de-
scription of Xx . The next lemma is a concentration result for the mass and surplus
of G 1

λ . This should be seen as a continuum analogue of similar results in [50, 56].
We stress that these bounds are far from being sharp, and could be much improved
by a more careful analysis. In the rest of this section, if (Y (λ), λ ≥ 0) is a fam-
ily of positive random variables and (f (λ), λ ≥ 0) is a positive function, we write
Y(λ) � f (λ) if for all a > 1,

P
(
Y(λ) /∈ [

f (λ)/a, af (λ)
]) = oe(λ).

Note that this only constrains the above probability for large λ.

LEMMA 5.6. It is the case that

mass
(
G 1

λ

) � 2λ and s
(
G 1

λ

) � 2λ3

3
.

PROOF. We use the construction of Gλ described in Section 4.1. Recall that
(W(t), t ≥ 0) is a standard Brownian motion, that Wλ(t) = W(t) + λt − t2/2, and
that Bλ(t) = Wλ(t) − min0≤s≤t Wλ(s). Note that, letting

(5.1) Aλ = {∣∣W(t)
∣∣ ≤ (2λ) ∨ t for all t ≥ 0

}
,

we have P(Ac
λ) = oe(λ). Considering first t ≤ 2λ, by symmetry, the reflection prin-

ciple and scaling we have that

P

(
sup

0≤t≤2λ

∣∣W(t)
∣∣ > λ

)
≤ 2P

(
sup

0≤t≤2λ

W(t) > λ
)

= 2P
(∣∣W(2λ)

∣∣ > λ
)

= 2P
(∣∣W(2)

∣∣ >
√

λ
)
,

and this is oe(λ) since W(2) is Gaussian. Turning to t > 2λ, note that letting
W ′ = (W(u + 2λ) − W(2λ),u ≥ 0), then W ′ is a standard Brownian motion by
the Markov property. Hence, on the event {sup0≤t≤2λ |W(t)| ≤ λ}, the probability
that |W(t)| > t for some t ≥ 2λ is at most

P
(∃u ≥ 0 : ∣∣W ′(u)

∣∣ ≥ u + λ
) ≤ 2P

(
max
u≥0

(
W ′(u) − u

) ≥ λ
)
.

We deduce that P(Ac
λ) = oe(λ) from the fact that maxu≥0(W

′(u) − u) has an ex-
ponential distribution; see, for example, [67].

On Aλ,

− t2

2
+ λt − (

(2λ) ∨ t
) ≤ Wλ(t) ≤ − t2

2
+ λt + (2λ) ∨ t, t ≥ 0,

from which it is elementary to obtain that if λ ≥ 4, the following properties hold:
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(i) The excursion ε of Bλ that straddles the time λ has length in [2λ − 8,

2λ + 8].
(ii) All other excursions of Bλ have length at most 6.

(iii) The area of ε is in [2λ3/3 − 4λ2,2λ3/3 + 8λ2].
Note that (i) and (ii) imply that, for λ ≥ 8, on Aλ, the excursion ε of Bλ is the
longest, which we previously called ε1, and which encodes the component G 1

λ of
Gλ. This implies that mass(G 1

λ ) � 2λ, since mass(G 1
λ ) is precisely the length of

ε1. Finally, recall that, given ε1, s(G 1
λ ) has a Poisson distribution with parameter

equal to the area of ε1. Therefore, standard large deviation bounds together with
(iii) imply that s(G 1

λ ) � 2λ3/3. �

PROOF THAT dimM(M ) ≥ 3 ALMOST SURELY. In this proof, we always work
with the coupling from Proposition 4.10, but for convenience omit the decorations
from the notation, for example, writing M in place of M̊ or of M̃ . In particular,
this allows us to view M 1

λ as a subspace of M for every λ ∈ Z.
Since M 1

λ is obtained from G 1
λ by performing the cutting operation of Sec-

tion 3.2, Lemma 5.5 implies that for every r > 0,

(5.2) P
(
N(M ,1/λ) < r

) ≤ P
(
N

(
M 1

λ ,1/λ
)
< r

) ≤ P
(
N

(
G 1

λ ,1/λ
)
< r

)
.

Next, by viewing core(G 1
λ ) as a graph with edge-lengths, we obtain that N(G 1

λ ,

1/λ) is at least equal to the number N ′(1/λ) of edges of core(G 1
λ ) that have length

at least 2/λ, since the open balls with radius 1/λ centred at the midpoints of these
edges are pairwise disjoint.

Now fix σ > 0, k ≥ 2 and a 3-regular multigraph K with 3k−3 edges, and recall
the notation of Construction 1. Given that mass(G 1

λ ) = σ and ker(G 1
λ ) = K , the

edge-lengths of core(G 1
λ ) are given by Yi

√
σ�k,1 ≤ i ≤ 3k − 3, and we conclude

that (still conditionally)

N ′(1/λ)
d= ∣∣{i ∈ {1, . . . ,3k − 3} : Yi

√
σ�k > 2/λ

}∣∣.
Note that this does not depend on K but only on σ and on k. Now �k ∼
Gamma((3k − 2)/2,1/2) can be represented as the sum of 3k − 2 independent
random variables with distribution Gamma(1/2,1/2), which have mean 1, and by
standard large deviation results this implies that

sup
k∈[λ3/2,λ3]

P
(
�k < λ3) = oe(λ).
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Hence, by first conditioning on mass(G 1
λ ), s(G 1

λ ) and using Lemma 5.6, for any
given c > 0,

(5.3)

P
(
N ′(1/λ) < cλ3)

≤ sup
σ≥λ

k∈[λ3/2,λ3]
P

(
N ′(1/λ) < cλ3|mass

(
G 1

λ

) = σ, s
(
G 1

λ

) = k
) + oe(λ)

≤ sup
σ≥λ

k∈[λ3/2,λ3]
P

(∣∣{i ∈ {1, . . . ,3k − 3} : Yi

√
σ�k > 2/λ

}∣∣ < cλ3) + oe(λ)

≤ sup
k∈[λ3/2,λ3]

P
(∣∣{i ∈ {1, . . . ,3k − 3} : Yi > 2/λ3}∣∣ < cλ3) + oe(λ).

We now use that (Y1, . . . , Y3k−3) ∼ Dirichlet(1, . . . ,1) is distributed as

(γ1, . . . , γ3k−3)/(γ1 + · · · + γ3k−3),

where γ1, . . . , γ3k−3 are independent Exponential(1) random variables. Standard
large deviations results for gamma random variables imply that

sup
k∈[λ3/2,λ3]

P
(
γ1 + · · · + γ3k−3 > 4λ3) = oe(λ).

From this, we obtain

sup
k∈[λ3/2,λ3]

P
(∣∣{i ∈ {1, . . . ,3k − 3} : Yi > 2/λ3}∣∣ < cλ3)

≤ sup
k∈[λ3/2,λ3]

P
(∣∣{i ∈ {1, . . . ,3k − 3} : γi > 8

}∣∣ < cλ3) + oe(λ)

and this is oe(λ) for c < e−8, since |{i ∈ {1, . . . ,3k − 3} : γi > 8}| is Bin(3k −
3, e−8) distributed.

It follows that for such c, P(N ′(1/λ) < cλ3) = oe(λ), which with (5.2) implies
that

P
(
N(M ,1/λ) < cλ3/2

) = oe(λ).

We obtain by the Borel–Cantelli lemma that N(M ,1/λ) ≥ cλ3/2 for all λ ∈ Z

sufficiently large. By sandwiching 1/r between consecutive integers, this yields
that almost surely

dimM(M ) = lim inf
r→0

logN(M , r)

log(1/r)
≥ 3. �

We now prove the upper bound from Proposition 5.2.
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PROOF THAT dimM(M ) ≤ 3 ALMOST SURELY. Recall the definition of �

from Proposition 4.10. Fix λ0 > 0 and an integer λ > λ0. We work conditionally
on the event {� ≤ λ0}. Next, fix ε > 0. If B1, . . . ,BN is a covering of M 1

λ by balls
of radius 1/λ1−ε then, since M 1

λ ⊂ M , the centres x1, . . . , xN of these balls are
elements of M . On the event {dH(M 1

λ ,M ) < 1/λ1−ε}, whose complement has
conditional probability oe(λ) by Proposition 4.10, the balls with centres x1, . . . , xN

and radius 2/λ1−ε then form a covering of M . Hence,

(5.4)

P
(
N

(
M ,2/λ1−ε) > 5λ3|� ≤ λ0

)
≤ P(N(M 1

λ ,1/λ1−ε) > 5λ3)

P(� ≤ λ0)
+ oe(λ)

≤ P(N(G 1
λ ,1/λ1−ε) + 2s(G 1

λ ) > 5λ3)

P(� ≤ λ0)
+ oe(λ)

≤ P(N(G 1
λ ,1/λ1−ε) > 3λ3)

P(� ≤ λ0)
+ oe(λ),

where in the penultimate step we used Lemma 5.5 and the fact that M 1
λ is ob-

tained from G 1
λ by performing s(G 1

λ ) cuts, and in the last step we used the fact that
s(G 1

λ ) � 2λ3/3 from Lemma 5.6.
To estimate N(G 1

λ ,1/λ1−ε), we now use Construction 2 to obtain a copy of G 1
λ

conditioned to satisfy mass(G 1
λ ) = σ, s(G 1

λ ) = k and ker(G 1
λ ) = K , where K is

a 3-regular multigraph with 3k − 3 edges. Recall that we glue 3k − 3 Brownian
CRT’s (T (1)

σX1
, . . . ,T (3k−3)

σX3k−3
) along the edges of K . These CRTs are condition-

ally independent given their masses σX1, . . . , σX3k−3, and (X1, . . . ,X3k−3) has
Dirichlet(1/2, . . . ,1/2) distribution. (Here, we include the mass in the notation
because it will vary later on.) If each of these trees has diameter less than 1/λ1−ε ,
then clearly we can cover the glued space by 3k − 3 balls of radius 1/λ1−ε , each
centred in a distinct tree T (i)

σXi
,1 ≤ i ≤ 3k − 3. Therefore, by first conditioning on

mass(G 1
λ ) and on s(G 1

λ ), and then using Lemma 5.6,

P
(
N

(
G 1

λ ,1/λ1−ε) > 3λ3)
≤ sup

σ≤3λ

k∈[λ3/2,λ3]

P
(
N

(
G 1

λ ,1/λ1−ε) > 3λ3|mass
(
G 1

λ

) = σ, s
(
G 1

λ

) = k
) + oe(λ)(5.5)

≤ sup
σ≤3λ

k∈[λ3/2,λ3]

P

(
max

1≤i≤3k−3
diam

(
T (i)

σXi

)
> 1/λ1−ε

)
+ oe(λ).
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We can represent (X1, . . . ,X3k−3) as (γ1, . . . , γ3k−3)/(γ1 +· · ·+γ3k−3), where
γ1, . . . , γ3k−3 are i.i.d. random variables with law Gamma(1/2,1). Hence,

P

(
max

1≤i≤3k−3
Xi > λε−3

)
≤ P

(
γ1 + · · · + γ3k−3 < λ3−ε/2) + P

(
max

1≤i≤3k−3
γi > λε/2

)
≤ P

(
γ1 + · · · + γ3k−3 < λ3−ε/2) + 1 − (

1 − P
(
γ1 > λε/2))3k−3

.

Standard large deviations results for gamma random variables then entail that for
all ε > 0,

sup
k∈[λ3/2,λ3]

P

(
max

1≤i≤3k−3
Xi > λε−3

)
= oe(λ),

which in turn implies that

sup
σ≤3λ

k∈[λ3/2,λ3]

P

(
max

1≤i≤3k−3
diam

(
T (i)

σXi

)
> λε−1

)

≤ sup
k∈[λ3/2,λ3]

P

(
max

1≤i≤3k−3
Xi > λε−3

)
+ P

(
max

1≤i≤3λ3
diam

(
T (i)

3/λ2−ε

)
> λε−1

)
,

where we used that, by scaling, diam(Tσ ) is stochastically increasing in σ , and
(T (i)

3/λ2−ε ),1 ≤ i ≤ �3λ3� are independent CRTs, each with mass 3/λ3−ε . Using
this bound and Brownian scaling, it follows that

(5.6)

sup
σ≤3λ

k∈[λ3/2,λ3]

P

(
max

1≤i≤3k−3
diam

(
T (i)

σXi

)
> 1/λ1−ε

)

≤ oe(λ) + 1 − (
1 − P

(
diam

(
T > λε/2/

√
3
)))3λ3

.

Next, it is well known that the height of T , that is, the maximal distance from the
root to another point, is theta-distributed:

P
(
height(T ) ≥ x

) = ∑
k≥1

(−1)k+1e−k2x2 ≤ e−x2
.

Since diam(T ) ≤ 2 height(T ), it follows that

P
(
diam(T ) ≥ x

) = oe(x).

We obtain that (5.6) is oe(λ), and (5.5) then yields that

P
(
N

(
G 1

λ ,1/λ1−ε) > 3λ3) = oe(λ).

By (5.4), we then have

P
(
N

(
M ,2/λ1−ε) > 5λ3|� ≤ λ0

) = oe(λ).



THE SCALING LIMIT OF THE MST OF THE COMPLETE GRAPH 3123

Therefore, the Borel–Cantelli lemma implies that N(M ,2/λ1−ε) ≤ 5λ3 a.s. for
every integer λ > λ0 large enough. This implies that, conditionally on {� ≤ λ0},
dimM(M ) ≤ 3 + ε almost surely for every ε > 0, by sandwiching 1/r between
integers in lim supr→0 logN(M , r)/ log(1/r). Since � is almost surely finite and
λ0 was arbitrary, this then holds unconditionally for any ε > 0. �

This concludes the proof of Proposition 5.2.

6. The structure of R-graphs. At this point, it remains to prove Theorems
2.7 and 3.3, and Lemma 5.5. We also made use of the forthcoming Corollary 6.6
in the course of proving Theorem 4.1. In this section, we investigate R-graphs, and
prove Theorem 2.7 and Corollary 6.6. Section 7 contains the proofs of Theorem 3.3
and of Lemma 5.5.

6.1. Girth in R-graphs. In this section, X = (X,d) is an R-graph. The girth
of X is defined by

gir(X) = inf
{
len(c) : c is an embedded cycle in X

}
.

If (X,d) is an R-graph, then by definition (Bε(x)(x), d) is an R-tree for ev-
ery x ∈ X and for some function ε : X → (0,∞). The balls (Bε(x)(x), x ∈ X)

form an open cover of X. By extracting a finite sub-cover, we see that there ex-
ists ε > 0 such that for every x ∈ X, the space (Bε(x), d) is an R-tree. We let
R(X) be the supremum of all numbers ε > 0 with this property. It is immediate
that gir(X) ≥ 2R(X) > 0. In fact, it is not difficult to show that gir(X) = 4R(X)

and that (BR(X)(x), d) is an R-tree for all x ∈ X. More precisely, the closed ball
(BR(X)(x), d) is also a (compact) R-tree, since it is the closure of the correspond-
ing open ball. These facts are not absolutely crucial in the arguments to come, but
they make some proofs more elegant, so we will take them for granted and leave
their proofs to the reader, who is also referred to Proposition 2.2.15 of [58].

PROPOSITION 6.1. If f ∈ C([a, b],X) is a local geodesic in X, then for every
t ∈ [a, b], the restriction of f to [t − R(X), t + R(X)] ∩ [a, b] is a geodesic. In
particular, if c is an embedded cycle and x ∈ c, then c contains a geodesic arc of
length 2R(X) with mid-point x.

PROOF. The function f is injective on any interval of length at most 2R(X),
since otherwise we could exhibit an embedded cycle with length at most 2R(X) =
gir(X)/2. In particular, f is injective on the interval [t −R(X), t +R(X)] ∩ [a, b],
and takes values in the R-tree (BR(X)(f (t)), d), so that its image is a geodesic
segment, and since f is parameterized by arc-length, its restriction to the above
interval is an isometry. This proves the first statement.

For the second statement, note that every injective path f ∈ C([a, b],X) param-
eterized by arc-length is a local geodesic since, for every t , the path f restricted
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to [t −R(X), t +R(X)] ∩ [a, b] is an injective path in the R-tree (BR(X)(f (t)), d)

parameterized by arc-length, and hence is a geodesic. If now g : S1 → X is an in-
jective continuous function inducing the embedded cycle c, it suffices to apply the
previous claim to a parametrisation by arc-length mapping 0 to x of the function
t �→ g(e2iπt ). �

6.2. Structure of the core. In this section, X = (X,d) is again an R-graph.
Recall that core(X) is the union of all arcs with endpoints in embedded cycles.

PROPOSITION 6.2. The set core(X) is a finite union of embedded cycles and
simple arcs that are disjoint from the embedded cycles except at their endpoints.
Moreover, the space (core(X), d) is an R-graph with no leaves.

PROOF. Assume, for a contradiction, that the union of all embedded cycles
cannot be written as a finite union of embedded cycles. Then we can find an infinite
sequence c1, c2, . . . of embedded cycles such that ci \ (c1 ∪· · ·∪ ci−1) is nonempty
for every i ≥ 0, and thus contains at least one point xi . Up to taking subsequences,
one can assume that xi converges to some point x, and that d(x, xi) < R(X)/2 for
every i ≥ 1. Let γ ′

i be a geodesic from x to xi : this geodesic takes its values in the
R-tree BR(X)(x). Since xi ∈ ci , by Proposition 6.1 we can find two geodesic paths
starting from xi , meeting only at xi , with length R(X)−d(x, xi), and taking values
in ci ∩ BR(X)(x). At least one of these paths γ ′′

i does not pass through x, and so
the concatenation γi of γ ′

i and γ ′′
i is an injective path parameterized by arc-length

starting from x and with length R(X). So it is, in fact, a geodesic path, since it takes
its values in BR(X)(x). We let yi be the endpoint of γi , so that d(x, yi) = R(X) for
every i ≥ 1. Now, we observe that if i < j , the paths γi and γj both start from
the same point x, but since γ ′′

i takes values in ci , since γ ′′
j passes through xj /∈ ci ,

and since d(x, xi) ∨ d(x, xj ) ≤ R(X)/2, these paths are disjoint outside the ball
BR(X)/2(x). This implies that d(yi, yj ) ≥ R(X) for every i < j , and contradicts
the compactness of X.

Therefore, the union X0 of all embedded cycles is closed and has finitely many
connected components. By definition, core(X) is the union of X0 together with
all simple arcs with endpoints in X0. Obviously, in this definition, we can restrict
our attention to simple arcs having only their endpoints in X0. So let x, y ∈ X0
with x �= y be linked by an simple arc A taking its values outside X0, except at its
endpoints. Necessarily, x and y must be in disjoint connected components of X0,
because otherwise there would exist a path from x to y in X0 whose concatenation
with γ would create an embedded cycle not included in X0. Furthermore, there
can exist at most one arc A, or else it would be easy to exhibit an embedded cycle
not included in X0. So we see that core(X) is a finite union of simple arcs and
embedded cycles, which is obviously connected, and is thus closed. Any point in
core(X) has degree at least 2 by definition.
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It remains to check that the intrinsic metric on core(X) is given by d itself.
Let x, y ∈ core(X) and γ be a geodesic path from x to y. Assume that γ takes
some value z = γ (t) outside core(X). Let t1 = sup{s ≤ t : γ (s) ∈ core(X)} and
t2 = inf{s ≥ t : γ (s) ∈ core(X)}, so that γ ((t1, t2)) ∩ core(X) = ∅. Since core(X)

is connected, we can join γ (t1) and γ (t2) by a simple arc included in core(X),
and the union of this arc with γ ((t1, t2)) is an embedded cycle not contained in
core(X), a contradiction. �

6.3. The kernel of R-graphs with no leaves. In this section, X is an R-graph
with no leaves. We now start to prove Theorem 2.7 on the structure of such R-
graphs. The set k(X) = {x ∈ X : degX(x) ≥ 3} of branchpoints of X forms the
vertex set of ker(X).

PROPOSITION 6.3. The set k(X) is finite, and degX(x) < ∞ for every x ∈
k(X).

PROOF. By Proposition 6.2, the number of cycles of X is finite. We as-
sume that X is not acyclic, and argue by induction on the maximal number of
independent embedded cycles, that is, of embedded cycles c1, . . . , ck such that
ci \ (c1 ∪ · · · ∪ ck−1) �= ∅ for 1 ≤ i ≤ k. Plainly, we may and will assume that for
all i ∈ {1,2, . . . , k}, either ci is disjoint from c1 ∪· · ·∪ci−1, or ci \ (c1 ∪· · ·∪ci−1)

is a simple arc of the form γ ((0,1)), where γ : [0,1] → X satisfies γ (0), γ (1) ∈
c1 ∪ · · · ∪ ci−1. The result is trivial if X is unicyclic (k = 1). Suppose X has k in-
dependent embedded cycles c1, . . . , ck as above. Consider the smallest connected
subset X′ of X containing c1, . . . , ck−1: this subset is the union of c1, . . . , ck−1
with some simple arcs having only their endpoints as elements of c1 ∪ · · · ∪ ck−1,
and is a closed subset of X.

If ck does not intersect X′, then there exists a unique simple arc with one end-
point a in ck and the other endpoint b in X′, and disjoint from ck ∪ X′ elsewhere.
Then a, b must be elements of k(X): a is the only element of k(X) in ck , we have
degX(a) = 3, and degX(b) = degX′(b) + 1. Therefore, the number of points in
k(X) is at most 2 + k(X′), where X′ is the set X′ endowed with the intrinsic met-
ric inherited from X. This is an R-graph without leaves and with (at most) k − 1
independent cycles.

If on the other hand ck ∩ X′ �= ∅, then by assumption we have X = X′ ∪ A,
where A is a sub-arc of ck disjoint from X′ except at its endpoints a, b. The latter
are elements of k(X), and satisfy degX(a) ≤ degX′(a)+2 and similarly for b (note
that a, b may be equal). After we remove A \ {a, b} from X, we are left with an R-
graph X′ (in the induced metric) without leaves, and with at most k−1 independent
cycles.

The result follows by induction on k. �

If X is unicyclic, then X is in fact identical to its unique embedded cycle c.
In this case, k(X) = ∅, and we let e(X) = {c}. If X has at least two distinct
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embedded cycles, then the previous proof entails that k(X) �= ∅, and more pre-
cisely that every embedded cycle contains at least one point of k(X). The set
X \ k(X) has finitely many connected components [in fact, there are precisely
1
2

∑
x∈k(X) degX(x) components, as the reader is invited to verify], which are sim-

ple arcs of the form γ ((0,1)), where γ : [0,1] → X is such that γ is injective on
[0,1), such that γ (0), γ (1) ∈ k(X), and such that γ ((0,1)) ∩ k(X) = ∅. We let
e(X) be the set of the closures of these connected components, that is, the arcs
γ ([0,1]) with the above notation, which are called the kernel edges. The multi-
graph ker(X) = (k(X), e(X)) is the kernel of X, where the vertices incident to
e ∈ e(X) are, of course, the endpoints of e. An orientation of the edge e is the
choice of a parametrisation γ : [0,1] → X of the arc e or its reversal γ (1 − ·),
considered up to reparametrisations by increasing bijections from [0,1] to [0,1].
If e is given an orientation, then its endpoints are distinguished as the source and
target vertices, and are denoted by e−, e+, respectively. The next proposition then
follows from the definition of k(X).

PROPOSITION 6.4. The kernel of a non-unicyclic R-graph without leaves is a
multigraph of minimum degree at least 3.

Finally, we prove Theorem 2.7. Assume that X is a non-unicyclic R-graph with-
out leaves, and let �(e) : e ∈ e(X) be the lengths of the kernel edges. Note that if
x, y ∈ k(X), then

d(x, y) = inf

{
k∑

i=1

�(ei) : (e1, . . . , ek) a chain from x to y in G

}
,

where (e1, . . . , ek) is a chain from x to y if it is possible to orient e1, . . . , ek ∈ e(X)

in such a way that e−
1 = x, e+

k = y and e+
i = e−

i+1 for every i ∈ {1, . . . , k − 1}.
Of course, it suffices to restrict the infimum to those chains that are simple, in the
sense that they do not visit the same vertex twice. Since there are finitely many
simple chains, the above infimum is, in fact, a minimum. Next, if x and y are
elements of e and e′ respectively, consider an arbitrary orientation of e, e′. Then a
shortest path from x to y either stays in e (in this case e = e′), or passes through at
least one element of k(X) incident to e, and likewise for e′. Therefore,

d(x, y) = de(x, y) ∧ min
s,t∈{−,+}

{
de

(
x, es) + d

(
es,

(
e′)t ) + de′

((
e′)t , y)}

,

where we let de(a, b) be the length of the arc of e between a and b if a, b ∈ e, and
∞ otherwise. It is shown in [25], Section 3, that this formula gives the distance for
the metric gluing of the graph with edge-lengths (k(X), e(X), (�(e), e ∈ e(X))).
This proves Theorem 2.7.
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6.4. Stability of the kernel in the Gromov–Hausdorff topology. In this sec-
tion, we show that kernels of R-graphs are stable under small perturbations in the
Gromov–Hausdorff metric, under an assumption which says, essentially, that the
girth is uniformly bounded away from 0.

Recall from Section 3.2 that Ar is the set of measured R-graphs X such that

min
e∈e(X)

�(e) ≥ r,
∑

e∈e(X)

�(e) ≤ 1/r and s(X) ≤ 1/r,

where it is understood in this definition that the unicyclic R-graphs (those with
surplus 1) are such that their unique embedded cycle has length in [r,1/r]. It fol-
lows that the sets Ar ,0 < r < 1, are decreasing, with union the set of all measured
R-graphs. If [X,d] is an R-graph, we write [X,d] ∈ Ar if [X,d,0] ∈ Ar . Note
that an element X ∈ Ar has gir(X) ≥ r .

A subset A of X is said to be in correspondence with a subset A′ of X′ via
C ⊂ X × X′ if C ∩ (A × A′) is a correspondence between A and A′. Let X and X′
be R-graphs with surplus at least 2. Given C ∈ C(X,X′), for ε > 0 we say that C is
a ε-overlay (of X and X′) if dis(C) < ε, and there exists a multigraph isomorphism
χ between ker(X) and ker(X′) such that:

1. For every v ∈ k(X), (v,χ(v)) ∈ C.
2. For every e ∈ e(X), the edges e and χ(e) are in correspondence via C, and∣∣�(e) − �

(
χ(e)

)∣∣ ≤ ε.

If s(X) = s(X′) = 1, an ε-overlay is a correspondence with distortion at most ε,
such that the unique embedded cycles c, c′ of X and X′ are in correspondence via
C, and |�(c) − �(c′)| ≤ ε. Finally, if s(X) = s(X′) = 0 then an ε-overlay is just a
correspondence of distortion at most ε.

PROPOSITION 6.5. Fix r ∈ (0,1). For every ε > 0 there exists δ > 0 such
that if X = (X,d) and X′ = (X′, d ′) are elements of Ar and C ∈ C(X,X′) has
dis(C) ≤ δ, then there exists an ε-overlay C ′ ∈ C(X,X′) with C ⊂ C′.

We say that a sequence of finite graphs with edge-lengths ((Vn,En, (ln(e), e ∈
En)), n ≥ 1) converges to the graph with edge-lengths (V ,E, (l(e), e ∈ E)) if
(Vn,En) and (V ,E) are isomorphic for all but finitely many n ≥ 1, through an
isomorphism χn such that ln(χn(e)) → l(e) as n → ∞ for every e ∈ E. We now
state some consequences of Proposition 6.5 which are used in the proof of The-
orem 4.1 and in Section 7.3, before proceeding to the proof of Proposition 6.5.
Recall the definition of the distances dk,l

GHP from Section 2.1.

COROLLARY 6.6. Fix r ∈ (0,1). Let (Xn = (Xn, dn,μn), n ≥ 1) and X =
(X,d,μ) be elements of Ar . Suppose that dGHP(Xn,X) → 0, as n → ∞.



3128 ADDARIO-BERRY, BROUTIN, GOLDSCHMIDT AND MIERMONT

(i) Then ker(Xn) converges to ker(X) as a graph with edge-lengths. As a con-
sequence, r(Xn) → r(X), and writing Ln (resp. L) for the restriction of the length
measure of Xn (resp., X) to conn(Xn) [resp., conn(X)], it holds that

d0,2
GHP

((
Xn,dn,μn,Ln)

, (X,d,μ,L)
) −→

n→∞ 0.

(ii) Let xn be a random variable in Xn with distribution Ln/Ln(conn(Xn)) and
x be a random variable in X with distribution L/L(conn(X)). Then as n → ∞,(

Xn,dn, xn,μn) d→ (X,d, x,μ)

in the space (M1,1,d1,1
GHP).

The above results rely on the following lemma. Given metric spaces (X,d) and
(X′, d ′), C ⊂ X × X′ and r > 0, let

Cr = {(
y, y′) ∈ X × X′ : d(x, y) ∨ d ′(x′, y′) ≤ r for

(
x, x′) ∈ C

}
.

Cr is the r-enlargement of C with respect to the product distance. Note that if C

is a correspondence between X and X′, then Cr is also a correspondence for every
r > 0. Moreover, dis(Cr) ≤ dis(C) + 4r . A mapping φ : [a, b] → [a′, b′] is called
bi-Lipschitz if φ is a bijection such that φ and φ−1 are Lipschitz, and we call the
quantity

K(φ) = inf
{
K > 1 : ∀x, y ∈ [a, b],K−1|x − y| ≤ |φ(x) − φ(y)| ≤ K|x − y|}

the bi-Lipschitz constant of φ. By convention, we let K(φ) = ∞ if φ is not a
bijection, or not bi-Lipschitz.

LEMMA 6.7. Fix r ∈ (0,1) and let (X,d), (X′, d ′) ∈ Ar . Suppose there exists
a correspondence C between X and X′ such that dis(C) < r/56.

Let x, y ∈ X be two distinct points in X, and let f be a local geodesic from
x to y. Let x′, y′ ∈ X′ be such that (x, x′), (y, y′) ∈ C. Then there exists a local
geodesic f ′ from x′ to y′ with

len
(
f ′) ≤

(
1 + 64 dis(C)

r ∧ len(f )

)
· len(f ),

and a bi-Lipschitz mapping φ : [0, len(f )] → [0, len(f ′)] such that (f (t),

f ′(φ(t))) ∈ C8 dis(C) for every t ∈ [0, len(f )], and

K(φ) ≤
(

1 − 64 dis(C)

r ∧ len(f )

)−1

+
.

Note that the second part of the statement also implies a lower bound on the
length of f ′, namely,

len
(
f ′) ≥ K(φ)−1 len(f ) ≥ len(f )

(
1 − 64 dis(C)

r ∧ len(f )

)
+
,
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which is, of course, useless when r ∧ len(f ) ≤ 64 dis(C).

PROOF OF LEMMA 6.7. Let us first assume that 0 < len(f ) ≤ r/8, so in par-
ticular d(x, y) ≤ R(X) and f is the geodesic from x to y. We have

d(x, y) − dis(C) ≤ d ′(x′, y′) ≤ d(x, y) + dis(C) ≤ r/8 + dis(C) < R
(
X′),

so that x′ and y′ are linked by a unique geodesic f ′. Set φ(t) = d ′(x′, y′)t/d(x, y)

for 0 ≤ t ≤ d(x, y). From the preceding chain of inequalities, we obtain that

len
(
f ′) ≤ len(f ) + dis(C) and K(φ) ≤

(
1 − dis(C)

d(x, y)

)−1

+
.

Fix z = f (t) ∈ Im(f ) and let z′′ be such that (z, z′′) ∈ C. Then d ′(x′, z′′) ≤
d(x, z) + dis(C) < r/4, so that z′′ belongs to the R-tree BR(X′)(x′). Let z′ be the
(unique) point of Im(f ′) that is closest to z′′. Then a path from x′ or y′ to z′′ must
pass through z′, from which we have

(6.1) d ′(z′′, z′) = d ′(x′, z′′) + d ′(y′, z′′) − d ′(x′, y′)
2

≤ 3

2
dis(C).

Therefore,

t − 5

2
dis(C) ≤ d ′(x′, z′′) − d ′(z′′, z′) ≤ d ′(x′, z′) ≤ d ′(x′, z′′) ≤ t + dis(C),

so after a short calculation we get that∣∣∣∣d ′(x′, z′) − d ′(x′, y′)
d(x, y)

t

∣∣∣∣ ≤ 7

2
dis(C).

From this, we obtain

d ′(z′, f ′(φ(t)
)) = d ′

(
f ′(d ′(x′, z′)), f ′

(
d ′(x′, y′)
d(x, y)

t

))

=
∣∣∣∣d ′(x′, z′) − d ′(x′, y′)

d(x, y)
t

∣∣∣∣ ≤ 7

2
dis(C),

so that, in conjunction with (6.1), we have (f (t), f ′(φ(t))) ∈ C5 dis(C).
We next assume that len(f ) > r/8. Fix an integer N such that r/16 <

len(f )/N ≤ r/8 and let ti = i len(f )/N and xi = f (ti) for 0 ≤ i ≤ N . By
Proposition 6.1, since f is a local geodesic and ti+1 − ti−1 < R(X) for every
i ∈ {1, . . . ,N − 1}, the restriction f |[ti−1,ti+1] must be a shortest path and so

d(xi−1, xi+1) = 2 len(f )

N
≤ r/4, d(xi, xi+1) = len(f )

N
∈ [r/16, r/8].

Letting x ′′
i be a point such that (xi, x

′′
i ) ∈ C (where we always make the choice

x′′
0 = x′ and x′′

N = y′), we have d ′(x′′
i , x′′

i+1) ≤ d(xi, xi+1) + dis(C) < R(X′), so
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that we can consider the unique geodesic f ′′
i between x′′

i and x′′
i+1. The concate-

nation of the paths f ′′
0 , f ′′

1 , . . . , f ′′
N−1 is not necessarily a local geodesic, but by

excising certain parts of it we will be able to recover a local geodesic between x′
and y′. For each i ∈ {1, . . . ,N − 1}, the sets Im(f ′′

i−1) and Im(f ′′
i ) are included

in the R-tree BR(X′)(x′′
i ), and the concatenation of f ′′

i−1 and f ′′
i is a path from

x′′
i−1 to x′′

i+1 which, as such, must contain the image of the geodesic gi between
these points. Let x′

i be the unique point of Im(gi) that is closest to x′′
i , and let

x′
0 = x′, x′

N = y′. Then

d ′(x′
i , x

′′
i

) = d ′(x′′
i−1, x

′′
i ) + d ′(x′′

i+1, x
′′
i ) − d ′(x′′

i−1, x
′′
i+1)

2
≤ 3

2
dis(C),

so that, for i ∈ {0,1, . . . ,N},
d(xi, xi+1) − dis(C) ≤ d ′(x′′

i , x′′
i+1

) ≤ d ′(x′
i , x

′
i+1

)
≤ d ′(x′′

i , x′′
i+1

) + 3 dis(C) ≤ d(xi, xi+1) + 4 dis(C).

If x′
i+1 ∈ Im(f ′′

i−1) then

d ′(x′′
i−1, x

′′
i+1

) ≤ d ′(x′′
i−1, x

′′
i

) + 3

2
dis(C) ≤ len(f )

N
+ 5

2
dis(C).

However, since (xi−1, x
′′
i−1), (xi+1, x

′′
i+1) ∈ C and dis(C) < r/56 < 2 len(f )/

(7N), we have

d ′(x′′
i−1, x

′′
i+1

) ≥ 2 len(f )

N
− dis(C) >

len(f )

N
+ 5

2
dis(C),

so, in fact, x′
i+1 /∈ Im(f ′′

i−1) and, in particular, x′
i+1 does not lie on the shortest path

between x′
i−1 and x′

i . From this, it follows that if f ′ denotes the concatenation of
the geodesic f ′

i between x′
i and x′

i+1, for 0 ≤ i ≤ N −1, then f ′ is a local geodesic
between x′ and y′. Its length is certainly bounded by the sum of the lengths of the
paths f ′′

i , so that

len
(
f ′) ≤

N∑
i=1

d(xi, xi+1) + 4N dis(C) ≤ len(f ) + 64 len(f )dis(C)

r
,

as claimed. Next, we let φi(t) = d ′(x′
i , x

′
i+1)t/d(xi, xi+1), so that

K(φi) ≤
(

1 − 4 dis(C)

d(xi, xi+1)

)−1
≤

(
1 − 64 dis(C)

r

)−1
.

If φ : [0, len(f )] → [0, len(f ′)] is the concatenation of the mappings φi,0 ≤ i ≤
N − 1, then φ is bi-Lipschitz with the same upper-bound for K(φ) as for each
K(φi). Finally, we note that f ′ ◦ φ is the concatenation of the paths f ′

i ◦ φi . If
z = fi(t), we let z′′ be such that (z, z′′) ∈ C and let z′ be the point in Im(f ′

i ) that
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is closest to z′′. Then similar arguments to before entail that d ′(z′, z′′) ≤ 3 dis(C),
so that

t − 4 dis(C) ≤ d ′(x′
i , z

′) ≤ d ′(x′
i , z

′′) ≤ t + dis(C),

which implies that

d ′(z′, f ′
i

(
φ′

i (t)
)) =

∣∣∣∣d ′(x′
i , z

′) − d ′(x′
i , x

′
i+1)

d(xi, xi+1)
t

∣∣∣∣ ≤ 5 dis(C),

and we conclude that (fi(t), f
′
i (φi(t))) ∈ C8 dis(C), and so that (f (s), f ′(φ(s))) ∈

C8 dis(C) for every s ∈ [0, len(f )]. �

PROOF OF PROPOSITION 6.5. We will prove this result only when one of
X and X′ (and then, in fact, both) has surplus at least 2, leaving the similar and
simpler case of surplus 1 to the reader (the case of surplus 0 is trivial). Also, we
may assume without loss of generality that ε < r/4.

Fix ε ∈ (0, r/4), and fix any δ ∈ (0, εr2/128). Also, fix X,X′ ∈ Ar and a corre-
spondence C ∈ C(X,X′) with dis(C) < δ. List the elements of k(X) as v1, . . . , vn,
and fix elements v′′

1 , . . . , v′′
n of X′ with (vi, v

′′
i ) ∈ C for each 1 ≤ i ≤ n. Since

dis(C) < δ and v1, . . . , vn are pairwise at distance at least r , v′′
1 , . . . , v′′

n are pair-
wise at distance at least r − 2δ > r/2 and, in particular, are all distinct. Next, for
every e ∈ e(X), say with e+ = vi, e

− = vj , fix a local geodesic fe between vi and
vj with Im(fe) = e and fe(0) = e−. By Lemma 6.7, there exists a geodesic f ′′

e

from v′′
i to v′′

j and a bi-Lipschitz mapping φe : [0, �(e)] → [0, len(f ′′
e )] with

K(φe) ≤
(

1 − 64δ

r

)−1
< 2,

and such that (fe(t), f
′′
e (φe(t))) ∈ C8δ for every t ∈ [0, �(e)]. In particular, it fol-

lows that len(f ′′
e ) > r/2. Then we claim that for δ small enough, the following two

properties hold:

1. For every e ∈ e(X), the path (f ′′
e (t), ε/8 ≤ t ≤ len(f ′′

e ) − ε/8) is injective.
2. For e1, e2 ∈ e(X) with e1 �= e2, we have{
f ′′

e1
(t) : ε/8 ≤ t ≤ len

(
f ′′

e1

) − ε/8
} ∩ {

f ′′
e2

(t) : ε/8 ≤ t ≤ len
(
f ′′

e2

) − ε/8
} = ∅.

To establish the first property, suppose that f ′′
e (t) = f ′′

e (t ′) for some e ∈ e(X) and
distinct t, t ′ ∈ [ε/8, len(f ′′

e ) − ε/8]. For concreteness, let us assume that e− = vi

and e+ = vj . Since f ′′
e is a local geodesic, this implies that |t − t ′| ≥ R(X′) ≥

r/4. Moreover, since (fe(φ
−1
e (t)), f ′′

e (t)), (fe(φ
−1
e (t ′)), f ′′

e (t ′)) ∈ C8δ and since
δ < ε/128, we have

(6.2) d
(
fe

(
φ−1

e (t)
)
, fe

(
φ−1

e

(
t ′

))) ≤ d ′(f ′′
e (t), f ′′

e

(
t ′

)) + 8δ = 8δ < ε/16.

On the other hand, we have∣∣φ−1
e (t) − φ−1

e

(
t ′

)∣∣ ≥ K(φe)
−1∣∣t − t ′

∣∣ ≥ 1

2

∣∣t − t ′
∣∣ ≥ r/8 > ε/2,
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and since φ−1
e (0) = 0 and φ−1

e (len(f ′′
e )) = �(e),∣∣φ−1

e (t)
∣∣ ≥ K(φe)

−1t > ε/16,
∣∣φ−1

e (t) − �(e)
∣∣ > ε/16,

and similarly for t ′. But if s, s′ ∈ [ε/16, �(e) − ε/16], then d(fe(s), fe(s
′)) ≥

(ε/8)∧|s −s ′|, because a path from fe(s) to fe(s
′) is either a subarc of e, or passes

through both vertices vi and vj . It follows that d(fe(φ
−1
e (t)), fe(φ

−1
e (t ′)) ≥ ε/8,

in contradiction with (6.2). This yields that property 1 holds.
The argument for property 2 is similar: for every t1 ∈ (ε/8, len(f ′′

e1
) − ε/8) and

t2 ∈ (ε/8, len(f ′′
e2

)−ε/8), there exist x1 ∈ e1 and x2 ∈ e2 such that (x1, f
′′
e1

(t1)) and
(x2, f

′′
e2

(t2)) are in C8δ . Then the distance from x1, x2 to k(X) is at least ε/16 so
that d(x1, x2) ≥ ε/8. From this, we deduce that d ′(f ′′

e1
(t1), f

′′
e2

(t2)) ≥ d(x1, x2) −
8δ > 0.

Next, for every i ∈ {1, . . . , n}, consider the points f ′′
e (ε/8), e ∈ e(X) for which

e− = vi , as well as the points f ′′
e (len(f ′′

e ) − ε/8) for which e+ = vi . These points
are on the boundary of the ball Bε/8(v

′′
i ), which we recall is an R-tree. Let Ti be

the subtree of Bε/8(v
′′
i ) spanned by these points. Then property 1 above shows that⋃

1≤i≤n

Ti ∪ ⋃
e∈e(X)

{
f ′′

e (t), ε/8 ≤ t ≤ len
(
f ′′

e

) − ε/8
}

induces a closed subgraph of (X′, d ′) without leaves, and so this subgraph is in fact
a subgraph of core(X′). Furthermore, property 2 implies that the points of degree
at least 3 in this subgraph can only belong to

⋃
1≤i≤n Ti . Since any such point is

then an element of k(X′) and diam(Ti) ≤ ε/4 < r , we see that each Ti can contain
at most one element of k(X′). On the other hand, each Ti must contain at least
one element of k(X′) because Ti has at least three leaves (since vi has degree at
least 3). Thus, each Ti contains exactly one element of k(X′), which we denote by
v′
i . Next, for e ∈ e(X′), if e− = vi, e

+ = vj , then we let f ′
e be the simple path from

v′
i to v′

j that has a nonempty intersection with f ′′
e . It is clear that this path is well-

defined and unique. Letting χ(vi) = v′
i for 1 ≤ i ≤ n, and letting χ(e) = Im(f ′

e)

for e ∈ e(X), we have therefore defined a multigraph homomorphism from ker(X)

to ker(X′), and this homomorphism is clearly injective. By symmetry of the roles
of X and X′, we see that |k(X)| = |k(X′)| and |e(X)| = |e(X′)|, and so χ must, in
fact, be a multigraph isomorphism.

Finally, since len(fe) = �(e) ≤ 1/r , we have∣∣�(e) − len
(
f ′′

e

)∣∣ = ∣∣len(fe) − len
(
f ′′

e

)∣∣ ≤ 64δ

r
len(fe) ≤ 64δ

r2 <
ε

2
,

by our choice of δ. But, by construction, | len(f ′′
e ) − �(χ(e))| < ε/2, since the

endpoints of χ(e) each have distance at most ε/4 from an endpoint of f ′′(e).
It follows that |�(e) − �(χ(e))| < ε. Finally, since every point of χ(e) is within
distance ε/4 of f ′′

e and e = Im(fe) and Im(f ′′
e ) are in correspondence via C8δ , it

follows that e and χ(e) are in correspondence via C8δ+ε/4. Since dis(C8δ+ε/4) <

dis(C) + 16δ + ε/2 < ε, this completes the proof. �
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PROOF OF COROLLARY 6.6. Again we only consider the case s(X) > 1, the
case s(X) = 1 being easier [and the case s(X) = 0 trivial].

Let (Xn, n ≥ 1) and X be as in the statement of Corollary 6.6. Let (Cn,n ≥ 1)

and (πn, n ≥ 1) be sequences of correspondences and of measures, respectively,
such that dis(Cn),πn((Cn)c) and D(πn;μn,μ) each converge to 0 as n → ∞.
The fact that ker(Xn) converges to ker(X) as a graph with edge-lengths is then
an immediate consequence of Proposition 6.5: for each n sufficiently large, simply
replace Cn by Cn ∪ Ĉn, where Ĉn is an εn-overlay of X and Xn, for some sequence
εn → 0 [we may assume εn ≥ dis(Cn)]. We continue to write Cn instead of Cn ∪
Ĉn, and note that enlarging Cn diminishes πn((C

n)c).
In particular, we obtain that for all large enough n, there is an isomorphism χn

from (k(X), e(X)) to (k(Xn), e(Xn)) such that �(e) − �(χn(e)) converges to 0 for
every e ∈ e(X). The fact that r(Xn) → r(X) is immediate. We now fix a particular
orientation of the edges, and view χn as an isomorphism of oriented graphs, in the
sense that χn(e

−) = χn(e)
−.

For each e ∈ e(X), let fe be a local geodesic between e− and e+ with fe(0) =
e− and fe(�(e)) = e+ and, for each n ≥ 1 and e ∈ e(Xn), define fe accordingly.
Then for each n sufficiently large, define a mapping �n with domain dom(�n) =⋃

e∈e(X) fe([0, �(e) − εn]) by setting �n(fe(t)) = f n
χn(e)(t) for each e ∈ e(X) and

each 0 ≤ t ≤ �(e) − εn.
By considering a small enlargement of Cn, or, equivalently, by letting εn

tend to zero sufficiently slowly, we may assume without loss of generality that
(x,�n(x)) ∈ Cn for all x ∈ dom(�n). This comes from the fact that e and χn(e)

are in correspondence via Cn; we leave the details of this verification to the reader.
It follows that the relation {(x,�n(x)) : x ∈ dom(�n)} is a subset of Cn.

Let ec(X) be the set of edges e ∈ e(X) whose removal from e(X) does not
disconnect ker(X). Clearly, conn(X) ⊆ k(X) ∪ ⋃

e∈ec(X) e, and the measure L is
carried by

⋃
e∈ec(X) e (in fact, it is carried by the subset of points of

⋃
e∈ec(X) e with

degree 2, by Proposition 2.6). Let L′ be the restriction of L to the set dom(�n),
which has total mass

∑
e∈ec(X)(�(e) − εn). We consider the push-forward ρn of L′

by the mapping x �→ (x,�n(x)) from X to X × Xn. Then the second marginal of
ρn is the restriction of Ln to

⋃
e∈ec(X) Im(f n

e ), so that

D
(
ρn;L,Ln) ≤ ∑

e∈e(X)

(
εn + ∣∣�(e) − �

(
χn(e)

)∣∣).
The latter converges to 0 by the convergence of the edge-lengths. It only remains
to note that ρn(X × Xn \ Cn) = 0 by construction. This yields (i).

Finally, (i) implies that (Xn, dn,μn,Ln/Ln(conn(Xn))) converges to (X,d,μ,

L/L(conn(X))) in the metric d0,2
GHP introduced in Section 2.1, and (ii) then follows

from Proposition 2.1. �

7. Cutting safely pointed R-graphs. In this section, we will consider a sim-
ple cutting procedure on R-graphs, and study how this procedure is perturbed by
small variations in the Gromov–Hausdorff distance.
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7.1. The cutting procedure. Let (X,d) be an R-graph, and let x ∈ conn(X).
We endow the connected set X \ {x} with the intrinsic distance dX\{x}: more pre-
cisely, dX\{x}(y, z) is defined to be the minimal length of an injective path not
visiting x. This is indeed a minimum because there are finitely many injective
paths between y and z in X, as a simple consequence of Theorem 2.7 applied to
core(X). The space (X \ {x}, dX\{x}) is not complete, so we let (Xx, dx) be its met-
ric completion as in Section 3.2. This space is connected, and thus easily seen to
be an R-graph. We call it the R-graph (X,d) cut at the point x.

From now on, we will further assume that degX(x) = 2, so that (X,d, x) is
safely pointed as in Definition 3.2. In this case, one can provide a more detailed
description of (Xx, dx). A Cauchy sequence (xn, n ≥ 1) in (X \ {x}, dX\{x}) is also
a Cauchy sequence in (X,d), since d ≤ dX\{x}. If its limit y in (X,d) is distinct
from x, then it is easy to see that dX\{x}(xn, y) → 0, by considering a ball Bε(y)

not containing x within which d = dX\{x}.
So let us assume that (xn, n ≥ 1) converges to x for the distance d . Since x has

degree 2, the R-tree BR(X)(x) \ {x} has exactly two components, say Y1, Y2. It is
clear that dX\{x}(z1, z2) ≥ 2R(X) for every z1 ∈ Y1, z2 ∈ Y2. Since (xn, n ≥ 1) is
a Cauchy sequence for (X \ {x}, dX\{x}), we conclude that it must eventually take
all its values in precisely one of Y1 and Y2, let us say Y1 for definiteness. Note that
the restrictions of d and dX\{x} to Y1 are equal, so that if (x′

n, n ≥ 1) is another
Cauchy sequence in (X \ {x}, dX\{x}) which converges in (X,d) to x and takes all
but a finite number of values in Y1, then dX\{x}(xn, x

′
n) = d(xn, x

′
n) → 0, and so

this sequence is equivalent to (xn, n ≥ 1).
We conclude that the completion of (X \ {x}, dX\{x}) adds exactly two points to

X \ {x}, corresponding to classes of Cauchy sequences converging to x in (X,d)

“from one side” of x. So we can write Xx = (X \ {x}) ∪ {x(1), x(2)} and describe
dx as follows:

• If y, z /∈ {x(1), x(2)} then dx(y, z) is the minimal length of a path from y to z in
X not visiting x.

• If y �= x(2) then dx(x(1), y) is the minimal length of an injective path from x to
y in X which takes its values in the component Y1 on some small initial interval
(0, ε), and similarly for d(x(2), y) with y �= x(1).

• Finally, dx(x(1), x(2)) is the minimal length of an embedded cycle passing
through x.

If (X,d, x,μ) is a pointed measured metric space such that (X,d, x) is a safely
pointed R-graph, and μ({x}) = 0, then the space (Xx, dx) carries a natural measure
μ′, such that μ′({x(1), x(2)}) = 0 and, for any open subset A ⊆ Xx not containing
x(1) and x(2), μ′(A) = μ(A) if on the right-hand side we view A as an open subset
of X. Consequently, there is little risk of ambiguity in using the notation μ instead
of μ′ for this induced measure.

We finish this section by proving Lemma 5.5 on the number of balls required to
cover the cut space.
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PROOF OF LEMMA 5.5. Let B1,B2, . . . ,BN be a covering of X by open balls
of radius r > 0, centred at x1, . . . , xN , respectively. By definition, any point of X

can be joined to the centre of some ball Bi by a geodesic path of length < r . If
such a path does not pass through x, then it is also a geodesic path in Xx . Now
since B1, . . . ,BN is a covering of X, this implies that any point y in X can either:

• be joined to some point xi by a path of length < r that does not pass through x,
• or can be joined to x through a path γ of length < r .

In the first case, this means that y belongs to the ball with centre xi and radius r in
Xx . In the second case, depending on whether the initial segment of γ belongs to
Y1 or Y2, this means that y belongs to the ball with centre x(1) or x(2) with radius
r in Xx . This yields a covering of Xx with at most N + 2 balls, as desired.

Conversely, it is clear that if N balls are sufficient to cover Xx then the same is
true of X, because distances are smaller in X than in Xx (if x is identified with the
points {x(1), x(2)}). �

7.2. Stability of the cutting procedure. The following statement will be used in
conjunction with Corollary 6.6(ii). Recall the definition of Ar and the definition of
safely pointed R-graphs, both given in Section 3.2. Then let A•

r be the set of (isom-
etry equivalence classes of) safely pointed measured R-graphs (X,d, x,μ) with
(X,d,μ) ∈Ar , and say that a pointed R-graph (X,d, x) ∈ A•

r if (X,d, x,0) ∈ A•
r .

THEOREM 7.1. Fix r ∈ (0,1). Let (Xn, dn, xn,μn), n ≥ 1 and (X,d, x,μ) be
elements of A•

r . Suppose that

d1,1
GHP

((
Xn,dn, xn,μn)

, (X,d, x,μ)
) −→

n→∞ 0,

and that μn({x}) = μ({x}) = 0 for every n. Then

dGHP
((

Xn
xn, d

n
xn,μ

n)
, (Xx, dx,μ)

) −→
n→∞ 0.

Our proof of Theorem 7.1 hinges on two lemmas; to state these lemmas we
require a few additional definitions. Let X = (X,d, x,μ) ∈ A•

r and recall the defi-
nition of the projection α : X → core(X). For ε > 0, write

B̃ε(x) = {
y ∈ X : d(

α(y), x
)
< ε

}
and hε(X) = diam

(
B̃ε(x)

)
,

so that Bε(x) ⊆ B̃ε(x). The sets B̃ε(x) decrease to the singleton {x} as ε ↓ 0,
because degX(x) = 2. Consequently, hε(X) converges to 0 as ε ↓ 0. For ε > 0
sufficiently small, the set Xx,ε = X \ B̃ε(x), endowed with the intrinsic metric, is
an R-graph. In fact, it is easy to see that for ε < R(X), this intrinsic metric is just
the restriction of dx to Xx,ε .

Let us assume that ε < d(x, k(X)) ∧ R(X). Let x(1),ε, x(2),ε be the two points
of core(X) at distance ε from x, labelled in such a way that, in the notation of
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FIG. 4. Part of an R-graph: core(X) is in thicker line.

Section 7.1, x(1),ε is the point closest to x(1) in Xx , or in other words, such that
x(1),ε ∈ Y1. For i ∈ {1,2}, let Pi be the geodesic arc between x(i),ε and x in X. We
let B(i),ε = {w ∈ B̃ε(x) \ {x} : α(w) ∈ Pi} ∪ {x(i)}, which we see as a subset of Xx .
See Figure 4 for an illustration.

Now let X′ = (X′, d ′, x′,μ′) ∈ A•
r . Just as we defined the space Xx = (Xx, dx),

we define the space X′
x′ = (X′

x′, d ′
x′), with X′

x′ = (X′ \ {x′}) ∪ {x′
(1), x

′
(2)}. We

likewise define the sets B̃ε(x
′) and B ′

(1),ε,B
′
(2),ε and the points x′

(1),ε, x
′
(2),ε for

ε < d(x′, k(X′)) ∧ R(X′) as above. We will use the same notation α for the pro-
jection X′ → core(X′).

LEMMA 7.2. Fix δ > 0. If C is a δ-overlay of X and X′, then for every
(y, y′) ∈ C, we have (α(y),α(y′)) ∈ C2δ .

PROOF. Let y′′ be such that (α(y), y′′) ∈ C. Since C is a δ-overlay, d ′(y′′,
core(X′)) < δ. In particular, if α(y′′) = α(y′) then we have d ′(α(y′), y′′) < δ. Oth-
erwise, a geodesic from y′ to y′′ must pass through α(y′) and α(y′′), so that

d ′(y′, α
(
y′)) + d ′(α(

y′), y′′) = d ′(y′, y′′) ≤ d
(
y,α(y)

) + δ.

On the other hand, since C is an δ-overlay, we know that core(X) and core(X′) are
in correspondence via C, which implies that

d ′(y′, α
(
y′)) = d ′(y′, core

(
X′)) > d

(
y, core(X)

) − δ = d
(
y,α(y)

) − δ,

so that d ′(α(y′), y′′) ≤ 2δ. In all cases, we have (α(y),α(y′)) ∈ C2δ , as claimed.
�



THE SCALING LIMIT OF THE MST OF THE COMPLETE GRAPH 3137

LEMMA 7.3. Fix r ∈ (0,1). For all ε > 0, there exists η > 0 such that if
d1,1

GHP(X,X′) < η then

dGHP
(
Xx,X′

x′
) ≤ μ

(
B̃ε(x)

) + μ′(B̃ε

(
x′))

+ 3 max
(
hε(x), hε

(
x′)) + 7

(
2

diam(X) ∨ diam(X′)
r

∨ 1
)
ε.

PROOF. Since d1,1
GHP(X,X′) < η, we can find C0 ∈ C(X,X′) with dis(C0) < η

and with (x, x′) ∈ C0, and a measure π with D(π;μ,μ′) ≤ η and π(Cc
0) < η.

Fix δ > 0 such that δ < ε/10 and δ < r/56. By choosing η < δ sufficiently small,
it follows by Proposition 6.5 that there exists a δ-overlay C of X and X′ with
C0 ⊂ C, so in particular (x, x′) ∈ C0 and π(Cc) < η < δ. We also remark that
D(π;μ,μ′) ≤ δ.

We next modify C to give a correspondence between Xx,ε and X′
x′,ε by letting

C(ε) = (
C ∩ (

Xx,ε × X′
x′,ε

)) ∪ A1 ∪ A2 ∪ A′
1 ∪ A′

2,

where for i ∈ {1,2}, we define

Ai = {(
y, x′

(i),ε

) : (
y, y′) ∈ C ∩ (

Xx,ε × B ′
(i),ε

)}
,

A′
i = {(

x(i),ε, y
′) : (

y, y′) ∈ C ∩ (
B(i),ε × X′

x′,ε
)}

.

To verify that C(ε) is indeed a correspondence between Xx,ε and X′
x′,ε , it suf-

fices to check that there does not exist y ∈ Xx,ε for which (y, x′) ∈ C, and sim-
ilarly that there does not exist y′ ∈ X′

x′,ε for which (x, y′) /∈ C. In the first case,
this is immediate since d(x, y) ≥ ε, so for all y′ ∈ X′ with (y, y′) ∈ C we have
d ′(x′, y′) ≥ ε − δ > 0. A symmetric argument handles the second case.

We next estimate the distortion of C(ε) when Xx,ε and X′
x′,ε are endowed with

the metrics dx and d ′
x′ , respectively. To this end, let (y, y′), (z, z′) ∈ C(ε). We have

to distinguish several cases. The simplest case is when (y, y′) and (z, z′) are, in
fact, both in C. In particular, y, z ∈ Xx,ε and y′, z′ ∈ X′

x′,ε . Let f be a geodesic
from y to z in Xx,ε , i.e. a local geodesic in Xx,ε not passing through x and with
minimal length. Let f ′ be the path from y′ to z′ associated with f as in Lemma 6.7,
which we may apply since δ < r/56. We claim that f ′ does not pass through
x′. Indeed, if it did, then we would be able to find a point x0 ∈ Im(f ) such that
(x0, x

′) ∈ C8δ . Since also (x, x′) ∈ C8δ , it would follow that

d
(
x, Im(f )

) ≤ d(x, x0) ≤ d ′(x′, x′) + 8δ < ε,
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contradicting the fact that f is a path in Xx,ε . By Lemma 6.7, we deduce that

(7.1)

d ′
x′

(
y′, z′) ≤ dx(y, z)

(
1 + 64δ

r ∧ dx(y, z)

)

= dx(y, z) + 64
(

dx(y, z)

r
∨ 1

)
δ

≤ dx(y, z) + 64
(

2 diam(X)

r
∨ 1

)
δ,

where at the last step we use that dx(y, z) ≤ diam(Xx) ≤ 2 diam(X).
Let us now consider the cases where (y, y′) /∈ C, still assuming that (z, z′) ∈ C.

There are two possibilities:

1. There exists y′′ ∈ B ′
(i),ε with (y, y′′) ∈ C and i ∈ {1,2}, and so y ′ = x′

(i),ε .
2. There exists y ∈ B(i),ε with (y, y′) ∈ C and i ∈ {1,2}, and so y = x(i),ε .

Let us consider the first case, assuming i = 1 for definiteness. The argument
leading to (7.1) is still valid, with y′′ replacing y′. Using d ′

x′(y′′, x′
(1),ε) =

d ′(y′′, x′
(1),ε) ≤ hε(x

′), we obtain

d ′
x′

(
y′, z′) ≤ dx(y, z) + 64

(
2 diam(X)

r
∨ 1

)
δ + hε

(
x′).

In the second case (still assuming i = 1 without loss of generality), we have to
modify the argument as follows. We consider a geodesic f from y to z in (Xx, dx).
We f ′ be the associated path from y′ to z′ (again using Lemma 6.7), and claim that
x′ /∈ Im(f ′). Otherwise, f would visit a point at distance less than 8δ from x. On
the other hand, the point of Im(f ) that is closest to x is α(y). But by Lemma 7.2,
we have

d
(
x,α(y)

) ≥ d ′(x′, α
(
y′)) − 2δ ≥ ε − 2δ > 8δ.

Finally, since y = x(1),ε we obtain that dx(y, z) ≤ dx(y, z) + hε(x), and the argu-
ment leading to (7.1) yields

d ′
x′

(
y′, z′) ≤ dx(y, z) + hε(x) + 64

(
2 diam(X)

r
∨ 1

)
δ.

Arguing similarly when (z, z′) is no longer assumed to belong to C, we obtain the
following bound for every (y, y′), (z, z′) ∈ C(ε):

d ′
x′

(
y′, z′) ≤ dx(y, z) + 2

(
hε(x) ∨ hε

(
x′)) + 64

(
2 diam(X)

r
∨ 1

)
δ.

Writing hε = hε(x) ∨ hε(x
′), by symmetry we thus conclude that

dis
(
C(ε)) ≤ 2hε + 64

(
2

diam(X) ∨ diam(X′)
r

∨ 1
)
δ,
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where the distortion is measured with respect to the metrics dx and d ′
x′ . Now let

Ĉ(ε) be the hε-enlargement of C(ε) with respect to dx and d ′
x′ . Since C(ε) is a

correspondence between Xx,ε and X′
x′,ε , and all points of Xx (resp., X′

x′) have
distance at most hε from Xx,ε (resp., X′

x′,ε) under dx (resp., d ′
x′ ), we have that

Ĉ(ε) is a correspondence between Xx and X′
x′ , of distortion at most

3hε + 64
(

2
diam(X) ∨ diam(X′)

r
∨ 1

)
δ.

Finally, since D(π;μ,μ′) ≤ δ and π(Cc) ≤ δ, and since (C ∩ (Xx,ε ×X′
x′,ε)) ⊂

C(ε) ⊂ Ĉ(ε), we have

π
((

Ĉ(ε))c) ≤ π
(
Cc) + π

(
B̃ε(x) × X′) + π

(
X × B̃ε

(
x′))

≤ δ + μ
(
B̃ε(x)

) + μ′(B̃ε

(
x′)).

Since 65δ < 6.5ε < 7ε, the lemma then follows from the two preceding offset
equations and the definition of the distance dGHP. �

PROOF OF THEOREM 7.1. Fix ε > 0. Under the hypotheses of the theorem,
for all n large enough, by Lemma 7.3 we have

dGHP
(
Xx,Xn

xn

) ≤ μ
(
B̃ε(x)

) + μ′(B̃ε

(
xn)) + 3 max

(
hε(x), hε

(
xn))

+ 7
(

2
diam(X) ∨ diam(Xn)

r
∨ 1

)
ε.

It is easily checked that, for all ε > 0,

lim sup
n→∞

hε

(
xn) ≤ h2ε(x), lim sup

n→∞
μn(

B̃ε

(
xn)) ≤ μ

(
B̃2ε(x)

)
,

which both converge to 0 as ε → 0. The result follows. �

7.3. Randomly cutting R-graphs. Let X = (X,d, x) be a safely pointed R-
graph, and write L for the length measure restricted to conn(X). Then Xx =
(Xx, dx) is an R-graph with s(Xx) = s(X) − 1. Indeed, if e is the edge of ker(X)

that contains x, then it is easy to see that ker(Xx) is the graph obtained from X by
first deleting the interior of the edge e, and then taking the kernel of the resulting
R-graph. Taking the kernel of a graph does not modify its surplus, and so the sur-
plus diminishes by 1 during this operation, which corresponds to the deletion of
the edge e. Moreover, we see that Ar is stable under this operation, in the sense
that if (X,d) ∈ Ar , then for every x such that (X,d, x) is safely pointed, the space
(Xx, dx) is again in Ar . Indeed, the edges in ker(Xx) are either edges of ker(X),
or a concatenation of edges in ker(X), and so the minimum edge-length can only
increase. On the other hand, the total core length and surplus can only decrease.

Let us now consider the following random cutting procedure for R-graphs. If
(X,d) is an R-graph which is not an R-tree, then it contains at least one cycle, and
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by Proposition 2.6, �-almost every point of any such cycle is in conn(X). Conse-
quently, the measure L = �(· ∩ conn(X)) is nonzero, and we can consider a point
x chosen at random in conn(X) with distribution L/L(conn(X)). Then (X,d, x) is
a.s. safely pointed by Proposition 2.6. Let K(X, ·) be the distribution of (Xx, dx).
By convention, if X is an R-tree, we let K(X, ·) = δ{X}. By combining Corol-
lary 6.6(ii) with Theorem 7.1, we immediately obtain the following statement.

PROPOSITION 7.4. Fix r > 0, and let (Xn, n ≥ 1) and X be elements of Ar

such that dGHP(Xn,X) → 0 as n → ∞. Then K(Xn, ·) d→ K(X, ·) in (M,dGHP),
as n → ∞.

In particular, K defines a Markov kernel from Ar to itself for every r . Since each
application of this kernel decreases the surplus by 1 until it reaches 0, it makes
sense to define K∞(X, ·) to be the law of Km(X, ·) for every m ≥ s(X), where
Km denotes the m-fold composition of K. The next corollary follows immediately
from Proposition 7.4 by induction.

COROLLARY 7.5. Fix r > 0, and let (Xn, n ≥ 1) and X be elements of Ar

with dGHP(Xn,X) → 0 as n → ∞. Then K∞(Xn, ·) d→ K∞(X, ·) in (M,dGHP),
as n → ∞.

This proves Theorem 3.3.
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