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A (2 + 1)-DIMENSIONAL GROWTH PROCESS WITH EXPLICIT
STATIONARY MEASURES1
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Université de Lyon∗ and CNRS†

We introduce a class of (2+1)-dimensional stochastic growth processes,
that can be seen as irreversible random dynamics of discrete interfaces. “Ir-
reversible” means that the interface has an average nonzero drift. Interface
configurations correspond to height functions of dimer coverings of the infi-
nite hexagonal or square lattice. The model can also be viewed as an inter-
acting driven particle system and in the totally asymmetric case the dynamics
corresponds to an infinite collection of mutually interacting Hammersley pro-
cesses.

When the dynamical asymmetry parameter (p − q) equals zero, the
infinite-volume Gibbs measures πρ (with given slope ρ) are stationary and
reversible. When p �= q, πρ are not reversible any more but, remarkably, they
are still stationary. In such stationary states, we find that the average height
function at any given point x grows linearly with time t with a nonzero speed:
EQx(t) := E(hx(t)−hx(0)) = V (ρ)t while the typical fluctuations of Qx(t)

are smaller than any power of t as t → ∞.
In the totally asymmetric case of p = 0, q = 1 and on the hexagonal lat-

tice, the dynamics coincides with the “anisotropic KPZ growth model” intro-
duced by A. Borodin and P. L. Ferrari in [J. Stat. Mech. Theory Exp. 2009
(2009) P02009, Comm. Math. Phys. 325 603–684]. For a suitably chosen,
“integrable”, initial condition (that is very far from the stationary state), they
were able to determine the hydrodynamic limit and a CLT for interface fluctu-
ations on scale

√
log t , exploiting the fact that in that case certain space-time

height correlations can be computed exactly. In the same setting, they proved
that, asymptotically for t → ∞, the local statistics of height fluctuations tends
to that of a Gibbs state (which led to the prediction that Gibbs states should
be stationary).

1. Introduction. To motivate the object of our study, let us start with a well-
known (1 + 1)-dimensional growth process. At all times t , the configuration
is an integer-valued height function x ∈ Z �→ hx(t) ∈ Z with space increments
hx −hx−1 = ±1; see Figure 1. Local minima turn to local maxima with rate p (this
corresponds to deposition of elementary squares) and local maxima to local min-
ima with rate q (evaporation of elementary squares). If positive interface gradients
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FIG. 1. The ASEP: squares are deposed (i.e., minima turn to maxima) with rate p and evaporate
(i.e., maxima turn to minima) with rate q . In the particle interpretation, particles jump to the right/left
with rate q/p and cannot occupy the same site.

are identified with “particles” and negative gradients with “holes”, this process is
equivalent to the one-dimensional Asymmetric Simple Exclusion process (ASEP).

The study of this and similar stochastic growth processes in dimension (1 + 1)

witnessed a spectacular progress recently, especially in relation with the so-called
KPZ equation; cf. for example, [10, 15, 27] for recent reviews. Some of the ba-
sic questions that were solved for certain models include the identification of the
translation-invariant stationary states (for ASEP, these are simply the combina-
tions of Bernoulli measures for any intensity ρ ∈ [0,1]), the determination of the
dynamic scaling exponents characterising the space-time correlation structure of
height fluctuations, the study of the limit rescaled fluctuation process and its de-
pendence on the type of initial condition. The same KPZ scaling relations appear
also in the context of (1 + 1)-dimensional directed polymers in random environ-
ment, last passage percolation and random matrix theory, just to mention a few
instances [10, 15, 27].

On the other hand, for (d + 1)-dimensional stochastic growth models, d ≥ 2,
the situation is much more rudimentary and mathematical results (see notably [5,
26]) are rare. In this work, we introduce a (2 + 1)-dimensional stochastic growth
process, for which we study the stationary measures and the corresponding large-
time behavior of height fluctuations. The two-dimensional interfaces entering the
definition of our process are discrete (i.e., heights are integer-valued) and are given
by the height function associated to dimer coverings (perfect matchings) of either
the infinite hexagonal or infinite square lattice [21]. Height functions correspond-
ing to dimer coverings of bipartite planar graphs, or to the associated tilings of the
plane, are classical examples of discrete two-dimensional interfaces. For instance,
dimer coverings of the hexagonal lattice (i.e., tilings of the plane by lozenges of
three different orientations) correspond to discrete monotone surfaces obtained by
stacking unit cubes; see Figure 2. “Monotone” means that if we let hx,y denote the
height w.r.t. the horizontal plane of the vertical column of cubes with horizontal
coordinates (x, y), then hx,y ≥ max(hx+1,y, hx,y+1). In a sense, discrete mono-
tone height functions are the most natural (2 + 1)-dimensional analogue of the
(1 + 1)-dimensional height functions appearing in the one-dimensional ASEP.
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FIG. 2. A lozenge tiling of a portion of the plane, or equivalently a monotone stacking of unit cubes

Given a density vector ρ = (ρ1, ρ2, ρ3) ∈R
3+ with ρ1 +ρ2 +ρ3 = 1, there exists

[22] a unique infinite-volume translation-invariant ergodic Gibbs measure πρ such
that:

• the three types of lozenges have densities ρi, i = 1,2,3 and
• conditioned on the tiling configuration outside a finite region � of the plane, πρ

describes a uniformly random tiling of �.

The measures πρ have an explicit determinantal structure that will play a role in
this work and that is recalled in Section 2.2.

To model a growth process, we want to introduce a Markov evolution which is
asymmetric or irreversible, in the sense that the interface has a net drift, propor-
tional to an asymmetry parameter p − q . Moreover, as discussed in Section 1.1
below, in order that its fluctuations can be at least heuristically described by a
(2 + 1)-dimensional KPZ-type equation, the average interface speed should be a
nonlinear function of the interface slope. The most natural (2 + 1)-dimensional
generalization of the ASEP described above (but which is not the one we will
study here) would be the following. Let

(1.1)
�+

x,y := min(hx−1,y, hx,y−1) − hx,y ≥ 0,

�−
x,y := hx,y − max(hx+1,y, hx,y+1) ≥ 0,

and observe that �+
x,y (resp., �−

x,y ) is the maximal number of cubes we can add
to (resp., remove from) column (x, y) while respecting the condition hx′,y′ ≥
max(hx′+1,y′, hx′,y′+1) for every (x′, y′). For every column (x, y), we add a single
cube with rate p if �+

x,y > 0 and remove a single cube with rate q if �−
x,y > 0.

In words, single elementary cubes are deposed (Figure 4 top) with rate p and re-
moved (Figure 4 bottom) with rate q (compare with Figure 1). We refer to this
as the “single-flip dynamics”. If p = q , there is no drift and the infinite-volume
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Gibbs measures πρ [22] are stationary and reversible. If instead p �= q , the station-
ary states are not known, but they appear to be definitely very different from the
equilibrium Gibbs measures [16, 31, 32]. This process has been studied numeri-
cally and one finds that typical interface fluctuations grow with time like tβ , with
β � 0.24 . . . [16, 32]. This is in sharp contrast with the ASEP, where the Bernoulli
measures are stationary, irrespective of p being equal or different from q . In the
language of Section 1.1, the two-dimensional single-flip growth process is believed
to belong to the so-called isotropic (2 + 1)-dimensional KPZ class when q �= p.
Unfortunately, the single-flip process is very hard to analyze mathematically and
very little is known rigorously.

In this work, we study, instead of the single-flip dynamics, a different (2 + 1)-
dimensional irreversible growth process, that we call “bead dynamics” for reasons
that will be clear later (in the hexagonal lattice case, “beads” or “particles” cor-
respond to horizontal lozenges as in Figure 2). As discussed in Section 1.1, the
bead dynamics belongs (in contrast with the single-flip dynamics) to the so-called
anisotropic (2 + 1)-dimensional KPZ class when q �= p. Updates of the dynam-
ics consist in adding or removing a random number ≥ 1 of cubes at some column
(x, y), in the following way (see Section 2.3 for a precise definition and Section 3.1
for the analogous construction on the square lattice). For every column (x, y), we
assign:

• rate p to the update hx,y → hx,y + i for every i = 1, . . . ,�+
x,y [deposition of i

cubes to column (x, y)];
• rate q to the update hx,y → hx,y − i for every i = 1, . . . ,�−

x,y [removal of i

cubes from column (x, y)].

If p = q , again there is no drift and the measures πρ [22] are stationary and re-
versible. Somewhat surprisingly, πρ turns out to be stationary (but not reversible)
for any density vector ρ and for any value of p − q . This is the content of our
first result, Theorem 2.4. The same then clearly holds also if we add to the gen-
erator of the bead dynamics the generator of another process w.r.t. which πρ is
reversible. The measures πρ and their convex combinations are the only station-
ary measures that can be obtained as L → ∞ limits of stationary measures for
the bead dynamics periodized on the torus of side L. In principle, our result does
not exclude the existence of other stationary measures that cannot be obtained this
way; there might exist for instance analogs of the so-called “blocking measures”
of one-dimensional asymmetric exclusion processes [8, 13].

We emphasize that it is a nontrivial fact that equilibrium Gibbs measures should
remain stationary in presence of dynamical irreversibility. As we mentioned above,
this is false for instance for the single-flip dynamics. Typically, one expects that a
Gibbs measure of a reversible dynamics remains stationary after introduction of a
drift only when the reversible dynamics satisfies a so-called “gradient condition”
[2, 20, 30]. As we discuss in Section 4.1.1, for the symmetric dynamics with p = q
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one can indeed identify a certain “gradient condition” that might help explain why
Theorem 2.4 holds.

It is important to emphasize that stationarity of the Gibbs measures means that,
if the process is started from the distribution πρ , the law of interface gradients
is time-invariant. However, overall the height function has a time-dependent ran-
dom shift hx0(t) − hx0(0) where, say, x0 is the origin of the plane. On average,
hx0(t) − hx0(0) grows like (p − q)tV for some nonzero and slope-dependent V

but the amplitude of its fluctuations cannot be deduced immediately from the sta-
tionary gradient measure πρ . Our second result, Theorem 3.1, says that the typical
fluctuations of hx(t) − hx(0) grow slower than any power of t . Under a certain
(technical) restriction on the interface slope, we can actually prove that fluctua-
tions are at most of order

√
log t , which we believe to be the optimal order of

magnitude. Recall that, in sharp contrast, for the single-flip dynamics fluctuations
were observed numerically [16, 32] to grow like a nontrivial power of t .

A word about Theorem 2.4 (stationarity of πρ ). Checking stationarity is easy
for the process periodized on the torus of size L; see Section 4. The extension to
the infinite lattice is, however, nontrivial. One may expect that, when L is large,
on local scales and for finite times the system does not feel the periodic boundary
conditions and, therefore, locally the dynamics on the torus and on the infinite lat-
tice could be coupled with high probability. The situation is however more subtle:
while on the torus the process is always well defined, in the infinite systems one
can easily construct initial configurations such that, for instance, beads (horizontal
lozenges) escape instantaneously to infinity. This is due to the fact that we allow
for an unbounded amount of cubes to be deposed/removed at a time, since �±

x,y is
not bounded. In order for the coupling to work, one needs to prove that for typi-
cal initial conditions and with high probability, the random variables �±

x,y remain
sufficiently tight in time during the out-of-equilibrium evolution. An important in-
gredient in overcoming these difficulties is the work [28] by Seppäläinen on the
one-dimensional Hammersley process [1, 14, 28]. In fact, viewing beads as par-
ticles, the bead dynamics can be seen as a two-dimensional generalization of the
Hammersley process, or more precisely an infinite collection of interacting Ham-
mersley processes; see Figure 5 (a different two-dimensional generalization of the
Hammersley process was introduced by Seppäläinen in [29]: in that case a full hy-
drodynamic limit was obtained, but the stationary measures and the size of height
fluctuations remain unknown). As a side remark, the single-flip dynamics can be
instead visualized in a natural way as an infinite collection of mutually interacting
one-dimensional ASEPs; see the caption of Figure 5.

As we explain in some more detail in Section 3, in the totally asymmetric case
p = 0, q = 1 and on the hexagonal lattice, the bead dynamics is the same as the
interacting driven particle system introduced by A. Borodin and P. L. Ferrari in [4,
5]. In [5], for a specific, deterministic initial condition, the hydrodynamic limit and
the convergence of height fluctuations on scale

√
log t to a Gaussian field were ob-

tained. For such initial condition, the above-mentioned problem of proving that the
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dynamics is well-posed does not arise, simply because each bead has a determinis-
tic, time-independent maximal position it can possibly reach and, therefore, cannot
escape to infinity. As we mention in Section 3, on the basis of [5], Proposition 3.2,
it was natural to conjecture our Theorem 2.4.

1.1. Isotropic and anisotropic KPZ classes. In order to predict whether the
fluctuations of a (2 + 1)-dimensional growth process should be described by a
KPZ-type equation, one should look at the Hessian of V , the average interface
velocity considered as a function of the interface slope. Indeed, the evolution of
the fluctuations h in the stationary state of slope ∇φ should be governed on large
space-time scales by a stochastic PDE of the type

(1.2) ∂th = ν�h + Q(∂xh, ∂yh) + white noise,

with ν a diffusion coefficient and Q(·, ·) a quadratic form whose corresponding
symmetric 2 × 2 matrix is proportional to the Hessian of V at ∇φ. (At present, it
is not known how to regularize such equation in order to make it mathematically
well defined, as was done recently for its one-dimensional analog [18].)

The growth model is said to belong to the “anisotropic (2 + 1)-dimensional
KPZ class” when the two eigenvalues of the quadratic form Q have opposite sign,
and to the “isotropic (2 + 1)-dimensional KPZ class” when they have the same
sign. As discussed in [4], the bead dynamics belongs to the anisotropic class [the
eigenvalues can be computed explicitly from formula (3.5) below for V ].

Models in the anisotropic class are in a sense easier than those in the isotropic
class. Indeed, in the former case it was predicted by Wolf [33] that the nonlinear-
ity Q is irrelevant as far as the large-time behavior of the interface roughness is
concerned, that is, the fluctuations of hx(t) − hx(0) should be of the same order√

log t as for the linear Edwards–Wilkinson equation [12], where Q is set to zero.
Theorem 3.1 and equation (3.8) confirm this prediction, for the bead model. Apart
from the bead dynamics, we study here, there are a few other (2 + 1)-dimensional
stochastic growth model models known to be in the anisotropic KPZ class, and
all of them are exactly solvable in some sense. In this respect, let us mention the
model introduced by Prähofer and Spohn in [26], for which height fluctuations are
also known to grow like

√
log t . See also [3], Section 3.3, for growth models in the

same universality class: it would be interesting to see whether our result extend to
these processes.

The situation is very different for models in the isotropic KPZ class. In this case,
there are, to our knowledge, no exactly solvable models and only numerical sim-
ulations are available (see [19] for an overview). The nonlinearity Q is expected
to be relevant and to produce a nontrivial dynamical height fluctuation exponent.
In particular, while neither the interface velocity V nor the stationary states of the
(2 + 1)-dimensional single-flip dynamics can be computed explicitly, the model is
widely believed to belong to the isotropic KPZ class and, as mentioned above, the
dynamical fluctuation exponent is numerically estimated to β � 0.24 . . . [16, 32].
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FIG. 3. A portion of dimer covering of H and the corresponding lozenge picture. The two beads in
column 
 are encircled and the vertices b0, w0 are marked.

2. Irreversible lozenge dynamics and stationarity of Gibbs states.

2.1. Configuration space. The Markov process we are interested in lives on
�H, the set of dimer coverings (perfect matchings) of the hexagonal lattice H, or
equivalently the set of lozenge tilings of the whole plane; see Figure 3. The “ele-
mentary moves” of the dynamics consist in rotating by an angle π/3 three dimers
around a hexagonal face; see Figure 4. In this move, a horizontal dimer moves
up or down a distance 1. The generic move of the dynamics (defined precisely in
Section 2.3) that was described in the Introduction as the deposition/removal of k

cubes, can be seen as a concatenation of a random number k ≥ 1 of elementary
moves in k adjacent hexagons in the same vertical column. We can therefore see

FIG. 4. The two elementary moves.
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each “horizontal dimer/lozenge” (we call them “beads” hereafter2) as attached to a
“column” (an infinite vertical stack of hexagons): the bead can move up and down
along the column but not change column. The set of possible bead positions can
be identified with Z on, say, even columns and with Z + 1/2 on odd columns.
Note that beads of neighboring columns are interlaced: if on column 
 there are
two beads at positions z1 < z2 then necessarily in column 
 − 1 there is a bead at
a position z1 < z3 < z2, and similarly for column 
 + 1.

DEFINITION 2.1. For each dimer configuration σ and bead b, we let I+
b =

I+
b (σ ) be the collection of available positions above it, that is, positions that b can

reach via a concatenation of elementary moves that do not touch any other bead
and do not violate the interlacing constraints. We define similarly I−

b = I−
b (σ ) as

the collection of available positions below it.

REMARK 2.2. Given a finite or infinite subset � of H, we denote σ |� the
dimer configuration restricted to � and η|� the configuration of beads restricted
to �. If � =H we omit the index �. If (as will be the case in Theorem 2.4 below)
every column contains at least one bead, σ can be reconstructed by knowing just η.
In this case, we will identify a dimer covering with a bead configuration.

2.2. Height function. On H, we take a coordinate frame where the axis 
e1
forms a clockwise angle +5π/6 with the usual horizontal axis and the axis 
e2 an
angle +π/6; see Figure 3. We also set 
e3 = −
e1 − 
e2 to be the vertical unit vector.

DEFINITION 2.3. Let H∗ denote the dual graph of H (it is a triangular lattice,
whose vertices are vertices of lozenges). Vertices of H∗ are as usual identified with
hexagonal faces of H.

The height function h : H∗ �→ Z is an integer-valued function, defined up to an
arbitrary additive constant. When moving one step in the 
e1 or 
e2 direction, the
height increases by 1 when a dimer (or equivalently lozenge) is crossed and stays
constant otherwise.

Note that, with this convention, h corresponds to minus the height function with
respect to the horizontal plane, and observe also that when moving one step in the

e3 direction, h decreases by 1 if no dimer is crossed and stays constant otherwise.

Given ρ = (ρ1, ρ2) ∈ R
2 with 0 < ρ1, ρ2 < 1 and 0 < ρ1 + ρ2 < 1 (we call ρ a

nonextremal slope), there exists a unique translation-invariant ergodic Gibbs state
πρ with slope ρ. This is a translation invariant probability law on the set of dimer
coverings of H, that satisfies (cf. [21], Section 6):

2A similar terminology was adopted in [7] for a model where bead positions take real values: such
continuous model can be obtained from the dimer coverings of the hexagonal lattice in the limit
where the density of horizontal dimers tends to zero, by suitably rescaling the lattice.
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• πρ is ergodic with respect to translations by a
e1 + b
e2, a, b ∈ Z;
• it satisfies the Dobrushin–Lanford–Ruelle equations: conditionally on the dimer

configuration σGc outside a given finite subset G ⊂ H, πρ is the uniform measure
over all dimer coverings σG of G compatible with σGc , that is, such that σGc ∪σG
is a dimer covering of H;

• it has slope ρ, that is, πρ(hx+
ei
− hx) = ρi, i = 1,2.

Note that ρ1 is the density of south-east oriented lozenges, ρ2 is the density of
north-east lozenges and ρ3 := 1 − ρ1 − ρ2 the density of horizontal lozenges.
The nonextremality requirement on ρ means that all three types of lozenges have
nonzero density.

The measure πρ is in a sense completely known and has a determinantal rep-
resentation that we recall here briefly [cf. in particular (2.3)], since it will be
needed in the following. See [21, 22] for further details. First of all, color sites
of H white/black according to whether they are the left/right endpoint of a hor-
izontal edge and let HW , HB be the sub-lattice of white/black vertices. We de-
note w0, b0 the black/white vertices indicated in Figure 3 and we let wx , bx , with
x = (x1, x2) ∈ Z

2, be the translation of w0, b0 by x1
e1 + x2
e2.
Take a triangle with angles θi = πρi, i = 1,2,3 and let ki, i = 1,2,3 be

the length of the side opposite to θi . Define the Kasteleyn matrix K = {K(b,

w)}b∈HB,w∈HW
as follows: If b, w are not nearest neighbors, then K(b,w) = 0.

If they are nearest neighbors, then K(b,w) = k1 or k2 or k3 according to whether
the edge bw is oriented south-east, north-east or horizontal.

Define also the matrix K−1 = {K−1(w,b)}w∈HW ,b∈HB
as

(2.1)

K−1(wx,bx′) = 1

(2πi)2

∫
T

z−(x′
2−x2)wx′

1−x1

P(z,w)

dz

z

dw

w

:= 1

(2πi)2

∫
T

z−(x′
2−x2)wx′

1−x1

k3 + k1z + k2w

dz

z

dw

w
,

where the integral is taken over the two-dimensional unit torus T := {(z,w) ∈ C
2 :

|z| = |w| = 1}. The long-distance behavior of K−1 is precisely known [22]: since
the polynomial P has two simple zeros on the torus, K−1 decays like the inverse
of the distance so that in particular∣∣K−1(w0,bx)

∣∣ ≤ C(ρ)

|x1| + |x2| + 1
(2.2)

with C(ρ) < ∞ (this in general fails if ρ is extremal, e.g., if only one of the three
dimer orientations has positive density).

Given a set of (not necessarily horizontal) edges e1 = (w1,b1), . . . , ek =
(wk,bk) of H, the correlation function πρ(δe1 · · · δek

) (with δe the indicator func-
tion that there is a dimer at e) is given by

πρ(δe1 · · · δek
) =

(
k∏

i=1

K(bi ,wi)

)
det

(
K−1(wi ,bj )

)
1≤i,j≤k.(2.3)



2908 F. L. TONINELLI

Note, also in view of formula (2.1), that the right-hand side of (2.3) is invariant if
we multiply all ki by a common factor c, so that we may for instance fix the sum
k1 + k2 + k3 to 1.

2.3. Definition of the dynamics and stationarity of Gibbs states. The dynamics
is informally defined as follows (cf. Figure 5). To each column 
 and to each possi-
ble bead position z (horizontal edge of H), we associate two independent Poisson
clocks of mean p ∈ [0,1] and q ∈ [0,1], respectively. We call them p-clocks and
q-clocks, with obvious meaning. Clocks at different locations are independent.
When a p-clock (resp., a q-clock) at (
, z) rings, if (
, z) is occupied by a bead we
do nothing. Otherwise, we look at the highest (resp., lowest) bead (if any) on col-
umn 
 that is at position lower (resp., higher) than z: if it can be moved to z without
violating the interlacing constraints then we do so, otherwise we do nothing.

It is not obvious that the process is well defined on the infinite lattice. The
danger is that beads could escape to +∞ or to −∞ in finite time (even in an
arbitrarily small time). This may occur when spacings between beads in the initial
configuration grow sufficiently fast at infinity. The problem is that the rate at which
a bead moves, say, upward is p × |I+

b | and the average size of the jump is (|I+
b | +

1)/2, and |I+
b | is not bounded.

FIG. 5. A portion of the lattice with the allowed moves and the respective rates. Beads are drawn
as black lozenges. When p = 1, q = 0 or p = 0, q = 1 the process can be seen as an infinite set
of discrete Hammersley processes, one per column, each interacting with the two neighboring pro-
cesses. If instead we allowed particles to jump only by ±1 with rates p/q , the process would be the
single-flip dynamics described in the Introduction and would correspond to an infinite collection of
mutually interacting asymmetric simple exclusion processes (ASEP), one per column.
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Our first result (Theorem 2.4) is that the process is well defined for almost every
initial condition sampled from πρ and that πρ is invariant. “Well defined” means
that the displacement of every bead with respect to its position at time zero is
almost surely finite for every t ≥ 0. In the symmetric case p = q , assuming that
the process is well defined, invariance of the Gibbs measure is obvious because it
is reversible.

To precisely formulate the result, let us start by defining, given K = (Kp,Kq) ∈
(R+)2, a cut-off process where p-clocks at distance more than Kp (resp., q-clocks
at distance more than Kq ) from the origin of H are switched off. As long as
Kp,Kq < ∞ there is no problem in defining the process on the whole H, since
this is effectively a Markov jump process on a finite state space [once a particle
is inside the ball of radius max(Kq,Kp) it cannot leave it and, therefore, there is
only a finite number of particles, determined by the initial condition, that can ever
move]. We call Xσ

t;K the configuration at time t , started from initial condition σ .
Given a column 
, let zt (
, n;K) be the position of its nth bead at time t , with
zt (
, n;K) < zt(
, n + 1;K). The label n is assigned in the initial condition and
is attached to beads forever. For instance, one can assign the label (
,0) to the
lowest bead in 
 with nonnegative vertical coordinate (in the initial condition). We
assume hereafter that in each column there is a doubly infinite set of beads, that is,
the index n runs over all of Z.

Two processes with different cut-offs K and K ′ can be coupled in the ob-
vious way: their p-clocks (resp., q-clocks) are the same in the ball of radius
min(Kp,K ′

p) [resp., min(Kq,K ′
q)]. It is then easy to check that zt (
, n;K) is in-

creasing w.r.t. Kp and decreasing w.r.t. Kq . We will then define

(2.4) zt (
, n) = lim
Kq→∞ lim

Kp→∞ zt (
, n;K)

to be the position of the (
, n)th bead at time t for the process without cut-off.
Assuming that zt (
, n) is finite for every (
, n), call Xt the corresponding bead

configuration and let Pν be the law of the process (Xt)t≥0 started with initial dis-
tribution ν (if ν is concentrated at some σ , then we write just Pσ ).

THEOREM 2.4. For almost every initial condition sampled from πρ , with ρ a
nonextremal slope, the limit (2.4) is almost surely finite for all (
, n) and t ≥ 0.
Moreover, πρ is invariant. More precisely, if f is a local bounded function of the
dimer configuration one has for every t ≥ 0

(2.5) Eπρ

(
f (Xt)

) =
∫

πρ(dσ)Eσ f (Xt) = πρ(f ).

Here, a function f is said to be local if it depends only on σ� for some finite �.
It is also possible to see (cf. Remark 7.7) that the limit (2.4) does not depend on
the order how one takes the limits limKq→∞ and limKp→∞.

Theorem 2.4 is proven partly in Section 6 (existence of the dynamics) and partly
in Section 8.1 (invariance of πρ ).
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REMARK 2.5. With this result in hand, it is clear that one can construct many
other driven processes that leave πρ invariant, simply adding to the generator of
the bead dynamics another generator L with respect to which πρ is reversible
(for instance, L could be the generator of the single-flip dynamics with symmetric
rates).

It is a relatively standard fact to deduce from Theorem 2.4 that, if we start from
πρ conditioned to have a bead say at the origin, then the law of the dimer config-
uration re-centered at the time-evolving position of this marked bead (tagged par-
ticle) is time-independent; see Section 8.2. More precisely, fix a horizontal edge
e0 of H. Given an initial condition σ such that there is a bead at e0, call φt its
vertical coordinate at time t (the horizontal coordinate does not change). Let also
X̂t := τφt−φ0Xt , with τx the vertical translation by x ∈ Z, be the dimer configu-
ration viewed from the tagged bead and call P̂ν the law of the process (X̂t )t≥0
started from some initial distribution ν. Finally, let π̂ρ be the Gibbs measure πρ

conditioned on the event that there is a bead at e0.

PROPOSITION 2.6. The measure π̂ρ is invariant for the dynamics of the dimer
configuration viewed from the tagged bead: for every bounded local function f and
t ≥ 0,

(2.6) π̂ρ

(
f (X̂t )

) = π̂ρ(f ).

3. Interface speed and fluctuations. The stationary states πρ are character-
ized by an upward or downward flux of beads, according to whether p > q or
p < q . The particle flux is directly related to the average height increase in the
stationary state. While the height function was defined only up to an additive con-
stant, one can define unambiguously the increase of the height at a face x from
time 0 to t : Qx(t) := hx(t) − hx(0) equals the number of beads that cross the face
x downward up to time t , minus the number of beads that cross it upward.

For each horizontal bond e let b+(e) [resp., b−(e)] be the lowest (resp., highest)
bead in the column of e, at vertical position strictly higher (resp., strictly lower)
than e. Also, call V (e,↑) the collection of hexagons that b−(e) has to cross to
reach position e and set V (e,↑) = ∅ if this move is not possible (keeping the
other beads where they are). Define V (e,↓) similarly.

The following result identifies the average height drift and shows that the fluc-
tuations of Qx(t) in the stationary measure are smaller than any power of t .

THEOREM 3.1. For any face x,

Eπρ

(
Qx(t)

) = t (q − p)J(3.1)

with

J = πρ

(∣∣{e : x ∈ V (e,↑)
}∣∣) > 0.(3.2)
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For every δ > 0,

lim
t→∞Pπρ

(∣∣Qx(t) −Eπρ

(
Qx(t)

)∣∣ ≥ tδ
) = 0.(3.3)

Note that only edges e in the same column as x and above it can contribute
to J . The value of J is independent of x by translation invariance of πρ . The right-
hand side of (3.1) is linear in t because of stationarity of πρ and linear in (q − p)

because the stationary state πρ does not depend on p, q .
Theorem 3.1 is proven in Section 9.
It is not obvious to compute J explicitly in terms of the slope ρ, starting directly

from the determinantal representation of the Gibbs states. In [4, 5], A. Borodin and
P. L. Ferrari considered the dynamics for p = 0, q = 1 for a special, “integrable”,
initial condition ω, whose height function (h0(x))x∈H∗ is deterministic and has
nonconstant slope (see Figure 1.2 of [5]: lozenges with a dot correspond to our
south-east oriented lozenges, white squares to our north-east lozenges, while dark
lozenges correspond to our beads). Let us emphasize that with such initial con-
dition, each bead has a deterministic lowest position it can possibly reach on its
column (this is related to the fact that in [5], Figures 1.1, 1.2, there is no dotted
lozenge with coordinate n < 0), so that the well-posedness of the process poses no
problem in that case. One of the results of [5] is a hydrodynamic limit, that in our
notation we can formulate as follows: for every ξ , η and τ > 0 one has

lim
L→∞

1

L
Eω

[
h(�ξL�,�ηL�)(τL)

] = h(ξ, η, τ )(3.4)

and h satisfies

∂τ h = V (∂ξ h, ∂ηh) = 1

π

sin(π∂ηh) sin(π∂ξ h)

sin(π(∂ηh + ∂ξ h))
(3.5)

(this corresponds to formulas (1.9)–(1.11) in [5], after a suitable change of co-
ordinates due to the fact that in [4, 5] the height is not taken with respect to the
horizontal plane and a different reference frame than our 
e1, 
e2 frame is used).
From this, one can naturally guess that J in (3.2) should be given by

J = 1

π

sin(πρ1) sin(πρ2)

sin(π(ρ1 + ρ2))
.(3.6)

Since ρ1, ρ2 and ρ1 + ρ2 are in (0,1), the above expression is immediately seen
to be positive. After a first version of this work was completed, Chhita and Fer-
rari [9] proved, through a smart combinatorial identity based on the determinantal
structure of the Gibbs states, that indeed (3.6) holds.

By the way, Proposition 3.2 of [5] says that the law of local dimer observables
around point (�ξL�, �ηL�) at time τL tends as L → ∞ to that of the same observ-
ables under the Gibbs state of slope ρ = (∂ξ h(ξ, η, τ ), ∂ηh(ξ, η, τ )). On the basis
of this, it was natural to conjecture that our Theorem 2.4 holds.
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Referring to (3.3), we believe that the order of magnitude of the variance of
Qx(t) is actually log t : this is indeed the result found by Borodin and Ferrari [4,
5], in the particular case where p = 0, q = 1 and for the special initial condition ω

mentioned above. In this respect, our method allows indeed to refine estimate (3.3),
under a (purely technical, we believe) condition on the slope ρ, to the following.

THEOREM 3.2. If the slope ρ satisfies√
k1k2C(ρ) < 1,(3.7)

with C(ρ) defined in (A.21) and k1, k2 as in (2.1), we have for some c < ∞
lim sup
t→∞

Pπρ

(∣∣Qx(t) −Eπρ

(
Qx(t)

)∣∣ ≥ u
√

log t
) ≤ c

u2 .(3.8)

For instance, if ρ = (1/3,1/3) (the three types of dimers have density 1/3, in
which case k1, k2, k3 are all equal) one finds, evaluating numerically the integral in
(A.21), that the left-hand side of (3.7) is 0.896 . . . < 1, so that (3.8) holds. By con-
tinuity, this remains true in a whole neighborhood of ρ = (1/3,1/3) while, again
numerically, (3.7) does not seem to be satisfied in the whole set of nonextremal
slopes ρ.

Let us stress once more that we believe (3.8) to hold for every nonextremal
ρ and to be of the optimal order w.r.t. t , while we do not attach any particular
meaning to condition (3.7).

REMARK 3.3. It is possible to define alternatively the stationary drift as fol-
lows. Sample σ from π̂ρ and call as above φt the vertical coordinate of the tagged
bead b0 at time t . From Proposition 2.6, it is easy to deduce that the average of
φt − φ0 is exactly linear in t , while from the definition of the process and the fact
that |I−

b0
| has the same law as |I+

b0
| (the Gibbs measures are invariant by reflection

through the center of any given hexagonal face; this follows, for example, from
uniqueness of πρ given the slope) one sees

v := 1

t

∫
π̂ρ(dσ )Eσ (φt − φ0) = (p − q)π̂ρ

(∣∣I+
b0

∣∣(∣∣I+
b0

∣∣ + 1
)
/2

)
.(3.9)

It is not hard to deduce from the stationarity of πρ that

Eπρ

(
hx(t) − hx(0)

) = −tρ3v,(3.10)

where we recall that ρ3 is the density of beads (the reason for the minus sign is
that when a bead moves upward the height function decreases). Indeed, suppose
for simplicity that p = 1, q = 0. The left-hand side of (3.10) equals minus the sum
over the edges e below x of the probability that there is a bead at e at time zero
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FIG. 6. The correspondence between dimer covering (perfect matching) of Z2 and domino tiling
of the plane.

and that at time t is has moved at least n + 1 steps up, with n ≥ 0 the number of
hexagonal faces between e and x. By translation invariance of πρ , this equals

(3.11)
−ρ3

∑
n≥0

∫
π̂ρ(dσ )Pσ (φt − φ0 > n) = −ρ3

∫
π̂ρ(dσ )Eσ (φt − φ0)

= −tρ3v,

where we used positivity of φt − φ0 in the first equality and (3.9) in the second.

3.1. Extension to dominos (perfect matchings of Z2). Our result extends to
perfect matchings of Z2, or equivalently domino tilings of the plane (cf. Figure 6):
also in this case, one can define an asymmetric Markov dynamics (the height func-
tion has a nonzero drift) that leaves the Gibbs states invariant. We give only a
sketchy description of the generalization, omitting those details that are identical
to the case of the honeycomb lattice.

Since Z2 is bipartite, we can color its vertices black/white with the rule that each
vertex has neighbors only of the opposite color. The height function h on the set
of faces of Z2 can be defined (modulo an arbitrary additive constant) as follows:
for each x, y choose any nearest-neighbor path Cx→y from x to y and set

hy − hx = ∑
e∈Cx→y

σe(δe − 1/4)(3.12)

with the sum running over the edges crossed by the path, σe = ±1 according to
whether Cx→y crosses e with the white vertex on the left/right and δe the indicator
function that there is a dimer at e. The definition is independent of the choice of
path.

The classification of translation-invariant ergodic Gibbs states is analogue to the
honeycomb lattice case (actually the structure is the same for all planar, periodic,
infinite bipartite graphs [22]): there exists an open polygon P ⊂ R2 (for the lattice
Z

2 it is a square, while for H it is a triangle, as discussed in Section 2.2) such that
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FIG. 7. A portion of Z2 with vertices colored black/white. The colored graph is periodic, that is,
invariant w.r.t. translations by n1
e1 + n2
e2, n1, n2 ∈ N. The white and shaded zig-zag regions are
the “columns”, indexed by 
. Columns are oriented in the positive 
e1 direction. The two thick bonds,
transversal to columns, represent two beads.

for every ρ = (ρ1, ρ2) ∈ P (nonextremal slope) there exists a unique translation-
invariant ergodic Gibbs state πρ satisfying

πρ(hx+
ei
− hx) = ρi, i = 1,2,(3.13)

where the vectors 
ei are as in Figure 7. The determinantal representation (2.3)
still holds, with a different polynomial P(z,w) that however still has two simple
zeros on the torus T. In order to define the irreversible dynamics that leaves the
Gibbs states invariant, we have to find an analogue of the “columns” and “beads”.
This is inspired by [23, 24]. The set of square faces of Z

2 is sub-divided into
infinite “columns” (indexed by 
 ∈ Z), that is, diagonally oriented zig-zag paths;
see Figure 7. Dimers that occupy an edge across a column are called “beads”. Each
column is oriented along the positive 
e1 direction, so it makes sense to say that a
bead b1 in column 
 is above a bead b2 in the same column.

Given columns 
, 
 + 1, call Y
 the set of vertices of Z
2 shared by the two

columns and order the sites of Y
 according their 
e1 coordinate. Then a bead b

on column 
 is said to be higher than a bead b′ on 
 + 1 if the vertex of b on
Y
 is higher than the vertex of b′ on Y
. With this definition, it is easy to see that
beads satisfy the same interlacement property as on the honeycomb graph: given
beads b1, b2 on 
, there exists b3 on 
 − 1 and b4 on 
 + 1 with b1 < b3 < b2 and
b1 < b4 < b2. Also, like on the honeycomb lattice, it is easy to see that if there is
at least a bead in each column, then it is possible to reconstruct the whole dimer
covering knowing only the bead positions.
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FIG. 8. The two elementary moves of the domino dynamics

The dynamics is then defined as follows. Assign to any possible bead position,
that is, to each edge that is transversal to some column, two independent Poisson
clocks of rates p and q , as before. All clocks are independent. When a p-clock
(resp., q-clock) at edge e of column 
 rings, if there is a bead at e then do noth-
ing. Otherwise, move the first bead below (resp., above) e in column 
 to position
e, provided this does not violate the interlacing constraints. Note that the dynam-
ics is the same as on the honeycomb lattice, only the definition of “column” and
“bead” being lattice-dependent. Observe also that each move can be seen as a con-
catenation of elementary moves on n adjacent faces along the same column, each
elementary move consisting in the rotation by π/2 of two dimers on the same face
of Z2 (Figure 8). In fact, the effect of an elementary move is to shift a single bead
one position up or down along its column. Note that, like in the case of the hexag-
onal lattice, when a bead moves one step upward crossing a face f , the height
function at f changes by −1.

As in Section 3, given an edge e transversal to some column 
, call b−(e) the
highest bead in 
, strictly lower than e and let V (e,↑) the collection of square
faces of 
 that b−(e) crosses when it is moved to e [with V (e,↑) = ∅ if the move
is not allowed]. Then we have the following.

THEOREM 3.4. The claim of Theorems 2.4 and 3.1 hold also for the bead
dynamics on dimer coverings of Z2.

With the exception of Section 4.2, in the rest of the work we will always con-
sider the case of the hexagonal lattice.

4. Dynamics on the torus.

4.1. Honeycomb lattice. We will let the torus TL denote the hexagonal graph
H, periodized (with period L) along directions 
e2, 
e3 and we assume that L ≥ 3.
Note that now columns 
 along which beads move are L “circles” containing L

hexagonal faces. We will say as before that a bead moves “upward” or “down-
ward”, but what we mean is that it moves in the positive or negative 
e3 direction
around the torus.
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Let NL
ρ be the set of configurations such that the height changes by �ρ2L�

(resp., �Lρ3� − L) along any closed path winding once in the positive 
e2 (resp.,

e3) direction. On each column 
 there are �ρ3L� beads and bead positions on
neighboring columns are again interlaced. We denote πL

ρ the uniform measure
over NL

ρ . It is known that πL
ρ converges weakly to πρ , if the configuration space

is equipped with the product topology [22]. Essentially, averages of bounded local
functions converge.

On TL the process is defined similarly as in Section 2.3 for the infinite graph.
For instance, when a p-clock at an edge e rings, one moves to e the first bead that
is found when proceeding in the −
e3 direction from e along the same column,
unless this move is forbidden by the interlacing constraint. The process is ergodic
on NL

ρ , actually it is known that we can go from any configuration to any other by
positive-rate elementary moves as in Figure 4 (see [11], Lemma 1, for details).

PROPOSITION 4.1. The measures πL
ρ are stationary.

It is actually easy to deduce, using ergodicity of the process in each of the sectors
NL

ρ , that the only stationary measures are convex combinations of πL
ρ .

PROOF OF PROPOSITION 4.1. Call LL the generator of the process. We want
to check that

πL
ρ LL = 0

(stationarity of πL
ρ ). One can decompose the generator as L+,L +L−,L with L+,L

involving only the up-jumps (related to the p-clocks) and L−,L the down-jumps. It
is sufficient to prove that πL

ρ L+,L = 0, for L−,L the argument being the same. For
every σ ∈ NL

ρ , we have πL
ρ (σ ) = 1/|NL

ρ |. Given σ ∈ NL
ρ let �σ be the collection

of σ ′ ∈ NL
ρ that can be reached from σ by a single nonzero up-jump (not necessar-

ily of length one) of a bead and let �
(−1)
σ be the collection of σ ′ ∈ NL

ρ from which

one can reach σ with a single nonzero up-jump of a bead. For every σ ′ ∈ �
(−1)
σ ,

we have L+,L(σ ′, σ ) = p, while L+,L(σ, σ ) = −p|�σ | simply because the sum
of row elements of the generator is zero. We see then

(4.1)
[
πL

ρ L+,L]
(σ ) = ∑

σ ′
πL

ρ

(
σ ′)L+,L(

σ ′, σ
) = p

|NL
ρ |

(∣∣�(−1)
σ

∣∣ − |�σ |).
We want to see that |�(−1)

σ | = |�σ |. Note that |�σ | = ∑
b |I+

b | while |�(−1)
σ | =∑

b |I−
b |, with the sum running over beads and I±

b being as in Definition 2.1.3

3At the expense of being pedantic, let us emphasize that, on the torus, the set of positions available
“above” a bead means the set of positions reachable via moves in the +
e3 direction.
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FIG. 9. The configurations σ and σ ′ around b. In this example, once the bead b moves up by 1,
I−
b+

−1

decreases by 1, I+
b−

+1

increases by 1 while I−
b+

+1

and I+
b−

−1

stay constant.

We will prove that Kσ := |�(−1)
σ | − |�σ | is independent of σ : as a consequence,

it must be zero because the sum over σ of (4.1) is zero. Assume that σ ′ differs
from σ only by a single elementary up-move of some bead b on some column 
.
Then, after the move, the only beads b′ that may have changed their values of I±

b′
are b itself and b±


±1, with b+

+1 the bead in column 
 + 1 that is “just above b”

(see Figure 9) and analogously for the others. It is clear that the contribution of
b to Kσ ′ − Kσ is +2: indeed, |I+

b | decreases by 1 and |I−
b | increases by 1. Then

look at column 
 − 1. One of the following two mutually exclusive cases occurs
(Figure 9): either |I+

b−

−1

| increases by 1 and |I−
b+

−1

| stays constant or |I+
b−

−1

| stays

constant and |I−
b+

−1

| decreases by 1. In both cases, the net variation of Kσ ′ − Kσ

from column 
−1 is −1. The same holds for column 
+1 (since we are assuming
L ≥ 3, columns 
±1 are distinct). Altogether, Kσ ′ −Kσ = 0. We have proved that
Kσ is unchanged if we perform an elementary up-move. Given that the space state
is connected, we proved that Kσ is constant (and therefore zero) on NL

ρ . �

The analog of Proposition 2.6 for the dynamics on the torus is the following.

PROPOSITION 4.2. Fix a horizontal edge e0 on TL, let σ be a configuration
such that there is a bead at e0 and call φt be the vertical position of this bead at
time t . Let π̂L

ρ be πL
ρ conditioned to the event that there is a bead at e0. The law

π̂L
ρ is stationary for the re-centered process τφt−φ0Xt .
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PROOF. The proof is very similar to that of Proposition 4.1. Call L̂+,L the
part of the generator of the process involving only p-clocks. We have to show for
every σ

(4.2) π̂L
ρ L̂+,L(σ ) = 0.

A symmetric argument then gives π̂L
ρ L̂−,L(σ ) = 0.

The measure π̂L
ρ is uniform among the |N̂L

ρ | configurations with a bead at

e0. We have L̂+,L(σ, σ ) equal −p times the number of configurations σ ′ dif-
ferent from σ that can be reached from σ with a single move. The configura-
tion can change either because a bead different from b0 (the bead that is at e0)
moves, or because b0 itself moves and then the dimer configuration has to be
re-centered around the new tagged particle position. Note indeed that, when b0
moves, necessarily the configuration viewed from it changes, since the distance
from the first bead above it decreases. The number of reachable configurations is
then

∑
b �=b0

|I+
b | + |I+

b0
| = ∑

b |I+
b |. Similarly, one sees that∑

σ ′ �=σ

π̂L
ρ

(
σ ′)L̂+,L(

σ ′, σ
) = p

|N̂L
ρ |

( ∑
b �=b0

|I−
b | + |I−

b0
|
)

= p

|N̂L
ρ |

∑
b

∣∣I−
b

∣∣.
Then, the left-hand side of (4.2) equals the right-hand side of (4.1) (only with
1/|NL

ρ | replaced by 1/|N̂L
ρ |), that we know to be zero. �

4.1.1. A “gradient condition”. The bead dynamics on the torus has an trivial
conserved quantity: the number of particles. There is however a less obvious one.
For each of the L columns 
 = 1, . . . ,L define

(4.3) X(
) = ∑
n

(∣∣I+
n,


∣∣ − ∣∣I−
n,


∣∣),
with the sum running over the beads of column 
. We have seen in the proof of
Proposition 4.1 that the “total charge” X = ∑


 X(
) is exactly zero. A simple com-
putation shows that, when p = q , the instantaneous drift of X(
) is

(4.4)
lim
δ→0

1

δ
E

(
X(
)(σt+δ) − X(
)(σt )|σs, s ≤ t

)
= (

Z(
) − Z(
−1))(σt ) − (
Z(
+1) − Z(
))(σt )

with

(4.5) Z(
) = −p

2

∑
n

(∣∣I+
n,


∣∣(∣∣I+
n,


∣∣ + 1
)) + p

2

∑
n

(∣∣I−
n,


∣∣(∣∣I−
n,


∣∣ + 1
))

.

This is a “gradient condition” [30]: the derivative of the charge at 
 is given by
the divergence of a current, here Z(
) − Z(
−1), which is itself the gradient of a
function Y of the configuration.
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As we mentioned in the Introduction, conditions of this type are typically the
key to guarantee that a reversible Gibbs measure remains invariant once an ex-
ternal driving field that breaks reversibility is introduced; see, for example, [2],
Section 2.5, and [20]. The unusual fact here (with respect to the more standard
framework of, e.g., the simple exclusion or zero range processes) is that the cur-
rent associated to the local charge Xn,
 := (|I+

n,
| − |I−
n,
|) does not seem to satisfy

a gradient condition, while that of the nonlocal charge X(
) (integrated along the
columns) does. Note that on the infinite lattice X(
) is not well defined (it is just
infinite).

4.2. Square lattice. The finite graph TL with periodic boundary conditions is
defined like for the honeycomb lattice, except that the directions along which one
periodizes are now 
e1, 
e2; see Figure 7. Note that each periodized column is a
“circle” containing 2L square faces. The measure πL

ρ is defined as the uniform
measure over dimer coverings of TL such that the height changes by �Lρi� when
winding once in the 
ei direction, and πL

ρ (f ) tends to πρ(f ) as L → ∞ for every
local observable f [22].

Like for the honeycomb lattice, one has the following.

PROPOSITION 4.3. The measure πL
ρ is stationary.

PROOF. The only point where the proof differs w.r.t. the honeycomb lattice
case is the way one shows that |�σ | := ∑

b |I+
b | = ∑

b |I−
b | =: |�(−1)

σ |, as after
(4.1). Recall that it is sufficient to show that, after any elementary move, the dif-
ference |�σ | − |�(−1)

σ | is unchanged, whatever the initial configuration σ is.
When an elementary move is performed at a face f in column 
, a bead b jumps

from an edge e to e′ that has a common vertex with e. This common vertex belongs
to either Y
 or Y
−1 (recall that Y
 is the set of vertices common to columns 
,

 + 1). Assume w.l.o.g. that the former is the case, as in Figure 10, and that e′ is
higher than e in column 
. After the move, |I+

b | decreases by 1 and |I−
b | increases

by 1. On the other hand, it is clear that |I±
b′ | is unchanged for beads b′ on column


+1, or on any other column except 
−1. Therefore, we have to find a change +2
of |�σ | − |�(−1)

σ | coming from column 
 − 1. Call b+, respectively, b−, the first
bead above (resp., below) b in column 
 − 1, and call b′ the bead “between” b+
and b− in column 
− 2. (The notion of ordering for beads in neighboring columns
was introduced in Section 3.1.) Then, with reference to Figure 10, note that:

• if b′ is at or higher than edge e3, then b+ is at or higher than e5 and I−
b+ is the

same, irrespectively of whether b is at e or e′. On the other hand, edges e7, e8
are accessible to b− if b is at e′ and are not if b− is at e, so |I+

b−| differs by 2 in
the two cases. Altogether, when b is moved from e to e′, the contribution of b−
to the change of |�σ | − |�(−1)

σ | is +2, as desired;
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FIG. 10. In the drawing are indicated the edges e1, . . . , e8 entering the proof of |�σ | = |�(−1)
σ |.

• symmetrically, when b′ is at or lower than e4 then b− is at or lower than e6.
When b is moved from e to e′, I+

b− does not change, while |I−
b+| decreases by 2,

since e7, e8 are not available positions any more. Again, we get a change +2 for
|�σ | − |�(−1)

σ |, this time coming from b+;
• finally, suppose that b′ is at e1 or e2. If b is at e then position e7 is available

for b+ and e8 is not available for b−, while if b is at e′ the opposite holds. As
a consequence, both b+ and b− contribute +1 to the change of |�σ | − |�(−1)

σ |.
�

Deducing stationarity of πρ on the infinite graph from stationarity of πL
ρ on the

torus works exactly the same on H or Z2; for definiteness, in Section 8 we will
stick to the former case.

5. The discrete Hammersley dynamics (DHD). On the way toward The-
orem 2.4, let us switch for a moment to a one-dimensional interacting particle
system known as Discrete Hammersley Dynamics (DHD) [14]. The configuration
space of the DHD consists of particle configurations on Z (at most one particle
per site). Each site of Z has an i.i.d. Poisson clock of rate 1. When a clock rings
at a site x, if the site is occupied then nothing happens; otherwise, take the first
particle to the right of x and move it to x. Note that each particle moves to the left
with rate equal to the number n of empty sites before the next particle to the left,
and the new position is uniform among the n sites. We call zt (n) the position of
the nth particle (n ∈ Z) at time t . Particles are labelled in the initial condition in
such a way that z0(n) < z0(n + 1), with some arbitrary choice of whom to label 0
(for instance, it could be the first particle to the right of the origin). Labels do not
change as particles move.
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The works [1, 28] consider instead the (continuous) Hammersley process [1],
which is defined similarly as the DHD, except that particles live on R instead of Z:
again, each particle moves to the left with rate equal to the available space before
the next particle and the new position is chosen uniformly in the available interval.
In [28], it is proven (among many other results).

THEOREM 5.1. If limn→−∞ n−2z0(n) = 0, then the dynamics is well defined
at all times: the displacement of a particle with respect to the initial position is
almost surely finite at all finite times.

Theorem 5.1 extends immediately to the DHD [14] and is obtained with the
help of a Harris-type graphical construction, that we recall here. To each site of
Z, associate an independent Poisson point process of density 1 on R

+: this is the
set of times when the clock at that site rings. Given a realization of all these i.i.d.
Poisson processes and given 0 ≤ s < t , −∞ < a < b < ∞, we can consider the
set of all possible up-right paths in the rectangle (a, b] × (s, t], that is, sequences
(x1, t1), . . . , (xn, tn) of space-time points in the point process in the rectangle, with
x1 < · · · < xn and t1 < · · · < tn. Note that inequalities are strict (for times this is
not restrictive since with probability one there is at most one clock ringing at a
given time). Let as in [1, 28] L((a, s), (b, t)) be the maximal number of points of
the Poisson processes on one such path. Let also

�
(
(a, s), t, k

) = inf
{
h ≥ 0 : L

(
(a, s), (a + h, t)

) ≥ k
}
.

Then (this is given in [1, 28] in the continuous Hammersley process where L and
� are defined similarly, but the same holds true also for the DHD) for every t ≥ 0

(5.1) zt (n) = inf
j≤n

{
z0(j) + �

((
z0(j),0

)
, t, n − j

)}
.

Note that the DHD has the following monotonicity property.

LEMMA 5.2 (Monotonicity for the DHD). If we take two initial conditions
such that z0(n) ≤ z′

0(n) for every n and if we let them evolve using the same Pois-
son clocks, then the partial order is preserved at all later times.

PROOF. This is immediate from (5.1): if some z0(j) is changed to z0(j) −
a, a ∈N, then �((z0(j),0), t, n − j) increases at most by a. �

The representation (5.1) also allows to get an upper bound on the probability
that the displacement of a particle is large. Indeed, if zt (n) − z0(n) ≤ −k then
there exists j ≤ n such that

L
((

z0(j),0
)
,
(
z0(j) − k + (

z0(n) − z0(j)
)
, t

)) ≥ n − j.
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With a union bound, the probability (conditionally on the initial positions) that
zt (n) − z0(n) ≤ −k is upper bounded by

(5.2)
∑

j<n:z0(j)−z0(n)≤−k

P
(
L

(
(0,0),

(
0, z0(n) − z0(j) − k, t

)) ≥ n − j
)
,

where P denotes the expectation only with respect to the Poisson clocks. One has4

(5.3) P
(
L

(
(0,0), (h, t)

) ≥ k
) ≤ (th)k/(k!)2.

Indeed, there are h!/(k!(h − k)!) strictly increasing distinct sequences 0 < x1 <

· · · < xk ≤ h. Given one of these, the probability that there is an up-right path
(x1, t1), . . . , (xk, tk) equals the probability that a Poisson random variable of aver-
age t equals at least k. On the other hand, if X is a Poisson variable of average t

then for k ≥ 1

(5.4) P(X ≥ k) = ∑
n≥k

e−t t
n

n! = ∑
m≥0

e−t tm+k

(m + k)! ≤ tk

k!
because (m + k)! ≥ k!m!. Then (5.3) follows from

h!
(h − k)!

1

k! ≤ hk

k! .

Let us call Pz the law of the DHD started from an initial configuration z =
{z0(n)}n∈Z. From (5.3), we have then

(5.5) Pz

(
zt (n) − z0(n) ≤ −k

) ≤ ∑
j<n:z0(j)−z0(n)≤−k

tn−j (z0(n) − z0(j) − k)n−j

((n − j)!)2 .

This bound will be used in Section 7.

6. The process started from πρ is well defined. Here, we prove “the first
(and easier) half” of Theorem 2.4, that is, the bead displacement is finite for almost
every initial condition sampled from πρ .

PROPOSITION 6.1. Suppose that the initial configuration σ is in the set

(6.1) Y =
{
σ : for every 
, lim

n→∞n−2z0(
, n) = 0 = lim
n→∞n−2z0(
,−n)

}
.

Then the process is well defined at all times: for every (
, n), almost surely
zt (
, n) − z0(
, n) as defined in (2.4) is finite for all t ≥ 0.

4See also [28], Lemma 4.1, that is given for the continuous Hammersley process.
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Actually, when q = 0 (resp., when p = 0) the condition limn→∞ n−2z0(
,

−n) = 0 [resp., limn→∞ n−2z0(
, n) = 0] is not necessary. Note also that πρ(Y ) =
1 for any nonextremal slope. Indeed, z0(
, n) is just the sum of the first n inter-
bead distances along column 
. Since the measure πρ is ergodic for the action of
Z

2, n−1z0(
, n) converges πρ -almost surely to the finite limit 1/ρ3.

PROOF OF PROPOSITION 6.1. Fix some column 
. We want to prove that,
say, zt (
, n;K)− z0(
, n) is almost surely bounded away from minus infinity, uni-
formly in K and for every n. Take the DHD slowed down by a factor q (i.e.,
its clocks ring with rate q and not 1) with initial condition z0(n) = z0(
, n) for
every n and couple the DHD and the bead dynamics by establishing that the q-
clocks (within distance Kq from the origin) on column 
 of the lozenge dynam-
ics are the same as the corresponding clocks of the DHD (the DHD has no p-
clock). Then bead positions are dominated by those of the DHD, in the sense that
zt (n) ≤ zt (
, n;K) for all times and for all n. In fact, call si , i ≥ 1 the ordered
times when one of the finitely many clocks in column 
 of the dynamics Xt;K
ring. We have z0(·) ≤ z0(
, ·;K) (actually with equality). At time s−

1 , the inequal-
ity is still true, since the beads in 
 have not moved while some DHD particles may
have moved to the left. At time s1, one of the following cases occurs:

• a p-clock rings. Then a bead might move upward and nothing happens for the
DHD. We have in this case obviously

(6.2) zs+
1
(·) ≤ zs+

1
(
, ·;K).

• a q-clock rings at an edge e within distance Kq from the origin, but no bead can
be moved to e without pushing other beads. Again (6.2) holds (for the DHD, a
particle can move to the left).

• a q-clock rings at an edge e within distance Kq from the origin and the bead
just above it, call (
, n) its label, can be moved to e. By assumption, for the
DHD, the first particle at position greater or equal to e has index m ≥ n. After
the update, for the DHD one has particle m at e and for the lozenge process one
has bead (
, n) at e. All other particles/beads are unchanged. Clearly, then (6.2)
holds also in this case.

The argument is then repeated inductively starting from time s+
1 .

Since, by Theorem 5.1, zt (n) − z0(n) > −∞ almost surely, we conclude that
zt (
, n;K) − z0(
, n) is almost surely bounded away from −∞, uniformly in K .

�

7. Large gaps and propagation of information. Let BR be the ball of radius
R centered at the origin of H.

DEFINITION 7.1. Let �(R, t) be the largest integer n such that there exist
horizontal edges e1 ∈ BR and e2 on the same column of e1, at distance n from
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it, such that at time t there is no bead between them. Also, let �(R,≤ t) =
sup{�(R, s), s ≤ t}.

We need a preliminary result, giving an upper bound on the probability of hav-
ing a large gap among beads. We start from the case of the torus.

LEMMA 7.2. For ζ ∈ N, there exists a constant C = Cζ such that, for all
T > 0,R ≥ 1 and L large enough,∫

πL
ρ (dσ)Pσ

[
�(R,≤T ) ≥ Cζ logR

] ≤ T
Cζ

Rζ
.(7.1)

To be precise, the constant Cζ also depends on the density vector ρ [through the
constant C(λ,u,ρ) of Lemma A.1]; in this section, for lightness of notation, we
often keep the ρ dependence implicit.

PROOF OF LEMMA 7.2. From Lemma A.1 and convergence of πL
ρ to πρ , it is

easy to see that, for L large enough,

πL
ρ

(
�(R,0) ≥ Cζ logR

) ≤ CζR
−ζ(7.2)

if Cζ is chosen sufficiently large. Using stationarity of πL
ρ , this holds for every

fixed t ≥ 0. Then

EπL
ρ

(∫ T +1

0
1{�(R,t)≥Cζ logR} dt

)
≤ (T + 1)CζR

−ζ .(7.3)

Let

τ = inf
{
t > 0 : �(R, t) > 2Cζ logR

}
(7.4)

and observe that, after time τ , a clock has to ring in the ball BR+Cζ logR before
�(R, t) becomes strictly smaller than Cζ logR [this is just a necessary condition:
not every ring in BR+Cζ logR decreases �(R, t)]. Note that the realization of the
Poisson clock rings at times t > τ is independent of the process up to τ (and of τ

itself). On the other hand, with probability u uniformly bounded away from zero,
none of the O(R2) clocks in BR+Cζ logR rings in the time lag [τ, τ + 1/R2]. In
conclusion,

(7.5) EπL
ρ

(∫ T +1

0
1{�(R,t)≥Cζ logR} dt

∣∣∣τ ≤ T

)
≥ u/R2.

Together with (7.3), we get that

(7.6) PπL
ρ
(τ ≤ T ) ≤ (T + 1)CζR

2−ζ /u.

We conclude by observing that {τ ≤ T } = {�(R,≤T ) > 2Cζ logR} and recalling
that ζ can be chosen as large as wished. �
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For the dynamics on H, the same argument does not work since we do not
know (yet) that πρ is stationary. A similar result however still holds, but the proof
requires a comparison with the DHD we introduced above.

LEMMA 7.3. For any T < ∞, ζ ∈ N there exists a constant C = C(ζ,T ) such
that for R large

(7.7)
∫

πρ(dσ)Pσ

[
�(R,≤T ) ≥ C logR

] ≤ C

Rζ
.

A useful variant of Lemma 7.3 that we will use later (and whose proof follows
almost exactly the same argument) is the following.

COROLLARY 7.4. Fix a horizontal edge e and a time T > 0. For n± ≥ 0, let
AT,n+,n− be the event that there exists a time s ≤ T and horizontal edges e± on the
same column as e, with e+ at distance n+ above e and e− at distance n− below it,
such that at time s there is a bead at e± and no bead between them. There exists
C = C(ρ,T ) such that

(7.8) Pπρ (AT,n+,n−) ≤ Ce−(1/C)(n++n−).

For the proof of Lemma 7.3, we need the following preliminary result.

LEMMA 7.5. Recall that π̂ρ is the Gibbs measure conditioned to have a bead
at e0 and that φt − φ0 is the displacement of the tagged bead at time t . Then, for
every T > 0 there exists a positive constant a = a(ρ,T ) such that for every D ≥ 0

(7.9) Pπ̂ρ

(∃t ≤ T : |φt − φ0| ≥ D
) ≤ a exp(−D/a).

PROOF. To fix ideas, let us prove that

(7.10) Pπ̂ρ
(∃t ≤ T : φt − φ0 ≤ −D) ≤ a exp(−D/a).

We have seen in the proof of Proposition 6.1 that the downward displacement of
a bead b is at all times stochastically smaller than the leftward displacement of
a DHD particle (for the DHD with clocks of rate q) up to the same time, started
from a configuration where the particles are at the same position as the beads in
the column corresponding to b. Since the DHD particles move only to the left, the
event {∃t ≤ T : φt − φ0 ≤ −D} means that the DHD particle corresponding to b

has moved more than D by the nonrandom time T .
Call n the label of the tagged bead b in its column, initially at position z0(n) :=

e0, and go back to (5.5). Observe that if z0(n)−z0(n−r) ≥ u then there are at most
r beads in a set of u adjacent horizontal edges below z0(n). Using Lemma A.1, we
see that, except with probability exponentially small in D, one has

z0(n) − z0(n − r) <
1

ε(ρ)
max

[
r, ε(ρ)D

]
for every r ≥ 1(7.11)
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for some positive ε depending only on the slope ρ. Then, from (5.5), on the
event (7.11)

(7.12)
Pz

(
zT (n) − z0(n) ≤ −D

) ≤ ∑
r>ε(ρ)D

T r(r/ε(ρ))r

(r!)2

≤ c(ρ,T )e−c′(ρ,T )D logD

that decays super-exponentially in D. �

PROOF OF LEMMA 7.3. On the event �(R,≤T ) ≥ C logR there exists a
time s ≤ T and a horizontal edge e ∈ BR such that at time s there is no bead
in the C logR horizontal edges immediately above or immediately below e. As-
sume w.l.o.g. that the former is the case. Let e+ (resp., e−) be the lowest horizontal
edge above e (resp., the highest edge below e) where there is some bead b+ (resp.,
b−) at time s. Call N ≥ C logR the distance between e+ and e−. There are two
possible cases:

(i) at time zero bead b+ is within distance N/10 from e+ and similarly b− is
within distance N/10 from e−. This implies that at time zero there is no bead in a
vertical interval of length N/2, centered on the face at distance N/2 above e. Since
in the stationary measure the distance between neighboring beads has exponential
tails (Lemma A.1) and N ≥ C logR, this event has probability

O
(
R2 exp

(−a(ρ)C logR
))

for some positive a depending only on the slope ρ, where the factor R2 comes
from a union bound over all possible positions of e. Choosing C = Cζ sufficiently
large, we get a O(R−ζ ) bound.

(ii) At time zero, either b+ is at distance n ≥ N/10 from e+, or b− is at distance
m ≥ N/10 from e−. Say, to fix ideas, that the former is the case. This implies that
at the (random) time s ≤ T the bead b+ has moved, say downward, a distance
n ≥ N/10 with respect to the initial position. Thanks to Proposition 7.5, this has
probability exponentially small in n. Summing over n ≥ N/10, over the possible
values of N ≥ C logR and over the O(R2) possible positions of e gives a bound
O(R−ζ ) if C is chosen large enough. �

As an application, we show that information does not propagate instantaneously
through the system: if two initial conditions sampled from equilibrium differ only
outside a ball of radius R, it is very unlikely that in a short time the discrepancy
propagates to reach the center of the ball. It is useful to give a proof of this fact,
since an extremely similar argument will provide the proof of Theorem 2.4. For
usual short-range systems, one has a ballistic propagation bound: information does
not travel more than a distance const × t in a time interval t (cf. for instance [25],
Section 3.3). The situation is more intricate here due to the presence of a-priori
unbounded gaps among beads.
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Let the pair (σ, σ ′) ∈ �⊗2
H be distributed according to some law ν such that σ ∼

πρ , σ ′ ∼ πρ and σ , σ ′ coincide in BR . Couple the two processes by using the same
Poisson clocks for both and call Pν the law of the joint process (σt , σ

′
t ). Let δe(t) ∈

{0,1} [resp. δ′
e(t) ∈ {0,1}] be the bead occupation variable at time t at a fixed

horizontal edge e (say at the center of BR) for the process started from σ (resp.,
σ ′). Let also �max = max(�(R,≤T ),�′(R,≤T )), with �′(R,≤T ) referring to
the process started from σ ′.

PROPOSITION 7.6. For every T < ∞, ζ ∈ N there is a constant C such that

(7.13) Pν

((
δe(t)

)
t∈[0,T ] �≡ (

δ′
e(t)

)
t∈[0,T ]

) ≤ C

Rζ
.

PROOF OF PROPOSITION 7.6. We have from Lemma 7.3

(7.14)
Pν

((
δe(t)

)
t∈[0,T ] �≡ (

δ′
e(t)

)
t∈[0,T ]

)
≤ Pν

[(
δe(t)

)
t∈[0,T ] �≡ (

δ′
e(t)

)
t∈[0,T ];�max ≤ Cζ logR

] + Cζ/R
ζ .

On the event (δe(t))t∈[0,T ] �≡ (δ′
e(t))t∈[0,T ] call t1 ≤ T the first time when δe(t1) �=

δ′
e(t1). There are two possible cases:

(i) δe(t
−
1 ) = δ′

e(t
−
1 ) = 1 and say δe(t1) = 0 �= δ′

e(t1) = 1. In this case at t1, a
clock rings in the column 0 (the one of e) at a horizontal edge x1 within distance
�max from e and in configuration σ ′

t−1
(but not in σt−1

) a bead in a neighboring

column is preventing the bead at e to move to x1. At time t1 there is therefore a
horizontal edge e1 in column ±1, with distance within �max + 1 from x1 (the +1
is because it is on the neighboring column), where the bead occupation variable is
different.

(ii) δe(t
−
1 ) = δ′

e(t
−
1 ) = 0 and say δe(t1) = 0 �= δ′

e(t1) = 1. This means that at t1
the clock at e rings (in this case we set x1 := e) and that in configuration σt−1

(but

not in σ ′
t−1

) a particle in one of the two neighboring columns is preventing a certain

bead (below e if the clock is a p-clock and above the origin e if it is a q-clock) to
reach e. In particular, as in case (i), at time t1 there is an edge e1 in column ±1
within distance �max + 1 from x1, where the bead occupation variable is different.

Call t2 < t1 the first time s at which δe1(s) �= δ′
e1

(s). On the event �max ≤ Cζ logR,
we have that t2 > 0 because e1 is in the ball BR where initial conditions coincide.

We iterate the argument (cf. Figure 11), and as before we deduce that at t2 there
is an edge x2 in the column of e1, within distance �max from it, where a clock
rings and an edge e2 in a column neighboring the one of e1, and at distance within
�max + 1 from x2, where the bead occupation variable is different. The iteration
stops when en is outside the ball BR of radius R. Note that xi , xi+1 are within
vertical distance 2(�max + 1) ≤ 3�max and horizontal distance 1 from each other.

Altogether, if (δe(t))t∈[0,T ] �≡ (δ′
e(t))t∈[0,T ] then either �max ≥ Cζ logR, or

there exists:
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FIG. 11. An example of the iteration. We have that |xi − ei−1| ≤ �max and
|ei − xi−1| ≤ (�max + 1). When xi+1 = ei it means that we are in case (ii) above. The
arrow follows the chain x1, x2, . . . .

• a chain of sites x1, . . . , xn, with xi , xi+1 on neighboring columns, x1 on the
column 
 = 0 and within distance Cζ logR from e (the center of the ball BR),
|xi − xi+1| ≤ 3Cζ logR and |xn| ≥ R/2;

• a sequence of times 0 ≤ tn < tn−1 < · · · < t1 ≤ T such that either the p-clock or
the q-clock at xi rings at time ti .

We get with a union bound

(7.15) Pν

((
δe(t)

)
t∈[0,T ] �≡ (

δ′
e(t)

)
t∈[0,T ]

) ≤ Cζ/R
ζ + ∑

n≥R/(6Cζ logR)

NnPn,

where Pn is the probability that a Poisson variable of average T (p + q) is at least
n, while Nn is the number of all possible distinct chains x1, . . . , xn of n sites with
the above specified properties. Of course Nn ≤ (C′

ζ logR)n for some constant C′
ζ

while (5.4) gives

Pn ≤ e−n log(n/T (p+q))+n.

The sum in (7.15) is o(R−ζ ). �

REMARK 7.7. Take σ sampled from πρ and let σt , σ ′
t be the coupled pro-

cesses with the same Poisson clocks and the same initial condition, except that
σt has cutoff parameter K = (Kp,Kq) and σ ′

t has a different cutoff parameter
K ′ = (K ′

p,K ′
q). With the same ideas as for Proposition 7.6, it is possible to prove

that ∫
πρ(dσ)Pσ

((
δe(t)

)
t∈[0,T ] �≡ (

δ′
e(t)

)
t∈[0,T ]

) = ε
(
K,K ′)(7.16)
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with ε(K,K ′) → 0 when min(Kp,K ′
p,Kq,K

′
q) → ∞. From this, one can deduce

that the order how the cutoffs in (2.4) are removed is irrelevant.

8. Stationarity of Gibbs measures in the infinite graph. We will prove The-
orems 2.4 and 2.6 only for the honeycomb lattice. As for square lattice, once the
result is proven on the torus (cf. Section 4.2), the extension to the infinite system
works exactly the same.

8.1. Proof of Theorem 2.4. Let us first of all prove (2.5) in the case where
f = ∏k

i=1 δei
, where e1, . . . , ek are horizontal edges (k ∈ N) and δe is the indicator

function that there is a dimer at e. Choose R large enough so that all ei are in the
ball BR and say close to its center. Call νR (resp., νL

R ) the marginal of πρ (resp.,
πL

ρ ) on BR (or, to be pedantic, on H∩BR) and let σBR
be sampled from νR and σ ′

BR

from νL
R . From convergence of πL

ρ to πρ as L → ∞, we can choose L sufficiently
large and a coupling of (νR, νL

R) such that σBR
= σ ′

BR
except with probability εR

that tends to zero as R → ∞.
Let σ ∈ �H and σ ′ ∈ �TL

(with �TL
the set of dimer coverings of TL) be

sampled as follows. The restrictions (σBR
, σ ′

BR
) to BR are sampled from (νR, νL

R).
Given the realization of (σBR

, σ ′
BR

), the configuration (σH\BR
, σ ′

TL\BR
) outside BR

are sampled independently: σH\BR
from πρ(·|σBR

) and σ ′
TL\BR

from πL
ρ (·|σ ′

BR
).

We have therefore that σ ∼ πρ,σ ′ ∼ πL
ρ and they coincide in BR , except with

probability εR .
Now couple the processes (σt )t≥0, (σ ′

t )t≥0 started from σ , σ ′ by establishing
that the Poisson clocks in BR are the same for the two, while those outside BR

are independent. Proceeding exactly like in the proof of Proposition 7.6 and using
both Lemma 7.2 and 7.3 to estimate the probability that �(R,T ) ≥ Cζ logR in
any of the two processes, one finds that, except with probability εR + R−ζ = ε′

R ,
the bead occupation variables at all edges ei , i ≤ k for the two processes coincide
up to time T . Therefore, for every t ≤ T ,

Eπρ

(
f (Xt)

) = EπL
ρ

(
f (Xt)

) + ε′
R = πL

ρ (f ) + ε′
R = πρ(f ) + ε′

R + ε′′
L,(8.1)

where we used Proposition 4.1 (stationarity on the torus) in the second equality.
Arbitrariness of T < ∞ and of R proves (2.5) in the particular case f = ∏k

i=1 δei

(the larger T is, the larger we have to choose R and, therefore, L).
When f is any bounded local function depending only on the configuration of

the horizontal dimers, it is always possible to write f as a finite linear combination
of functions of the form

∏k
i=1 δei

, so the claim of the theorem holds also in this
case.

Finally, it remains to consider the case where f is a local function depending
also on the configuration of nonhorizontal edges. This requires a slightly different
argument.
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FIG. 12. Given the horizontal dimers at a, b, c, d , all the dimer occupation variables at edges
of hexagons s1, . . . , sk is determined. In fact, all north-east oriented edges between a and c and
between d and b are occupied by dimers, and the same is for south-east edges between c and b or
between a and d .

Let us start with a simple observation; see Figure 12. Let a, b be two horizontal
edges in the same column 
 and let s1, . . . , sk be the hexagons of 
 included be-
tween a, b. If we know that the only beads in s1, . . . , sk are at a, b and if we also
know the location of the two beads, one in column 
 + 1 and one in column 
 − 1,
whose vertical coordinate is between that of a and of b, then we can reconstruct
unambiguously the dimer occupation variables of all edges (not just horizontal
ones) of hexagons s1, . . . , sk .

Call S a finite collection of hexagons such that the union of their edges contains
the support of f . Let �K be the collection of hexagons that are at graph distance
(on H∗) at most K from S (S itself is a subset of �K ). Let EK be the event that,
for every s ∈ S, there are two beads in �K , one below s and one above it. From
the discussion above, we know that, on the event EK , the dimer configuration on
all the hexagons in S is uniquely identified by η|�K

, the bead configuration in K .
Let

(8.2) g(η) := g(η|�K
) = f (σ)1E�K

which depends only on η|�K
. Let also ẼK(t) the event that EK is realized at every

s ≤ t . We have

(8.3)
Eπρ

(
f (Xt)

) = Eπρ

(
g(ηt );1

ẼK(t)

) + O
(‖f ‖∞Pπρ

(
ẼK(t)c

))
= Eπρ

(
g(ηt )

) + O
(‖f ‖∞Pπρ

(
ẼK(t)c

))
.

From Corollary 7.4, we deduce easily that εK,t := Pπρ (ẼK(t)c) tends to zero as
K → ∞, for every fixed t . Therefore,

(8.4)
Eπρ

(
f (Xt)

) = Eπρ

(
g(ηt )

) + O
(‖f ‖∞εK,t

)
= πρ(g) + O

(‖f ‖∞εK,t

) = πρ(f ) + O
(‖f ‖∞εK,t

)
,
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where we used invariance of the Gibbs measure for functions of the bead configu-
ration in the second equality and

πρ(g) = πρ(f ) + O
(‖f ‖∞εK,0

)
in the last (note εK,0 ≤ εK,t ). We conclude by letting K → ∞.

8.2. Proof of Proposition 2.6. This is very similar to the proof of Theo-
rem 2.4, so we will be very sketchy. Given any R > 0 and ε > 0, one can
choose L sufficiently large so that there is a probability law for the random couple
(σ, σ ′) ∈ �H × �TL

such that σ ∼ π̂ρ, σ ′ ∼ π̂L
ρ and σ , σ ′ coincide, except with

probability ε, in the ball BR . This is done like at the beginning of the proof of The-
orem 2.4: in fact, the total variation distance between the marginals on BR of π̂ρ ,
π̂L

ρ tends to zero as L → ∞ (this is because the statement is true for the measures
πρ , πL

ρ not conditioned to have a bead at the edge e0, and the probability to have
a bead at e0 is uniformly bounded away from zero). As in Theorem 2.4, given any
a > 0, the coupled bead processes (σt , σ

′
t ) that use the same clocks in BR coincide

up to time T in the ball Ba , except with probability ε, provided R is larger than
some R0(a, T ). On the other hand, by comparing the displacement of a bead with
that of a DHD particle, we see that if a is sufficiently large (depending only on T )
the “tagged bead” stays within distance a/2 from its initial position up to time T ,
except with probability ε. In conclusion, the processes X̂t , X̂′

t re-centered at the
position of the tagged bead of σt , σ ′

t coincide (except with probability 2ε) up to
time T in a ball of radius a/2 centered at the origin. Together with the fact that the
re-centered process X̂′

t has law π̂L
ρ at all times (Proposition 4.2) this implies the

claim.

9. Speed and fluctuations. Here, we prove Theorem 3.1 and 3.2 about aver-
age speed and fluctuations of the growth process.

Let � be the 
 × 
 box in H defined as the collection of hexagons obtained by
translating a fixed hexagonal face x (say, the one at the origin of H) by a
e1 + b
e2,
0 ≤ a, b ≤ 
. Let

Q�(t) = ∑
x∈�

(
hx(t) − hx(0)

) = ∑
x∈�

Qx(t).(9.1)

Remark that

(9.2)

Q�(t + δ) = Q�(t) − ∑
e

y(p)
e

∣∣V (e,↑) ∩ �
∣∣

+ ∑
e

y(q)
e

∣∣V (e,↓) ∩ �
∣∣ + R�,t,δ

with y
(p)
e /y

(q)
e the indicator that the p/q-clock at e rings once in the time interval

[t, t + δ], while the “error term” R�,t,δ includes the contribution to the change of
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Q� from the events where there are n ≥ 2 edges e1, . . . , en where clocks ring in
the time interval [t, t + δ] and where, for every i ≤ n, either |V (ei,↓) ∩ �| �= 0 or
|V (ei,↑) ∩ �| �= 0.

PROOF OF (3.1). We want to see that

Eπρ

[
Q�(t)

] = (q − p)t
2J(9.3)

with J defined in (3.2). By linearity, we can assume 
 = 1, that is, � = {x}.
To see that R{x},t,δ can be neglected for δ → 0 let b±(t) be the lowest/highest

bead above/below x in the same column and let I (t) be the collection of horizontal
edges included between b−(t) and b+(t). Let also I (t, δ) = ⋃

s∈[t,t+δ] I (s). Then
observe that the only clock rings that can contribute ±1 to Qx(t + δ) − Qx(t)

necessarily occur in I (t, δ). Then

(9.4) |R{x},t,δ| ≤ N1{N≥2},

where N is a Poisson variable of average δ(p + q)|I (t, δ)|. Note that the law
of |I (t, δ)| for the stationary process of law Pπρ is independent of t and that,
from Corollary 7.4, the random variable |I (0, δ)| has exponential tails. Therefore,
Eπρ |R{x},t,δ| = O(δ2) and we see that

(9.5)

d

dt
Eπρ

[
Qx(t)

] = −pπρ

(∣∣{e : x ∈ V (e,↑)
}∣∣) + qπρ

(∣∣{e : x ∈ V (e,↓)
}∣∣)

= (q − p)πρ

(∣∣{e : x ∈ V (e,↑)
}∣∣),

where we used stationarity of πρ and in the last step its invariance by reflections
through any hexagon. �

PROOF OF (3.3) AND (3.8). We compute the variance of Q�(t). We have
[recall (9.2), where again we can see that R�,t,δ ≈ δ2 for δ small with the same
argument as above], letting for lightness of notation 〈·〉 := Eπρ ,

d

dt

〈
Q�(t)2〉 = 2

〈
Q�(t)K1(σt )

〉 + 〈
K2(σt )

〉
,(9.6)

where

Kn(σ) = (−1)np
∑
e

∣∣V (e,↑) ∩ �
∣∣n + q

∑
e

∣∣V (e,↓) ∩ �
∣∣n(9.7)

and the sums run over all horizontal edges of H. We have then, recalling also (9.3),
〈K2(σt )〉 = πρ(K2) and ∂t 〈Q�(t)〉 = πρ(K1),

(9.8)

d

dt
M2(t) := d

dt

〈(
Q�(t) − 〈

Q�(t)
〉)2〉

= 2
〈(
Q�(t) − 〈

Q�(t)
〉)(

K1(σt ) − πρ(K1)
)〉 + πρ(K2).
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One has (see the Appendix) that

sup




−2πρ

(|Kn|) ≤ C1 = C1(n) < ∞(9.9)

and, for every δ > 0,

sup



1


2+δ
πρ

[(
K1 − πρ(K1)

)2] ≤ C2(δ) < ∞.(9.10)

REMARK 9.1. It is likely that the variance of K1 is actually of order 
2,
without any spurious correction. Indeed, it is proven in [6] that, if f is a lo-
cal dimer function and fx is f translated by x ∈ Z

2, then (1/
)
∑

|x|≤
[fx −
πρ(fx)] satisfies a CLT with finite variance. The problem with K1 is that |V (e,

↑)∩�|, |V (e,↓)∩�| are not local functions. While in principle they are “almost-
local” (the probability that they involve more than n dimers decays at least ex-
ponentially in n; see Lemma A.1), even proving the weaker (9.10) requires some
nontrivial work.

We have from (9.8), from stationarity and from (9.9), (9.10)

(9.11)

d

dt
M2(t) ≤ √

M2(t)

√
πρ

[(
K1(σt ) − πρ(K1)

)2] + 2
2C1

≤ C3(δ)

1+δ/2

√
M2(t) + 2
2C1

from which it is then immediate to deduce that

M2(t = 
) ≤ C4

4+δ.(9.12)

Now we are ready to prove (3.3). Let x0 be a face in �. Write

(9.13)

Pπρ

(∣∣Qx0(
) − 〈
Qx0(
)

〉∣∣ ≥ 
2δ)
≤ Pπρ

(∣∣Qx0(
) − 〈
Qx0(
)

〉∣∣ ≥ 
2δ; ∣∣Q�(
) − 〈
Q�(
)

〉∣∣ ≤ 
2+δ)
+ o(1),

where we used (9.12) to neglect the event that |Q�(
) − 〈Q�(
)〉| ≥ 
2+δ . On the
other hand,

(9.14)

Q�(
) − 〈
Q�(
)

〉
= −A1 + A2 + A3

:= − ∑
x∈�

[
hx(0) − hx0(0) − πρ(hx − hx0)

]
+ ∑

x∈�

[
hx(
) − hx0(
) − πρ(hx − hx0)

]
+ 
2[

Qx0(
) − 〈
Qx0(
)

〉]
.
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We have (see again the Appendix)

πρ

[
A2

1
] = O

(

4 log


)
(9.15)

so that, using stationarity and Tchebyshev,

|A1|, |A2| ≤ 
2 log
,(9.16)

with probability 1 − o(1). Finally, we note that if event (9.16) holds and at the
same time |Q�(
)−〈Q�(
)〉| ≤ 
2+δ , one cannot have |Qx0(
)−〈Qx0(
)〉| ≥ 
2δ .
Equation (3.3) is then proven (just let 
 := t).

REMARK 9.2. If for a given slope ρ the condition (3.7) is satisfied, then one
can prove (cf. Remark A.2 below) that πρ[(K1 − πρ(K1))

2] = O(
2 log
), to be
compared with (9.10). Going back to (9.11) one sees that (9.12) is then improved
to M2(t = 
) ≤ C4


4 log
. Repeating the argument that starts with (9.13), one sees
immediately that (3.3) is improved into (3.8). �

APPENDIX: SOME EQUILIBRIUM ESTIMATES

Here, we give upper bounds on the probability that, at equilibrium, there is a
large gap between two consecutive beads in the same column. We use this infor-
mation to deduce several useful equilibrium estimates.

Let Jr be a set of r adjacent horizontal edges in the same vertical column of H
and Nr the number of beads in Jr .

LEMMA A.1. Let ρ be a nonextremal slope. For every λ > 0 and u > 0, there
exists C = C(λ,u,ρ) < ∞ such that, for every r ∈ N,

(A.1) πρ

(|Nr − ρ3r| ≥ ur
) ≤ C exp(−λur).

Recall that πρ(Nr) = ρ3r .

PROOF OF LEMMA A.1. It is known (cf. [21], Section 6.3) that Nr is dis-
tributed like the sum of r independent but not identically distributed Bernoulli ran-
dom variables Bi , i ≤ r of parameter qi satisfying

∑
i qi = rρ3 and

∑
i qi(1−qi) ∼

(1/π2) log r as r → ∞. One has then

(A.2)

πρ(Nr − ρ3r ≥ ur) = P

(∑
i≤r

(Bi − qi) ≥ ur

)

≤ exp(−λur)
∏
i

[
qie

λ(1−qi) + (1 − qi)e
−λqi

]
.
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Since for every λ > 0 there exists C1 = C1(λ) such that exp(x) ≤ 1 + x + C1x
2

for every x ∈ [−λ,λ], we get for r ≥ r0(ρ) large

(A.3)

πρ(Nr − ρ3r ≥ ur) ≤ e−λur
∏
i

[
1 + C2(λ)qi(1 − qi)

]
≤ e−λur+C2(λ)

∑
i qi (1−qi)

≤ e−λur+C4(λ) log r ≤ C(λ,u)e−λur/2.

The claim is immediately extended to r ≤ r0(ρ), possibly changing C to a new
constant C(λ,u,ρ). With a similar argument, one estimates πρ(Nr −ρ3r ≤ −ur).

�

PROOF OF (9.9). Just note that |V (e,↑) ∩ �| = k implies that there are k

hexagons just below e with no beads (or k + d of them, if e is at distance d from
�), an event that has probability exponentially small in k (or k + d) thanks to
Lemma A.1. The average of Kn is then immediately seen to be of order 
2. �

PROOF OF (9.15). It is well known [22] that the variance of hx −hy under πρ

grows like the logarithm of |x − y|. Then a Cauchy–Schwarz inequality implies
the desired estimate. �

PROOF OF (9.10). By Jensen’s inequality and symmetry, it suffices to show
that the variance of

f� = ∑
e

∣∣V (e,↑) ∩ �
∣∣

is O(
2+δ). Write

(A.4)

f� = f
(1)
� + f

(2)
� − f

(3)
�

:= ∑
e∈�

∣∣V (e,↑)
∣∣ + ∑

e/∈�

∣∣∣∣V (e,↑) ∩ �

∣∣∣∣− ∑
e∈�

∣∣∣∣V (e,↑) \ �

∣∣∣∣
and, again by Jensen, it is enough to estimate the variance of each of the three
terms. This is easy for f

(2)
� and f

(3)
� . Indeed, for instance if e is outside � and at

distance de from it, then |V (e,↑) ∩ �| ≥ n implies that there is a sequence of at
least n + de adjacent hexagons starting from e, where no bead is present. This has
probability exponentially small in de + n. As a consequence, if e1, e2 /∈ � then

πρ

[∣∣V (e1,↑) ∩ �
∣∣ × ∣∣V (e2,↑) ∩ �

∣∣] ≤ c exp
(−c′(de1 + de2)

)
(A.5)

from which a bound O(
2) on the second moment (and, therefore, the variance) of
f

(2)
� easily follows. A similar argument works for f

(3)
� .

The case of f
(1)
� is much more subtle. Observe (cf. Figure 13) that having

|V (e,↑)| = n > 0 is equivalent to the following: the horizontal edge e−
n that is
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FIG. 13. The event V (e,↑) = n for n = 3.

at distance n below e is occupied by a dimer, and so are the n edges el
1, . . . , e

l
n and

er
1, . . . , e

r
n, that is,

1|V (e,↑)|=n = δe−
n

n∏
j=1

(δel
j
δer

j
).(A.6)

We have

f
(1)
� − πρ

(
f

(1)
�

) = ∑
n>0

n
(
fn − πρ(fn)

)
(A.7)

with fn = ∑
e∈� 1|V (e,↑)|=n. We use then Jensen’s inequality, (

∑
i tiai)

2 ≤ ∑
i tia

2
i

if ti ≥ 0,
∑

i ti = 1, to get

πρ

[(
f

(1)
� − πρ

(
f

(1)
�

))2] ≤ C
∑
n>0

n4πρ

[(
fn − πρ(fn)

)2]
(A.8)

[we chose tn = 1/(Cn2) with C = ∑
n>0 n−2]. It remains to estimate the variance

of fn. Letting V (e;n) = 1|V (e,↑)|=n − πρ(|V (e,↑)| = n), write

πρ

[(
fn − πρ(fn)

)2] ≤ ∑
e,e′∈�

∣∣πρ

[
V (e;n)V

(
e′;n)]∣∣.(A.9)

Since the event |V (e,↑)| = n implies that there are n − 1 adjacent hexagons with-
out beads under e, we have from Lemma A.1, for any λ > 0, δ > 0,∣∣πρ

[
V (e;n)V

(
e′;n)]∣∣ ≤ C(λ, δ, ρ)e−nλ/δ.

Together with (A.9), this gives

πρ

[(
fn − πρ(fn)

)2] ≤ C′(λ, δ, ρ)
∑

e,e′∈�

∣∣πρ

[
V (e;n)V

(
e′;n)]∣∣1−δ

e−λn,(A.10)

where the constant λ will be chosen later.
Recall from (A.6) that 1|V (e,↑)|=n is a product of dimer indicator functions

on a certain set of p = 2n + 1 (not all horizontal) edges of H. Call e1 =
(b1,w1), . . . , ep = (bp,wp) such edges and let ep+1, . . . , e2p be the analogous
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edges corresponding to 1|V (e′,↑)|=n (of course ei+p is just ei translated by e′ − e).
Now we use formula (2.3):

πρ

[
V (e;n)V

(
e′;n)] = (k3)

2(k1k2)
2nd̃et

(
K−1(wi ,bj )

)
1≤i,j≤2p,(A.11)

where d̃et means that, since the variables V (e;n) are centered, when we ex-
pand the determinant in permutations σ of {1, . . . ,2p} we have to keep only
the permutations such that in the product there are N ≥ 2 “special” terms of the
type K−1(wi ,bσ(i)) with i ≤ p and σ(i) > p or vice versa (note N is always
even). Thanks to (2.2), each of the N special terms is of order 1/|e − e′| for
|e − e′| large. We will consider therefore only the contribution of permutations
such that N = 2 (those with N > 2 will give a sub-dominant correction when
the sum over e, e′ ∈ � is performed; we skip details). Without loss of generality,
we assume that the special terms are K−1(wi1,bσ(i1)) and K−1(wi2,bσ(i2)) with
i1, σ (i2) ≤ p, i2, σ (i1) > p [one has afterwards to sum over the O(p4) = O(n4)

possible choices of i1, i2, σ(i1), σ(i2)].
The contribution to d̃et(K−1(wi ,bj ))1≤i,j≤2p from such permutations is

(A.12)
εi1,i2,σ (i1),σ (i2) det

(
K−1(wi ,bj )

)
{1≤i,j≤p,i �=i1,j �=σ(i2)}

× det
(
K−1(wi ,bj )

)
{p+1≤i,j≤2p,i �=i2,j �=σ(i1)}

with ε = ±1 a sign that will play no role later. We claim that there exists C(ρ) < ∞
such that

det
(
K−1(wi ,bj )

)
i∈I,j∈J ≤ C(ρ)r(A.13)

for any r ≥ 1 and sets I , J of cardinality r . If this is the case, from (A.11) we have

∣∣πρ

[
V (e;n)V

(
e′;n)]∣∣ ≤ c(ρ)

|e − e′|2
[
k1k2C(ρ)2]2n

n4 ≤ (C′)n

|e − e′|2(A.14)

[recall that n4 comes from the summation over the possible values of i1, i2, σ(i1),
σ(i2)]. Plugging into (A.10) and choosing λ sufficiently large, we get

(A.15)
πρ

[(
fn − πρ(fn)

)2] ≤ C′′(λ, δ)e−(n/2)λ
∑

e,e′∈�

1

|e − e′|2(1−δ)

≤ C′′′(λ, δ)e−(n/2)λ
2+2δ.

Using this estimate in (A.8) we finally get

πρ

[(
f

(1)
� − πρ

(
f

(1)
�

))2] ≤ C′′(δ)
2+2δ(A.16)

as desired. The contribution from permutations with N > 2 gives instead O(
2)

since |e − e′|−2 is replaced by |e − e′|−N that is summable over e′ ∈ H.
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It remains to prove (A.13). This is based on Gram–Hadamard-type bounds (cf.
for instance [17], Appendix A4): if fi , gi , i ≤ m are vectors in a Hilbert space and
‖ · ‖ is the norm induced by the scalar product 〈·, ·〉, then∣∣det

(〈fi, gj 〉)i,j≤m

∣∣ ≤ ∏
j≤m

‖fj‖‖gj‖.(A.17)

The second observation (this trick is often used in constructive quantum field the-
ory; see again [17], Appendix A4) is that one can rewrite (2.1) as

(A.18)

K−1(wx,bx′) = 1

(2π)2

∫ 2π

0
dθ

∫ 2π

0
dφ

e−iθ(x′
2−x2)+iφ(x′

1−x1)

P̃ (θ, φ)

= ∑
y∈Z2

Ax(y)Bx′(y) =: 〈Ax,Bx′ 〉,

where P̃ (θ,φ) = P(eiθ , eiφ), z is the complex conjugate of a complex number z

and

Ax(y) = 1

(2π)2

∫ 2π

0
dθ

∫ 2π

0
dφ

e−iθ(x2−y2)+iφ(x1−y1)√
|P̃ (θ,φ)|

,(A.19)

Bx′(y) = 1

(2π)2

∫ 2π

0
dθ

∫ 2π

0
dφ

e−iθ(x′
2−y2)+iφ(x′

1−y1)

|P̃ (θ,φ)|3/2
P̃ (θ, φ).(A.20)

Finally, one applies (A.13) together with the observation that ‖Ax(·)‖, ‖Bx(·)‖ are
upper bounded by a constant. Indeed,

∥∥Ax(·)
∥∥2 = ∥∥Bx(·)

∥∥2 = 1

(2π)2

∫ 2π

0
dθ

∫ 2π

0
dφ

1

|P̃ (θ, φ)| =: C(ρ)(A.21)

which is finite since P̃ has only simple poles on the torus. �

REMARK A.2. For a given choice of ρ (and therefore of k1, k2, k3), it may
happen that C(ρ) in (A.21) satisfies k1k2C(ρ)2 < 1. In this case, from the first
inequality in (A.14) together with (A.9) and (A.8) we see that

πρ

[(
f

(1)
� − πρ

(
f

(1)
�

))2] = O

( ∑
e,e′∈�

1

|e − e′|2
)

= O
(

2 log


)
.(A.22)
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