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LIMIT THEOREMS FOR POINT PROCESSES UNDER
GEOMETRIC CONSTRAINTS (AND TOPOLOGICAL CRACKLE)

BY TAKASHI OWADA1 AND ROBERT J. ADLER1,2

Technion—Israel Institute of Technology

We study the asymptotic nature of geometric structures formed from a
point cloud of observations of (generally heavy tailed) distributions in a Eu-
clidean space of dimension greater than one. A typical example is given by
the Betti numbers of Čech complexes built over the cloud. The structure of
dependence and sparcity (away from the origin) generated by these distribu-
tions leads to limit laws expressible via nonhomogeneous, random, Poisson
measures. The parametrisation of the limits depends on both the tail decay
rate of the observations and the particular geometric constraint being consid-
ered.

The main theorems of the paper generate a new class of results in the well
established theory of extreme values, while their applications are of signifi-
cance for the fledgling area of rigorous results in topological data analysis. In
particular, they provide a broad theory for the empirically well-known phe-
nomenon of homological “crackle;” the continued presence of spurious ho-
mology in samples of topological structures, despite increased sample size.
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1. Introduction. The main results in this paper lie in two seemingly unrelated
areas, those of classical Extreme Value Theory (EVT), and the fledgling area of
rigorous results in Topological Data Analysis (TDA).

The bulk of the paper, including its main theorems, are in the domain of EVT,
with many of the proofs coming from geometric graph theory. However, the con-
sequences for TDA, which will not appear in detail until the penultimate section
of the paper, actually provided our initial motivation, and so we shall start with a
brief description of this aspect of the paper.

Many problems in TDA start with a “point cloud,” a collection X = {x1, . . . , xn}
of points in R

d , from which more complex sets are constructed. Two simple ex-
amples are the simple union of balls

U(X , r)
�=

n⋃
k=1

B(xk; r),

where B(x; r) is a closed ball of radius r about the point x, and the Čech complex,
Č(X , r).

DEFINITION 1.1. Let X be a collection of points in R
d and r be a positive

number. Then the Čech complex Č(X , r) is defined as follows:

1. The 0-simplices are the points in X .
2. A p-simplex σ = [xi0, . . . , xip ] belongs to Č(X , r) whenever a family of

closed balls {B(xij ; r/2), j = 0, . . . , p} has a nonempty intersection.

Čech complexes are higher-dimensional analogues of geometric graphs, a no-
tion more familiar to probabilists.

DEFINITION 1.2. Given a finite set X ⊂ R
d and a real number r > 0, the

geometric graph G(X , r) is the undirected graph with vertex set X and edges
[x, y] for all pairs x, y ∈ X for which ‖x − y‖ ≤ r .

For a given a Čech complex, it is immediate from the definitions that its 1-
skeleton is actually a geometric graph. Examples of both are given in Figure 1.

A typical TDA paradigm is to create either U(X , r) or Č(X , r) as an estimate of
some underlying sub-manifold, M ⊂ R

d , from which X is actually sampled, and
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FIG. 1. Take X = {x1, . . . , x8} ⊂R
2. Note that the 2-simplex [x1, x2, x3] belongs to Č(X , r), since

the three balls with radius r centred at x1, x2, x3 have a common intersection. The Betti numbers of
Č(X , r) are β0 = 1 (one connected component), β1 = 2 (two closed loops), while all others are zero.
The geometric graph G(X , r) shows the 1-skeleton of Č(X , r).

then consider its homology, typically via what is known as persistent homology
(with which we shall not concern ourselves in this paper) or through Betti numbers.

We shall concern ourselves primarily with Betti numbers, a basic quantifier in
algebraic topology. Roughly speaking, given a topological space X, the 0th Betti
number β0(X) counts the number of its connected components, while for k ≥ 1,
the kth Betti number βk(X) counts the number of k-dimensional “holes” or “cy-
cles” in X. For example, a one-dimensional sphere, that is, a circle—has β0 = 1,
β1 = 1 and βk = 0 for all k ≥ 2. A two-dimensional sphere has β0 = 1, β1 = 0 and
β2 = 1, and all others zero. In the case of a two-dimensional torus, the nonzero
Betti numbers are β0 = 1, β1 = 2 and β2 = 1. At a more formal level, βk(X) can
be defined as the dimension of the kth homology group, however, the essence of
this paper can be captured without knowledge of homology theory. In the sequel,
simply viewing βk(X) as the number of k-dimensional holes will suffice. The read-
ers who are interested in a thorough coverage of homology theory may refer to [16]
or [27].

Returning to the two sets U(X , r/2) and Č(X , r), by a classical result known
as the nerve theorem [9], they are homotopy equivalent, and so from the point of
view of TDA they are conceptually equivalent. However, since the definition of the
Čech complex is essentially combinatorial, it is computationally more accessible,
and so of more use in applications. Hence, we shall concentrate on it from now on.

There is now a substantial literature, with [19, 20] being the papers that moti-
vated us, that shows given a nice enough M, and any δ > 0, there are explicit con-
ditions on n and r such that the homologies of U and Č are equal to the homology
of M with a probability of at least (1 − δ). Typically, these results hold when the
sample X is either taken from M itself, or from M with small (e.g., Gaussian)
random, perturbative error. However, if the error is allowed to become large (e.g.,
has a heavy tailed distribution) then these results fail, and a phenomenon known
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(a) (b)

(c) (d)

FIG. 2. (a) The original space M (an annulus) that we wish to recover from random samples.
(b) With the appropriate choice of radius, we can easily recover the homology of the original space
from the union of balls around a random sample from M. (c) In the presence of bounded noise, ho-
mology recovery is undamaged. (d) In the presence of unbounded noise, many extraneous homology
elements appear, and significantly interfere with homology recovery.

as crackle occurs. An example is given in Figure 2, taken from [1], in which the
underlying M (a stratified manifold in this case) is an annulus in R

2. From the
point of view of TDA, the main aim of the current paper is to derive rigorous re-
sults describing the distribution of the “extraneous homology elements” appearing
in Figure 2(d).

These results, as central as they are to the paper, will be given in detail only
in Section 5. There we shall show that the Betti numbers of the sets generating
this spurious homology, which occurs far from the support of M, satisfy Poisson
limit laws. The limit laws are stated in terms of the distance of these sets from
M, so that they are in terms of limiting Poisson laws, the intensities of which
depend significantly on the tail decay rate of the perturbative error. The practical
importance of this is that it gives useful information on how much crackle occurs,
what its topological nature is, and where it occurs, at least in a limiting scenario.
The results of Section 5, therefore, are the main ones from the point of view of
TDA.

The reason that we need to wait so long to get to these results is that the natural
probabilistic setting for both stating and proving the theorems from which they
follows is that of EVT. Recall that the classical setup of (multivariate) EVT takes
a point process generated by independently and identically distributed (i.i.d.) ran-
dom variables in R

d—a random point cloud—scales and centers the cloud, and
then typically shows weak convergence of the new cloud to a Poisson random
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measure. The literature dealing with this setup is rich, and impossible to sum-
marise here, but the main references for EVT are probably [15, 23] and [14], while
a comprehensive introduction to point process theory is provided by [11].

Beyond these more classical papers, over the last decade or so there have been
a number of papers treating geometric descriptions of multivariate extremes from
the perspective of point process theory, among them [3, 5] and [6]. In particular,
Poisson limits of point processes possessing a U-statistic structure were investi-
gated by [10] and [26], the latter also treating a number of examples in stochastic
geometry.

All of these papers focused on the (limiting) distributions of extreme sample
clouds, but so far, surprisingly few attempts have been made at analyzing their
topological features. The objective of the present work is to present a unified, ge-
ometric and topological approach to the point process convergence of extreme
sample clouds. Results on the limiting behaviour of geometric complexes are quite
new, with results not unrelated to our own, include [17, 18, 28] and [29]. In partic-
ular, [18] and [29] derived various central and Poisson limit theorems for the Betti
numbers of the random Čech complexes Č(Xn, rn), with Xn a random point set in
R

d and rn a threshold radius. The resulting limit theorems depend heavily on the
asymptotics of nrd

n , as n → ∞. For example, [18] investigated the sparse regime
(i.e., nrd

n → 0) so that the spatial distribution of complexes is sparse, and they are
observed mostly as isolated components. In contrast, the main focus of [29] was
the thermodynamic regime [i.e., nrd

n → ξ ∈ (0,∞)] in which complexes are large
and highly connected.

However, with the single exception of [1], already discussed above, none of
these papers has results related to crackle. The main discovery of [1] was that
the topological behaviour of the individual components of geometric complexes
built over point clouds of (typically) heavy tailed random variables is determined
by how far away they lie from M. In the simple case in which M is a single
point at the origin, this is exhibited by the formation of “rings” around the origin,
each ring containing points of the cloud which exhibit quite different geometric
and topological properties. The positions of the rings depend crucially on the tail
decay rate of the underlying probability distribution of the observations as well as
the topological property being studied. The contribution of the present paper is to
take the discovery of [1], made on the basis of only two examples, and develop it
into a full theory, covering wide classes of distributions and developing far more
detailed descriptions of the crackle phenomenon.

The remainder of the paper is structured as follows: In Section 2, we establish
general results on point process convergence under certain geometric constraints.
Since the results here are very general, the conditions of the theorems may at first
seem rather unnatural and hard to check. That this is actually not the case be-
comes clear when we turn to specific scenarios depending on the tail properties of
the underlying distributions. In doing so, it turns out to be natural to distinguish
between what we shall henceforth call “heavy-tailed” (e.g., power law tails) and
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“light-tailed” (e.g., e−‖x‖τ
, τ > 0) densities. Section 3 defines heavy-tailed den-

sities more precisely, via regular variation of tails (giving marginal distributions
in the max-domain of attraction of the Fréchet law) and then applies the general
results of Section 2 to obtain limiting Poisson results for this case. Section 4 then
does the same for light-tailed densities (with tails controlled by the von Mises
function). Typically, a standard argument in EVT characterises distributional tails
via distribution functions (not densities), but our calculation will proceed relying
heavily on the treatment of densities. Therefore, in both Sections 3 and 4, we shall
distinguish the underlying distributions using density functions.

The final Section 5 presents several applications of the point process conver-
gence, one of which is the limit theory of Betti numbers alluded to above. In ad-
dition, we give some independently interesting limit theorems on partial sums and
maxima under geometric constraints. To the best of our knowledge, these results
have no precursors in the random topology literature, since, while they are simple
corollaries of the Poisson convergence that is our main theme, proving them ab
initio would be quite hard.

A final remark is that all random points in the present paper are generated from
an inhomogeneous Poisson point process in R

d with intensity nf (f is a density
function). However, all the results obtained can be carried over to the situation of
an i.i.d. random sample without difficulty. Further, we only consider spherically
symmetric densities. Although the spherical symmetry assumption has very little
to do with our results, we adopted it in order to avoid unnecessary technicalities,
which would otherwise blur the message of the paper as well as making the treat-
ment much longer and more cumbersome.

Since the paper is rather long, and unavoidably heavy on notation, we conclude
the Introduction with a short notation guide in Table 1.

2. Point process convergence: General theory. In this section, we prove a
general convergence result for point processes with geometric constraints. The
main result, Theorem 2.1, which holds under somewhat opaque conditions, will
then be applied in the two following sections to obtain results under specific, and
quite natural, distributional assumptions. Before getting to results, however, we
need to set up a framework and notation, which we do in the following subsec-
tions.

2.1. Point clouds and indicator functions for geometry. We start with a collec-
tion X = {Xi, i ≥ 1} of i.i.d., Rd -valued random variables with spherically sym-
metric probability density f . For n ≥ 1, let Nn be a Poisson random variable with
mean n, and independent of the Xi . Then the random measure with atoms at the
points X1, . . . ,XNn , which we denote by Pn, is an inhomogeneous Poisson point
process with intensity nf .

Now choose a positive integer k, which will remain fixed for the remainder of
the paper. Although some of our results hold for k = 1, we shall henceforth take
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TABLE 1
Notations used in this paper with their definitions and meanings.

Symbol Definition or meaning Place defined

Č(X , r) Čech complex Definition 1.1
G(X , r) Geometric graph Definition 1.2
X Point cloud {X1, . . . }
Pn Poisson point process with intensity nf

Xk First k points in X (2.1)
Xi, i = {i1, . . . , ik} Subset {Xi1 , . . . ,Xik } of X (2.2)
In,k All subsets of {1, . . . , n} of size k (2.3)
rn, ck,n, dk,n,Rk,n etc. Scaling sequences, specific to section

X
(n)
i Xi , translated and scaled (2.10)

X (n)
k First k points of normalised Xi ’s (2.11)

X (n)
i , i = {i1, . . . , ik} Subset {X(n)

i1
, . . . ,X

(n)
ik

} (2.12)

S(x) Maps x ∈R
d onto the positive orthant of Sd−1 (2.13)

Lk Upper-diagonal subset of a k-dim. cube (2.14)

N
(k)
n No. of k-tuples satisfying a condition (2.15)

Ñ
(k)
n No. of isolated k-tuples as above (2.16)

p(x; r) Local integral of density (3.7)
J (θ) Polar Jacobian (4.9)
x 	 y, for x, y ∈R

d xi ≤ yi , i = 1, . . . , d

x ≺ y, for x, y ∈R
d xi < yi , i = 1, . . . , d

a ∨ b, for a, b ∈ R max{a, b}
a ∧ b, for a, b ∈ R min{a, b}
B(x; r) Ball, centre x, radius r

‖ · ‖ Euclidean norm
Sd d-dimensional unit radius sphere
sd Surface area of Sd

λk k-dimensional Lebesgue measure
Poi(λ) Poisson distribution with mean λ

⇒ Weak convergence
0 Vector of zeros
e1 Vector with 1st comp. 1 and others zero
Ann(a, b) Annulus, {x ∈R

d : a ≤ ‖x‖ ≤ b}

k ≥ 2, unless otherwise stated. As will soon be clear, in the k = 1 case many of the
objects and functions we build will degenerate, in the sense that the corresponding
results will become known results of nontopological EVT.

Let

Xk
�= {X1, . . . ,Xk}(2.1)
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be the first k points and for an ordered k-tuple i = (i1, . . . , ik), 1 ≤ i1 < · · · < ik ,
consider the k-tuple of points

Xi
�= {Xi1, . . . ,Xik}.(2.2)

We are interested in the geometric objects built over the Xi, for all i in the set
I|Pn|,k , where

Im,k
�= {

i = (i1, . . . , ik) : 1 ≤ i1 < · · · < ik ≤ m
}
,(2.3)

and |Pn| = Nn is the number of atoms of Pn.
To set this up formally, we define an indictor function h : (Rd)k → {0,1} which

will capture the geometry. Two concrete examples related to problems that will be
considered in detail later sections are

h(x1, . . . , xk) = 1
(
G

({x1, . . . , xk},1
) ∼= 


)
,(2.4)

and

h(x1, . . . , xk) = 1
(
βk−2

(
Č

({x1, . . . , xk},1
)) = 1

)
,(2.5)

where 1 is the indicator function, G is a geometric graph, 
 is a fixed connected
graph with k vertices, ∼= denotes graph isomorphism, and Č is a Čech complex.

Throughout the paper, we shall require that h is shift invariant, namely

(2.6) h(x1, . . . , xk) = h(x1 + y, . . . , xk + y) for all x1, . . . , xk, y ∈ R
d .

We shall refer to this as the shift invariance condition in what follows. Further, we
shall typically require a points in proximity condition, defined by the requirement
that there exists a finite M > 0 for which

(2.7) h(0, x1, . . . , xk−1) = 0 if ‖xi‖ > M for some i ∈ {1, . . . , k − 1}.
In addition, given a nonincreasing sequence of positive numbers (rn, n ≥ 1) (the
case rn ≡ constant is permissible) we define scaled versions of h, hn : (Rd)k →
{0,1}, by setting

(2.8) hn(x1, . . . , xk)
�= h(x1/rn, . . . , xk/rn).

Clearly, hn is also shift invariant. Furthermore, if rn is small, then (2.7) implies that
hn(x1, . . . , xk) = 1 only when all the points x1, . . . , xk are close to one another.

In what follows, we shall be particularly interested in k-tuples Xi, i ∈ I|Pn|,k
which not only satisfy the constraint implicit in the indicator hn but are also sep-
arated (by at least rn) from the other points in Pn. Thus, we need to introduce
another sequence of indicator functions. Given a subset X of k points in R

d , and a
larger, but finite, set Y ⊃ X of points in the same space, define

(2.9) gn(X ,Y)
�= hn(X ) × 1

(
G(X , rn) is an isolated component of G(Y, rn)

)
.
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2.2. Sequences of point processes. Since we are going to be dealing with the
geometry of random variables “in the tail” of f , as in standard EVT we are going
to need to normalise them before trying to formulate any results.

Thus, with k still fixed, we assume that we have two sequences of constants,
dk,n ∈ R and ck,n > 0, with which to shift and then scale the Xi , and, in notation
that will save a lot of space, define:

X
(n)
i

�= Xi − dk,nS(Xi)

ck,n

,(2.10)

X (n)
k

�= {
X

(n)
1 , . . . ,X

(n)
k

}
,(2.11)

X (n)
i

�= {
X

(n)
i1

, . . . ,X
(n)
ik

}
,(2.12)

where

S(x)
�= (|x(1)|, . . . , |x(d)|)

‖x‖(2.13)

maps points x = (x(1), . . . , x(d)) in R
d onto the positive orthant of Sd−1.

We can now define the two random measures, that will be at the centre of all that
follows, over the space Ek × Lk , where Ek is a measurable set in ([−∞,∞]d)k
and Lk is the upper-diagonal subset of a k-dimensional cube, namely

(2.14) Lk
�= {

(z1, . . . , zk) ∈ [0,1]k : 0 ≤ z1 < · · · < zk ≤ 1
}
.

The measures, for Borel A ⊂ Ek × Lk , and εx a Dirac measure at x ∈ Ek × Lk ,
are given by

N(k)
n (A)

�= ∑
i∈I|Pn|,k

hn(Xi)ε(X (n)
i ,i/|Pn|)(A),(2.15)

and

Ñ (k)
n (A)

�= ∑
i∈I|Pn|,k

gn(Xi,Pn)ε(X (n)
i ,i/|Pn|)(A).(2.16)

(Note that N
(k)
n = Ñ

(k)
n ≡ 0 whenever k > n.)

The point process N
(k)
n counts k-tuples satisfying the geometric condition im-

plicit in hn, while Ñ
(k)
n adds the additional restriction that the geometric graphs

generated by such k-tuples be distance at least rn from all the remaining points
of Pn. It will turn out that, while N

(k)
n always dominates Ñ

(k)
n , both exhibit very

similar limiting behaviour. In fact, the proof of the general result on point process
convergence will follow the route of first establishing a result for N

(k)
n , which is

somewhat easier because the geometric condition implicit in the indicator does not
include Pn, and then showing that since the two processes are close to one another
the same limit holds for Ñ

(k)
n .
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2.3. A general theorem. Retaining the notation of the previous subsection, we
now set up the main conditions that will ensure the weak convergence of the pro-
cesses N

(k)
n and Ñ

(k)
n . Although we ultimately want theorems in which conditions

relate to the tail behaviour of the underlying density of the Xi , the conditions in this
section relate both to this and to what amounts to asymptotic sparsity for certain
structures in Pn. In Sections 3 and 4, we shall see how to derive this independence
from tail considerations.

For our first condition, which we refer to as the vague convergence condi-
tion, we assume that there exist a Radon measure νk on a measurable set Ek ⊂
([−∞,∞]d)k , not assigning mass to points at infinity, and normalising constants,
as in the previous subsection, such that

(2.17)
(
n

k

)
P

{
hn(Xk) = 1,X (n)

k ∈ ·} v→ νk(·),

where
v→ denotes vague convergence in Ek .

The second, sparsity condition, is given by

n2k−l
P

{
hn(Xk) = hn(X1, . . . ,Xl,Xk+1, . . . ,X2k−l) = 1,X (n)

2k−l ∈ K
}

(2.18)
→ 0,

as n → ∞, for every l = 1, . . . , k − 1 and every compact set K in E2k−l . This
condition prevents the random k-tuples from clustering too much, and will lead to
a Poisson limit for N

(k)
n . The same kind of sparsity, or anti-clustering, condition

can be found in, for example, [10] and [26].
An additional condition will be needed for the convergence of Ñ

(k)
n . For this,

let P ′
n be an independent copy of Pn. Then this condition, combined with (2.17),

requires that, asymptotically in n, the k points in Xk all be distance at least rn from
the points in P ′

n. Specifically,

(2.19)
(
n

k

)
P

{
gn

(
Xk,Xk ∪P ′

n

) = 1,X (n)
k ∈ ·} v→ νk(·).

As one might expect from these conditions, when they hold the weak limits of
N

(k)
n and Ñ

(k)
n will typically be expressible via Poisson random measures, which

we denote by N(k), and now define.
Writing λk for k-dimensional Lebesgue measure, the Poisson random measure

N(k) on Ek × Lk , with mean measure νk × λk (with λk restricted to Lk) is defined
by the finite dimensional distributions

P
(
N(k)(A) = m

) = e−(νk×λk)(A)((νk × λk)(A)
)m

/m!, m = 0,1,2, . . . ,

for all measurable A ⊂ Ek × Lk with (νk × λk)(A) < ∞. Furthermore, if
A1, . . . ,Am are disjoint subsets in Ek × Lk , then N(k)(A1), . . . ,N

(k)(Am) are
independent.



2014 T. OWADA AND R. J. ADLER

The random measures N
(k)
n , Ñ (k)

n , and N(k) are all regarded as random elements
in the space Mp(Ek × Lk) of Radon point measures in Ek × Lk . Details on such
random measures, including issues related to their weak convergence in the space
of Radon measures, along with the vague convergence of (2.17) and (2.19), can be
found, for example, in [23] and [24].

Before stating the main result of this section, a few words about the above three
conditions are in order. First, we note that more specific definitions of the state
space Ek and concrete definitions of the normalising constants (ck,n, dk,n) will
be given in the subsequent sections, where they will be seen to be dependent on
whether the underlying density f has heavy tail or light tail.

In the heavy-tailed density case, we take Ek = ([−∞,∞]d)k \ {0} and dk,n ≡ 0.
Thus, there is no shift of the points Xi by S(Xi), and all the scaling does is bring
points closer to the origin. Consequently, the point processes N

(k)
n and Ñ

(k)
n asymp-

totically count geometric events equally likely in all the orthants.
On the other hand, in the case of light-tailed densities, one needs to take

Ek = ((−∞,∞]d)k and dk,n is generally nonzero. Since Xi is translated by
dk,nS(Xi), this implies that, at least when n is large, N

(k)
n and Ñ

(k)
n count geo-

metric events basically only when they occur in the nonnegative orthant. Never-
theless, the assumed spherical symmetry of the density allows our main results to
be extended to general domains with only minor additional arguments.

Thus, since the aim of this section is to establish general theory on point process
convergence, we shall leave this interperative complication until it arises later in
specific examples.

As remarked above, throughout the paper we take k ≥ 2. Given the definitions
above, we can now explain why this is the case. If k = 1, there is no shift invariant
indicator to associate with the point process, and we have

N(1)
n (·) =

|Pn|∑
i=1

ε
(c−1

1,n(Xi−d1,nS(Xi)),i/|Pn|)(·).

This type of the point process has been well studied in classical EVT, and we have
nothing to add about it.

We can now state the main result of this section. The proof is deferred to the
Appendix.

THEOREM 2.1. Let (Xi, i ≥ 1) be a sequence of i.i.d. Rd -valued spherically
symmetric random variables. Let hn : (Rd)k → {0,1} be a sequence of indica-
tors as in (2.8), satisfying shift invariance as in (2.6) and the points in proximity
condition (2.7). Assume also that the vague convergence condition (2.17) and the
sparcity condition (2.18) hold. Then

N(k)
n ⇒ N(k),
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where ⇒ denotes weak convergence in the space Mp(Ek × Lk). In addition, sup-
pose that the global separation condition (2.19) holds. Then we also have that

Ñ (k)
n ⇒ N(k).

REMARK 2.2. Note that the case h ≡ 1 is precluded by (2.7). In fact, if h ≡ 1,
then it is easy to see that (2.17) and (2.18) cannot hold simultaneously.

3. Heavy tail cases. As a special case of the general theory introduced in the
last section, we shall discuss point process convergence when the underlying den-
sity on R

d has a heavy tail. More specifically, we assume that the density has a
regularly varying tail (at infinity) in the sense that, for every θ ∈ Sd−1 (equiva-
lently, for some θ ∈ Sd−1, due to the spherical symmetry of f ), and some α > d ,

lim
r→∞

f (trθ)

f (rθ)
= t−α for every t > 0.

Writing RV−α to denote the family of regularly varying functions (at infinity) of
exponent −α, then the above is equivalent to the requirement

(3.1) f ∈ RV−α.

In the one-dimensional case (d = 1), it is known that regular variation of the tail in
f suffices for the distribution to be in the max-domain of attraction of the Fréchet
law; see, for example, Theorem 3.3.7 in [15].

In general, given a nonincreasing sequence of positive numbers (rn, n ≥ 1), we
define hn, gn as in Section 2. Then, for a fixed positive integer k ≥ 2, the point
processes we are going to explore are

(3.2) N(k)
n (·) = ∑

i∈I|Pn|,k
hn(Xi)ε(R−1

k,nXi,i/|Pn|)(·),

and

(3.3) Ñ (k)
n (·) = ∑

i∈I|Pn|,k
gn(Xi,Pn)ε(R−1

k,nXi,i/|Pn|)(·),

where (Rk,n, n ≥ 1) is asymptotically determined by

(3.4) nkrd(k−1)
n Rd

k,nf (Rk,ne1)
k → 1 as n → ∞,

with e1 = (1,0, . . . ,0)′.

REMARK 3.1. Note that (3.4) implicitly precludes very fast decay of rn to
zero. In fact, if nkr

d(k−1)
n → 0 as n → ∞, then (3.4) implies that we must also have

that Rd
k,nf (Rk,ne1)

k → ∞, which contradicts (3.1). However, under the implicit
restriction that such rapid convergence does not occur, (3.4) effectively determines
the Rk,n as an intrinsic function of k and rn.
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Note also that the case rn ≡ 1 was the one treated in [1], although for a far
more limited class of densities. In the case rn ≡ 1, it is easy to check that Rk,n ∈
RV(α−d/k)−1 as a function of n.

The convergence in law of N
(k)
n and Ñ

(k)
n takes place in the space Mp(Ek ×Lk),

where Ek = ([−∞,∞]d)k \ {0} and Lk is given in (2.14). Let N(k) be a limiting
Poisson random measure, whose intensity is, as in Section 2, denoted by νk ×
λk , where λk is the k-dimensional Lebesgue measure concentrated on Lk . As a
consequence of the heavy tail of f , the measure νk also exhibits a power-law tail
structure. More specifically, for a rectangle (a0, b0] × · · · × (ak−1, bk−1] ⊂ Ek =
([−∞,∞]d)k \ {0}, which is bounded away from the origin,

νk

(
(a0, b0] × · · · × (ak−1, bk−1])

(3.5)

= 1

k!
∫
(Rd )k−1

h(0,y) dy
∫
ai≺x	bi ,i=0,...,k−1

‖x‖−αk dx,

where ≺ and 	 indicate componentwise inequalities.
It is worth mentioning that νk exhibits the scaling property:

(3.6) νk(sA) = s−(αk−d)νk(A)

for all s > 0 and measurable A. We shall also need one additional function. For
x = (x1, . . . , xk) ∈ (Rd)k , r > 0, we define

(3.7) p(x; r) �=
∫

⋃k
i=1 B(xi;r)

f (z) dz.

We now have all we need to formulate the following result. The proof is given
in the Appendix.

THEOREM 3.2. Let (Xi, i ≥ 1) be a sequence of i.i.d. Rd -valued spherically
symmetric random variables with density f having regularly varying tail as in
(3.1). Let hn : (Rd)k → {0,1} be a sequence of indicators as in (2.8), satisfying
the shift invariance of (2.6) and the points in proximity condition (2.7). Then the
point processes N

(k)
n and Ñ

(k)
n given by (3.2) and (3.3) weakly converge to N(k) in

the space Mp(Ek × Lk).

To make the implications of the theorem a little more transparent, consider the
simple case for which

(3.8) f (x) = C

1 + ‖x‖α
,

and assume that rn = ns with −k/d(k − 1) < s ≤ 0. Then (3.4) reduces to
nk+sd(k−1)CkRd−αk

k,n → 1 and solving this with respect to Rk,n gives

Rk,n = C(α−d/k)−1
n[1+sd(1−k−1)]/(α−d/k),

which in turn implies · · · � Rk,n � Rk−1,n � · · · � R2,n.
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FIG. 3. Layer structure of annuli for random geometric graphs. For the density (3.8), Rk,n is a
regularly varying sequence with exponent [1 + sd(1 − k−1)]/(α − d/k). The number of subgraphs
isomorphic to 
k outside B(0;Rk,n) is approximately Poisson.

Being more specific on the geometric side, consider the geometric graph exam-
ple of (2.4), where connected graphs 
k with k vertices are fixed for k = 2,3, . . . .
Then the theorem implies that Rd can be divided into annuli of increasing radii,
and the 
k , k = 2,3, . . . are (asymptotically) distributed in these annuli in a very
specific fashion. Letting Ann(K,L) denote an annulus of outer radius L and inner
radius K , as seen in Figure 3, we have (in an asymptotic sense):

• Inside Ann(R2,n,∞), there are finitely many 
2, but none of 
3,
4, . . . .
• Inside Ann(R3,n,R2,n), there are infinitely many 
2 and finitely many 
3, but

none of 
4,
5, . . . .

In general,

• Inside Ann(Rk,n,Rk−1,n), there are infinitely many 
2, . . . ,
k−1 and finitely
many 
k , but none of 
k+1,
k+2, . . . .

4. Light tail cases. This section treats point process convergence when the
underlying density on R

d possesses a relatively lighter tail than in the previous
section. Typically, in the spirit of extreme value theory, light-tailed densities can be
formulated by the so-called von Mises function. In particular, in a one-dimensional
case (d = 1), the von Mises function plays a decisive role in a characterisation of
the max-domain of attraction of the Gumbel law. See Proposition 1.4 in [23]. The
density formulation similar to our setup can be found, for example, in [4] and [5].

Our results for the light tailed case fall into two categories. In the first, we have
results more or less paralleling those of the previous section, although the nor-
malisations and limiting distributions are somewhat different. Nevertheless, the
“annuli structure” in the preceding section carries through. This case is treated in
Section 4.1. Recall, however, that in the heavy tail case these annuli are rather
thick, especially when compared the typical size of the geometric objects, which
is of order rn. In the light tail scenario, this is not the case, and the annuli are actu-
ally quite thin, which leads to questions that are not present in the heavy tail case.
These questions are posed and solved in Section 4.2.
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4.1. Annuli. The light tail case considers (Xi, i ≥ 1) of Rd -valued i.i.d. spher-
ically symmetric random variables with density given by

(4.1) f (x) = L
(‖x‖)

exp
{−ψ

(‖x‖)}
, x ∈ R

d .

Here, ψ :R+ →R is a C2 function of von Mises type, in that

ψ ′(z) > 0, ψ(z) → ∞,
(
1/ψ ′)′(z) → 0

as z → z∞, for some z∞ ∈ (0,∞]. The main objects of this paper are the geometric
objects far away from the origin, so the bounded support of the density (i.e., z∞ <

∞) is relatively less interesting to us. Therefore, in what follows, we restrict to
the unbounded support case, in which z∞ = ∞. For notational convenience, we
introduce the function

a(z) = 1

ψ ′(z)
.

Since a′(z) → 0 as z → ∞, the Cesàro mean of a′ converges as well. That is,

a(z)

z
= 1

z

∫ z

0
a′(r) dr → 0 as z → ∞.

Suppose that the function L :R+ →R+ in (4.1) is flat for a; namely

(4.2)
L(t + a(t)v)

L(t)
→ 1 as t → ∞ uniformly on bounded v-sets.

This assumption implies that L is negligible in its tail, and hence the tail behaviour
of f is determined only by ψ . Here, we need to introduce an extra regularity
condition on L. Assume that there exist γ ≥ 0, z0 > 0, and C ≥ 1 such that

(4.3)
L(zt)

L(z)
≤ Ctγ for all t > 1, z ≥ z0.

In view of Corollary 2.0.5 in [7] (or Theorem 2.0.1 there),

(4.4) lim sup
z→∞

L(zt)

L(z)
< ∞ for all t > 1

suffices for (4.3). Observe that if L is a polynomial function, then both (4.2) and
(4.4) are satisfied. On the other hand, (4.4) does not hold if L grows exponentially.

Given a nonincreasing sequence (rn, n ≥ 1) of positive numbers (as usual con-
stant rn is permissible), we define hn and gn as in the previous sections. Suppose
that there exists a nondecreasing sequence (Rk,n, n ≥ 1) determined by

(4.5) nkrd(k−1)
n a(Rk,n)R

d−1
k,n f (Rk,ne1)

k → 1, n → ∞.

As pointed out in Remark 3.1, note that a rapid decay of (rn), for example,
nkr

d(k−1)
n → 0, n → ∞ is not permissible. For k ≥ 2, using abbreviations (2.10),

(2.11) and (2.12), so that

ck,n = a(Rk,n), dk,n = Rk,n,
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we shall consider the following point processes in the space Mp(Ek × Lk) with
Ek = ((−∞,∞]d)k and Lk given by (2.14):

(4.6) N(k)
n (·) = ∑

i∈I|Pn|,k
hn(Xi)ε(X (n)

i ,i/|Pn|)(·)

and

(4.7) Ñ (k)
n (·) = ∑

i∈I|Pn|,k
gn(Xi,Pn)ε(X (n)

i ,i/|Pn|)(·).

As seen below in more detail, the nontriviality of weak limits of N
(k)
n and Ñ

(k)
n

mainly depends on the limit value of a(Rk,n)/rn. Indeed, if a(Rk,n)/rn has a
nonzero limit, then N

(k)
n and Ñ

(k)
n both converge to the same Poisson random mea-

sure. On the contrary, if a(Rk,n)/rn → 0, then N
(k)
n goes to 0 in probability (and

of course, so does Ñ
(k)
n ), which implies that the geometric objects implicit in hn

cannot be observed outside B(0;Rk,n), regardless of whether or not those objects
are isolated from other points.

The following is the main limit theorem of this subsection. The proof is deferred
to the Appendix.

THEOREM 4.1. Let (Xi, i ≥ 1) be a sequence of i.i.d. Rd -valued spherically
symmetric random variables with density f provided in (4.1). Let hn : (Rd)k →
{0,1} be a sequence of indicators as in (2.8), satisfying the shift invariance of
(2.6) and the points in proximity condition (2.7).

(i) If a(Rk,n)/rn → c ∈ (0,∞] as n → ∞, then the point processes N
(k)
n and

Ñ
(k)
n given by (4.6) and (4.7) converge weakly to a Poisson random measure with

intensity νk × λk . Here, λk is the k-dimensional Lebesgue measure concentrated
on Lk , and the measure νk is given by

νk

(
(a0, b0] × · · · × (ak−1, bk−1])

= 1

k!
∫
(Rd )k−1

∫
θ�0

∫ ∞
0

1(a0 ≺ ρθ 	 b0)

(4.8)
× 1

(
ai ≺ (

ρ + c−1〈θ, yi〉)θ 	 bi, i = 1, . . . , k − 1
)

× exp

{
−kρ − c−1

k−1∑
i=1

〈θ, yi〉
}
h(0,y) dρJ (θ) dθ dy,

where ai , bi , i = 0, . . . , k − 1 are d-dimensional real vectors with −∞ ≺ ai 	
bi 	 ∞, and J (θ) = |∂x/∂θ | is the Jacobian

J (θ) = sink−2(θ1) sink−3(θ2) · · · sin(θk−2).(4.9)
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(ii) Suppose a(Rk,n)/rn → 0 as n → ∞ and a is eventually nonincreasing [i.e.,
a is nonincreasing on (x0,∞) for some large x0]. Then the point processes N

(k)
n

and Ñ
(k)
n converge to 0 in probability.

As was the case in the heavy tailed scenario, Theorem 4.1(i) again implies the
layer structure of annuli at different radii · · · � Rk,n � Rk−1,n � · · · � R2,n in
which different structures can be found. In the current case, however, this is not as
immediate, since now the normalisation also involves a translation, the asymptotic
effect of which is to count geometric events only when they occur in the nonnega-
tive orthant.

Recall that we are particularly interested in the distribution of geometric events
outside the ball B(0;Rk,n), k = 2,3, . . . , and this is captured by∑

i∈I|Pn|,k
gn(Xi,Pn)1

(‖Xij ‖ ≥ Rk,n, j = 1, . . . , k
)
.

However, by the spherical symmetry of the underlying density, along with the
independence of the sample points, the weak limit of this quantity is the same
as that of

2d
∑

i∈I|Pn|,k
gn(Xi,Pn)εX (n)

i

(([0,∞]d)k)
,

the limit of which can be computed directly from Theorem 4.1(i). In other words,
the spherical symmetry of a density allows one to extend the basic result on the
weak convergence occurring in the nonnegative orthant to that in all orthants. Con-
sequently, we can obtain the same qualitative separation of geometric events into
distinct annuli that we saw in the heavy tailed case.

To see how this works, consider the simple example f (x) = Ce−‖x‖τ /τ , for
some 0 < τ ≤ 1, and take rn ≡ 1. Then a(z) = z1−τ clearly has a nonzero limit as
z → ∞, and so Theorem 4.1(i) applies. Then (4.5) becomes

nkRd−τ
k,n Cke

−kRτ
k,n/τ → 1,

and the solution

(4.10) Rk,n = (
τ logn + k−1(d − τ) log(τ logn) + τ logC

)1/τ

grows only logarithmically in n, whereas the Rk,n of the previous section exhib-
ited, essentially, power law growth. Thus, the description inherent in Figure 3 re-
mains unchanged, except for the change in the values of Rk,n.

REMARK 4.2. In particular, if a(Rk,n)/rn → ∞, the limiting intensity mea-
sure νk can be simplified to

νk

(
(a0, b0] × · · · × (ak−1, bk−1])

(4.11)

= 1

k!
∫
(Rd )k−1

h(0,y) dy
∫∫

ai≺ρθ	bi ,i=0,...,k−1,θ�0
e−kρ dρJ (θ) dθ,
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where ai , bi , i = 0, . . . , k − 1 are d-dimensional vectors such that −∞ ≺ ai 	
bi 	 ∞.

REMARK 4.3. In the case of k = 1, the point process N
(1)
n is no longer asso-

ciated with the indicator hn and is given by

N(1)
n (·) =

|Pn|∑
i=1

ε(a(R1,n)−1(Xi−R1,nS(Xi)),i/|Pn|)(·).

Interestingly, a simpler argument than the proof of Theorem 4.1 (or combining
standard arguments of point process theory, for example, Chapters 5 and 6 of
[24]—with the Palm theory in the Appendix) shows that regardless of whether
a(R1,n) has a zero or a nonzero limit, N

(1)
n converges weakly to a Poisson random

measure with a nontrivial intensity.

Before concluding this subsection, we look at several examples of light-tailed
densities for which the corresponding point processes exhibit different limiting
behaviours.

EXAMPLE 4.4. Suppose, for simplicity, that rn ≡ 1 and consider the following
probability densities on R

d :

f1(x) = L1
(‖x‖)

e−‖x‖τ

, 0 < τ < 1, x ∈ R
d,

f2(x) = L2
(‖x‖)

e−‖x‖ log log‖x‖/ log‖x‖, x ∈ R
d,

where the L1 and L2 satisfy (4.2) and (4.3). The densities f1 and f2 are usually
referred to as sub-exponential densities, since their tails decay more slowly than
that of an exponential distribution. For both f1 and f2, it is easy to check that
a(z) → ∞ as z → ∞, so by Theorem 4.1(i), the point processes N

(k)
n and Ñ

(k)
n

weakly converge to a Poisson random measure with intensity νk × λk , where νk is
given by (4.11). On the other hand, if the density has the same tail as an exponential
distribution, for example,

f3(x) = L3
(‖x‖)

e−‖x‖, x ∈ R
d,

then ψ(z) = z and a(z) = 1. In this case, N
(k)
n and Ñ

(k)
n once again weakly con-

verge to a Poisson random measure. However, its intensity measure νk ×λk is more
complicated, where νk is given by (4.8) with c = 1. We shall also consider the den-
sities with more rapidly decaying tails than an exponential distribution (they are
sometimes called super-exponential densities). Two examples of super-exponential
densities are

f4(x) = L4
(‖x‖)

e−‖x‖τ

, τ > 1, x ∈ R
d,

f5(x) = L5
(‖x‖)

e−‖x‖ log‖x‖/ log log‖x‖, x ∈R
d .



2022 T. OWADA AND R. J. ADLER

For f4 and f5, it follows that a(z) → 0 as z → ∞, and so Theorem 4.1(ii) implies
that the point process N

(k)
n goes to 0 in probability. The densities f2, f3 and f5

differ only slightly in their tail behaviours, but the corresponding point processes
possess totally different limits. Finally, we point out that even for f4 and f5, if one
chooses (rn, n ≥ 1) so that a(Rk,n)/rn → c ∈ (0,∞], then the point process can
converge to a nontrivial Poisson random measure.

4.2. At the annuli boundaries. The claim of part (ii) of Theorem 4.1 is that,
when a(Rk,n)/rn → 0, the geometric objects being counted do not exist outside
of the ball B(0;Rk,n), at least from the view of the point process convergence. We
next want to explore the existence of the same objects inside B(0;Rk,n), under the
condition that these objects must be isolated from other random points by at least
rn. This question was partially and negatively answered in [1], in the framework of
the asymptotics of the expected Betti numbers of the Čech complexes associated
with a random sample and a unit radius. In particular, it was shown there that for
the standard Gaussian distribution, all the expected Betti numbers of order k ≥ 1
vanish and the resulting Čech complex becomes contractible. In what follows, we
continue working on the same question under the conditions of Theorem 4.1(ii)
from a more comprehensive viewpoint.

Theorem 4.5 establishes the existence of two sequences of balls with different
radii, the smaller ones ultimately containing so many points that they can be cov-
ered by a union of balls with radius rn and centred on the points. On the other
hand, ultimately there are no points outside a larger balls. The main point, how-
ever, is that the differences between the radii of the two balls decays at the rate of
o(rn); see Figure 4. We conclude, therefore, that at least when n is large, a union of
balls with radius rn centred at points in Pn becomes contractible, and accordingly,

FIG. 4. Asymptotically, the smaller ball of radius R
(0)
n is covered by a union of balls with radius

rn centred around the points in Pn. There are no points outside a larger ball with radius R
(1)
n . The

difference between R
(1)
n and R

(0)
n vanishes at the rate of o(rn).
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the geometric objects that we have been studying up until now, which are isolated
from other points, fail to exist anywhere in all of Rd .

In order to get a clear picture, we shall add extra assumptions to the setup of
Theorem 4.1(ii). In particular, we assume that

ψ ∈ RVv for some 1 < v < ∞,(4.12)

L ≡ C (suitable normalising constant)(4.13)

and

(4.14) (rn) is a regularly varying sequence which decreases to 0 as n → ∞.

The reason why we need v > 1 in (4.12) is as follows. By Proposition 2.5 in [24],
which establishes the regular variation of the derivative of a regularly varying func-
tion, we now have

a(z) = 1/ψ ′(z) ∈ RV1−v.

The setup of Theorem 4.1(ii) requires that a(z) → 0 as z → ∞, so the regular
variation exponent of ψ cannot be less than 1. Finally, we observe that ψ← ∈
RV1/v and a ◦ ψ← ∈ RV(1−v)/v , and both functions are eventually monotone.

THEOREM 4.5. Assume the conditions of Theorem 4.1(ii), as well as (4.12),
(4.13) and (4.14). Furthermore, assume that

(4.15)
a ◦ ψ←(logn)

rn
log logn → 0 as n → ∞.

Then there exist two sequences (R
(0)
n , n ≥ 1) and (R

(1)
n , n ≥ 1) such that, as

n → ∞,

P

{
B

(
0;R(0)

n

) ⊂ ⋃
X∈Pn∩B(0;R(0)

n )

B(X; rn),Pn ∩ B
(
0;R(1)

n

)c = ∅

}
→ 1,

and

(4.16) r−1
n

(
R(1)

n − R(0)
n

) → 0.

REMARK 4.6. Typically, the solution to (4.5) is given by Rk,n = ψ←(logn +
bk,n), where bk,n/ logn → 0 as n → ∞; [cf. (4.10)]. Because of the regular vari-
ation of a ◦ ψ←, the condition a(Rk,n)/rn → 0 in Theorem 4.1(ii) is equivalent
to a ◦ ψ←(logn)/rn → 0. In essence, therefore, assuming (4.15) adds a stronger
condition to Theorem 4.1(ii). We have not been able to determine whether or not
the same result can be obtained when a ◦ ψ←(logn)/rn → 0 holds but (4.15) is
no longer true.
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PROOF OF THEOREM 4.5. First of all, we claim that (rn) ∈ RV0. To see this,
note that it will suffice to show that log rn/ logn → 0 as n → ∞, since (rn) is a reg-
ularly varying sequence (cf. Proposition 2.6(i) in [24]). Since a ◦ψ← ∈ RV(1−v)/v ,
it is clear that a ◦ ψ←(logn) logn → ∞, and so,

log rn

logn
= a ◦ ψ←(logn)

rn

rn log rn

a ◦ ψ←(logn) logn
→ 0, n → ∞.

For positive numbers g and ρ, let Qn(g,ρ) be a family of cubes with grid grn
that are contained in B(0;ρ). Fix g > 0 sufficiently small so that{

Q ∩Pn �= ∅ for all Q ∈ Qn(g,ρ)
} ⊂

{
B(0;ρ) ⊂ ⋃

X∈Pn∩B(0;ρ)

B(X; rn)
}

for all ρ > 0 and n ≥ 1. We define R
(0)
n and R

(1)
n as follows:

R(0)
n = ψ←(An), An = logn + d log rn − log log r−1

n ψ←(logn) − δ,

where δ is a positive constant such that

(4.17) d − eδgdC < 0,

and

R(1)
n = ψ←(Bn),

where

Bn = logn + (d − 1) logψ←(logn) + loga ◦ ψ←(logn) + log logn.

We need to prove that, as n → ∞,

(4.18) P
{
Q ∩Pn =∅ for some Q ∈ Qn

(
g,R(0)

n

)} → 0,

and

(4.19) P
{
Pn ∩ B

(
0;R(1)

n

)c = ∅
} → 1.

The probability in (4.18) is estimated from above by∑
Q∈Qn(g,R

(0)
n )

P{Q ∩Pn =∅} = ∑
Q∈Qn(g,R

(0)
n )

exp
{
−n

∫
Q

f (x)dx

}

≤ ∑
Q∈Qn(g,R

(0)
n )

exp
{−n(grn)

df
(
R(0)

n e1
)}

(4.20)

≤
(

R
(0)
n

grn

)d

exp
{−gdnrd

n f
(
R(0)

n e1
)}

.

By virtue of the inequality R
(0)
n ≤ ψ←(logn) and (4.17), we have, as n → ∞,

d log r−1
n R(0)

n − gdnrd
n f

(
R(0)

n e1
) ≤ (

d − eδgdC
)

log r−1
n ψ←(logn) → −∞

from which the rightmost term in (4.20) vanishes as n → ∞.
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Next, we turn to proving (4.19). Since

P
{
Pn ∩ B

(
0;R(1)

n

)c = ∅
} = exp

{
−n

∫
‖x‖≥R

(1)
n

f (x) dx

}
,

it is enough to show n
∫
‖x‖≥R

(1)
n

f (x) dx → 0, as n → ∞. By the polar coordinate
transform with J (θ) = |∂x/∂θ |, we can write

n

∫
‖x‖≥R

(1)
n

f (x) dx = sd−1na
(
R(1)

n

)(
R(1)

n

)d−1
f

(
R(1)

n e1
)

×
∫ ∞

0

(
1 + a(R

(1)
n )

R
(1)
n

ρ

)d−1 f ((R
(1)
n + a(R

(1)
n )ρ)e1)

f (R
(1)
n e1)

dρ,

where sd−1 is a surface area of the (d − 1)-dimensional unit sphere in R
d . The

dominated convergence theorem guarantees that the integral above converges to∫ ∞
0 e−ρ dρ = 1. Therefore, we only have to verify that

na
(
R(1)

n

)(
R(1)

n

)d−1
e−ψ(R

(1)
n ) → 0 as n → ∞.

Substituting R
(1)
n = ψ←(Bn), we have

na
(
R(1)

n

)(
R(1)

n

)d−1
e−ψ(R

(1)
n ) = a ◦ ψ←(Bn)

a ◦ ψ←(logn)

(
ψ←(Bn)

ψ←(logn)

)d−1
(logn)−1.

Since Bn/ logn → 1, it follows from the uniform convergence of regularly varying
functions (cf. Proposition 2.4 in [24]) that

a ◦ ψ←(Bn)

a ◦ ψ←(logn)
→ 1,

ψ←(Bn)

ψ←(logn)
→ 1.

So, the proof of (4.19) is complete.
It remains to establish (4.16). The mean value theorem yields

r−1
n

(
R(1)

n − R(0)
n

) = r−1
n

(
ψ←)′

(tn)(Bn − An)

= a ◦ ψ←(tn)

a ◦ ψ←(logn)

a ◦ ψ←(logn)

rn
(Bn − An),

where tn lies in between An and Bn. Since An/ logn → 1 and Bn/ logn → 1, we
have tn/ logn → 1, and thus,

a ◦ ψ←(tn)

a ◦ ψ←(logn)
→ 1 as n → ∞.

To finish the argument, we have to establish the following three limits:

a ◦ ψ←(logn)

rn
log rn → 0,(4.21)
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a ◦ ψ←(logn)

rn
loga ◦ ψ←(logn) → 0,(4.22)

a ◦ ψ←(logn)

rn
logψ←(logn) → 0.(4.23)

Since loga ◦ ψ←(logn) < log rn for sufficiently large n, (4.21) is implied by
(4.22). By virtue of the regular variation of a ◦ ψ← and ψ←, we have that(

loga ◦ ψ←(logn)

log logn

)
and

(
logψ←(logn)

log logn

)
are bounded sequences. Both (4.22) and (4.23) now follow from (4.15), and so we
are done. �

5. Applications.

5.1. Limit theorems for Betti numbers. The results of the previous two sec-
tions show the existence of a sequences of annuli containing different kinds of ge-
ometric objects. This subsection will further examine this layer structure and the
topological properties of the objects they include, relying on the notion of Betti
numbers to quantify the topology. Our aim is to derive limit theorems for the Betti
numbers of the Čech complex built over Pn = {X1, . . . ,XNn}, where (Xi, i ≥ 1)

is an i.i.d. sample drawn from a spherically symmetric distribution, and Nn = |Pn|
is a Poisson random variable with mean n and is independent of (Xi, i ≥ 1). For
k ≥ 3, we take hn : (Rd)k → {0,1} as in (2.5); namely

hn(x1, . . . , xk) = 1
(
βk−2

(
Č

({x1, . . . , xk}, rn)) = 1
)
, x1, . . . , xk ∈ R

d,

and define gn : (Rd)k → {0,1} as in (2.9). Also, we define

Ŝk,n = ∑
i∈I|Pn|,k

gn(Xi,Pn)1
(‖Xij ‖ ≥ Rk,n, j = 1, . . . , k

)
for Xi = (Xi1, . . . ,Xik ) with i = (i1, . . . , ik) ∈ I|Pn|,k . The definition of Rk,n de-
pends on whether the underlying density has a heavy tail or a light tail. Specifically,
if the underlying density has a regularly varying tail as in (3.1), then (3.4) defines
the Rk,n, while (4.5) determines the Rk,n if the density is given by (4.1). We are
interested in the behaviour of the Betti numbers:

βk−2
(
Č

(
Pn ∩ B(0;Rk,n)

c, rn
));

see Figure 5. The most relevant study to this subsection is [1], in which the asymp-
totics of the expected Betti numbers were discussed. We, however, go well beyond
this, by establishing Poisson limits for the Betti numbers. As originally given in
[1], we shall provide one useful inequality to elucidate the relation between Ŝk,n

above and the Betti numbers:

Ŝk,n ≤ βk−2
(
Č

(
Pn ∩ B(0;Rk,n)

c, rn
)) ≤ Ŝk,n + Lk,n,
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FIG. 5. For k = 3, d = 2, the Betti number β1(Č(Pn ∩B(0;R3,n)c, rn)) counts (one-dimensional)
cycles outside of B(0;R3,n), while ignoring cycles inside the ball [e.g., (a), (b) and (c)].

where

Lk,n = ∑
i∈I|Pn|,k+1

h̃n(Xi)1
(‖Xij ‖ ≥ Rk,n, j = 1, . . . , k + 1

)
,

with

h̃n(x1, . . . , xk+1) = 1
(
Č

({x1, . . . , xk+1}, rn)
is connected

)
.

The limit theorem below demonstrates that Lk,n tends to zero in probability, and
as a result, Ŝk,n and βk−2(Č(Pn ∩ B(0;Rk,n)

c, rn)) asymptotically coincide.

THEOREM 5.1. Under the assumptions and notation of Theorem 3.2,

βk−2
(
Č

(
Pn ∩ B(0;Rk,n)

c, rn
)) ⇒ Poi

(
sd−1

(αk − d)k!
∫
(Rd )k−1

h(0,y) dy
)
,

where sd−1 is the surface area of the (d − 1)-dimensional unit sphere in R
d .

PROOF. First of all, note that the variable Ŝk,n defined above can also be writ-
ten, in terms of the point process (3.3), as

Ŝk,n = ∑
i∈I|Pn|,k

gn(Xi,Pn)εR−1
k,nXi

({
x ∈ (

R
d)k : ‖xi‖ ≥ 1, i = 1, . . . , k

})
.

Appealing to Theorem 3.2,

Ŝk,n ⇒ Poi
(
νk

{
x ∈ (

R
d)k : ‖xi‖ ≥ 1, i = 1, . . . , k

})
= Poi

(
sd−1

(αk − d)k!
∫
(Rd )k−1

h(0,y) dy
)

in R+.
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If we can now show that Lk,n → 0 in probability, then the previous line suffices to
prove the theorem.

To this end, note that, in view of Theorem 3.2, the point process

(5.1)
∑

i∈I|Pn|,k+1

h̃n(Xi)εR−1
k+1,nXi

(·)

converges to a nontrivial Poisson random measure. Also, it is easy to see from
(3.4) that Rk,n/Rk+1,n → ∞ as n → ∞. Therefore, replacing the scaling con-
stants Rk+1,n in (5.1) by Rk,n, the corresponding point process converges to zero

in probability. Thus, Lk,n
p→ 0 follows, as required. �

THEOREM 5.2. Assume the conditions of Theorem 4.1.

(i) If a(Rk,n)/rn → c ∈ (0,∞] as n → ∞, then

βk−2
(
Č

(
Pn ∩ B(0;Rk,n)

c, rn
))

⇒ Poi
(

1

k!
∫
(Rd )k−1

∫
Sd−1

∫
ρ≥0,ρ+c−1〈θ,yi〉≥0,i=1,...,k−1

e−kρ−c−1 ∑k−1
i=1 〈θ,yi〉

× h(0,y) dρJ (θ) dθ dy
)
.

(ii) If a(Rk,n)/rn → 0 as n → ∞, then

βk−2
(
Č

(
Pn ∩ B(0;Rk,n)

c, rn
)) p→ 0.

PROOF. For the proof of (i), note first that Theorem 4.1(i), implies that

(5.2)
∑

i∈I|Pn|,k
gn(Xi,Pn)εX (n)

i

(([0,∞]d)k) ⇒ Poi
(
νk

{([0,∞]d)k})
.

Due to the symmetry of the integral with respect to θ ∈ Sd−1,

νk

{([0,∞]d)k}
= 1

k!
∫
(Rd )k−1

∫
θ�0

∫
ρ≥0,ρ+c−1〈θ,yi〉≥0,i=1,...,k−1

e−kρ−c−1 ∑k−1
i=1 〈θ,yi〉

× h(0,y) dρJ (θ) dθ dy

= 1

2dk!
∫
(Rd )k−1

∫
Sd−1

∫
ρ≥0,ρ+c−1〈θ,yi〉≥0,i=1,...,k−1

e−kρ−c−1 ∑k−1
i=1 〈θ,yi〉

× h(0,y) dρJ (θ) dθ dy.

Further, due to the spherical symmetry of the density, the left-hand side in (5.2)
has the same weak limit as 2−d Ŝk,n. Consequently, Ŝk,n weakly converges to

Poi
(

1

k!
∫
(Rd )k−1

∫
Sd−1

∫
ρ≥0,ρ+c−1〈θ,yi〉≥0,i=1,...,k−1

e−kρ−c−1 ∑k−1
i=1 〈θ,yi〉

× h(0,y) dρJ (θ) dθ dy
)
.
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To complete the proof of (i), it now suffices to verify that Lk,n → 0 in probability
as n → ∞, which follows along the same lines as in the proof of Theorem 5.1.

To show (ii), note that

βk−2
(
Č

(
Pn ∩ B(0;Rk,n)

c, rn
))

≤ ∑
i∈I|Pn|,k

hn(Xi)1
(‖Xij ‖ ≥ Rk,n, j = 1, . . . , k

) + Lk,n.

The above expression has the same weak limit as

2d
∑

i∈I|Pn|,k
hn(Xi)εX (n)

i

(([0,∞]d)k) + Lk,n.

Once again, Lk,n → 0 in probability, and so the assertion follows from Theo-
rem 4.1(ii). �

5.2. Limit theorems for partial maxima. We now turn to describing the lim-
iting behaviour of the maximum distance from the origin of the random points
constituting the geometric objects that we have been studying so far. More specif-
ically, we consider the “maxima process”

(5.3)
∨

1≤i1<···<ik≤|Pn|t,
gn(Xi,Pn)=1

‖Xi1‖ − dk,n

ck,n

, t ∈ [0,1],

where a ∨ b = max{a, b} for a, b ∈R, and ck,n > 0 and dk,n ∈ R are the normalis-
ing sequences of the previous sections.

For a concrete example, suppose that hn : (Rd)k → {0,1} is defined as in (2.4),
where 
 is a connected graph with k vertices. Then a k-tuple of random points can
contribute to the maxima process, only if its points serve as the vertices of graph
isomorphic to 
.

Note that the process (5.3) only requires the computation of the maximum of
‖Xi1‖ (suitably scaled and centred). However, in view of (2.7), all the components
in Xi = (Xi1, . . . ,Xik ) must be close to each other. Therefore, the results below
will be robust as to which component is chosen from Xi.

We start with the regularly varying tail case, which is essentially a corollary of
Theorem 3.2. The limit in this case is a time-scaled extremal Fréchet process (cf.
[21]). The main difference between this and a classical extremal Fréchet process
is that the former exhibits dependence in the max-increments, while the latter does
not.

THEOREM 5.3. Under the assumptions of Theorem 3.2, let (jl, sl) repre-
sent the points of a Poisson random measure with mean measure ν̃k × λ̃k , where
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ν̃k(A) = νk(A × (Rd)k−1) for a measurable set A ⊂ R
d [νk is defined in (3.5)],

and λ̃k(B) = λk({(z1, . . . , zk) ∈ Lk, zk ∈ B}) for measurable B ⊂ [0,1]. Then∨
1≤ii<···<ik≤|Pn|t,

gn(Xi,Pn)=1

‖Xi1‖
Rk,n

⇒ ∨
sl≤t

‖jl‖, in D[0,1],

where D[0,1] is the space of right-continuous functions from [0,1] into R with
left limits. The limiting process is a time-scaled extremal (αk −d)-Fréchet process
with finite-dimensional laws determined as follows: for 0 = t0 ≤ t1 < · · · < tK ≤ 1,
ηi ≥ 0, i = 1, . . . ,K ,

P

( ∨
sl≤ti

‖jl‖ ≤ ηi, i = 1, . . . ,K

)

= exp

{
− sd−1

(k!)2(αk − d)
(5.4)

×
∫
(Rd )k−1

h(0,y) dy
K∑

i=1

(
tki − tki−1

)( ∧
i≤j≤K

ηj

)−(αk−d)
}
.

PROOF. Restricting the domain of the point process convergence in Theo-
rem 3.2, we have∑

i∈I|Pn|,k
gn(Xi,Pn)ε(R−1

k,nXi1 ,ik/|Pn|)(·)

⇒ ∑
l

ε(jl ,sl)(·) in Mp

(([−∞,∞]d \ {0}) × [0,1]).
The functional T : Mp(([−∞,∞]d \ {0}) × [0,1]) → D[0,1] defined by
T (

∑
l ε(zl ,τl)) = ∨

τl≤· ‖zl‖, is almost surely continuous (cf. page 214 of [23]).
Applying the continuous mapping theorem immediately gives the required weak
convergence.

What remains is to establish the precise form of the limit process, as in (5.4).
To show this, note first that

P

( ∨
sl≤ti

‖jl‖ ≤ ηi, i = 1, . . . ,K

)

= exp

{
−

K∑
i=1

ν̃k

({
z ∈ R

d : ‖z‖ >
∧

i≤j≤K

ηj

})
λ̃k

(
(ti−1, ti])

}
.

By (3.5) and (3.6), we have that

ν̃k

({
z ∈ R

d : ‖z‖ >
∧

i≤j≤K

ηj

})

= sd−1

k!(αk − d)

∫
(Rd )k−1

h(0,y) dy
( ∧

i≤j≤K

ηj

)−(αk−d)

,
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and
λ̃k

(
(ti−1, ti]) = (k!)−1(

tki − tki−1
)
,

from which (5.4) now follows. �

We now turn to the case of light-tailed densities. Note first that a similar, but
simpler, argument than the proof of Theorems 2.1 and 4.1 shows that under the
conditions in Theorem 4.1(i), the point process∑

i∈I|Pn|,k
gn(Xi,Pn)ε((a(Rk,n)−1(‖Xij

‖−Rk,n),j=1,...,k),i/|Pn|)(·)

converges weakly to a Poisson random measure with mean measure μk × λk . As
usual, λk is the k-dimensional Lebesgue measure concentrated on Lk , and μk is
given by

μk

(
(a0, b0] × · · · × (ak−1, bk−1])
= 1

k!
∫
(Rd )k−1

∫
Sd−1

∫ b0

a0

1
(
ai < ρ + c−1〈θ, yi〉 ≤ bi, i = 1, . . . , k − 1

)
× exp

{
−kρ − c−1

k−1∑
i=1

〈θ, yi〉
}
h(0,y) dρJ (θ) dθ dy,

where ai, bi , i = 0, . . . , k − 1 are one-dimensional real vectors with −∞ < ai ≤
bi ≤ ∞, and J (θ) = |∂x/∂θ | is the Jacobian. Exploiting this result and mimicking
the proof of Theorem 5.3, one can prove the following result, in which the limit is
well described as a time-scaled extremal Gumbel process.

THEOREM 5.4. Assume the conditions in Theorem 4.1, and let (jl, sl) be the
points of a Poisson random measure with mean measure μ̃k × λ̃k , where μ̃k(A) =
μk(A × (Rd)k−1) for a measurable set A ⊂ R and λ̃k(B) = λk({(z1, . . . , zk) ∈
Lk, zk ∈ B}) for measurable B ⊂ [0,1].

(i) If a(Rk,n)/rn → c ∈ (0,∞] as n → ∞, then

(5.5)
∨

1≤ii<···<ik≤|Pn|t,
gn(Xi,Pn)=1

‖Xi1‖ − Rk,n

a(Rk,n)
⇒ ∨

sl≤t

jl in D[0,1].

The finite dimensional laws of the limiting process are as follows: for 0 = t0 ≤ t1 <

· · · < tK ≤ 1, ηi ∈R, i = 1, . . . ,K ,

P

( ∨
sl≤ti

jl ≤ ηi, i = 1, . . . ,K

)

= exp

{
− 1

(k!)2k

∫
(Rd )k−1

∫
Sd−1

e−c−1 ∑k−1
i=1 〈θ,yi〉h(0,y)J (θ) dθ dy

×
K∑

i=1

(
tki − tki−1

)
e−k

∧
i≤j≤K ηj

}
.
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(ii) If a(Rk,n)/rn → 0 as n → ∞, then the left-hand side in (5.5) converges
to 0 in probability.

5.3. Limit theorems for partial sums. Continuing on from the previous sub-
section, we now consider limit theorems on partial sums. In particular, we shall
focus on a stable limit case. As seen in a variety of related studies such as [13]
and [12], proving stable limit theorems via a point process approach has become
the gold standard. In order to obtain stable limits, however, the underlying random
variables constructing partial sums must have infinite second moments. For this
reason, we shall assume a regularly varying tail for the underlying density, and
further, that the homogeneity exponent αk − d in (3.6) lies in the interval (0,2).
Combining this constraint with α > d and k ≥ 2, we need to treat only the case
1 < α < 1.5, k = 2 and d = 1.

THEOREM 5.5. Under the conditions of Theorem 3.2, assume that 1 < α <

1.5, k = 2 and d = 1. Suppose additionally that an indicator h :R2 → {0,1} is not
only shift invariant as in (2.6) but also symmetric in the sense that

(5.6) h(x1, x2) = h(−x1,−x2) for all x1, x2 ∈ R.

Then R−1
2,n

∑
i∈I|Pn|,2 gn(Xi,Pn)Xi1 converges weakly to a symmetric (2α − 1)-

stable law.

PROOF. Restricting the domain of point process convergence shown in Theo-
rem 3.2, we find that in the space Mp([−∞,∞] \ {0}),∑

i∈I|Pn|,2
gn(Xi,Pn)εR−1

2,nXi1
(·)

converges weakly to a Poisson random measure with intensity ν̃2, where ν̃2(A) =
ν2(A ×R) for measurable A ⊂ R.

Under our parameter restrictions, the homogeneity exponent in (3.6) is 2α − 1,
and thus the limiting Poisson random measure can be represented in law by

∞∑
j=1

ε
Cαrj


−(2α−1)−1
j

,

where (rj , j ≥ 1) is a sequence of i.i.d. Rademacher random variables taking +1
and −1 with probability 1/2, 
j is the j th jump time of a unit rate Poisson process,
and

Cα =
(

1

2α − 1

∫
R

h(0, y) dy

)1/(2α−1)

.

Here, (rj ) and (
j ) are taken to be independent. Notice that due to its symmetry,

Cα

∑∞
j=1 rj


−(2α−1)−1

j converges almost surely and has a symmetric (2α − 1)-
stable distribution. For more information about series representation of stable
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laws; see Section 1.4 of [25]. It is known that, for every δ > 0, the functional
Tδ : Mp([−∞,∞] \ {0}) →R defined by

Tδ

(∑
l

εzl

)
= ∑

l

zl1
(|zl| > δ

)
is almost surely continuous (cf. Section 7.2.3 in [24]). Applying the continuous
mapping theorem, we have, as n → ∞,

R−1
2,n

∑
i∈I|Pn|,2

gn(Xi,Pn)Xi11
(|Xi1 | > R2,nδ

)

⇒ Cα

∞∑
j=1

rj

−(2α−1)−1

j 1
(
Cα


−(2α−1)−1

j > δ
)
.

As δ ↓ 0, we have

Cα

∞∑
j=1

rj

−(2α−1)−1

j 1
(
Cα


−(2α−1)−1

j > δ
) ⇒ Cα

∞∑
j=1

rj

−(2α−1)−1

j .

Hence, it remains to show that, for every η > 0,

lim
δ↓0

lim sup
n→∞

P

{∣∣∣∣ ∑
i∈I|Pn|,2

gn(Xi,Pn)Xi11
(|Xi1 | ≤ R2,nδ

)∣∣∣∣ > ηR2,n

}
= 0.

However, by the Cauchy–Schwarz inequality, this will follow immediately if we
can show that

(5.7) lim
δ↓0

lim sup
n→∞

R−2
2,nE

{ ∑
i∈I|Pn|,2

gn(Xi,Pn)Xi11
(|Xi1 | ≤ R2,nδ

)}2
= 0.

We can write

R−2
2,nE

{ ∑
i∈I|Pn|,2

gn(Xi,Pn)Xi11
(|Xi1 | ≤ R2,nδ

)}2

= R−2
2,n

∞∑
m=2

P
{|Pn| = m

}
E

{ ∑
i∈Im,2

gn(Xi,Xm)Xi11
(|Xi1 | ≤ R2,nδ

)}2
,

where Xm = {X1, . . . ,Xm} for m ≥ 2.
Now introduce a triangular array of i.i.d. Rademacher variables (ri,1 ≤ i1 <

i2 < ∞), which are independent of (Xi, i ≥ 1). Then, by virtue of the symmetry
of the Xi , it follows that, for all n ≥ 1 and m ≥ 2,(

gn(Xi,Xm)Xi11
(|Xi1 | ≤ R2,nδ

)
, i ∈ Im,k

)
d= (

gn(riXi, riXm)riXi11
(|Xi1 | ≤ R2,nδ

)
, i ∈ Im,k

)
.
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We now observe that

E

{ ∑
i∈Im,2

gn(Xi,Xm)Xi11
(|Xi1 | ≤ R2,nδ

)}2

= E

{ ∑
i∈Im,2

gn(riXi, riXm)riXi11
(|Xi1 | ≤ R2,nδ

)}2

= ∑
i∈Im,2

∑
j∈Im,2

E
{
Xi1Xj11

(|Xi1 | ≤ R2,nδ, |Xj1 | ≤ R2,nδ
)

×E
{
rirjgn(riXi, riXm)gn(rjXj, rjXm)|Xm

}}
.

If i �= j, ri and rj are independent, and so

E
{
rirjgn(riXi, riXm)gn(rjXj, rjXm)|Xm

}
= E

{
rign(riXi, riXm)|Xm

}
E

{
rjgn(rjXj, rjXm)|Xm

}
= 4−1(

gn(Xi,Xm) − gn(−Xi,−Xm)
)(

gn(Xj,Xm) − gn(−Xj,−Xm)
)

= 0,

where the last equality follows from (5.6).
This implies that all cross terms will vanish, and so

E

{ ∑
i∈Im,2

gn(Xi,Xm)Xi11
(|Xi1 | ≤ R2,nδ

)}2

= ∑
i∈Im,2

E
{
gn(riXi, riXm)X2

i1
1
(|Xi1 | ≤ R2,nδ

)}
= ∑

i∈Im,2

E
{
gn(Xi,Xm)X2

i1
1
(|Xi1 | ≤ R2,nδ

)}

≤
(
m

2

)
E

{
hn(X1,X2)X

2
11

(|X1| ≤ R2,nδ
)}

.

Finally, we have that

R−2
2,nE

{ ∑
i∈I|Pn|,2

gn(Xi,Pn)Xi11
(|Xi1 | ≤ R2,nδ

)}2

≤ R−2
2,n

∞∑
m=2

P
{|Pn| = m

}(
m

2

)
E

{
hn(X1,X2)X

2
11

(|X1| ≤ R2,nδ
)}

= n2

2R2
2,n

∫
R2

hn(x1, x2)x
2
11

(|x1| ≤ R2,nδ
)
f (x1)f (x2) dx1 dx2
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= n2rn

R2
2,n

∫ R2,nδ

0
x2f (x)

∫
R

f
(
x|1 + rny/x|)h(0, y) dy dx

≤ n2rn

R2
2,n

∫ R2,nδ

0
x2f (x)2

∫
R

sup
m≥1

f (x|1 + rmy/x|)
f (x)

h(0, y) dy dx.

Here, the equality in the fourth line is obtained by the change of variables x1 ↔ x,
x2 ↔ x + rny. Since (rn) is a bounded sequence, it follows from the uniform con-
vergence of regularly varying functions of negative exponent (cf. Proposition 2.4
in [24]) that

sup
m≥1

f (x|1 + rmy/x|)
f (x)

→ 1 as x → ∞,

uniformly in y ∈R with h(0, y) = 1.
Thus, as x → ∞,

U(x) ≡
∫
R

sup
m≥1

f (x|1 + rmy/x|)
f (x)

h(0, y) dy →
∫
R

h(0, y) dy ∈ (0,∞).

This fact implies that x2f (x)2U(x) is regularly varying with exponent 2 − 2α. By
an application of Karamata’s theorem (e.g., Theorem 2.1 in [24]),

n2rn

R2
2,n

∫ R2,nδ

0
x2f (x)2U(x)dx ∼ n2rn

3 − 2α
R2,nδ

3f (R2,nδ)
2U(R2,nδ)

∼ n2rnR2,nf (R2,n)
2 δ3−2α

3 − 2α

∫
R

h(0, y) dy

→ δ3−2α

3 − 2α

∫
R

h(0, y) dy as n → ∞.

Since δ3−2α → 0 as δ ↓ 0, (5.7) follows. �

APPENDIX

A.1. Proof of Theorem 2.1. For the completion of Theorem 2.1, we need
several important ingredients, all of which belong to the “Palm theory” of Poisson
point processes. They are useful when computing expectations related to Poisson
point processes. We recall abbreviations (2.1), (2.2), together with (2.3).

LEMMA A.1 (Palm theory for Poisson point processes, [2]; see also Theo-
rem 1.6 in [22]). Let (Xi, i ≥ 1) be i.i.d. Rd -valued random variables with com-
mon density f , and for n ≥ 1, let Pn denote a Poisson point process with intensity
nf . Let un(Y,X ) be a measurable function defined for Y = (y1, . . . , yk), yi ∈ R

d

and a finite subset X ⊃ Y of d-dimensional real vectors. Then

E

{ ∑
i∈I|Pn|,k

un(Xi,Pn)

}
= nk

k! E
{
un

(
Xk,Xk ∪P ′

n

)}
,

where P ′
n is an independent copy of Pn.
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LEMMA A.2. Under the same notation as Lemma A.1, let un(Y) be a measur-
able function defined for Y = (y1, . . . , yk), yi ∈ R

d . Let λk be the k-dimensional
Lebesgue measure concentrated on the upper diagonal part of the unit cube;
namely Lk = {(z1, . . . , zk) ∈ [0,1]k : 0 ≤ z1 ≤ · · · ≤ zk ≤ 1}. Then, for a mea-
surable set B ⊂ Lk ,

E

{ ∑
i∈I|Pn|,k

un(Xi)1
(
i/|Pn| ∈ B

)} ∼ nk

k! E
{
un(Xk)

}
λk(B) as n → ∞.

PROOF.

E

{ ∑
i∈I|Pn|,k

un(Xi)1
(
i/|Pn| ∈ B

)}

=
∞∑

m=k

P
{|Pn| = m

}
E

{ ∑
i∈I|Pn|,k

un(Xi)1
(
i/|Pn| ∈ B

)∣∣∣|Pn| = m

}

= nk

k! E
{
un(Xk)

} ∞∑
m=k

e−n nm−k

(m − k)!
(
m

k

)−1

#{i ∈ Im,k ∩ mB}.

The proof then follows from the fact that(
m

k

)−1

#{i ∈ Im,k ∩ mB} → λk(B) as m → ∞. �

LEMMA A.3. Under the same notation as Lemma A.1, let un(Y) be a non-
negative measurable function defined for all finite subsets Y = (y1, . . . , yk), yi ∈
R

d . Suppose further that nk
Eun(Xk) → C, n → ∞ for some constant C > 0.

Then, for a measurable set B ⊂ Lk ,

E

∣∣∣∣ ∑
i∈I|Pn|,k

un(Xi)1
(
i/|Pn| ∈ B

) − ∑
i∈In,k

un(Xi)1(i/n ∈ B)

∣∣∣∣ → 0, n → ∞.

PROOF. We can proceed as follows:

E

∣∣∣∣ ∑
i∈I|Pn|,k

un(Xi)1
(
i/|Pn| ∈ B

) − ∑
i∈In,k

un(Xi)1(i/n ∈ B)

∣∣∣∣
=

∞∑
m=0

P
{|Pn| = m

}∣∣#{i ∈ Im,k ∩ mB} − #{i ∈ In,k ∩ nB}∣∣E{
un(Xk)

}

∼ Cn−k
∞∑

m=0

P
{|Pn| = m

}∣∣#{i ∈ In,k ∩ nB} − #{i ∈ Im,k ∩ mB}∣∣
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≤ Cn−k
∞∑

m=0

P
{|Pn| = m

}∣∣∣∣#{i ∈ In,k ∩ nB} − nk

k! λk(B)

∣∣∣∣
+ Cn−k

∞∑
m=0

P
{|Pn| = m

}∣∣nk − mk
∣∣λk(B)

k!

+ Cn−k
∞∑

m=0

P
{|Pn| = m

}∣∣∣∣mk

k! λk(B) − #{i ∈ Im,k ∩ mB}
∣∣∣∣

≡ J1 + J2 + J3.

Evidently, J1 → 0 as n → ∞. It is also easy to check that

J2 = C
λk(B)

k! E

∣∣∣∣( |Pn|
n

)k

− 1
∣∣∣∣ → 0 as n → ∞.

As for J3, given ε > 0, there is an integer N ≥ 1 such that∣∣∣∣ k!
mk

#{i ∈ Im,k ∩ mB} − λk(B)

∣∣∣∣ < ε for all m ≥ N.

Then there exists a constant C′ ≥ C such that for all m ≥ N ,

J3 ≤ C′n−k
N−1∑
m=0

P
{|Pn| = m

}mk

k! + Cεn−k
∞∑

m=N

P
{|Pn| = m

}mk

k! .

Obviously, the first term on the right-hand side vanishes. The second term is
bounded by Cε(k!)−1n−k

E|Pn|k . Since supn≥1 n−k
E|Pn|k < ∞ and ε is arbitrary,

we conclude that J1 + J2 + J3 → 0 as n → ∞. �

Before starting the proof of Theorem 2.1, we note that we shall often use, with-
out further comment, the fact that, for every k ≥ 1,(

n

k

)
∼ nk

k! ,
in the sense that the ratio of the two sides tends to 1 as n → ∞.

PROOF OF THEOREM 2.1. For the convergence of N
(k)
n , according to Kallen-

berg’s theorem (see Proposition 3.22 in [23]), it suffices to show that

E
{
N(k)

n (R)
} → E

{
N(k)(R)

}
,(A.1)

and

P
{
N(k)

n (R) = 0
} → P

{
N(k)(R) = 0

}
,(A.2)

for every disjoint union of measurable sets of the form R = ⋃m
p=1(Ap × Bp),

where Ap is relatively compact in Ek with νk(∂Ap) = 0 (i.e., the boundary of Ap

has νk-measure 0), and Bp is a measurable set in Lk .
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For the proof of (A.1), we can set, without loss of generality, m = 1, and write
A = A1, B = B1. By virtue of Lemma A.2 in the Appendix, together with (2.17),

E
{
N(k)

n (A × B)
} ∼ nk

k! P
{
hn(Xk) = 1,X (n)

k ∈ A
}
λk(B)

→ νk(A)λk(B) = E
{
N(k)(A × B)

}
.

Now we proceed to (A.2). Setting

ξi,n = hn(Xi)ε(X (n)
i ,i/n)

(R), i = {i1, . . . , ik} ∈ In,k,

we see that ∣∣P{
N(k)

n (R) = 0
} − P

{
N(k)(R) = 0

}∣∣
≤

∣∣∣∣P{
N(k)

n (R) = 0
} − P

{ ∑
i∈In,k

ξi,n = 0
}∣∣∣∣

+
∣∣∣∣P{ ∑

i∈In,k

ξi,n = 0
}

− P
{
N(k)(R) = 0

}∣∣∣∣ ≡ I1 + I2.

We recall the following basic inequality: for integer-valued random variables X

and Y defined on the same probability space,∣∣P{X = 0} − P{Y = 0}∣∣ ≤ E|X − Y |.
Combining this inequality and Lemma A.3 in the Appendix proves I1 → 0 as
n → ∞. To demonstrate that I2 → 0 as n → ∞, we introduce the total variation
distance: for real-valued random variables X and Y defined on the same probability
space (�,F,P),

dTV(X,Y ) ≡ sup
A∈F

∣∣P{X ∈ A} − P{Y ∈ A}∣∣.
Using this norm, ∣∣∣∣P{ ∑

i∈In,k

ξi,n = 0
}

− P
{
N(k)(R) = 0

}∣∣∣∣
≤ dTV

( ∑
i∈In,k

ξi,n,Poi
(
E

{ ∑
i∈In,k

ξi,n

}))
(A.3)

+ dTV

(
Poi

(
E

{ ∑
i∈In,k

ξi,n

})
,N(k)(R)

)
.

Since the total variation distance between two Poisson variables can be bounded
by the difference of their means (see Lemma 7.3 in [8]), we have

dTV

(
Poi

(
E

{ ∑
i∈In,k

ξi,n

})
,N(k)(R)

)
≤

∣∣∣∣E{ ∑
i∈In,k

ξi,n

}
−E

{
N(k)(R)

}∣∣∣∣.
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Thus, the final term in (A.3) converges to zero as → ∞.
To handle the first term on the right-hand side of (A.3), note first that each ξi,n is

a Bernoulli random variable. To handle dependencies, create a graph with vertices
the indices i ∈ In,k by placing an edge between i and j (write i ∼ j) if i and j share
at least one component (i.e., if |i ∩ j| > 0). Then (In,k,∼) provides a dependency
graph with respect to (ξi,n, i ∈ In,k); that is, for any two disjoint subsets I1, I2 of
In,k with no edges connecting I1 and I2, (ξi,n, i ∈ I1) is independent of (ξi,n, i ∈
I2). Therefore, we are able to apply the so-called Poisson approximation theorem
(see [2] and also, Theorem 2.1 in [22]):

dTV

( ∑
i∈In,k

ξi,n,Poi
(
E

{ ∑
i∈In,k

ξi,n

}))

≤ 3
{ ∑

i∈In,k

∑
j∈Ni

E{ξi,n}E{ξj,n} + ∑
i∈In,k

∑
j∈Ni\{i}

E{ξi,nξj,n}
}
,

where Ni = {j ∈ In,k : |i ∩ j| > 0}. Now, for large enough n,

E{ξi,n} ≤
m∑

p=1

P
{
hn(Xk) = 1,X (n)

k ∈ Ap

} ≤ 2
(
n

k

)−1 m∑
p=1

νk(Ap),

and thus ∑
i∈In,k

∑
j∈Ni

E{ξi,n}E{ξj,n}

≤
(
n

k

)((
n

k

)
−

(
n − k

k

))
4

(
n

k

)−2 (
m∑

p=1

νk(Ap)

)2

.

Here, it is clear that the right-hand side vanishes as n → ∞.
For i, j ∈ In,k with |i ∩ j| = l ∈ {1, . . . , k − 1},

E{ξi,nξj,n} ≤
m∑

p=1

m∑
p′=1

P
{
hn(Xk) = 1,X (n)

k ∈ Ap,

hn(X1, . . . ,Xl,Xk+1, . . . ,X2k−l) = 1,(
c−1
k,n

(
Xj − dk,nS(Xj )

)
, j = 1, . . . , l, k + 1, . . . ,2k − l

) ∈ Ap′
}
.

Regardless of the definition of Ek , there exists a compact set K1 ⊂ E2k−l such that
for all p,p′ = 1, . . . ,m,{

(x1, . . . , x2k−l) ∈ (
R

d)2k−l : (x1, . . . , xk) ∈ Ap,

(x1, . . . , xl, xk+1, . . . , x2k−l) ∈ Ap′
} ⊂ K1.
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Thus, for some constant C1 > 0,∑
i∈In,k

∑
j∈Ni\{i}

E{ξi,nξj,n}

=
k−1∑
l=1

(
n

k

)(
k

l

)(
n − k

k − l

)
E{ξi,nξj,n}1(|i ∩ j| = l

)

≤ C1

k−1∑
l=1

n2k−l
P

{
hn(Xk) = 1, hn(X1, . . . ,Xl,Xk+1, . . . ,X2k−l) = 1,

X (n)
2k−l ∈ K1

} → 0 as n → ∞,

where the last convergence follows from (2.18) and now, (A.2) is proved as re-
quired.

In order to prove that Ñ
(k)
n has the same weak limit as N

(k)
n , we only have to

verify that for every nonnegative continuous function f : Ek × Lk → R+ with
compact support,

N(k)
n (f ) − Ñ (k)

n (f )

= ∑
i∈I|Pn|,k

(
hn(Xi) − gn(Xi,Pn)

)
f

(
X (n)

i , i/|Pn|) p→ 0.

Let K2 be a compact set in Ek so that the support of f is contained in K2 × Lk .
Noting that ‖f ‖∞ = sup(x,y)∈K2×Lk

f (x, y) < ∞,

N(k)
n (f ) − Ñ (k)

n (f )

≤ ‖f ‖∞
∑

i∈I|Pn|,k
1
(
hn(Xi) = 1, gn(Xi,Pn) = 0,X (n)

i ∈ K2
)
.

In view of the Palm theory in Lemma A.1 in the Appendix, we need to show that

nk
P

{
hn(Xk) = 1, gn

(
Xk,Xk ∪P ′

n

) = 0,X (n)
k ∈ K2

} → 0,

where P ′
n is an independent copy of Pn. Combining (2.17) and (2.19) completes

the proof. �

A.2. Proof of Theorem 3.2. By Theorem 2.1, we only establish that the three
convergence conditions, (2.17), (2.18) and (2.19), with ck,n, dk,n replaced by Rk,n

and 0, respectively, are satisfied. Since the proof of (2.17) is very similar to (and
actually even easier than) that of (2.19), we only check (2.18) and (2.19). We shall
start with (2.19). In view of the Portmanteau theorem for vague convergence (e.g.,
Proposition 3.12 in [23]) we need to show(

n

k

)
P

{
gn

(
Xk,Xk ∪P ′

n

) = 1,R−1
k,nXk ∈ K

} v→ νk(K)(A.4)
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for all relatively compact K in Ek = ([−∞,∞]d)k \ {0} for which νk(∂K) = 0.
Without loss of generality, we can take K = (a0, b0] × · · · × (ak−1, bk−1] ⊂ Ek ,
where ai , bi , i = 0, . . . , k − 1 are d-dimensional real vectors. Recall that any rela-
tively compact set in Ek is bounded away from the origin, and as assumed in (2.7),
h(x1, . . . , xk) = 1 only when x1, . . . , xk are all close enough to each other. There-
fore, we can and shall assume that each (ai, bi] is bounded away from the origin.
In particular, we assume that there exists an η > 0 such that

(A.5) (ai, bi] ⊂ {
x ∈ R

d : ‖x‖ ≥ η
}
, i = 0, . . . , k − 1.

Consequently, we have(
n

k

)
P

{
gn

(
Xk,Xk ∪P ′

n

) = 1, ai−1 ≺ R−1
k,nXi 	 bi−1, i = 1, . . . , k

}
=

(
n

k

)
E

{
hn(Xk)1

(
ai−1 ≺ R−1

k,nXi 	 bi−1, i = 1, . . . , k
)

× P
{
G(Xk, rn) is an isolated component of G

(
Xk ∪P ′

n, rn
)|Xk

}}
=

(
n

k

)∫
(Rd )k

hn(x1, . . . , xk)1
(
ai−1 ≺ R−1

k,nxi 	 bi−1, i = 1, . . . , k
)

× exp
{−np(x1, . . . , xk; rn)}f (x1) . . . f (xk) dx.

Let Ik denote the last integral. The change of variables x1 ↔ x, xi ↔ x + rnyi−1,
i = 2, . . . , k, together with the location invariance of h, yields

Ik =
(
n

k

)
rd(k−1)
n

∫
a0≺R−1

k,nx	b0

f (x)

∫
(Rd )k−1

h(0,y)

×
k−1∏
i=1

1
(
ai ≺ R−1

k,n(x + rnyi) 	 bi

)
× f (x + rnyi) exp

{−np(x, x + rny; rn)}dydx.

Applying the polar coordinate transform x ↔ (r, θ) with J (θ) = |∂x/∂θ |, and
changing variables by setting ρ = r/Rk,n, gives

Ik =
(
n

k

)
rd(k−1)
n Rd

k,nf (Rk,ne1)
k

×
∫
(Rd )k−1

∫
Sd−1

∫ ∞
0

1(a0 ≺ ρθ 	 b0)ρ
d−1f (Rk,ne1)

−1f (Rk,nρe1)

×
k−1∏
i=1

1(ai ≺ ρθ + rnyi/Rk,n 	 bi)f (Rk,ne1)
−1f

(
Rk,n‖ρθ + rnyi/Rk,n‖e1

)
× exp

{−np(Rk,nρθ,Rk,nρθ + rny; rn)}h(0,y) dρJ (θ) dθ dy,
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where J (θ) = |∂x/∂θ | is the usual Jacobian and Sd−1 denotes the (d − 1)-
dimensional unit sphere in R

d . Recalling (3.4) and the assumption that f has a
regularly varying tail of exponent −α, we see that for all ρ > 0, θ ∈ Sd−1 and
yi ∈ R

d , i = 1, . . . , k − 1,

(
n

k

)
rd(k−1)
n Rd

k,nf (Rk,ne1)
k f (Rk,nρe1)

f (Rk,ne1)

k−1∏
i=1

1(ai ≺ ρθ + rnyi/Rk,n 	 bi)

× f (Rk,n‖ρθ + rnyi/Rk,n‖e1)

f (Rk,ne1)
(A.6)

→ 1

k!ρ
−αk

k−1∏
i=1

1(ai ≺ ρθ 	 bi) as n → ∞.

Subsequently, we shall show that

(A.7) np(Rk,nρθ,Rk,nρθ + rny; rn) → 0, n → ∞

for every ρ > 0, θ ∈ Sd−1 and yi ∈ R
d , i = 1, . . . , k − 1. By the change of vari-

ables,

np(Rk,nρθ,Rk,nρθ + rny; rn)
= nrd

n f (Rk,ne1)

∫
B(0;2)∪⋃k−1

i=1 B(yi;2)
f (Rk,ne1)

−1(A.8)

× f
(
Rk,n‖ρθ + rnz/Rk,n‖e1

)
dz.

Appealing to the Potter bound (e.g., Theorem 1.5.6 in [7]), for every ξ ∈ (0, α),
there is C1 > 0 such that for sufficiently large n,

sup
z∈B(0;2)∪⋃k−1

i=1 B(yi;2)

f (Rk,n‖ρθ + rnz/Rk,n‖e1)

f (Rk,ne1)

≤ C1 sup
z∈B(0;2)∪⋃k−1

i=1 B(yi;2)

(‖ρθ + rnz/Rk,n‖−(α+ξ)

+ ‖ρθ + rnz/Rk,n‖−(α−ξ))
≤ C1

(
2ρ−(α+ξ) + 2ρ−(α−ξ)).

Therefore, the supremum over n of the integral in (A.8) is finite. On the other
hand, (3.4) ensures that nrd

n f (Rk,ne1) → 0 as n → ∞, and hence, the convergence
in (A.7) follows.
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Note that

1

k!
∫
(Rd )k−1

∫
Sd−1

∫ ∞
0

ρd−1−αk
k−1∏
i=0

1(ai ≺ ρθ 	 bi)h(0,y) dρJ (θ) dθ dy

= 1

k!
∫
(Rd )k−1

h(0,y) dy
∫
ai≺x	bi i=0,...,k−1

‖x‖−αk dx

= νk

(
(a0, b0] × · · · × (ak−1, bk−1]).

Thus, the proof of (A.4) can be complete, provided that the convergence in (A.6)
holds under the integral sign. Indeed, one more application of the Potter bound,
together with (A.5), verifies the following: for every ξ ∈ (0, α − d), there exist C2,
C3 > 0 such that

1(a0 ≺ ρθ 	 b0)
f (Rk,nρe1)

f (Rk,ne1)
≤ C21(ρ ≥ η)

(
ρ−(α+ξ) + ρ−(α−ξ)),

and
k−1∏
i=1

1(ai ≺ ρθ + rnyi/Rk,n 	 bi)
f (Rk,n‖ρθ + rnyi/Rk,n‖e1)

f (Rk,ne1)

≤ C3
(
η−(α+ξ)(k−1) + η−(α−ξ)(k−1)).

Since
∫ ∞
η (ρd−1−α+ξ + ρd−1−α−ξ ) dρ < ∞, the dominated convergence theorem

justifies the convergence under the integral sign, and so we have completed the
first part of the proof; namely (2.19) is satisfied.

Next, we shall prove (2.18). For l = 1, . . . , k − 1 and every compact set K ⊂
E2k−l = ([−∞,∞]d)2k−l \{0}, we can assume without loss of generality that there
exists η′ > 0 such that

K ⊂ {
(x1, . . . , x2k−l) ∈ (

R
d)2k−l : ‖xi‖ ≥ η′, i = 1, . . . ,2k − l

}
.

Proceeding in the same manner as above, the probability in (2.18) is bounded by

n2k−l
P

{
hn(Xk) = 1, hn(X1, . . . ,Xl,Xk+1, . . . ,X2k−l) = 1,

‖Xi‖ ≥ η′Rk,n, i = 1, . . . ,2k − l
}

= n2k−lrd(2k−l−1)
n Rd

k,nf (Rk,ne1)
2k−l

×
∫
(Rd )2k−l−1

∫
Sd−1

∫ ∞
η′

ρd−1f (Rk,ne1)
−1f (Rk,nρe1)

×
2k−l−1∏

i=1

1
(‖ρθ + rnyi/Rk,n‖ > η′)f (Rk,ne1)

−1

× f
(
Rk,n‖ρθ + rnyi/Rk,n‖e1

)
× h(0, y1, . . . , yk−1)h(0, y1, . . . , yl−1, yk, . . . , y2k−l−1) dρJ (θ) dθ dy.
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The asymptotic order of the last integral is O(n2k−lr
d(2k−l−1)
n Rd

k,nf (Rk,ne1)
2k−l),

which tends to 0 as n → ∞ for every l = 1, . . . , k − 1, and so we are done.

A.3. Proof of Theorem 4.1. For the proof of Theorem 4.1, we need a prelim-
inary lemma.

LEMMA A.4 (Lemma 5.2 in [4]). Given (Rk,n, n ≥ 1) as in (4.5), let
(qm(n),m ≥ 0, n ≥ 1) be defined by

qm(n) = a(Rk,n)
−1(

ψ←(
ψ(Rk,n) + m

) − Rk,n

)
,

equivalently,

ψ
(
Rk,n + a(Rk,n)qm(n)

) = ψ(Rk,n) + m

(since ψ is an increasing function, the inverse function ψ← is well-defined every-
where). Then, given ε > 0, there is an integer Nε ≥ 1 such that

qm(n) ≤ emε/ε for all n ≥ Nε,m ≥ 0.

PROOF OF THEOREM 4.1. The proof is rather long, and so we break into two
main units, one each for the two main cases, further dividing the proof of the first
case into three sign-posted parts. Hopefully, this will help the reader to navigate
the next few pages.

Proof of statement (i). Part 1: As argued in the proof of Theorem 3.2, we need only
check (2.18) and (2.19). As for (2.19), we need to show that(

n

k

)
P

{
gn

(
Xk,Xk ∪P ′

n

) = 1,X (n)
k ∈ K

} → νk(K)(A.9)

for all relatively compact K in Ek = ((−∞,∞]d)k for which νk(∂K) = 0. With-
out loss of generality, it suffices to check the case K = I0 ×· · ·× Ik−1, where Ii =
(ai, bi] ⊂ R

d and ai , bi are d-dimensional vectors such that −∞ ≺ ai 	 bi 	 ∞.
Define

H = Sd−1 ∩ {
(z1, . . . , zd) ∈ R

d : z1 + · · · + zd ≥ 0
}
,

and let Hc = Sd−1 \ H . Let �1 = X1/‖X1‖. Since a(Rk,n)
−1Rk,nS(X1) → ∞

a.s. (in a componentwise sense), we have that, for large enough n, �1 ∈ Hc and
a(Rk,n)

−1(X1 − Rk,nS(X1)) � a0(� −∞) do not occur simultaneously. Thus, the
left-hand side in (A.9) equals(

n

k

)
P

{
gn

(
Xk,Xk ∪P ′

n

) = 1,�1 ∈ H,X (n)
k ∈

k∏
i=1

Ii−1

}
+ o(1)
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as n → ∞. Letting Jk denote the leading term in the above, we can write

Jk =
(
n

k

)
E

{
hn(Xk)1

(
X (n)

k ∈
k∏

i=1

Ii−1,�1 ∈ H

)

× P
{
G(Xk, rn) is an isolated component of G

(
Xk ∪P ′

n, rn
)|Xk

}}

=
(
n

k

)∫
(Rd )k

hn(x1, . . . , xk)

× 1
(
a(Rk,n)

−1(
xi − Rk,nS(xi)

) ∈ Ii−1, i = 1, . . . , k, x1/‖x1‖ ∈ H
)

× exp
{−np(x1, . . . , xk; rn)}f (x1) · · ·f (xk) dx,

where the definition of p was given in (3.7).
The change of variables x1 ↔ x and xi ↔ x + rnyi−1, i = 2, . . . , k yields

Jk =
(
n

k

)
rd(k−1)
n

∫
Rd

1
(
a(Rk,n)

−1(
x − Rk,nS(x)

) ∈ I0, x/‖x‖ ∈ H
)
f (x)

×
∫
(Rd )k−1

h(0,y)

k−1∏
i=1

1
(
a(Rk,n)

−1(
x + rnyi − Rk,nS(x + rnyi)

) ∈ Ii

)
× f (x + rnyi) exp

{−np(x, x + rny; rn)}dydx.

Further calculation by the polar coordinate transform x ↔ (r, θ) with J (θ) =
|∂x/∂θ | and the change of variable ρ = a(Rk,n)

−1(r − Rk,n) gives

Jk =
(
n

k

)
rd(k−1)
n a(Rk,n)R

d−1
k,n f (Rk,ne1)

k

×
∫
(Rd )k−1

∫
Sd−1

∫ ∞
0

6∏
i=1

Lih(0,y) dρJ (θ) dθ dy,

where

L1 = 1
(
ρθ − a(Rk,n)

−1Rk,n

(
S(θ) − θ

) ∈ I0, θ ∈ H
)
,

L2 =
(

1 + a(Rk,n)

Rk,n

ρ

)d−1
,

L3 = f (Rk,ne1)
−1f

((
Rk,n + a(Rk,n)ρ

)
e1

)
,

L4 =
k−1∏
i=1

1
(
ρθ + rn

a(Rk,n)
yi

− Rk,n

a(Rk,n)

[
S
((

Rk,n + a(Rk,n)ρ
)
θ + rnyi

) − θ
] ∈ Ii

)
,
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L5 =
k−1∏
i=1

f (Rk,ne1)
−1f

(∥∥(
Rk,n + a(Rk,n)ρ

)
θ + rnyi

∥∥e1
)
,

L6 = exp
{−np

((
Rk,n + a(Rk,n)ρ

)
θ,

(
Rk,n + a(Rk,n)ρ

)
θ + rny; rn)}

.

Part 2: For the application of the dominated convergence theorem, one needs to
compute the limit for each Li , i = 1, . . . ,6, while also establishing finite upper
bounds for each term. We shall begin with the indicators L1 and L4, which are
trivially bounded. The fact that a(Rk,n)

−1Rk,n → ∞ ensures that

L1 → 1(ρθ ∈ I0, θ � 0), n → ∞.

Observe also that

L1 ≤ 1
(
ρ ≥ −M ′) for some M ′ ≥ 0.

To see this in more detail, choose M ′ ≥ 0 such that min1≤j≤d a
(j)
0 ≥ −M ′ [the

superscript (j) denotes “j th component” of a given vector]. Fix ρ and θ such that
L1 = 1. Then for all j with θ(j) > 0,

ρ ≥ ρθ(j) = ρθ(j) − a(Rk,n)
−1Rk,n

(
S(θ)(j) − θ(j)) ≥ a

(j)
0 ≥ −M ′.

Note that θ ∈ H guarantees that at least one component in θ must be positive.
In what follows, we prove the assertion when M ′ = 0. The proof for a general

M ′ is notationally more complicated, but essentially the same.
Before moving to L4, note the following useful expansion, which will be applied

repeatedly in what follows: For each i = 1, . . . , d ,∥∥(
Rk,n + a(Rk,n)ρ

)
θ + rnyi

∥∥
(A.10)

= Rk,n + a(Rk,n)

(
ρ + 〈θ, yi〉 + γn(ρ, θ, yi)

a(Rk,n)/rn

)
,

so that γn(ρ, θ, yi) → 0 uniformly in ρ ≥ 0, θ ∈ Sd−1, and ‖yi‖ ≤ M [M is deter-
mined in (2.7)].

Turning now to L4, we shall rewrite the expression within the indicator as fol-
lows:

ρθ + rn

a(Rk,n)

(
yi + αn

βn

)
,(A.11)

where

αn = (〈θ, yi〉 + γn(ρ, θ, yi)
)
θ + Rk,n

rn

(
1 + a(Rk,n)

Rk,n

ρ

)
θ

− m

(
Rk,n

rn

(
1 + a(Rk,n)

Rk,n

ρ

)
θ + yi

)
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with

m(x) = (∣∣x(1)
∣∣, . . . , ∣∣x(d)

∣∣), x = (
x(1), . . . , x(d)) ∈ R

d,

and

βn = 1 + a(Rk,n)

Rk,n

(
ρ + 〈θ, yi〉 + γn(ρ, θ, yi)

a(Rk,n)/rn

)
.

As seen above, L1 → 1(ρθ ∈ I0, θ � 0) as n → ∞, so it is enough to discuss
the convergence of (A.11) for every ρ ≥ 0, θ � 0, and ‖yi‖ ≤ M . Then, for large
enough n,

Rk,n

rn

(
1 + a(Rk,n)

Rk,n

ρ

)
θ + yi � 0.

Thus, we have that αn → 〈θ, yi〉θ − yi and βn → 1 as n → ∞. Now we have

ρθ + rn

a(Rk,n)

(
yi + αn

βn

)
→ (

ρ + c−1〈θ, yi〉)θ
and in conclusion, for every θ � 0,

L4 →
k−1∏
i=1

1
((

ρ + c−1〈θ, yi〉)θ ∈ Ii

)
.

Regarding L2, it is clear that for every ρ ≥ 0, L2 → 1 as n → ∞ and it is also
easy to check that L2 ≤ 2(ρ ∨ 1)d−1.

As for L3, we write

L3 = L(Rk,n)
−1L

(
Rk,n + a(Rk,n)ρ

)
exp

{−ψ
(
Rk,n + a(Rk,n)ρ

) + ψ(Rk,n)
}
.

An elementary calculation (e.g., page 142 in [15]) shows that

(A.12)
a(Rk,n)

a(Rk,n + a(Rk,n)v)
→ 1

uniformly on bounded v-sets. Namely, 1/a is flat for a. Therefore, for every ρ ≥ 0,

exp
{−ψ

(
Rk,n + a(Rk,n)ρ

) + ψ(Rk,n)
} → e−ρ, n → ∞.

Since L is flat for a, it follows that L3 → e−ρ as n → ∞ for every ρ ≥ 0. For
the upper bound of L3 on {ρ ≥ 0}, we apply Lemma A.4. Choosing ε ∈ (0, (d +
γ k)−1) and recalling that ψ is nondecreasing,

exp
{−ψ

(
Rk,n + a(Rk,n)ρ

) + ψ(Rk,n)
}
1(ρ ≥ 0)

=
∞∑

m=0

1
(
qm(n) ≤ ρ < qm+1(n)

)
exp

{−ψ
(
Rk,n + a(Rk,n)ρ

) + ψ(Rk,n)
}

≤
∞∑

m=0

1
(
0 ≤ ρ ≤ ε−1e(m+1)ε)e−m

for all n ≥ Nε .
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On the other hand, using the bound in (4.3), on {ρ ≥ 0}, we have, for sufficiently
large n,

L(Rk,n)
−1L

(
Rk,n + a(Rk,n)ρ

) ≤ C

(
1 + a(Rk,n)

Rk,n

ρ

)γ

≤ 2C(ρ ∨ 1)γ .

Multiplying these bounds together, we have

L31(ρ ≥ 0) ≤ 2C(ρ ∨ 1)γ
∞∑

m=0

1
(
0 ≤ ρ ≤ ε−1e(m+1)ε)e−m.

Next, we turn to L5. First, denote

(A.13) ξn(ρ, θ, y) = 〈θ, yi〉 + γn(ρ, θ, y)

a(Rk,n)/rn
.

Since c = limn→∞ a(Rk,n)/rn is strictly positive,

(A.14) A = sup
n≥1,ρ≥0,

θ∈Sd−1,‖y‖≤M

∣∣ξn(ρ, θ, y)
∣∣ < ∞.

Using the expansion (A.10), we can write

L5 =
k−1∏
i=1

L(Rk,n)
−1L

(
Rk,n + a(Rk,n)

(
ρ + ξn(ρ, θ, yi)

))
× exp

{
−

∫ ρ+ξn(ρ,θ,yi )

0

a(Rk,n)

a(Rk,n + a(Rk,n)r)
dr

}
.

Due to the uniform convergence (A.12) and (A.14), for every ρ ≥ 0, θ ∈ Sd−1, and
‖yi‖ ≤ M ,∫ ρ+ξn(ρ,θ,yi )

0

a(Rk,n)

a(Rk,n + a(Rk,n)r)
dr → ρ + c−1〈θ, yi〉, n → ∞

and

L(Rk,n)
−1L

(
Rk,n + a(Rk,n)

(
ρ + ξn(ρ, θ, yi)

)) → 1, n → ∞.

We thus conclude that

L5 → exp

{
−(k − 1)ρ − c−1

k−1∑
i=1

〈θ, yi〉
}

for every ρ ≥ 0, θ ∈ Sd−1, and ‖yi‖ ≤ M , i = 1, . . . , k − 1.
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To provide an appropriate upper bound for L5 on {ρ ≥ 0}, note that, for large
enough n,

k−1∏
i=1

exp
{
−

∫ ρ+ξn(ρ,θ,yi)

0

a(Rk,n)

a(Rk,n + a(Rk,n)r)
dr

}
1(ρ ≥ 0)

≤ exp

{
k−1∑
i=1

∫ 0

−A

a(Rk,n)

a(Rk,n + a(Rk,n)r)
dr

× 1
(−A ≤ ρ + ξn(ρ, θ, yi) ≤ 0

)
−

k−1∑
i=1

∫ ρ+ξn(ρ,θ,yi )

0

a(Rk,n)

a(Rk,n + a(Rk,n)r)
dr

× 1
(
ρ + ξn(ρ, θ, yi) > 0

)}

≤ e2A(k−1).

It follows from (4.2) and (4.3) that there exists C1 ≥ 1 such that, on {ρ ≥ 0},
L(Rk,n)

−1L
(
Rk,n + a(Rk,n)

(
ρ + ξn(ρ, θ, yi)

))
= L(Rk,n)

−1L
(
Rk,n + a(Rk,n)

(
ρ + ξn(ρ, θ, yi)

))
1
(
ρ + ξn(ρ, θ, yi) ≥ −A

)
≤ 2 + L(Rk,n)

−1L
(
Rk,n + a(Rk,n)

(
ρ + ξn(ρ, θ, yi)

))
× 1

(
ρ + ξn(ρ, θ, yi) > 0

)
≤ 2 + C

(
1 + a(Rk,n)

Rk,n

(
ρ + ξn(ρ, θ, yi)

))γ

≤ 2 + 2C
(
1 ∨ (

ρ + ξn(ρ, θ, yi)
))γ

≤ C
(k−1)−1

1 (ρ ∨ 1)γ

for sufficiently large n. This in turn implies that

k−1∏
i=1

L(Rk,n)
−1L

(
Rk,n + a(Rk,n)

(
ρ + ξn(ρ, θ, yi)

)) ≤ C1(ρ ∨ 1)γ (k−1)

on {ρ ≥ 0}, and further,

L5 ≤ C1e
2A(k−1)(ρ ∨ 1)γ (k−1)

holds on {ρ ≥ 0}.
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Finally, we turn to L6.

− logL6 = np
((

Rk,n + a(Rk,n)ρ
)
θ,

(
Rk,n + a(Rk,n)ρ

)
θ + rny; rn)

= nrd
n f (Rk,ne1)

∫
B(0;2)∪⋃k−1

i=1 B(yi;2)
f (Rk,ne1)

−1

× f
((

Rk,n + a(Rk,n)
(
ρ + ξn(ρ, θ, z)

))
e1

)
dz.

As argued in the derivation of the bound for L5, the supremum of integrand over
n can be bounded by a constant multiple of (ρ ∨ 1)γ . On the other hand, (4.5)
guarantees nrd

n f (Rk,ne1) → 0 as n → ∞, and hence, L6 → 1 as n → ∞.
From the argument thus far, it follows that for every ρ ≥ 0, θ ∈ Sd−1, and

‖yi‖ ≤ M , i = 1, . . . , d ,

6∏
i=1

Li → e−kρ−c−1 ∑k−1
i=1 〈θ,yi〉

× 1
(
ρθ ∈ I0, θ � 0,

(
ρ + c−1〈θ, yi〉)θ ∈ Ii, i = 1, . . . , k − 1

)
.

To finish the argument, it remains to check the L1-integrability on {ρ ≥ 0} of the
upper bound for

∏6
i=1 Li . As we have seen so far,

6∏
i=1

Li1(ρ ≥ 0)

≤ 4CC1e
2A(k−1)(ρ ∨ 1)d−1+γ k

∞∑
m=0

1
(
0 ≤ ρ ≤ ε−1e(m+1)ε)e−m

for sufficiently large n. Indeed,∫ ∞
0

(ρ ∨ 1)d−1+γ k
∞∑

m=0

1
(
0 ≤ ρ ≤ ε−1e(m+1)ε)e−m dρ

≤ e(d+γ k)ε

εd+γ k

∞∑
m=0

e−[1−(d+γ k)ε]m

so that the right-hand side is finite because we took 0 < ε < (d + γ k)−1. Applying
the dominated convergence theorem as well as (4.5), it turns out that Jk → νk(K),
n → ∞ as required.

Part 3: Next, we shall prove that (2.18) is satisfied. For l = 1, . . . , k − 1, and
any compact set K ⊂ E2k−l = ((−∞,∞]d)2k−l , there exists B ≥ 0 such that

K ⊂ {
(x1, . . . , x2k−l) ∈ (

R
d)2k−l : xi � −B1, i = 1, . . . ,2k − l

}
,
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where 1 is a d-dimensional vector with all entries 1. Then the probability in (2.18)
can be bounded by

n2k−l
P

{
hn(Xk) = 1, hn(X1, . . . ,Xl,Xk+1, . . . ,X2k−l) = 1,X (n)

2k−l � −B1
}

= n2k−l
∫
(Rd )2k−l

hn(x1, . . . , xk)hn(x1, . . . , xl, xk+1, . . . , x2k−l)

× 1
(
xi − Rk,nS(xi) � −a(Rk,n)B1, i = 1, . . . ,2k − l, x1/‖x1‖ ∈ H

)
× f (x1) · · ·f (x2k−l) dx + o(1), n → ∞.

The equality above follows from the fact that X1/‖X1‖ ∈ Hc and X1 −
Rk,nS(X1) ≥ −a(Rk,n)B1 do not occur simultaneously.

By precisely the same change of variables and polar coordinate transform as in
the proof of (2.19), the leading term of the last line above equals

n2k−lrd(2k−l−1)
n a(Rk,n)R

d−1
k,n f (Rk,ne1)

2k−l

×
∫
(Rd )2k−l−1

∫
Sd−1

∫ ∞
0

1
(
ρθ − Rk,n

a(Rk,n)

(
S(θ) − θ

) � −B1, θ ∈ H

)

×
(

1 + a(Rk,n)

Rk,n

ρ

)d−1
f (Rk,ne1)

−1f
((

Rk,n + a(Rk,n)ρ
)
e1

)
×

2k−l−1∏
i=1

1
(
ρθ + rn

a(Rk,n)
yi

− Rk,n

a(Rk,n)

[
S
((

Rk,n + a(Rk,n)ρ
)
θ + rnyi

) − θ
] � −B1

)
× f (Rk,ne1)

−1f
(∥∥(

Rk,n + a(Rk,n)ρ
)
θ + rnyi

∥∥e1
)

× h(0, y1, . . . , yk−1)h(0, y1, . . . , yl−1, yk, . . . , y2k−l−1) dρJ (θ) dθ dy.

The asymptotic order of the above expression is

O
(
n2k−lrd(2k−l−1)

n a(Rk,n)R
d−1
k,n f (Rk,ne1)

2k−l),
which vanishes as n → ∞ for every l = 1, . . . , k − 1, and so the proof of (i) is
complete.

Proof of statement (ii)
We need only show that, as n → ∞,

N(k)
n (f ) = ∑

i∈I|Pn|,k
hn(Xi)f

(
X (n)

i , i/|Pn|) p→ 0

for every continuous nonnegative function f : Ek × Lk → R+ with compact sup-
port. Note that the support of f is contained in{

(x1, . . . , xk) ∈ (
R

d)k : xi � −B11, i = 1, . . . , k
} × Lk
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for some B1 ≥ 0. Therefore,

N(k)
n (f ) ≤ ‖f ‖∞

∑
i∈I|Pn|,k

1
(
hn(Xi) = 1,X (n)

i � −B11
)
.

Observe that Xij − Rk,nS(Xij ) � −a(Rk,n)B11 implies

‖Xij ‖ − Rk,n ≥ −a(Rk,n)B2

for some B2 ≥ B1. Hence,

N(k)
n (f ) ≤ ‖f ‖∞

∑
i∈I|Pn|,k

1
(
hn(Xi) = 1,

‖Xij ‖ − Rk,n ≥ −a(Rk,n)B2, j = 1, . . . , k
)
.

In view of Lemma A.1 in the Appendix, what now needs to be verified is that

nk
P

{
hn(Xk) = 1,‖Xi‖ − Rn ≥ −a(Rk,n)B2, i = 1, . . . , k

} → 0.

Once again, applying the same kind of change of variables and polar coordinate
transform, together with (A.10),

nk
P

{
hn(Xk) = 1,‖Xi‖ − Rn ≥ −a(Rk,n)B2, i = 1, . . . , k

}
= nkrd(k−1)

n a(Rk,n)R
d−1
k,n f (Rk,ne1)

k

×
∫
(Rd )k−1

∫
Sd−1

∫
ρ≥−B2

(
1 + a(Rk,n)

Rk,n

ρ

)d−1

× f (Rk,ne1)
−1f

((
Rk,n + a(Rk,n)ρ

)
e1

) k−1∏
i=1

1
(
ρ + ξn(ρ, θ, yi) ≥ −B2

)
× f (Rk,ne1)

−1f
((

Rk,n + a(Rk,n)
(
ρ + ξn(ρ, θ, yi)

))
e1

)
× h(0,y) dρJ (θ) dθ dy,

where the definition of ξn(ρ, θ, yi) is given by (A.13).
As argued before, (

1 + a(Rk,n)

Rk,n

ρ

)d−1
≤ 2(ρ ∨ 1)d−1

and, on {ρ ≥ −B2},
L(Rk,n)

−1L
(
Rk,n + a(Rk,n)ρ

) ≤ 2C(ρ ∨ 1)γ .

Furthermore, since a is eventually nonincreasing,

exp
{−ψ

(
Rk,n + a(Rk,n)ρ

) + ψ(Rk,n)
} ≤ e−ρ.
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As argued before, it follows from (4.2) and (4.3) that there exists C2 > 0 such that
on {ρ ≥ −B2, ρ + ξn(ρ, θ, yi) ≥ −B2},

k−1∏
i=1

L(Rk,n)
−1L

(
Rk,n + a(Rk,n)

(
ρ + ξn(ρ, θ, yi)

)) ≤ C2(ρ ∨ 1)γ (k−1).

Since a is eventually nonincreasing,

k−1∏
i=1

exp
{−ψ

(
Rk,n + a(Rk,n)

(
ρ + ξn(ρ, θ, yi)

)) + ψ(Rk,n)
}

≤
k−1∏
i=1

exp
{−(

ρ + ξn(ρ, θ, yi)
)}

.

Now, we have

nk
P

{
hn(Xk) = 1,‖Xi‖ − Rn ≥ −a(Rk,n)B2, i = 1, . . . , k

}
≤ 4CC2

∫
(Rd )k−1

∫
Sd−1

∫
ρ≥−B2

(ρ ∨ 1)d−1+γ ke−ρ

×
k−1∏
i=1

exp
{−(

ρ + ξn(ρ, θ, yi)
)}

× 1
(
ρ + ξn(ρ, θ, yi) ≥ −B2

)
h(0,y) dρJ (θ) dθ dy.

If we can show that

(A.15) exp
{−(

ρ + ξn(ρ, θ, yi)
)}

1
(
ρ + ξn(ρ, θ, yi) ≥ −B2

) → 0, n → ∞
for every ρ ≥ −B2, θ ∈ Sd−1, and ‖yi‖ ≤ M , i = 1, . . . , d , then the dominated
convergence theorem completes the proof. First, in the case of 〈θ, yi〉 < 0,

ρ + ξn(ρ, θ, yi) → −∞, n → ∞
and hence, as n → ∞,

exp
{−(

ρ + ξn(ρ, θ, yi)
)}

1
(
ρ + ξn(ρ, θ, yi) ≥ −B2

)
≤ eB21

(
ρ + ξn(ρ, θ, yi) ≥ −B2

) → 0.

Second, if 〈θ, yi〉 > 0, then exp{−(ρ +ξn(ρ, θ, yi))} → 0. So in either case, (A.15)
is established. �
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