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RANDOM WALKS ON INFINITE PERCOLATION CLUSTERS IN
MODELS WITH LONG-RANGE CORRELATIONS

BY ARTEM SAPOZHNIKOV

University of Leipzig

For a general class of percolation models with long-range correlations
on Zd , d ≥ 2, introduced in [J. Math. Phys. 55 (2014) 083307], we establish
regularity conditions of Barlow [Ann. Probab. 32 (2004) 3024–3084] that
mesoscopic subballs of all large enough balls in the unique infinite perco-
lation cluster have regular volume growth and satisfy a weak Poincaré in-
equality. As immediate corollaries, we deduce quenched heat kernel bounds,
parabolic Harnack inequality, and finiteness of the dimension of harmonic
functions with at most polynomial growth. Heat kernel bounds and the
quenched invariance principle of [Probab. Theory Related Fields 166 (2016)
619–657] allow to extend various other known results about Bernoulli perco-
lation by mimicking their proofs, for instance, the local central limit theorem
of [Electron. J. Probab. 14 (209) 1–27] or the result of [Ann. Probab. 43
(2015) 2332–2373] that the dimension of at most linear harmonic functions
on the infinite cluster is d + 1.

In terms of specific models, all these results are new for random interlace-
ments at every level in any dimension d ≥ 3, as well as for the vacant set
of random interlacements [Ann. of Math. (2) 171 (2010) 2039–2087; Comm.
Pure Appl. Math. 62 (2009) 831–858] and the level sets of the Gaussian free
field [Comm. Math. Phys. 320 (2013) 571–601] in the regime of the so-called
local uniqueness (which is believed to coincide with the whole supercritical
regime for these models).
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1. Introduction. Delmotte [14] proved that the transition density of the sim-
ple random walk on a graph satisfies Gaussian bounds and the parabolic Harnack
inequality holds if all the balls have regular volume growth and satisfy a Poincaré
inequality. Barlow [4] relaxed these conditions by imposing them only on all large
enough balls, and showed that they imply large time Gaussian bounds and the el-
liptic Harnack inequality for large enough balls. Later, Barlow and Hambly [7]
proved that the parabolic Harnack inequality also follows from Barlow’s condi-
tions. Barlow [4] verified these conditions for the supercritical cluster of Bernoulli
percolation on Zd , which lead to the almost sure Gaussian heat kernel bounds and
parabolic Harnack inequality. By using stationarity and heat kernel bounds, the
quenched invariance principle was proved in [9, 25, 38], which lead to many fur-
ther results about supercritical Bernoulli percolation, including the local central
limit theorem [7] and the fact that the dimension of harmonic functions of at most
linear growth is d + 1 [8].

The independence property of Bernoulli percolation was essential in verifying
Barlow’s conditions, and up to now it has been the only example of percolation
model for which the conditions were verified. On the other hand, once the condi-
tions are verified, the derivation of all the further results uses rather robust methods
and allows for extension to other stationary percolation models.

The aim of this paper is to develop an approach to verifying Barlow’s conditions
for infinite clusters of percolation models, which on the one hand, applies to su-
percritical Bernoulli percolation, but on the other, does not rely on independence
and extends beyond models which are in any stochastic relation with Bernoulli
percolation. Motivating examples for us are random interlacements, vacant set of
random interlacements, and the level sets of the Gaussian free field [35, 39, 40]. In
all these models, the spatial correlations decay only polynomially with distance,
and classical Peierls-type arguments do not apply. A unified framework to study
percolation models with strong correlations was proposed in [19], within which
the shape theorem for balls [19] and the quenched invariance principle [32] were
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proved. In this paper, we prove that Barlow’s conditions are satisfied by infinite
percolation clusters in the general setting of [19]. In particular, all the above men-
tioned properties of supercritical Bernoulli percolation extend to all the models
satisfying assumptions from [19], which include supercritical Bernoulli percola-
tion, random interlacements at every level in any dimension d ≥ 3, the vacant set
of random interlacements and the level sets of the Gaussian free field in the regime
of local uniqueness.

1.1. General graphs. Let G be an infinite connected graph with the vertex set
V (G) and the edge set E(G). For x, y ∈ V (G), define the weights

νxy =
{

1, {x, y} ∈ E(G),

0, otherwise,
μx = ∑

y

νxy,

and extend ν to the measure on E(G) and μ to the measure on V (G).
For functions f : V (G) →R and g : E(G) →R, let

∫
f dμ = ∑

x∈V (G) f (x)μx

and
∫

g dν = ∑
e∈E(G) g(e)νe, and define |∇f | : E(G) → R by |∇f |({x, y}) =

|f (x) − f (y)| for {x, y} ∈ E(G).
Let dG be the graph distance on G, and define BG(x, r) = {y ∈ V (G) :

dG(x, y) ≤ r}. We assume that μ(BG(x, r)) ≤ C0r
d for all x ∈ V (G) and r ≥ 1.

In particular, this implies that the maximal degree in G is bounded by C0.
We say that a graph G satisfies the volume regularity and the Poincaré inequality

if for all x ∈ V (G) and r > 0, μ(BG(x,2r)) ≤ C1 · μ(BG(x, r)) and, respectively,
mina

∫
BG(x,r)(f − a)2 dμ ≤ C2 · r2 · ∫

E(BG(x,r)) |∇f |2 dν, with some constants C1

and C2. Graphs satisfying these conditions are very well understood. Delmotte
proved in [14] the equivalence of such conditions to Gaussian bounds on the tran-
sition density of the simple random walk and to the parabolic Harnack inequality
for solution to the corresponding heat equation, extending results of Grigoryan
[20] and Saloff-Coste [36] for manifolds. Under the same assumptions, he also ob-
tained in [15] explicit bounds on the dimension of harmonic functions on G of at
most polynomial growth. Results of this flavor are classical in geometric analysis,
with seminal ideas going back to the work of De Giorgi [17], Nash [30] and Moser
[28, 29] on the regularity of solutions of uniformly elliptic second-order equations
in divergence form.

The main focus of this paper is on random graphs, and more specifically on
random subgraphs of Zd , d ≥ 2. Because of local defects in such graphs caused
by randomness, it is too restrictive to expect that various properties (e.g., Poincaré
inequality, Gaussian bounds, or Harnack inequality) should hold globally. An illus-
trative example is the infinite cluster C∞ of supercritical Bernoulli percolation [21]
defined as follows. For p ∈ [0,1], remove vertices of Zd independently with prob-
ability (1 − p). The graph induced by the retained vertices almost surely contains
an infinite connected component (which is unique) if p > pc(d) ∈ (0,1), and con-
tains only finite components if p < pc(d). It is easy to see that for any p > pc(d)
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with probability 1, C∞ contains copies of any finite connected subgraph of Zd at-
tached to C∞ by one edge, and thus, none of the above global properties can hold.

Barlow [4] proposed the following relaxed assumption which takes into account
possible exceptional behavior on microscopic scales.

DEFINITION 1.1 ([4], Definition 1.7). Let CV , CP , and CW ≥ 1 be fixed con-
stants. For r ≥ 1 integer and x ∈ V (G), we say that BG(x, r) is (CV ,CP ,CW)-
good if μ(BG(x, r)) ≥ CV rd and the weak Poincaré inequality

min
a

∫
BG(x,r)

(f − a)2 dμ ≤ CP · r2 ·
∫
E(BG(x,CW r))

|∇f |2 dν

holds for all f : BG(x,CWr) →R.
We say the ball BG(x,R) is (CV ,CP ,CW)-very good if there exists NBG(x,R) ≤

R
1

d+2 such that BG(y, r) is (CV ,CP ,CW)-good whenever BG(y, r) ⊆ BG(x,R),
and NBG(x,R) ≤ r ≤ R.

REMARK 1.2. For any finite H ⊂ V (G) and f : H → R, the minimum
mina

∫
H(f − a)2 dμ is attained by the value a = f H = 1

μ(H)

∫
H f dμ.

For a very good ball, the conditions of volume growth and Poincaré inequality
are allowed to fail on microscopic scales. Thus, if all large enough balls are very
good, the graph can still have rather irregular local behavior. Despite that, on large
enough scales it looks as if it was regular on all scales, as the following results
from [4, 7, 8] illustrate.

Let X = (Xn)n≥0 and Y = (Yt )t≥0 be the discrete and continuous time simple
random walks on G. X is a Markov chain with transition probabilities νxy

μx
, and Y is

the Markov process with generator LGf (x) = 1
μx

∑
y νxy(f (y)−f (x)). In words,

the walker X (resp., Y ) waits a unit time (resp., an exponential time with mean 1)
at each vertex x, and then jumps to a uniformly chosen neighbor of x in G. For
x ∈ V (G), we denote by Px = PG,x (resp., Qx = QG,x) the law of X (resp., Y )
started from x. The transition density of X (resp., Y ) with respect to μ is denoted
by pn(x, y) = pG,n(x, y) = PG,x [Xn=y]

μy
(resp., qt (x, y) = qG,t (x, y) = QG,x [Yt=y]

μy
).

The first implications of Definition 1.1 are large time Gaussian bounds for qt

and pn.

THEOREM 1.3 ([4], Theorem 5.7(a) and [7], Theorem 2.2). Let x ∈ V (G). If
there exists R0 = R0(x,G) such that BG(x,R) is (CV ,CP ,CW)-very good with
N

3(d+2)
BG(x,R) ≤ R for each R ≥ R0, then there exist constants Ci = Ci(d,C0,CV ,

CP ,CW) such that for all t ≥ R
3/2
0 and y ∈ V (G),

Ft(x, y) ≤ C1 · t− d
2 · e−C2· dG(x,y)2

t , if t ≥ dG(x, y),(1)

Ft(x, y) ≥ C3 · t− d
2 · e−C4· dG(x,y)2

t , if t ≥ dG(x, y)
3
2 ,(2)
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where Ft stands for either qt or p
t� + p
t�+1.

The next result gives an elliptic Harnack inequality.

THEOREM 1.4 ([4], Theorem 5.11). There exists a constant Cehi = Cehi(d,

C0,CV ,CP ,CW) such that for any x ∈ V (G) and R ≥ 1, if BG(x,R logR)

is (CV ,CP ,CW)-very good with N
4(d+2)
BG(x,R logR) ≤ R, then for any y ∈ BG(x,

1
3R logR), and h : BG(y,R + 1) →R nonnegative and harmonic in BG(y,R),

(3) sup
BG(y, 1

2 R)

h ≤ Cehi · inf
BG(y, 1

2 R)

h.

In fact, more general parabolic Harnack inequality also takes place. (For the
definition of parabolic Harnack inequality, see, e.g., [7], Section 3.)

THEOREM 1.5 ([7], Theorem 3.1). There exists a constant Cphi = Cphi(d,C0,

CV ,CP ,CW) such that for any x ∈ V (G), R ≥ 1, and R1 = R logR ≥ 16, if
BG(x,R1) is (CV ,CP ,CW)-very good with N

2(d+2)
BG(x,R1)

≤ R1
2 logR1

, then for any

y ∈ BG(x, 1
3R1), the parabolic Harnack inequality (in both discrete and contin-

uous time settings) holds with constant Cphi for (0,R2] × BG(y,R). In particular,
the elliptic Harnack inequality (3) also holds.

The next result is about the dimension of the space of harmonic functions on G

with at most polynomial growth.

THEOREM 1.6 ([8], Theorem 4). Let x ∈ V (G). If there exists R0 = R0(x,G)

such that BG(x,R) is (CV ,CP ,CW)-very good for each R ≥ R0, then for any
positive k, the space of harmonic functions h with lim supdG(x,y)→∞

h(y)

dG(x,y)k
< ∞

is finite dimensional, and the bound on the dimension only depends on k, d , C0,
CV , CP and CW .

The notion of very good balls is most useful in studying random subgraphs of
Zd . Up to now, it was only applied to the unique infinite connected component
of supercritical Bernoulli percolation; see [4, 7]. Barlow [4], Section 2, showed
that on an event of probability 1, for every vertex of the infinite cluster, all large
enough balls centered at it are very good. Thus, all the above results are imme-
diately transferred into the almost sure statements for all vertices of the infinite
cluster.

Despite the conditions of Definition 1.1 are rather general, their validity up to
now has only been shown for the independent percolation. The reason is that most
of the analysis developed for percolation is tied very sensitively with the indepen-
dence property of Bernoulli percolation. One usually first reduces combinatorial
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complexity of patterns by a coarse graining, and then balances the complexity out
by exponential bounds coming from the independence; see, for example, [4], Sec-
tion 2.

The main purpose of this paper is to develop an approach to verifying proper-
ties of Definition 1.1 for random graphs which does not rely on independence or
any comparison with Bernoulli percolation, and, as a result, extending the known
results about Bernoulli percolation to models with strong correlations. Our primal
motivation comes from percolation models with strong correlations, such as ran-
dom interlacements, vacant set of random interlacements, or the level sets of the
Gaussian free field; see, for example, [35, 39, 40].

REMARK 1.7. (1) The lower bound of Theorem 1.3 can be slightly general-
ized by following the proof of [4], Theorem 5.7(a). Let ε ∈ (0, 1

2 ] and K > 1
ε
. If

there exists R0 = R0(x,G) such that BG(x,R) is (CV ,CP ,CW)-very good with
N

K(d+2)
BG(x,R) ≤ R for each R ≥ R0, then for all t ≥ R1+ε

0 ,

(4) Ft(x, y) ≥ C3 · t− d
2 · e−C4· dG(x,y)2

t , if t ≥ dG(x, y)1+ε.

The constants C3 and C4 are the same as in (2), in particular, they do not depend
on K and ε. For ε = 1

2 and K = 3, we recover (2). (There is a small typo in the

statements of [4], Theorem 5.7(a) and [7], Theorem 2.2: R
2/3
0 should be replaced

by R
3/2
0 .)

Indeed, the proof of [4], Theorem 5.7(a), is reduced to verifying assumptions of

[4], Theorem 5.3, for some choice of R. The original choice of Barlow is R = t
2
3 ,

and it implies (2). By restricting the choice of NBG(x,R) as above, one notices that

all the conditions of [4], Theorem 5.3, are satisfied by R = t
1

1+ε , implying (4).
(2) In order to prove the lower bound of (2) for the same range of t’s as in the

upper bound (1), one needs to impose a stronger assumption on the regularity of
the balls BG(x,R) (see, for instance, [4], Definition 5.4, of the exceedingly good
ball and [4], Theorem 5.7(b)). In fact, the recent result of [5], Theorem 1.10, states
that the volume doubling property and the Poincaré inequality satisfied by large
enough balls are equivalent to certain partial Gaussian bounds (and also to the
parabolic Harnack inequality in large balls).

(3) Under the assumptions of Theorem 1.5, various estimates of the heat kernels
for the processes X and Y killed on exiting from a box are given in [7], Theo-
rem 2.1.

(4) Theorem 1.6 holds under much weaker assumptions, although reminiscent
of the ones of Definition 1.1 (see [8], Theorem 4). Roughly speaking, one assumes
that the conditions from Definition 1.1 hold with NBG(x,R) only sublinear in R,
that is, a volume growth condition and the weak Poincaré inequality should hold
only for macroscopic subballs of BG(x,R).
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1.2. The model. We consider the measurable space � = {0,1}Zd
, d ≥ 2,

equipped with the sigma-algebra F generated by the coordinate maps {ω �→
ω(x)}x∈Zd . For any ω ∈ {0,1}Zd

, we denote the induced subset of Zd by

S = S(ω) = {
x ∈ Zd : ω(x) = 1

} ⊆ Zd .

We view S as a subgraph of Zd in which the edges are drawn between any two
vertices of S within �1-distance 1 from each other, where the �1 and �∞ norms of
x = (x(1), . . . , , x(d)) ∈ Rd are defined in the usual way by |x|1 = ∑d

i=1 |x(i)| and
|x|∞ = max{|x(1)|, . . . |x(d)|}, respectively. For x ∈ Zd and r ∈ R+, we denote by
B(x, r) = {y ∈ Zd : |x − y|∞ ≤ 
r�} the closed �∞-ball in Zd with radius 
r� and
center at x.

DEFINITION 1.8. For r ∈ [0,∞], we denote by Sr , the set of vertices of S
which are in connected components of S of �1-diameter ≥ r . In particular, S∞ is
the subset of vertices of S which are in infinite connected components of S .

1.2.1. Assumptions. On (�,F) we consider a family of probability measures
(Pu)u∈(a,b) with 0 < a < b < ∞, satisfying the following assumptions P1–P3 and
S1–S2 from [19]. Parameters d , a and b are considered fixed throughout the paper,
and dependence of various constants on them is omitted.

An event G ∈ F is called increasing (resp., decreasing), if for all ω ∈ G and
ω′ ∈ {0,1}Zd

with ω(y) ≤ ω(y′) (resp., ω(y) ≥ ω(y′)) for all y ∈ Zd , one has
ω′ ∈ G.

P1 (Ergodicity). For each u ∈ (a, b), every lattice shift is measure preserving and
ergodic on (�,F,Pu).

P2 (Monotonicity). For any u,u′ ∈ (a, b) with u < u′, and any increasing event
G ∈F , Pu[G] ≤ Pu′ [G].

P3 (Decoupling). Let L ≥ 1 be an integer and x1, x2 ∈ Zd . For i ∈ {1,2}, let
Ai ∈ σ({ω �→ ω(y)}y∈B(xi ,10L)) be decreasing events, and Bi ∈ σ({ω �→
ω(y)}y∈B(xi ,10L)) increasing events. There exist RP,LP < ∞ and εP, χP > 0
such that for any integer R ≥ RP and a < û < u < b satisfying

u ≥ (
1 + R−χP

) · û,

if |x1 − x2|∞ ≥ R · L, then

Pu[A1 ∩ A2] ≤ Pû[A1] · Pû[A2] + e−fP(L),

and

Pû[B1 ∩ B2] ≤ Pu[B1] · Pu[B2] + e−fP(L),

where fP is a real valued function satisfying fP(L) ≥ e(logL)εP for all
L ≥ LP.
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S1 (Local uniqueness). There exists a function fS : (a, b)×Z+ →R such that for
each u ∈ (a, b),

there exist 
S = 
S(u) > 0 and RS = RS(u) < ∞
(5)

such that fS(u,R) ≥ (logR)1+
S for all R ≥ RS,

and for all u ∈ (a, b) and R ≥ 1, the following inequalities are satisfied:

Pu[
SR ∩ B(0,R) �= ∅

] ≥ 1 − e−fS(u,R),

and

Pu[
for all x, y ∈ SR/10 ∩ B(0,R), x is connected to y in S ∩ B(0,2R)

]
≥ 1 − e−fS(u,R).

S2 (Continuity). Let η(u) = Pu[0 ∈ S∞]. The function η(·) is positive and contin-
uous on (a, b).

REMARK 1.9. (1) The use of assumptions P2, P3, and S2 will not be explicit
in this paper. They are only used to prove likeliness of certain patterns in S∞
produced by a multi-scale renormalization; see (37). (Of course, they are also used
in already known results of Theorems 1.10 and 1.11.) Roughly speaking, we use
P3 repeatedly on multiple scales for a convergent sequence of parameters uk and
use P2 and S2 to establish convergence of iterations.

(2) If the family Pu, u ∈ (a, b), satisfies S1, then a union bound argument gives
that for any u ∈ (a, b), Pu-a.s., the set S∞ is nonempty and connected, and there
exist constants Ci = Ci(u) such that for all R ≥ 1,

(6) Pu[
S∞ ∩ B(0,R) �= ∅

] ≥ 1 − C1 · e−C2·(logR)1+
S
.

1.2.2. Examples. Here, we briefly list some motivating examples (already an-
nounced earlier in the paper) of families of probability measures satisfying as-
sumptions P1–P3 and S1–S2. All these examples were considered in details in
[19], and we refer the interested reader to [19], Section 2, for the proofs and fur-
ther details.

(1) Bernoulli percolation with parameter u ∈ [0,1] corresponds to the product
measure Pu with Pu[ω(x) = 1] = 1 − Pu[ω(x) = 0] = u. The family Pu, u ∈
(a, b), satisfies assumptions P1–P3 and S1–S2 for any d ≥ 2 and pc(d) < a <

b ≤ 1; see [21].
(2) Random interlacements at level u > 0 is the random subgraph of Zd , d ≥ 3,

corresponding to the measure Pu defined by the equations

Pu[S ∩ K = ∅] = e−u·cap(K), for all finite K ⊂ Zd,

where cap(·) is the discrete capacity. It follows from [33, 40, 41] that the fam-
ily Pu, u ∈ (a, b), satisfies assumptions P1–P3 and S1–S2 for any 0 < a <
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b < ∞. Curiously, for any u > 0, S is Pu-almost surely connected [40], that
is, S∞ = S .

(3) Vacant set of random interlacements at level u > 0 is the complement of the
random interlacements at level u in Zd . It corresponds to the measure Pu de-
fined by the equations

Pu[K ⊆ S] = e−u·cap(K), for all finite K ⊂ Zd .

Unlike random interlacements, the vacant set undergoes a percolation phase
transition in u [39, 40]. If u < u∗(d) ∈ (0,∞) then Pu-almost surely S∞ is
nonempty and connected, and if u > u∗(d), S∞ is Pu-almost surely empty. It

is known that the family P
1
u , u ∈ (a, b), satisfies assumptions P1–P3 for any

0 < a < b < ∞ [40, 41], S2 for any 1
u∗(d)

< a < b < ∞ [42], and S1 for some
1

u∗(d)
< a < b < ∞ [18].

(4) The Gaussian free field on Zd , d ≥ 3, is a centered Gaussian field with co-
variances given by the Green function of the simple random walk on Zd . The
excursion set above level h ∈ R is the random subset of Zd where the fields ex-
ceeds h. Let Ph be the measure on � for which S has the law of the excursion
set above level h. The model exhibits a non-trivial percolation phase transition
[12, 35]. If h < h∗(d) ∈ [0,∞), then Ph-almost surely S∞ is nonempty and
connected, and if h > h∗(d), S∞ is Ph-almost surely empty. It was proved in
[19, 35] that the family Ph∗(d)−h, h ∈ (a, b), satisfies assumptions P1–P3 and
S2 for any 0 < a < b < ∞, and S1 for some 0 < a < b < ∞.

The last three examples are particularly interesting, since they have polyno-
mial decay of spatial correlations and cannot be studied by comparison with
Bernoulli percolation on any scale. In particular, many of the methods developed
for Bernoulli percolation do not apply. As we see from the examples, assumptions
P1–P3 and S2 are satisfied by all the 4 models through their whole supercriti-
cal phases. However, assumption S1 is currently verified for the whole range of
interesting parameters only in the cases of Bernoulli percolation and random in-
terlacements, and only for a nonempty subset of interesting parameters in the last
two examples. We call all the parameters u for which Pu satisfies S1 the regime
of local uniqueness (since under S1, there is a unique giant cluster in each large
box). It is a challenging open problem to verify if the regime of local uniqueness
coincides with the supercritical phase for the vacant set of random interlacements
and the level sets of the Gaussian free field. A positive answer to this question will
imply that all the results of this paper hold unconditionally also for the last two
considered examples through their whole supercritical phases.

1.2.3. Known results. Below we recall some results from [19, 32] about the
large scale behavior of graph distances in S∞ and the quenched invariance prin-
ciple for the simple random walk on S∞. Both results are formulated in the form
suitable for our applications.
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THEOREM 1.10 ([19], Theorem 1.3). Let d ≥ 2 and θchd ∈ (0,1). Assume that
the family of measures Pu, u ∈ (a, b), satisfies assumptions P1–P3 and S1–S2. Let
u ∈ (a, b). There exist �chd ∈F with Pu[�chd] = 1, constants Cchd, c1.10 and C1.10
all dependent on u and θchd, and random variables Rchd(x), x ∈ Zd , such that for
all ω ∈ �chd ∩ {0 ∈ S∞} and x ∈ S∞(ω):

(a) Rchd(x,ω) < ∞,
(b) for all R ≥ Rchd(x,ω) and y, z ∈ BZd (x,R) ∩ S∞(ω),

dS∞(ω)(y, z) ≤ Cchd · max
{
dZd (y, z), Rθchd

}
,

(c) for all z ∈ Zd and r ≥ 1,

Pu[
Rchd(z) ≥ r

] ≤ C1.10 · e−c1.10·(log r)1+
S
,

where 
S is defined in (5).

For T > 0, let C[0, T ] be the space of continuous functions from [0, T ] to Rd ,
and WT the Borel sigma-algebra on it. Let

(7) B̃n(t) = 1√
n

(
X
tn� + (

tn − 
tn�) · (X
tn�+1 − X
tn�)
)
.

THEOREM 1.11 ([32], Theorem 1.1, Lemma A.1, and Section 5). Let d ≥ 2.
Assume that the family of measures Pu, u ∈ (a, b), satisfies assumptions P1–P3
and S1–S2. Let u ∈ (a, b) and T > 0. There exist �qip ∈F with Pu[�qip] = 1 and
a nondegenerate matrix 
 = 
(u), such that for all ω ∈ �qip ∩ {0 ∈ S∞}:
(a) there exists χ : S∞(ω) →Rd such that x �→ x + χ(x) is harmonic on S∞(ω),

and limn→∞ 1
n

maxx∈S∞∩B(0,n) |χ(x)| = 0,
(b) the law of (B̃n(t))0≤t≤T on (C[0, T ],WT ) converges weakly (as n → ∞) to

the law of Brownian motion with zero drift and covariance matrix 
.

In addition, if reflections and rotations of Zd by π
2 preserve Pu, then the limiting

Brownian motion isotropic, that is, 
 = σ 2 · Id with σ 2 > 0.

REMARK 1.12. [32], Theorem 1.1, is stated for the (“blind”) random walk
which jumps to a neighbor with probability 1

2d
and stays put with probability 1 −

1
2d

· (number of neighbors). Since the blind walk and the simple random walk are
time changes of each other, the invariance principle for one process implies the
one for the other (see, for instance, [9], Lemma 6.4).

1.3. Main results. The main contribution of this paper is Theorem 1.13, where
we prove that under the assumptions P1–P3 and S1–S2, all large enough balls in
S∞ are very good in the sense of Definition 1.1. This result has many immedi-
ate applications, including Gaussian heat kernel bounds, Harnack inequalities, and
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finiteness of the dimension of harmonic functions on S∞ with prescribed polyno-
mial growth; see Theorems 1.3, 1.5, 1.4, 1.6. In fact, all the results from [7, 8] can
be easily translated from Bernoulli percolation to our setting, since (as also pointed
out by the authors) their proofs only rely on (some combinations of) stationarity,
Gaussian heat kernel bounds, and the invariance principle. Among such results
are estimates on the gradient of the heat kernel (Theorem 1.16) and on the Green
function (Theorem 1.17), which will be deduced from the heat kernel bounds by
replicating the proofs of [8],Theorem 6, and [7], Theorem 1.2(a), the fact that the
dimension of at most linear harmonic functions on S∞ is d + 1 (Theorem 1.18),
the local central limit theorem (Theorem 1.19), and the asymptotic for the Green
function (Theorem 1.20), which we derive from the heat kernel bounds and the
quenched invariance principle by mimicking the proofs of [8], Theorem 5, [7],
Theorem 1.1, and [7], Theorem 1.2(b,c).

We begin by stating the main result of this paper.

THEOREM 1.13. Let d ≥ 2 and θvgb ∈ (0, 1
d+2). Assume that the family of

measures Pu, u ∈ (a, b), satisfies assumptions P1–P3 and S1–S2. Let u ∈ (a, b).
There exist �vgb ∈ F with Pu[�vgb] = 1, constants CV , CP , CW , c1.13 and C1.13

all dependent on u and θvgb, and random variables Rvgb(x), x ∈ Zd , such that for
all ω ∈ �vgb ∩ {0 ∈ S∞} and x ∈ S∞(ω):

(a) Rvgb(x,ω) < ∞,
(b) for all R ≥ Rvgb(x,ω), BS∞(ω)(x,R) is (CV ,CP ,CW)-very good with

NBS∞(ω)(x,R) ≤ Rθvgb ,
(c) for all z ∈ Zd and r ≥ 1,

(8) Pu[
Rvgb(z) ≥ r

] ≤ C1.13 · e−c1.13·(log r)1+
S
,

where 
S is defined in (5).

Theorem 1.13 will immediately follow from a certain isoperimetric inequality;
see Definition 4.1, Claim 4.2 and Proposition 4.3. This isoperimetric inequality is
more than enough to imply the weak Poincaré inequality that we need. In fact, as
we learned from a discussion with Jean-Dominique Deuschel, it implies stronger
Sobolev inequalities, and may be useful in situations beyond the goals of this paper
(see, e.g., [31], Section 3).

COROLLARY 1.14. Theorem 1.13 immediately implies that all the results of
Theorems 1.3, 1.5, 1.4 and 1.6 hold almost surely for G = S∞. Since the con-
stants CV , CP and CW in the statement of Theorem 1.13 are deterministic, all the
constants in Theorems 1.3, 1.5, 1.4 and 1.6 are also deterministic.

Combining Corollary 1.14 with Theorem 1.10 and Remark 1.7(1), we notice
that the quenched heat kernel bounds of Theorem 1.3 hold almost surely for G =
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S∞ with dG replaced by dZd in (1), (2) and (4). Since we will use the quenched
heat kernel bounds often in the paper, we give a precise statement here.

THEOREM 1.15. Let d ≥ 2. Assume that the family of measures Pu, u ∈ (a, b),
satisfies assumptions P1–P3 and S1–S2. Let u ∈ (a, b) and ε > 0. There exist
�hk ∈ F with Pu[�hk] = 1, constants Ci = Ci(u), C1.15 = C1.15(u, ε), and c1.15 =
c1.15(u, ε), and random variables Thk(x, ε), x ∈ Zd , such that for all ω ∈ �hk ∩
{0 ∈ S∞} and x ∈ S∞(ω):

(a) Thk(x, ε,ω) < ∞,
(b) for all t ≥ Thk(x, ε,ω) and y ∈ S∞(ω),

Ft(x, y) ≤ C1 · t− d
2 · e−C2· D(x,y)2

t , if t ≥ D(x, y),(9)

Ft(x, y) ≥ C3 · t− d
2 · e−C4· D(x,y)2

t , if t ≥ D(x, y)1+ε ,(10)

where Ft stands for either qt or p
t� +p
t�+1, and D for either dS∞(ω) or dZd ,
(c) for all z ∈ Zd and r ≥ 1,

(11) Pu[
Thk(z, ε) ≥ r

] ≤ C1.15 · e−c1.15·(log r)1+
S
,

where 
S is defined in (5).

In the applications of Theorem 1.15 in this paper, we always take ε = 1
2 (the

original choice of Barlow) and omit the dependence on ε from the notation. For
instance, we will always write Thk(x) meaning Thk(x, 1

2). Any other choice of ε

would also do.
It is well known that the parabolic Harnack inequality of Theorem 1.5 implies

Hölder continuity of caloric functions (e.g., qt and pn); see [7], Proposition 3.2, in
particular, by Corollary 1.14 this is true almost surely for G = S∞. The next result
is a sharp bound on the discrete gradient of the heat kernel, proved in [8], Theo-
rem 6, for supercritical Bernoulli percolation using an elegant entropy argument.

THEOREM 1.16. Let d ≥ 2. Assume that the family of measures Pu, u ∈ (a, b),
satisfies assumptions P1–P3 and S1–S2. Let u ∈ (a, b). There exist constants Ci =
Ci(u), such that for all x, x′, y ∈ Zd and n > max{dZd (x, y),dZd (x′, y)},

Eu[(
pn(x, y) − pn−1

(
x′, y

))2 · 1{y∈S∞} · 1{x and x′ are neighbors in S∞}
]

≤ C1

nd+1 · e−C2·
d
Zd (x,y)2

n .

The heat kernel bounds of Theorem 1.15 imply also the following quenched
estimates on the Green function gG(x, y) = ∫ ∞

0 qG,t (x, y) dt = ∑
n≥0 pG,n(x, y)

for almost all G = S∞. It is proved in [7], Theorem 1.2 for supercritical Bernoulli
percolation, but extension to our setting is rather straightforward.
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THEOREM 1.17. Let d ≥ 3. Assume that the family of measures Pu, u ∈ (a, b),
satisfies assumptions P1–P3 and S1–S2. Let u ∈ (a, b). There exist constants
Ci = Ci(u) such that for all ω ∈ �hk and distinct x, y ∈ S∞(ω), if dZd (x, y)2 ≥
min{Thk(x), Thk(y)} · (1 + C3 · log dZd (x, y)), then

C1 · dZd (x, y)2−d ≤ gS∞(ω)(x, y) ≤ C2 · dZd (x, y)2−d .

The remaining results are derived from the Gaussian heat kernel bounds and the
quenched invariance principle. In the setting of supercritical Bernoulli percolation,
all of them were obtained in [7, 8], but all the proofs extend directly to our setting.

We begin with results about harmonic functions on S∞. It is well known that
Theorems 1.13 and 1.4 imply the almost sure Liouville property for positive har-
monic functions on S∞. The absence of nonconstant sublinear harmonic functions
on S∞ is even known assuming just stationary of S (see [8], Theorem 3 and dis-
cussion below). In particular, it implies the uniqueness of the function χ in Theo-
rem 1.11(a). The following result about the dimension of at most linear harmonic
functions is classical on Zd . It was extended to supercritical Bernoulli percolation
on Zd in [8], Theorem 5.

THEOREM 1.18. Let d ≥ 2. Assume that the family of measures Pu, u ∈ (a, b),
satisfies assumptions P1–P3 and S1–S2. Let u ∈ (a, b). There exist �hf ∈ F with
Pu[�hf] = 1 such that for all ω ∈ �hf ∩ {0 ∈ S∞}, the dimension of the vector
space of harmonic functions on S∞(ω) with at most linear growth equals d + 1.

Since the parabolic Harnack inequality for solutions to the heat equation on S∞
implies Hölder continuity of pn and qt , it is possible to replace the weak conver-
gence of Theorem 1.11 by pointwise convergence. [7], Theorems 4.5 and 4.6, give
general sufficient conditions for the local central limit theorem on general graphs.
They were verified in [7], Theorem 1.1, for supercritical Bernoulli percolation.
Theorems 1.11 and 1.15 allow to check these conditions in our setting leading to
the following (same as for Bernoulli percolation) result. For x ∈ Rd , t > 0, the
Gaussian heat kernel with covariance matrix 
 is defined as

k
,t (x) = 1√
(2πt)d det(
)

· exp
(
−x′
−1x

2t

)
,

where x′ is the transpose of x.

THEOREM 1.19. Let d ≥ 2. Assume that the family of measures Pu, u ∈ (a, b),
satisfies assumptions P1–P3 and S1–S2. Let u ∈ (a, b), m = Eu[μ0 · 10∈S∞], and
T > 0. There exist �lclt ∈ F with Pu[�lclt] = 1, and a nondegenerate covariance
matrix 
 = 
(u) such that for all ω ∈ �lclt ∩ {0 ∈ S∞},
(12) lim

n→∞ sup
x∈Rd

sup
t≥T

∣∣∣∣nd
2 · Fnt

(
0, gn(x)

) − C(F)

m
· k
,t (x)

∣∣∣∣ = 0,
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where Fs stands for qs or p
s� + p
s�+1, C(F) is 1 if F = q and 2 otherwise, and
gn(x) is the closest point in S∞ to

√
nx.

Theorems 1.15 and 1.19 imply the following asymptotic for the Green function,
extending results of [7], Theorem 1.2(b,c), to our setting. For a covariance matrix

, let G
(x) = ∫ ∞

0 k
,t (x) dt be the Green function of a Brownian motion with

covariance matrix 
. In particular, if 
 = σ 2 · Id , then G
(x) = (2σ 2π
d
2 )−1�(d

2 −
1)|x|2−d for all x �= 0, where | · | stands for the Euclidean norm on Rd .

THEOREM 1.20. Let d ≥ 3. Assume that the family of measures Pu, u ∈ (a, b),
satisfies assumptions P1–P3 and S1–S2. Let u ∈ (a, b), m and 
 as in Theo-
rem 1.19, and ε > 0. There exist �gf ∈ F with Pu[�gf] = 1 and a proper random
variable M = M(ε), such that for all ω ∈ �gf ∩ {0 ∈ S∞}:
(a) for all x ∈ S∞(ω) with |x| ≥ M ,

(1 − ε)G
(x)

m
≤ gS∞(ω)(0, x) ≤ (1 + ε)G
(x)

m
,

(b) for all y ∈ Rd , limk→∞ k2−d ·Eu[gS∞(ω)(0, 
ky�)|0 ∈ S∞] = G
(y)
m

.

REMARK 1.21. (1) Let us emphasize that our method does not allow to re-
place (log r)1+
S in (8) by fS(u,R) from S1. In particular, even if fS(u,R) growth
polynomially with R, we are not able to improve the bound in (8) to stretched ex-
ponential. In the case of independent Bernoulli percolation, it is known from [4],
Section 2, that the result of Theorem 1.13 holds with a stretched exponential bound
in (8).

(2) The fact that the right-hand side of (11) decays faster than any polynomial
will be crucially used in the proofs of Theorems 1.16, 1.18 and 1.20. Quenched
bounds on the diagonal pn(x, x) under the assumptions P1–P3 and S1–S2 were
obtained in [32] [see Remark 1.3(4) and (5) there] for all n ≥ n0(ω), although
without any control on the tail of n0(ω).

(3) In the case of supercritical Bernoulli percolation, Barlow showed in [4],
Theorem 1, that the bound (10) holds for all t ≥ max{Thk(x),D(x, y)}. The step
“from ε > 0 to ε = 0” is highly nontrivial and follows from the fact that very good
boxes on microscopic scales are dense; see [4], Definition 5.4 and Theorem 5.7(b).
We do not know if such property can be deduced from the assumptions P1–P3 and
S1–S2 or proved for any of the specific models considered in Section 1.2.2 (except
for Bernoulli percolation). Our renormalization does not exclude the possibility of
dense mesoscopic traps in S∞, but we do not have a counterexample either. For
comparison, let us mention that the heat kernel bounds (9) and (10) were obtained
in [1, 6] for the random conductance model with i.i.d. weights, where it is also
stated in [6], Remark 3.4, and [1], Remark 4.12, that the lower bound for times



1856 A. SAPOZHNIKOV

comparable with D(x, y) can likely be obtained by adapting Barlow’s proof, but
omitted there because of a considerable amount of extra work and few applications.

(4) The first proofs of the quenched invariance principle for random walk on
the infinite cluster of Bernoulli percolation [9, 25, 38] relied significantly on the
quenched upper bound on the heat kernel. It was then observed in [11] that it
is sufficient to control only the diagonal of the heat kernel (proved for Bernoulli
percolation in [26]). This observation was essential in proving the quenched invari-
ance principle for percolation models satisfying P1–P3 and S1–S2 in [32], where
the desired upper bound on the diagonal of the heat kernel was obtained by means
of an isoperimetric inequality (see [32], Theorem 1.2). Theorem 1.15 allows now
to prove the quenched invariance principle of [32] by following the original path,
for instance, by a direct adaptation of the proof of [9], Theorem 1.1.

(5) Our proof of Theorem 1.19 follows the approach of [7] in the setting of
supercritical Bernoulli percolation, namely, it is deduced from the quenched in-
variance principle, parabolic Harnack inequality, and the upper bound on the heat
kernel. If we replace in (12) supx by sup|x|<K for any fixed K > 0, then it is not
necessary to assume the upper bound on the heat kernel; see [13], Theorem 1.

(6) A new approach to limit theorems and Harnack inequalities for the ellip-
tic random conductance model under assumptions on moments of the weights and
their reciprocals has been recently developed in [2, 3]. It relies on Moser’s iteration
and new weighted Sobolev and Poincaré inequalities, and is applicable on general
graphs satisfying globally conditions of regular volume growth and an isoperi-
metric inequality (see [3], Assumption 1.1). The method of [2] was recently used
in [31] to prove the quenched invariance principle for the random conductance
model on the infinite cluster of supercritical Bernoulli percolation under the same
assumptions on moments of the weights as in [2]. It would be interesting to extend
this result to the random conductance model on percolation clusters satisfying con-
ditions P1–P3 and S1–S2; see Section 6.

1.4. Some words about the proof of Theorem 1.13. Theorem 1.10 is enough to
control the volume growth, thus we only discuss here the weak Poincaré inequality.
A finite subset H of V (G) satisfies the (strong) Poincaré inequality P(C, r), if for
any function f : H →R, mina

∫
H(f −a)2 dμ ≤ C · r2 · ∫E(H) |∇f |2 dν. The well-

known sufficient condition for P(C, r) is the following isoperimetric inequality for
subsets of H (see, e.g., [24], Proposition 3.3.10, or [37], Lemma 3.3.7):

(13) there exists c > 0 such that for all A ⊂ H with |A| ≤ 1
2 |H |,

the number of edges between A and H \ A is at least c
r
|A|.

It is too difficult (if not impossible) to show that subsets of a large ball BG(y, r) sat-
isfy such condition, since the boundary of BG(y, r) may be quite rough. However,
if there exists a subset C(y, r) of V (G) such that BG(y, r) ⊆ C(y, r) ⊆ BG(y,C′r)
and (13) holds for subsets of C(y, r), then it is easy to see that the weak Poincaré
inequality with constants C and C′ holds for BG(y, r) (see Claim 4.2).
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In the case G = S∞ ⊂ Zd , a possible choice of C(y, r) is the cluster of y

in S∞ ∩ B(y, r), which turns out to be also the largest cluster Cmax(y, r) in
S ∩ B(y, r) (here and below, we implicitly assume that r is large enough). In
the setting of Bernoulli percolation, it is known that subsets of Cmax(y, r) sat-
isfy (13) (see [4], Proposition 2.11). In our setting, Theorem 1.10 implies that
BG(y, r) ⊆ Cmax(y, r) ⊆ BG(y,C′r), thus we only need to prove that subsets of
Cmax(y, r) satisfy (13). The first isoperimetric inequality for subsets of Cmax(y, r)

was proved in [32], Theorem 1.2. It states that for any A ⊂ Cmax(y, r) with

|A| ≥ rδ , the number of edges between A and S∞ \ A is at least c|A| d−1
d (thus,

also at least c′
r
|A|). Note the key difference, the edges are taken between A and

S∞ \A, not just between A and Cmax(y, r)\A. The above isoperimetric inequality
implies certain Nash-type inequalities sufficient to prove a diffusive upper bound
on the heat kernel (see [27], Theorem 2, [11], Proposition 6.1, [10], Lemma 3.2,
[32], (A.4)), but it is too weak to imply the Poincaré inequality (see, e.g., [24],
Sections 3.2 and 3.3, for an overview of the two isoperimetric inequalities and
their relation to various functional inequalities). Let us also mention that in the
setting of Bernoulli percolation, the “weak” isoperimetric inequality admits a sim-
ple proof ([10], Theorem A.1), but the proof of the “strong” one is significantly
more involved ([4], Proposition 2.11).

We have not succeeded in proving (13) for subsets of Cmax(y, r) under our gen-
eral conditions and do not know if it can be done. Instead, we bypass the issue of
rough boundary of Cmax(y, r) by considering a certain enlargement, C̃max(y, r) of
Cmax(y, r) with a sufficiently regular boundary. We obtain C̃max(y, r) by adding
to Cmax(y, r) all vertices from S∞ which are locally connected to Cmax(y, r). In
particular, the inclusion BG(y, r) ⊆ C̃max(y, r) ⊆ BG(y,C′r) is preserved. A large
part of the work is then to prove that subsets of C̃max(y, r) satisfy (13) (see Propo-
sition 4.3, Theorem 3.8 and Corollaries 3.9 and 3.17). The general outline of this
proof is similar to the one of the proof of the weak isoperimetric inequality for
Cmax(y, r) in [32], but we have to modify renormalization and coarse graining
of subsets of C̃max(y, r) and rework some arguments to get good control of the
boundary and the volume of subsets of C̃max(y, r) in terms of the boundary and the
volume of the corresponding coarse grainings. For instance, it is crucial for us (but
not for [32]) that the coarse graining of a big set (say, of size 1

2 |C̃max(y, r)|) should
not be too big (see, e.g., the proof of Claim 3.13).

We partition the lattice Zd into large boxes of equal size. For each configuration
ω ∈ �, we subdivide all the boxes into good and bad. Restriction of S to a good
box contains a unique largest in volume cluster, and the largest clusters in two
adjacent good boxes are connected in S in the union of the two boxes. Tradition-
ally, in the study of Bernoulli percolation, the good boxes are defined to contain
a unique cluster of large diameter. In our case, the existence of several clusters of
large diameter in good boxes is not excluded. The reason to work with volumes
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is that the existence of a unique giant cluster in a box can be expressed as an in-
tersection of two events, an increasing (existence of cluster with big volume) and
decreasing (smallness of the total volume of large clusters). Assumption P3 gives
us control of correlations between monotone events, which is sufficient to set up
two multi-scale renormalization schemes with scales Ln (one for increasing and
one for decreasing events) and conclude that bad boxes tend to organize in blobs
on multiple scales, so that the majority of boxes of size Ln contain at most 2 blobs
of diameter bigger than Ln−1 each, but even their diameters are much smaller than
the actual scale Ln. By removing two boxes of size rn−1Ln−1 � Ln containing the
biggest blobs of an Ln-box, then by removing from each of the remaining Ln−1-
boxes two boxes of size rn−2Ln−2 � Ln−1 containing its biggest blobs, and so
on, we end up with a subset of good boxes, which is a dense in Zd , locally well
connected, and well structured coarse graining of S∞; see Figure 2 for an illus-
tration. Similar renormalization has been used in [19, 32, 34]. By reworking some
arguments from [32], we prove that large subsets of the restriction of the coarse
graining to any large box satisfy a d-dimensional isoperimetric inequality, if the
scales Ln grow sufficiently fast (Theorem 2.5).

We deduce from it the desired isoperimetric inequality for large subsets A of
C̃max(y, r) (Theorem 3.8) as follows. If A is spread out in C̃max(y, r), then it has
large boundary, otherwise, we associate with it a set of those good boxes from the
coarse graining, the unique largest cluster of which is entirely contained in A. It
turns out that the boundary and the volume of the resulting set are comparable with
those of A. Moreover, if |A| ≤ 1

2 |C̃max(y, r)|, then the volume of its coarse graining
is also only a fraction of the total volume of the coarse graining of C̃max(y, r).
The isoperimetric inequality then follows from the one for subsets of the coarse
graining.

1.5. Structure of the paper. In Section 2, we define perforated sublattices of
Zd and state an isoperimetric inequality for subsets of perforations. The main def-
inition there is (19), and the main result is Theorem 2.5. The proof of Theorem 2.5
is given in Section 5. In Section 3, we define a coarse graining of S∞ and study
certain extensions of largest clusters of S∞ in boxes (Definition 3.5). Particularly,
we prove that they satisfy the desired isoperimetric inequality (Theorem 3.8) and
the volume growth (Corollary 3.16). In Section 4, we introduce the notions of reg-
ular and very regular balls, so that a (very) regular ball is always (very) good, and
use it to prove the main result of the paper. In fact, in Proposition 4.3 we prove that
large balls are very likely to be very regular, which is stronger than Theorem 1.13.
Some open problems are discussed in Section 6. In Section 6, we sketch the proofs
of Theorems 1.16–1.20. At the end of the paper, we provide an index of commonly
used notation.

Finally, let us make a convention about constants. As already said, we omit
from the notation dependence of constants on a, b, and d . We usually also omit
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the dependence on εP, χP and 
S. Dependence on other parameters is reflected
in the notation, for example, as c(u, θvgb). Sometimes we use C, C′, c, etc., to
denote “intermediate” constants, their values may change from line to line, and
even within a line.

2. Perforated lattices. In this section, we define lattices perforated on mul-
tiple scales and study their isoperimetric properties. Informally, for a sequence of
scales Ln = ln−1 · Ln−1, we define a perforation of the box [0,Ln)

d by removing
small rectangular regions of Ln−1-boxes from it, then removing small rectangular
regions of Ln−2-boxes from each of the remaining Ln−1-boxes, and so on down
to scale L0. The precise definition is given in (19). Such perforated lattices will be
used in Section 3 as coarse approximations of largest connected components of S
in boxes. The main result of this section is an isoperimetric inequality for subsets
of perforations; see Theorem 2.5.

The rules for perforation (the shape and location of removed regions) are de-
termined by certain cascading events, which we define first; see (14) and Defini-
tion 2.1. The recursive construction of the perforated lattice is given in Section 2.2,
where the main definition is (19).

Let ln, rn,Ln, n ≥ 0 be sequences of positive integers such that ln > rn and
Ln = ln−1 · Ln−1, for n ≥ 1. To each Ln we associate the rescaled lattice

Gn = Ln ·Zd = {
Ln · x : x ∈ Zd}

,

with edges between any pair of (�1-)nearest neighbor vertices of Gn.

2.1. Cascading events. Let E = (Ex,L0 : L0 ≥ 1, x ∈G0) be a family of events
from some sigma-algebra. For each L0 ≥ 1, n ≥ 0, x ∈ Gn, define recursively the
events Gx,n,L0(E) by Gx,0,L0(E) = Ex,L0 and

(14) Gx,n,L0(E) = ⋃
x1,x2∈Gn−1∩(x+[0,Ln)d )

|x1−x2|∞≥rn−1·Ln−1

Gx1,n−1,L0(E) ∩ Gx2,n−1,L0(E).

The events in (14) also depend on the scales ln and rn, but we omit this dependence
from the notation, since these sequences will be properly chosen and fixed later.

DEFINITION 2.1. Given sequences ln, rn,Ln, n ≥ 0, as above, and two fam-
ilies of events D and I, we say that for n ≥ 0, x ∈ Gn is (D, I, n)-bad [resp.,
(D, I, n)-good], if the event Gx,n,L0(D)∪ Gx,n,L0(I) occurs (resp., does not occur).

Good vertices give rise to certain geometrical structures on Zd (perforated lat-
tices), which we define in the next subsection.

The choice of the families D and I throughout the paper is either irrelevant for
the result (as in Sections 2 and 5) or fixed (as in Section 3.1). Thus, from now
on we write n-bad (resp., n-good) instead of (D, I, n)-bad [resp., (D, I, n)-good],
hopefully without causing any confusions.
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REMARK 2.2. Definition 2.1 can be naturally generalized to k families of
events E1, . . . ,Ek , for any fixed k, and all the results of Sections 2 and 5 still hold
(with suitable changes of constants). For our applications, it suffices to consider
only two families of events (see Section 3.1). Thus, for simplicity of notation, we
restrict to this special case.

2.2. Recursive construction. Throughout this subsection, we fix sequences
ln, rn,Ln, n ≥ 0, such that ln > 8rn and ln is divisible by rn for all n. We also
fix two local families of events D and I, and integers s ≥ 0 and K ≥ 1. Recall
Definition 2.1 of n-good vertices in Gn. For x ∈ Zd , define

(15) QK,s(x) = x +Zd ∩ [0,KLs)
d,

and write QK,s for QK,s(0). We also fix xs ∈ Gs and assume that

(16) all the vertices in Gs ∩ QK,s(xs) are s-good.

Our aim is to construct a subset of 0-good vertices in the lattice box G0 ∩QK,s(xs)

by recursively perforating it on scales Ls,Ls−1, . . . ,L1. We use Definition 2.1 to
determine the rules of perforation on each scale.

We first recursively define certain subsets of i-good vertices in Gi ∩ QK,s(xs)

for i ≤ s; see (17) and (18). Let

(17) GK,s,s(xs) = Gs ∩ QK,s(xs).

By (16), all zs ∈ GK,s,s(xs) are s-good.
Assume that GK,s,i(xs) ⊂ Gi is defined for some i ≤ s so that all zi ∈ GK,s,i(xs)

are i-good. By Definition 2.1, for each zi ∈ GK,s,i(xs), there exist

azi
, bzi

∈ (ri−1Li−1) ·Zd ∩ (
zi + [0,Li)

d)
such that the boxes (azi

+ [0,2ri−1Li−1)
d) and (bzi

+ [0,2ri−1Li−1)
d) are con-

tained in (zi + [0,Li)
d), and all the vertices in(

Gi−1 ∩ (
zi + [0,Li)

d)) \ ((
azi

+ [0,2ri−1Li−1)
d) ∪ (

bzi
+ [0,2ri−1Li−1)

d))
are (i − 1)-good. If the choice is not unique, we choose the pair arbitrarily. All the
results below hold for any allowed choice of azi

and bzi
. To save notation, we will

not mention it in the statements.
Define Rzi

⊆ Gi−1 to be:

(a) the empty set, if all the vertices in Gi−1 ∩ (zi + [0,Li)
d) are (i − 1)-good, or

(b) Gi−1 ∩ ((azi
+ [0,2ri−1Li−1)

d) ∪ (bzi
+ [0,2ri−1Li−1)

d)) if |azi
− bzi

|∞ >

2ri−1Li−1, or
(c) a box Gi−1 ∩ (czi

+ [4ri−1Li−1)
d) in Gi−1 ∩ (zi + [0,Li)

d), with czi
∈

(ri−1Li−1) · Zd , which contains Gi−1 ∩ ((azi
+ [0,2ri−1Li−1)

d) ∪ (bzi
+

[0,2ri−1Li−1)
d)).

Possible outcomes (b) and (c) of Rzi
are illustrated on Figure 1.
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FIG. 1. Two possible outcomes of Rzi . On the left, the points azi and bzi are far from each other,
on the right, they are close.

REMARK 2.3. By construction, the set Rzi
is the disjoint union of 0, 2, or 2d

boxes Gi−1 ∩ (x + [0,2ri−1Li−1)
d) with x ∈ (ri−1Li−1) ·Zd .

To complete the construction, let

(18) GK,s,i−1(xs) =Gi−1 ∩ ⋃
zi∈GK,s,i (xs)

((
zi + [0,Li)

d) \Rzi

)
.

Note that all zi−1 ∈ GK,s,i−1(xs) are (i − 1)-good.
Now that the sets (GK,s,j (xs))j≤s , are constructed by (17) and (18), we define

the multiscale perforations of G0 ∩ QK,s(xs) by

(19) QK,s,j (xs) = G0 ∩ ⋃
zj∈GK,s,j (xs)

(
zj + [0,Lj )

d)
, j ≤ s.

See Figure 2 for an illustration. By construction:

(a) for all j , QK,s,j−1(xs) ⊆ QK,s,j (xs),
(b) all the vertices of QK,s,0(xs) are 0-good.

FIG. 2. Perforations Q2,s,s , Q2,s,s−1, and Q2,s,s−2 of Q2,s .
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We will view the sets QK,s,j (xs) as subgraphs of G0 with edges drawn between
any two vertices of the set which are at �1 distance L0 from each other. The next
lemma summarizes some basic properties of QK,s,0(xs)’s, which are immediate
from the construction.

LEMMA 2.4. Let d ≥ 2, K ≥ 1, and s ≥ 0. For any choice of scales ln, rn,Ln,
n ≥ 0, such that ln > 8rn and ln is divisible by rn for all n, and for any admissible
choice of azi

, bzi
or czi

in the construction of QK,s,0(xs):

(a) QK,s,0(xs) is connected in G0,

(b) |QK,s,0(xs)| ≥ ∏∞
j=0(1 − (

4rj
lj

)d) · |QK,s |.

2.3. Isoperimetric inequality. For a graph G and a subset A of G, the bound-
ary of A in G is the subset of edges of G, E(G), defined as

∂GA = {{x, y} ∈ E(G) : x ∈ A, y ∈ G \ A
}
.

The next theorem states that under assumption (16) and some assumptions on
ln and rn (basically that

∑
n≥0

rn
ln

is sufficiently small), there exist γ > 0 such that

for all large enough A ⊂ QK,s,0(xs) with |A| ≤ 1
2 · |QK,s,0(xs)|, |∂QK,s,0(xs)A| ≥

γ · |A| d−1
d .

THEOREM 2.5. Let d ≥ 2. Let ln and rn, n ≥ 0, be integer sequences such that
for all n, ln > 8rn, ln is divisible by rn, and

∞∏
j=0

(
1 −

(
4rj

lj

)2)
≥ max

{
15

16
, e

− 1
16(d−1) ,

1 − 1
2d+2

1 − 1
2d+3

}
and

(20)

3456 ·
∞∑

j=0

rj

lj
≤ 1

106 .

Then for any integers s ≥ 0, L0 ≥ 1, and K ≥ 1, xs ∈ Gs , and two families of events
D and I, if all the vertices in Gs ∩ QK,s(xs) are s-good, then any A ⊆ QK,s,0(xs)

with (
Ls

L0

)d2

≤ |A| ≤ 1

2
· |QK,s ∩G0|

satisfies

|∂QK,s,0(xs)A| ≥ 1

2d · 32d · 27d · 106 ·
(

1 −
(

2

3

) 1
d
)

· (
1 − e

− 1
16(d−1)

) · |A| d−1
d .
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REMARK 2.6. In the setting of Theorem 2.5, if A ⊆ QK,s,0(xs) satisfies(
Ls

L0

)d2

≤ |A| ≤ C · ∣∣QK,s,0(xs)
∣∣,

for some 1
2 < C < 1, then

|∂QK,s,0(xs)A| ≥ 1 − C

2d · 32d · 27d · 106 ·
(

1 −
(

2

3

) 1
d
)

· (
1 − e

− 1
16(d−1)

) · |A| d−1
d .

This easily follows from Theorem 2.5 by passing, if necessary, to the complement
of A in QK,s,0(xs); see, for instance, Remark 5.2.

We postpone the proof of Theorem 2.5 to Section 5. In fact, in two dimensions,
we are able to prove the analogue of Theorem 2.5 for all subsets A ⊆ QK,s,0(xs)

with 1 ≤ |A| ≤ 1
2 · |QK,s ∩ G0|; see Lemma 5.6. We believe that also in any

dimension d ≥ 3, the isoperimetric inequality of Theorem 2.5 holds for all sub-
sets A ⊆ QK,s,0(xs) with 1 ≤ |A| ≤ 1

2 · |QK,s ∩ G0|, but cannot prove it. Theo-
rem 2.5 follows immediately from a more general isoperimetric inequality in The-
orem 5.10.

3. Properties of the largest clusters. In this section, we study properties of
the largest subset of S ∩ QK,s [where QK,s is defined in (15)]. Our ultimate goal
is to prove that under general conditions, all large enough balls BS(y, r) contained
in the largest cluster have regular volume growth and allow for local extensions
C(y, r) satisfying the inclusion BS(y, r) ⊆ C(y, r) ⊆ BS(y, r) and the isoperimet-
ric inequality (13). As discussed in Section 1.4, this is enough to conclude that a
large ball contained in the largest cluster is very good in the sense of Definition 1.1.

We first define two families of events such that the corresponding perforated
lattices defined in (19) serve as a “skeleton” of the largest subset of S ∩ QK,s .
Then we provide sufficient conditions for the uniqueness of the largest subset of
S ∩QK,s (Lemma 3.3). To avoid problems, which may be caused by roughness of
the boundary of the largest subset of S ∩QK,s , we enlarge it by adding to it all the
points of S which are locally connected to it (Definition 3.5). For the enlarged set,
we prove under some general conditions (Definition 3.7) that its subsets satisfy an
isoperimetric inequality (Theorem 3.8 and Corollary 3.9). Such enlargements of
largest clusters will be precisely the enlarged sets C(y, r) discussed in Section 1.4.

Indeed, under the same condition we prove that the distances in the largest clus-
ter are comparable to those on Zd (Lemma 3.15), all large enough balls in the
largest cluster have regular volume growth (Corollary 3.16) and have local exten-
sions (obtained as local extensions of the largest cluster in some box) satisfying an
isoperimetric inequality (Corollary 3.17).
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3.1. Special sequences of events. Recall Definition 1.8 of Sr . Consider an or-
dered pair of real numbers

(21) η = (η1, η2), with η1 ∈ (0,1) and η1 ≤ η2 < 2η1.

Two families of events D
η = (D

η
x,L0

,L0 ≥ 1, x ∈ G0) and I
η = (I

η
x,L0

,L0 ≥ 1, x ∈
G0) are defined as follows:

• The complement of D
η
x,L0

is the event that for each y ∈ G0 with |y − x|1 ≤
L0, the set SL0 ∩ (y + [0,L0)

d) contains a connected component Cy with at
least η1L

d
0 vertices such that for all y ∈ G0 with |y − x|1 ≤ L0, Cy and Cx are

connected in S ∩ ((x + [0,L0)
d) ∪ (y + [0,L0)

d)).
• The event I

η
x,L0

occurs if |SL0 ∩ (x + [0,L0)
d)| > η2L

d
0 .

Note that D
η
x,L0

are decreasing and I
η
x,L0

increasing events. From now on, we fix
these two local families, and say that x ∈ Gn is n-bad/n-good, if it is n-bad/n-
good for the two local families D

η
and I

η
in the sense of Definition 2.1. In partic-

ular, x ∈ G0 is 0-good if both D
η
x,L0

and I
η
x,L0

do not occur; see Figure 3.
The following lemma is immediate from the definition of 0-good vertex and the

conditions (21) on η. (See, e.g., [19], Lemma 6.2, for a similar result.)

LEMMA 3.1. Let L0 ≥ 1 and η as in (21).

(a) For any 0-good vertex x ∈G0, connected component Cx in SL0 ∩(x+[0,L0)
d)

with at least η1L
d
0 vertices is defined uniquely.

FIG. 3. A 0-good vertex x. A unique connected component Cx of size ≥ η1Ld
0 in (x + [0,L0)d ) is

connected to a connected component of size ≥ η1Ld
0 in each of the adjacent boxes.
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(b) For any 0-good x, y ∈ G0 with |x − y|1 = L0, (uniquely chosen) Cx and Cy

are connected in the graph S ∩ ((x + [0,L0)
d) ∪ (y + [0,L0)

d)).

3.2. Uniqueness of the largest cluster.

DEFINITION 3.2. Let (Ln)n≥0 be an increasing sequence of scales. For x ∈
Zd and r ≥ 1, let CK,s,r (x) be the largest connected component in Sr ∩ QK,s(x)

(with ties broken arbitrarily), and write CK,s,r = CK,s,r (0).

Fix η as in (21) and two families of events D
η

and I
η

as in Section 3.1.

LEMMA 3.3. Let ln and rn be integer sequences such that for all n, ln is
divisible by rn, ln > 8rn, and

(22)
∞∏
i=0

(
1 −

(
4ri

li

)d)
>

1 + η2

1 + 2η1
.

Let L0 ≥ 1, K ≥ 1, and s ≥ 0 integers, xs ∈ Gs . If all the vertices in Gs ∩QK,s(xs)

are s-good, then CK,s,L0(xs) is uniquely defined and

(23)
∣∣CK,s,L0(xs)

∣∣ ≥ 1

2
η2 · |QK,s |.

PROOF. Without loss of generality, we assume that xs = 0. Since all vertices in
Gs ∩QK,s are s-good, we can define the perforation QK,s,0 by (19). By definition,
all the vertices of QK,s,0 are 0-good, and by Lemma 2.4, QK,s,0 is connected
in G0.

By Lemma 3.1, for any x ∈ QK,s,0, there is a uniquely defined connected subset
Cx of SL0 ∩ (x + [0,L0)

d) with at least η1L
d
0 vertices. Since QK,s,0 is connected

in G0, by Lemma 3.1, the set
⋃

x∈QK,s,0
Cx is contained in a connected component

of SL0 ∩ QK,s and

(24)
∣∣∣∣ ⋃
x∈QK,s,0

Cx

∣∣∣∣ ≥ η1 · |QK,s,0| ≥ η1 ·
∞∏
i=0

(
1 −

(
4ri

li

)d)
· |QK,s |,

where the second inequality follows from Lemma 2.4.
On the other hand, since for any 0-good vertex x, the set x + [0,L0)

d contains
at most η2L

d
0 vertices from SL0 ,

|SL0 ∩ QK,s | ≤ η2L
d
0 · |QK,s,0| + Ld

0 · (|QK,s ∩G0| − |QK,s,0|)
≤

(
η2 + 1 −

∞∏
i=0

(
1 −

(
4ri

li

)d))
· |QK,s |(25)

< 2η1 ·
∞∏
i=0

(
1 −

(
4ri

li

)d)
· |QK,s |,
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where the second inequality follows from the inequality |QK,s,0| ≤ |QK,s,s | =
|QK,s |

Ld
0

and Lemma 2.4, and the third inequality follows from the assumption (22).

We have shown that the connected component of SL0 ∩ QK,s which contains⋃
x∈QK,s,0

Cx has volume > 1
2 · |SL0 ∩ QK,s |. In particular, it is the unique largest

in volume connected component of SL0 ∩ QK,s . Moreover, by (24), its volume is

≥ η1 ·
∞∏
i=0

(
1 −

(
4ri

li

)d)
· |QK,s |

(22)≥ η1 · 1 + η2

1 + 2η1
· |QK,s |

(21)≥ 1

2
η2 · |QK,s |,

which proves (23). �

COROLLARY 3.4. From the proof of Lemma 3.3, if the conditions of Lem-
ma 3.3 are satisfied, then

(26)
⋃

x∈QK,s,0

Cx ⊆ CK,s,L0 .

In particular, for any 1 ≤ K ′ ≤ K ′′ ≤ K and x′, x′′ ∈ Gs ∩ QK,s such that
QK ′,s(x′) ⊆ QK ′′,s(x′′) ⊆ QK,s , CK ′,s,L0(x

′) ⊆ CK ′′,s,L0(x
′′) ⊆ CK,s,L0 .

3.3. Isoperimetric inequality. Under the conditions of Definition 3.7, the
largest cluster CK,s,L0(x) is well connected locally in the bulk, but may still be
quite “hairy” near its boundary, which may have negative effect on its isoperimet-
ric properties. To bypass this issue, we consider a local extension C̃K,s,L0(x) of
CK,s,L0(x) obtained by adding to CK,s,L0(x) all the vertices which are connected
to it locally. Unlike CK,s,L0(x), its local extension C̃K,s,L0(x) is everywhere lo-
cally well connected. In this section, we prove a desired isoperimetric inequality
for subsets of C̃K,s,L0(x) (see Theorem 3.8 and Corollary 3.9).

DEFINITION 3.5. Let EK,s,r (x) be the set of vertices y′ ∈ S such that for some
y ∈ CK,s,r (x), y′ is connected to y in S ∩ B(y,2Ls), and define

C̃K,s,r (x) = CK,s,r (x) ∪ EK,s,r (x).

REMARK 3.6. Mind that C̃K,s,r (x) is contained in x + [−2Ls, (K + 2)Ls)
d ,

but it is different from the largest cluster of Sr ∩ (x + [−2Ls, (K + 2)Ls)
d).

We study isoperimetric properties of C̃K,s,L0(x) for configurations from the fol-
lowing event.

DEFINITION 3.7. Let η be as in (21), K ≥ 1 and s ≥ 0 integers, xs ∈ Gs . The
event Hη

K,s(xs) ∈ F occurs if:

(a) all the vertices in Gs ∩ (xs + [−2Ls, (K + 2)Ls)
d) are s-good,

(b) any x, y ∈ SLs ∩QK,s(xs) with |x−y|∞ ≤ Ls are connected in S∩B(x,2Ls).

We write Hη
K,s for Hη

K,s(0).
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Here is the main result of this section.

THEOREM 3.8. Let η be as in (21). Assume that the sequences ln and rn satisfy
the conditions of Theorem 2.5 and

(27)
∞∏
i=0

(
1 −

(
4ri

li

)d)
≥ 1 + η2

1 + η2+2η1
2

.

Let L0 ≥ 1, K ≥ 1, and s ≥ 0 integers, xs ∈ Gs . If Hη
K,s(xs) occurs, then

CK,s,L0(xs) is uniquely defined and there exists γ3.8 = γ3.8(η,L0) ∈ (0,1) such

that for any A ⊆ C̃K,s,L0(xs) with L
d(d+1)
s ≤ |A| ≤ 1

2 · |C̃K,s,L0(xs)|,
|∂C̃K,s,L0 (xs)

A| ≥ γ3.8 · |A| d−1
d .

In the applications, we will not use directly the result of Theorem 3.8, but only
the following corollary, which estimates from below the size of the boundary of
any subset of C̃K,s,L0(xs) with volume ≤ 1

2 · |C̃K,s,L0(xs)| precisely as in (13). In
the future (see the proof of Corollary 3.17), we will use C̃K,s,L0(xs) as a local
extension of a large ball in CK,s,L0(xs). As discussed in Section 1.4, this will be
sufficient to conclude that this ball satisfies the weak Poincaré inequality.

COROLLARY 3.9. Let η be as in (21) and ε ∈ (0, 1
d
]. Assume that the se-

quences ln and rn satisfy the conditions of Theorem 3.8. Assume that

K ≥ L
d+ d2−1

εd
s .

If Hη
K,s(xs) occurs, then for any A ⊆ C̃K,s,L0(xs) with |A| ≤ 1

2 · |C̃K,s,L0(xs)|,
|∂C̃K,s,L0 (xs)

A| ≥ γ3.8 · |A| d−1
d

+ε · (
(K + 4)Ls

)−εd
.

In particular, if ε = 1
d

, then |∂C̃K,s,L0 (xs)
A| ≥ γ3.8 · |A|

(K+4)Ls
.

PROOF. If |A| ≥ L
d(d+1)
s , then we apply Theorem 3.8,

|∂C̃K,s,L0 (xs)
A| ≥ γ3.8 · |A| d−1

d ≥ γ3.8 · |A| d−1
d

+ε · (
(K + 4)Ls

)−εd
.

If |A| ≤ L
d(d+1)
s , then we use the trivial bound |∂C̃K,s,L0 (xs)

A| ≥ 1. By the assump-
tion on K , (

(K + 4)Ls

)εd ≥ (
Ld(d+1)

s

) d−1
d

+ε
,

which implies, using the assumption on |A|, that |A| d−1
d

+ε ≤ ((K +4)Ls)
εd . Thus,

in this case,

|∂C̃K,s,L0 (xs)
A| ≥ 1 ≥ γ3.8 · |A| d−1

d
+ε · (

(K + 4)Ls

)−εd
.

The proof of corollary is complete. �
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The proof of Theorem 3.8 is subdivided into several claims. In Claim 3.10, we
prove that C̃K,s,L0 is locally connected and in Claims 3.12 and 3.13 we reduce the
isoperimetric problem for subsets of C̃K,s,L0 to the one for subsets of a perforated
lattice.

CLAIM 3.10. Any x, y ∈ C̃K,s,L0 with |x − y|∞ ≤ Ls are connected in
C̃K,s,L0 ∩ B(x,15Ls).

PROOF. Fix x, y ∈ C̃K,s,L0 with |x − y|∞ ≤ Ls , and take x′, y′ ∈ CK,s,L0 such
that x and x′ are connected in C̃K,s,L0 ∩ B(x′,2Ls), y and y′ are connected in
C̃K,s,L0 ∩ B(y′,2Ls). By the triangle inequality, |x′ − y′|∞ ≤ 5Ls .

Since all the vertices in Gs ∩ QK,s are s-good, there exist x′′, y′′ ∈ ⋃
z∈QK,s,0

Cz

such that |x′ − x′′|∞ ≤ Ls and |y′ − y′′|∞ ≤ Ls . By the definitions of Hη
K,s and

C̃K,s,L0 , x′′ is connected to x′ in C̃K,s,L0 ∩ B(x′,2Ls) and y′′ is connected to y′ in
C̃K,s,L0 ∩ B(y′,2Ls).

By the triangle inequality, |x′′ − y′′|∞ ≤ 7Ls . Let (z + [0,8Ls)
d) be a box in

QK,s which contains both x′′ and y′′, where z ∈ Gs . Since all the vertices in Gs ∩
(z + [0,8Ls)

d) are s-good, the perforation Q8,s,0(z) = QK,s,0 ∩ (z + [0,8Ls)
d)

of (z + [0,8Ls)
d) is connected in G0 by Lemma 2.4. Thus, by Lemma 3.1, the set⋃

w∈Q8,s,0(z)
Cw is contained in a connected component of S ∩ (z + [0,8Ls)

d). In

particular, x′′ and y′′ are connected in S ∩ (z + [0,8Ls)
d). By (26) and the fact

that (27) implies (22), the set
⋃

w∈Q8,s,0(z)
Cw is contained in CK,s,L0 . Therefore,

x′′ is connected to y′′ in CK,s,L0 ∩ (z + [0,8Ls)
d) ⊂ CK,s,L0 ∩ B(x′′,8Ls).

We conclude that x is connected to y in C̃K,s,L0 ∩ B(x,15Ls). �

Let

x′
s = (−2Ls, . . . ,−2Ls) ∈ Gs and K ′ = K + 4.

Since all the vertices in Gs ∩ QK ′,s(x′
s) are s-good, we can define its perforation

QK ′,s,0(x′
s) as in (19). By definition, QK ′,s,0(x′

s) is a subset of 0-good vertices in
G0 ∩ QK ′,s(x′

s), and by Lemma 2.4, QK ′,s,0(x′
s) is connected in G0.

By the fact that (27) implies (22), Lemma 3.1, (26), and the definition of C̃K,s,L0 ,

(28)
⋃

x∈QK′,s,0(x′
s )

Cx ⊆ C̃K,s,L0 .

The next two claims allow to reduce the isoperimetric problem for subsets of
C̃K,s,L0 to the isoperimetric problem for subsets of QK ′,s,0(x′

s). The crucial step
for the proof is the following definition of A and A′.

DEFINITION 3.11. For A ⊆ C̃K,s,L0 , let A be the set of all x ∈ QK ′,s,0(x′
s)

such that Cx ⊆ A, and A′ the set of x ∈ A such that there exists y ∈ C̃K,s,L0 \ A

with |x − y|∞ ≤ Ls .
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CLAIM 3.12.

(29) |∂C̃K,s,L0
A| ≥ max

{
1

2d
· |∂QK′,s,0(x′

s )
A|, |A′|

(31 · Ls)d

}
and

(30) |A| ≤ 2 · 3d · Ld
0 · |A| + ∣∣A′∣∣.

PROOF. We begin with the proof of (29). For any x ∈ A and y ∈ QK ′,s,0(x′
s) \

A such that |x −y|1 = L0, Cx ⊆ A and Cy �A. By Lemma 3.1 and (28), Cx and Cy

are connected in C̃K,s,L0 ∩ ((x + [0,L0)
d) ∪ (y + [0,L0)

d)). Each path in C̃K,s,L0

connecting Cx and Cy \ A contains an edge from ∂C̃K,s,L0
A. This implies that

(31) |∂C̃K,s,L0
A| ≥ 1

2d
· |∂QK′,s,0(x′

s )
A|.

Next, by the definition of A′, for any x ∈ A′, there exists y ∈ C̃K,s,L0 \ A such that
|x − y|∞ ≤ Ls . By Claim 3.10, x and y are connected in C̃K,s,L0 ∩ B(x,15Ls). In
particular, the ball B(x,15Ls) contains an edge from ∂C̃K,s,L0

A. Since every edge

from ∂C̃K,s,L0
A is within �∞ distance 15Ls from at most (31Ls)

d vertices of A′,

(32) |∂C̃K,s,L0
A| ≥ |A′|

(31 · Ls)d
.

Inequalities (31) and (32) imply (29).
We proceed with the proof of (30). We need to show that

(33)
∣∣A \ A′∣∣ ≤ 2 · 3d · Ld

0 · |A|.
Let z ∈ A \ A′. By the definition of C̃K,s,L0 , there exists zs ∈ Gs ∩ QK ′,s(x′

s) such
that

zs + [0,Ls)
d ⊂ B(z,Ls).

By the definition of A′ and (28), for any x ∈ QK ′,s,0(x′
s)∩ (zs +[0,Ls)

d), Cx ⊂ A.
Thus, QK ′,s,0(x′

s) ∩ (zs + [0,Ls)
d) ⊆ A. By Lemma 2.4 and (27),

∣∣QK ′,s,0
(
x′
s

) ∩ (
zs + [0,Ls)

d)∣∣ = ∣∣Q1,s,0(zs)
∣∣ ≥ 1 + η2

1 + η2+2η1
2

·
(

Ls

L0

)d

≥ 1

2
·
(

Ls

L0

)d

.

Thus,

∣∣A∩ B(z,Ls)
∣∣ ≥ 1

2
·
(

Ls

L0

)d

,
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and we conclude that

1

2

(
Ls

L0

)d ∣∣A \ A′∣∣ ≤ ∣∣{z ∈ A \ A′, x ∈ A : x ∈ B(z,Ls)
}∣∣ ≤ ∣∣B(0,Ls)

∣∣ · |A|,

which implies (33). �

Let γ2.5 be the isoperimetric constant from Theorem 2.5:

γ2.5 = 1

2d · 32d · 27d · 106 ·
(

1 −
(

2

3

) 1
d
)

· (
1 − e

− 1
16(d−1)

)
.

CLAIM 3.13. Let cη = 2η1−η2
4η1

. Then

(34) max
{
|∂QK′,s,0(x′

s )
A|, |A′|

Ld
s

}
≥ cη · γ2.5 · max

{
|A| d−1

d ,
|A′|
Ld

s

}
.

PROOF. If |A| d−1
d <

|A′|
Ld

s
, then (34) trivially holds. Thus, we assume that

|A| d−1
d ≥ |A′|

Ld
s

. We will deduce (34) from Theorem 2.5. By (32),

|A| ≤ 2 · 3d · Ld
0 · |A| + Ld

s · |A| d−1
d ≤ 3d+1 · Ld

s · |A|.
Since |A| ≥ L

d(d+1)
s , we obtain that |A| ≥ (Ls

L0
)d

2
.

Since A ⊆ QK ′,s,0(x′
s), for all x ∈ A, |Cx | ≥ η1L

d
0 . Thus, |A| ≥ η1L

d
0 · |A|.

Since also all the vertices in Gs ∩ QK ′,s(x′
s) are s-good, we obtain as in (25) that

|A| ≤ 1

2
· |C̃K,s,L0 | ≤

1

2
·
(
η2 + 1 −

∞∏
i=0

(
1 −

(
4ri

li

)d))
· ∣∣QK ′,s

(
x′
s

)∣∣
(27)≤ η2 + 2η1

4
·

∞∏
i=0

(
1 −

(
4ri

li

)d)
· ∣∣QK ′,s

(
x′
s

)∣∣
≤ η2 + 2η1

4
Ld

0 · ∣∣QK ′,s,0
(
x′
s

)∣∣,
where the last inequality follows from Lemma 2.4. Thus, |A| ≤ (1 − cη) ·
|QK ′,s,0(x′

s)|. By Theorem 2.5 and Remark 2.6,

|∂QK′,s,0(x′
s )
A| ≥ cη · γ2.5 · |A| d−1

d ,

completing the proof of (34). �

We are now ready to prove Theorem 3.8. It easily follows from Claims 3.12
and 3.13.
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PROOF OF THEOREM 3.8. By (29), (30) and (34),

|∂C̃K,s,L0
A|

|A| d−1
d

≥
1

31d · cη · γ2.5 · max{|A| d−1
d ,

|A′|
Ld

s
}

(2 · 3d · Ld
0 · |A| + |A′|) d−1

d

≥
1

31d · cη · γ2.5 · max{|A| d−1
d ,

|A′|
Ld

s
}

2 · 3d−1 · Ld−1
0 · |A| d−1

d + |A′| d−1
d

.

On the one hand, if Ld
0 · |A| ≥ |A′|, then

|∂C̃K,s,L0
A|

|A| d−1
d

≥
1

31d · cη · γ2.5 · |A| d−1
d

2 · 3d−1 · Ld−1
0 · |A| d−1

d + |A′| d−1
d

≥
1

31d · cη · γ2.5

3 · (3 · L0)d−1 .

On the other hand, if Ld
0 · |A| ≤ |A′|, then by (30), |A′| ≥ 1

3d+1 · |A| ≥ 1
3d+1 ·

L
d(d+1)
s ≥ Ld2

s , and

|∂C̃K,s,L0
A|

|A| d−1
d

≥
1

31d · cη · γ2.5 · |A′| 1
d

3d · Ld
s

≥ 1

93d
· cη · γ2.5.

The proof of Theorem 3.8 is complete with γ3.8 = 1
93d ·Ld−1

0
· cη · γ2.5. �

REMARK 3.14. With a more careful analysis and assuming that Theorem 2.5
holds for all subsets of size at least (Ls

L0
)2d (see Remark 5.11), condition on A in

Theorem 3.8 can be relaxed to |A| ≥ L2d
s . Assuming that Theorem 2.5 holds for

all subsets (see Remark 5.11), condition on A in Theorem 3.8 can be relaxed to
|A| ≥ Ld

s . Since for our purposes the current statement of Theorem 3.8 suffices,
we do not prove the stronger statement here.

3.4. Graph distance. In this section, we study the graph distances dS in S
between vertices of CK,s,L0(xs) for configurations in Hη

K,s(xs). As a consequence,
we prove that large enough balls centered at vertices of CK,s,L0(xs) have regular
volume growth (Corollary 3.16) and allow for local extensions which satisfy an
isoperimetric inequality (Corollary 3.17). These results will be used in Section 4
to prove our main result.

LEMMA 3.15. Let d ≥ 2 and η as in (21). Let ln and rn, n ≥ 0, be integer
sequences such that for all n, ln > 16rn and

∏
n≥0(1 + 32rn

ln
) ≤ 2. Let L0 ≥ 1,

K ≥ 1, and s ≥ 0 integers, xs ∈ Gs . There exists C3.15 = C3.15(L0) such that if
Hη

K,s(xs) occurs, then for all y, y′ ∈ CK,s,L0(xs),

dS
(
y, y′) ≤ C3.15 · max

{∣∣y − y′∣∣∞,Ld
s

}
.
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PROOF. Let ys, y
′
s ∈ QK,s(xs) ∩ Gs be such that (ys + [0,Ls)

d) ⊂ B(y,Ls)

and (y′
s + [0,Ls)

d) ⊂ B(y′,Ls). By [19], Lemma 6.3 (applied to sequences ln and
4rn), there exist y0 ∈ QK,s,0(xs) ∩ (ys + [0,Ls)

d) and y′
0 ∈ QK,s,0(xs) ∩ (y′

s +
[0,Ls)

d) which are connected by a nearest neighbor path of 0-good vertices z1 =
y0, z2, . . . , zk−1, zk = y′

0 in QK,s,0(xs), where k ≤ ∏
n≥0(1 + 32rn

ln
) · |ys−y′

s |1+Ls

L0
.

Let z̃i be an arbitrary vertex in Czi
. (Recall the definition of Cz from Lemma 3.1.)

By Lemma 3.1, for all 1 ≤ i < k, z̃i is connected to z̃i+1 in S ∩ ((zi + [0,L0)
d) ∪

(zi+1 + [0,L0)
d). Therefore, any vertices ỹ ∈ Cy0 and ỹ′ ∈ Cy′

0
are connected by

a nearest neighbor path in S ∩ ⋃k
i=1(zi + [0,L0)

d). Any such path consists of at

most Ld
0 · ∏

n≥0(1 + 32rn
ln

) · |ys−y′
s |1+Ls

L0
vertices.

By Corollary 3.4, ỹ ∈ CK,s,L0(xs) ∩ B(y,Ls) and ỹ′ ∈ CK,s,L0(xs) ∩ B(y′,Ls).
Thus, by the definition of Hη

K,s(xs), y is connected to ỹ in S ∩ B(y,2Ls) and y′ is
connected to ỹ′ in S ∩ B(y′,2Ls).

By putting all the arguments together, we obtain that y is connected to y′ by
a nearest neighbor path in S of at most 2 · |B(0,2Ls)| + Ld

0 · ∏
n≥0(1 + 32rn

ln
) ·

|ys−y′
s |1+Ls

L0
vertices. Since |ys − y′

s |1 ≤ d · |y − y′|∞ + 2dLs , the result follows.
�

COROLLARY 3.16. In the setup of Lemmas 3.3 and 3.15, there exists c3.16 =
c3.16(η,L0) > 0 such that for any C3.15L

d
s ≤ r ≤ KLs and y ∈ CK,s,L0(xs),

μ
(
BS(y, r)

) ≥ c3.16 · rd .

PROOF. Let K ′ = max{k : kLs ≤ r
C3.15

}. There exists ys ∈ QK,s(xs)∩Gs such

that QK ′,s(ys) ⊂ B(y, r
C3.15

) ∩ QK,s(xs). Since Hη
K,s(xs) occurs, we can define

the perforation QK,s,0(xs) of QK,s(xs) as in (19). Consider also the perforation
QK ′,s,0(ys) = QK,s,0(xs) ∩ QK ′,s(ys) of QK ′,s(ys). By (26),⋃

x∈QK′,s,0(ys)

Cx ⊂ CK,s,L0(xs).

Since also
⋃

x∈QK′,s,0(ys)
Cx ⊂ B(y, r

C3.15
), Lemma 3.15 implies that⋃

x∈QK′,s,0(ys)

Cx ⊂ BS(y, r).

By applying Lemma 2.4 to QK ′,s,0(ys) and using the fact that |Cx | ≥ η1L
d
0 , we

conclude from the above inclusion that∣∣BS(y, r)
∣∣ ≥ η1 · (

K ′Ls

)d · ∏
i≥0

(
1 −

(
4ri

li

)d)
(27)≥ η1 · (

K ′Ls

)d · 1 + η2

1 + η2+2η1
2

(21)≥ 1

2
η2 ·

(
r

2C3.15

)d

.
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Since μ(BS(y, r)) ≥ |BS(y, r)|, the result follows with c3.16 = 1
2η2 · 1

(2C3.15)
d . �

COROLLARY 3.17. Let ε ∈ (0, 1
d
]. In the setup of Theorem 3.8 and Lem-

ma 3.15, if Hη
5K,s(x

′
s) occurs with x′

s = xs + (−2KLs, . . . ,−2KLs), then for

all L
d+1+ d2−1

εd
s ≤ r ≤ KLs and y ∈ CK,s,L0(xs), there exists CBS (y,r) such that

BS(y, r) ⊆ CBS (y,r) ⊆ BS(y,8C3.15r) and for all A ⊂ CBS (y,r) with |A| ≤ 1
2 ·

|CBS (y,r)|,
|∂CBS (y,r)

A| ≥ γ3.8 · |A| d−1
d

+ε · (8r)−εd .

In particular, if ε = 1
d

, then |∂CBS (y,r)
A| ≥ γ3.8 · |A|

8r
.

PROOF. Let K ′ = min{k : kLs ≥ 2r + 1} + 1. (Note that K ′Ls ≤ 4r .) For
y ∈ CK,s,L0(xs), let ys ∈ Gs ∩ Q5K,s(x

′
s) be such that B(y, r) ⊆ QK ′,s(ys) ⊆

Q5K,s(x
′
s).

We will prove that CBS (y,r) = C̃K ′,s,L0(ys) satisfies all the requirements. Since
Hη

K ′,s(ys) occurs, by Corollary 3.4, BS(y, r) ⊆ CK ′,s,L0(ys) ⊆ C̃K ′,s,L0(ys). By

Lemma 3.15, for r ≥ Ld
s ,

C̃K ′,s,L0(ys) ⊆ BS
(
y,C3.15

(
K ′ + 4

)
Ls

) ⊆ BS(y,8C3.15r).

By Corollary 3.9, since K ′ ≥ L
d+ d2−1

εd
s , for any A ⊂ C̃K ′,s,L0(ys) with |A| ≤

1
2 |C̃K ′,s,L0(ys)|,

|∂C̃K′,s,L0
(ys)

A| ≥ γ3.8 · |A| d−1
d

+ε · ((
K ′ + 4

)
Ls

)−εd ≥ γ3.8 · |A| d−1
d

+ε · (8r)−εd .

Since CBS (y,r) = C̃K ′,s,L0(ys) satisfies all the necessary conditions, the proof of
Corollary 3.17 is complete. �

4. Proof of Theorem 1.13. In this section, we collect together the determinis-
tic results that large enough balls have regular volume growth (Corollary 3.16) and
allow for local extensions satisfying an isoperimetric inequality (Corollary 3.17)
to deduce Theorem 1.13. In fact, the result that we prove here is stronger. In Defi-
nition 4.1, we introduce the notions of regular and very regular balls, so that (very)
regular ball is always (very) good (see Claim 4.2), and then prove in Proposi-
tion 4.3 that large balls are likely to be very regular. The main result is an immedi-
ate consequence of Proposition 4.3.

The following definition will only be used for the special choice of ε = 1
d

;
see Claim 4.2. Nevertheless, we choose to work with the more general defini-
tion involving arbitrary ε ∈ (0, 1

d
], since smaller ε’s give better isoperimetric in-

equalities, and could be used to prove stronger functional inequalities than the
Poincaré inequality, as we learned from Jean-Dominique Deuschel (see, e.g., [31],
Section 3.2).
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DEFINITION 4.1. Let CV , CP , and CW ≥ 1 be fixed constants. Let ε ∈ (0, 1
d
].

For r ≥ 1 integer and x ∈ V (G), we say that BG(x, r) is (CV ,CP ,CW, ε)-regular
if

μ
(
BG(x, r)

) ≥ CV rd

and there exists a set CBG(x,r) such that BG(x, r) ⊆ CBG(x,r) ⊆ BG(x,CWr) and
for any A ⊂ CBG(x,r) with |A| ≤ 1

2 · |CBG(x,r)|,

|∂CBG(x,r)
A| ≥ 1√

CP

· |A| d−1
d

+ε · r−εd .

We say BG(x,R) is (CV ,CP ,CW, ε)-very regular if there exists NBG(x,R) ≤ R
1

d+2

such that BG(y, r) is (CV ,CP ,CW)-regular whenever BG(y, r) ⊆ BG(x,R), and
NBG(x,R) ≤ r ≤ R.

In the special case ε = 1
d

, we omit ε from the notation and call (CV ,CP ,CW,
1
d
)-(very) regular ball simply (CV ,CP ,CW)-(very) regular.

CLAIM 4.2. If BG(x, r) is (CV ,CP ,CW)-regular, then it is (CV ,CP ,CW)-
good.

PROOF. By [24], Proposition 3.3.10, and Remark 1.2,

min
a

∫
CBG(x,r)

(f − a)2 dμ =
∫
CBG(x,r)

(f − f CBG(x,r)
)2 dμ

≤ CP · r2 ·
∫
E(CBG(x,r))

|∇f |2 dν.

Thus, again by Remark 1.2,

min
a

∫
BG(x,r)

(f − a)2 dμ ≤
∫

BG(x,r)
(f − f CBG(x,r)

)2 dμ

≤
∫
CBG(x,r)

(f − f CBG(x,r)
)2 dμ

≤ CP · r2 ·
∫
E(CBG(x,r))

|∇f |2 dν

≤ CP · r2 ·
∫
E(BG(x,CW r))

|∇f |2 dν. �

Theorem 1.13 is immediate from Claim 4.2 and the following proposition, in
which one needs to take ε = 1

d
.

PROPOSITION 4.3. Let d ≥ 2, u ∈ (a, b), and θvgb ∈ (0, 1
d+2). Let ε ∈ (0, 1

d
].

Assume that the family of measures Pu, u ∈ (a, b), satisfies assumptions P1–P3



RANDOM WALKS ON INFINITE PERCOLATION CLUSTERS 1875

and S1–S2. There exist constants CV , CP , and CW , c4.3 and C4.3 depending on u,
θvgb, and ε, such that for all R ≥ 1,

Pu[
BS(0,R) is (CV ,CP ,CW, ε)-very regular with NBS (0,R) ≤ Rθvgb |0 ∈ S∞

]
≥ 1 − C4.3 · e−c4.3(logR)1+
S

.

PROOF. We first make a specific choice of various parameters. Fix u ∈ (a, b).
We take

(35) η1 = 3

4
η(u) and η2 = 5

4
η(u),

where η(u) is defined in S2. It is easy to see that η1 and η2 satisfy assumptions
(21). We fix this choice of η = (η1, η2) throughout the proof.

Next, we choose the scales for renormalization. For positive integers l0, r0, and
L0, we take

θsc = �1/εP�, ln = l0 · 4nθsc
, rn = r0 · 2nθsc

,
(36)

Ln = ln−1 · Ln−1, n ≥ 1,

where εP is defined in P3. By [19], Lemmas 5.2 and 5.4, under the assumptions
P1–P3 and S1–S2, there exist C1 = C1(u) < ∞ and C2 = C2(u, l0) < ∞ such that
for all l0, r0 ≥ C1, L0 ≥ C2, and n ≥ 0,

(37) Pu[0 is n-bad] ≤ 2 · 2−2n

.

We choose l0, r0 ≥ C1 so that the scales ln and rn defined in (36) satisfy the con-
ditions of Lemma 3.3, Theorem 3.8 and Lemma 3.15, and choose L0 ≥ C2. Thus,
(37) is also satisfied.

Next, we choose s and K . Fix R ≥ 1. Without loss of generality, we can assume
that

Rθvgb ≥ max
(
C3.15L

d
0 ,L

d+1+ d2−1
εd

0

)
.

Let

s = max
{
s′ : max

{
C3.15L

d
s′,L

d+1+ d2−1
εd

s′
} ≤ Rθvgb

}
.

With this choice of s, let K = min{k : kLs ≥ 2R + 1} + 1, xs ∈ Gs such that
B(0,R) ⊆ QK,s(xs), and x′

s = xs + (−2KLs, . . . ,−2KLs).
We begin with the proof. If the event Hη

5K,s(x
′
s) ∩ {0 ∈ S∞} occurs, then

BS(0,R) ⊆ CK,s,L0(xs). Therefore, for all y ∈ BS(0,R) and Rθvgb ≤ r ≤ R, by

Corollaries 3.16 and 3.17, the ball BS(y, r) is (c3.16,
64εd

γ 2
3.8

,8C3.15, ε)-regular. Thus,

if the event Hη
5K,s(x

′
s) ∩ {0 ∈ S∞} occurs, then the ball BS(0,R)

(38)
is (c3.16,

64εd

γ 2
3.8

,8C3.15, ε)-very regular with NBS (0,R) ≤ Rθvgb .
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Let

CV = c3.16, CP = 64εd

γ 2
3.8

, CW = 8C3.15.

By (38), it suffices to prove that there exist constants c = c(u, θvgb, ε, εP) > 0 and
C = C(u, θvgb, ε, εP) < ∞ such that for all R ≥ 1,

(39) Pu[
Hη

5K,s

(
x′
s

)|0 ∈ S∞
] ≥ 1 − Ce−c(logR)1+
S

.

By Definition 3.7, (37) and S1, there exists C = C(u) < ∞ such that

Pu[
Hη

5K,s

(
x′
s

)c] ≤ (5K + 4)d · 2 · 2−2s + (5KLs)
d · C · e−fS(u,2Ls).

Thus, it remains to show that for our choice of all the parameters, the right-hand
side of the above display is at most Ce−c(logR)1+
S .

Let D = d + 1 + d2−1
εd

. By (36) and the choice of s, for all R ≥ C3.15 · LD/θvgb
0 ,(

R

C3.15

) θvgb
D ≤ Ls+1 = ls · Ls ≤ l0 · 4 · (Ls)

1+2θsc
,

which implies that

(40) Ls ≥ 1

4l0

(
R

C3.15

) θvgb
D(1+2θsc )

.

By (36) and (40), there exists a constant c = c(θvgb, θsc, l0,L0, ε) > 0 such that for

all R ≥ C3.15 · LD/θvgb
0 ,

(41) s ≥ c · (logR)
1

1+θsc − 1.

Using (5), (40) and (41), we deduce that there exist c′ = c′(u, θvgb, θsc, ε) > 0 and
C′ = C′(u, θvgb, θsc, l0,L0, ε) < ∞ such that for all R ≥ C′,

2s ≥ (logR)1+
S and fS(u,2Ls) ≥ c′(logR)1+
S .

By the choice of K , KLs ≤ 4R. Therefore, there exist c′′ = c′′(u, θvgb, θsc, ε) > 0
and C′′ = C′′(u, θvgb, θsc, l0,L0, ε) < ∞ such that for all R ≥ C′′,

(42) Pu[
Hη

5K,s

(
x′
s

)c] ≤ C′′e−c′′(logR)1+
S
.

Since Pu[0 ∈ S∞] = η(u) > 0, (42) implies (39). The proof is complete. �

REMARK 4.4. The events D
η
x,L0

and I
η
x,L0

slightly differ from the correspond-

ing events A
u

x and B
u

x in [19], but only minor modifications are needed to adapt
[19], Lemmas 4.2 and 4.4, to our setting.

There is room for flexibility in the choice of η. For instance, if ε = ε(u) ≥ 0
is chosen so that η(u(1 − ε)) > 5

6 · η(u(1 + ε)), Then η1 = 3
4η(u(1 − ε)) and

η2 = 5
4η(u(1+ε)) satisfy (21), and (37) remains true for this choice of η by mono-

tonicity.
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5. Proof of Theorem 2.5. The rough outline of the proof is the following. We
first prove the isoperimetric inequality for all subsets of perforated lattices in two
dimensions; see Lemma 5.6. In dimensions d ≥ 3, we proceed in two steps. We
first consider only macroscopic subsets A of the perforated lattice, that is, those
with the volume comparable with the volume of the perforated lattice. By apply-
ing a selection lemma (see Lemma 5.3), we identify a large number of disjoint
two-dimensional slices in the ambient box which on the one hand have a small
nonempty intersection with A, and on the other, all together contain a positive
fraction of the volume of A. We estimate the boundary of A in each of the slices
using the two-dimensional result, and conclude by estimating the boundary of A
in the perforation by the sum of the boundaries of A in each of the slices. Finally,
we treat the general case by constructing a suitable coarse graining of A from
mesoscopic boxes in which A has positive density. The restriction of the bound-
ary of A to such boxes is estimated by using the result from the first case. Both
isoperimetric inequalities in d ≥ 3 are stated in Theorem 5.10.

We begin with a number of auxiliary ingredients for the proof: (a) some gen-
eral facts about isoperimetric inequalities (Section 5.1.1) and (b) a combinatorial
selection lemma (Section 5.1.2).

5.1. Auxiliary results.

5.1.1. General facts about isoperimetric inequalities. Here, we collect some
isoperimetric inequalities that we will frequently use.

LEMMA 5.1. Let d ≥ 2, n1, . . . , nd ≥ 1 integers with maxi ni ≤ N · mini ni ,

and C a positive real such that N · C 1
d < 1. Then, for any subset A of G = Zd ∩

[0, n1) × · · · × [0, nd) with |A| ≤ C · |G|,
|∂GA| ≥ max

{(
1 + 2d · (

1 − NC
1
d
)−1)−1 · |∂Zd A|, (

1 − NC
1
d
) · |A| d−1

d
}
.

PROOF. The proof is similar to that of [16], Proposition 2.2. Let πi be the pro-
jection of Zd onto the (d −1) dimensional sublattice of vertices with ith coordinate
equal to 0. Let Pi = πi(A), i ′ be a coordinate corresponding to Pi with the maxi-
mal size, and P ′ = Pi′ . Let P ′′ = P ′ ∩ πi′(G \ A), that is, the projection of those
i ′-columns that contain vertices from both A and G \ A. Note that |∂GA| ≥ |P ′′|
and |∂Zd A| ≤ |∂GA| + 2d · |P ′|. Also note that |P ′ \ P ′′| ≤ |A|

ni′
≤ N · C 1

d · |A| d−1
d .

By the Loomis–Whitney inequality, |A| d−1
d ≤ |P ′|. Thus, |∂GA| ≥ |P ′′| ≥ (1 −N ·

C
1
d ) · |P ′| ≥ (1 −N ·C 1

d ) · |A| d−1
d and |∂Zd A| ≤ |∂GA| · (1 + 2d · (1 −N ·C 1

d )−1).
�

REMARK 5.2. Let G be a finite graph, and assume that for all A ⊆ G with

c1 · |G| ≤ |A| ≤ 1
2 · |G|, |∂GA| ≥ c2 · |A| d−1

d . Then for any A′ ⊂ G with 1
2 · |G| ≤
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|A′| ≤ (1 − c1) · |G|, |∂GA′| = |∂G(G \ A′)| ≥ c2 · |G \ A′| d−1
d ≥ (c1c2) · |A′| d−1

d .
Thus, any such A′ also satisfies an isoperimetric inequality, but possibly with a
smaller constant.

5.1.2. Selection lemma. The aim of this section is to prove the following com-
binatorial lemma. Its Corollaries 5.4 and 5.5 together with the two-dimensional
isoperimetric inequality of Lemma 5.6 will be crucially used in the proof of the
isoperimetric inequality for macroscopic subsets of perforated lattices in any di-
mension d ≥ 3 in Theorem 5.10.

LEMMA 5.3. Let 6
7 ≤ C2 < 1, and for d ≥ 2, let

Cd = Cd−1
2∏d−2

j=1(1 + 3
9j )

, δd = 1

9d−2 .

Let R1, . . . ,Rd be positive integers. Then, for any subset A of Q = [0,R1) × · · · ×
[0,Rd) ∩Zd satisfying

1 ≤ |A| ≤ Cd · |Q|,
there exist S1, . . . , Sk , disjoint two-dimensional subrectangles of Q such that∣∣∣∣A ∩ ⋃

i

Si

∣∣∣∣ ≥ δd · |A|,

and for all 1 ≤ i ≤ k,

1 ≤ |A ∩ Si | ≤ C2 · |Si |.

COROLLARY 5.4. Note that
∏d−2

j=1(1 + 3
9j ) ≤ e

∑
j≥1

3
9j = e

3
8 . Thus, if we take

C2 = e
− 1

8(d−1) > 6
7 , then Cd > e− 1

2 > 1
2 , and Lemma 5.3 implies that for any A ⊂

Q with |A| ≤ 1
2 · |Q|, there exist disjoint two-dimensional rectangles S1, . . . , Sk

such that |A ∩ ⋃
i Si | ≥ 1

9d−2 · |A| and 1 ≤ |A ∩ Si | ≤ e
− 1

8(d−1) · |Si |.

COROLLARY 5.5. If R1 = · · · = Rd = R, and |A| ≥ cd · Rd for some cd > 0,
then at least δdcd

2 Rd−2 of the Si ’s contain at least δdcd

2 R2 vertices from A. Indeed,
if such a choice did not exist, then we would have

δdcdRd ≤ δd · |A| ≤
∣∣∣∣A ∩ ⋃

i

Si

∣∣∣∣ < R2 · δdcd

2
Rd−2 + δdcd

2
R2 ·

(
k − δdcd

2
Rd−2

)
≤ δdcdRd.
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FIG. 4. An illustration of a slice [0,R1) × [0,R2) × z, z ∈ [0,R3) (left), and a rectangle
x × [0,R2) × [0,R3), x ∈ [0,R1) from M (right) in 3 dimensions.

PROOF OF LEMMA 5.3. The proof is by induction on d . For d = 2, the state-
ment is obvious. We assume that d ≥ 3.

Consider all two-dimensional slices of the form [0,R1) × [0,R2) × x, x ∈
[0,R3) × · · · × [0,Rd), see Figure 4(left). If among them there exist slices
S1, . . . , Sk such that |A ∩ ⋃

i Si | ≥ δd · |A| and for all i, 1 ≤ |A ∩ Si | ≤ C2 · R1R2,
then we are done.

Thus, assume the contrary. Let S1 be the subset of those slices that contain
> C2 · R1R2 vertices from A, and S2 the rest. By definition, |S1| ≤ |A|

C2·R1R2
, and

by assumption, |A ∩ ⋃
S∈S2

S| < δd · |A|.
Consider (d − 1) dimensional rectangles

M = {
x × [0,R2) × · · · × [0,Rd), x ∈ [0,R1)

}
[see Figure 4(right)], and consider separately their intersections with S1 and S2.

First, consider intersections with S1. Each of the rectangles from M intersects⋃
S∈S1

S in at most R2 · |A|
C2·R1R2

= |A|
C2·R1

vertices. Since |A∩ ⋃
S∈S1

S| ≥ (1 − δd) ·
|A|, the number of rectangles M ∈ M with |M ∩A| ≥ |A|

3·R1
is at least 2

3R1. Indeed,

if not, then at least 1
3R1 of rectangles from M contain <

|A|
3·R1

vertices from A, and∣∣∣∣A ∩ ⋃
S∈S1

S

∣∣∣∣ <
1

3
R1 · |A|

3 · R1
+ 2

3
R1 · |A|

C2 · R1
=

(
1

9
+ 2

3 · C2

)
· |A| ≤ 8

9
· |A|

≤ (1 − δd) · |A|,
which is a contradiction.

Next, consider intersections with S2. Since |A∩⋃
S∈S2

S| ≤ δd · |A|, the number

of rectangles M ∈ M with |A ∩ M ∩ ⋃
S∈S2

S| ≤ 3δd · |A|
R1

is at least 2
3R1. Indeed,
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if not, then for at least 1
3R1 of them, |A ∩ M ∩ ⋃

S∈S2
S| > 3δd · |A|

R1
, and∣∣∣∣A ∩ ⋃

S∈S2

S

∣∣∣∣ >
1

3
R1 · 3δd · |A|

R1
= δd · |A|,

which is a contradiction.
Therefore, we can choose M1, . . . ,M 1

3 R1
∈ M so that for each 1 ≤ i ≤ 1

3R1,

|A ∩ Mi | ≥ |A|
3R1

,

∣∣∣∣A ∩ Mi ∩ ⋃
S∈S1

S

∣∣∣∣ ≤ |A|
C2R1

,

∣∣∣∣A ∩ Mi ∩ ⋃
S∈S2

S

∣∣∣∣ ≤ 3δd · |A|
R1

.

In particular, for each 1 ≤ i ≤ 1
3R1,

|A ∩ Mi | =
∣∣∣∣A ∩ Mi ∩ ⋃

S∈S1

S

∣∣∣∣ + ∣∣∣∣A ∩ Mi ∩ ⋃
S∈S2

S

∣∣∣∣
≤ |A|

C2 · R1
+ 3δd · |A|

R1
≤ Cd

C2
·

d∏
j=2

Rj ·
(

1 + 3

9d−2

)
= Cd−1 ·

d∏
j=2

Rj

and ∣∣∣∣A ∩ ⋃
i

Mi

∣∣∣∣ = ∑
i

|A ∩ Mi | ≥ 1

3
R1 · |A|

3 · R1
= |A|

9
.

If d = 3, then Mi are disjoint two-dimensional rectangles satisfying all the require-
ments of the lemma. If d > 3, consider the sets Ai = A ∩ Mi , 1 ≤ i ≤ 1

3R1. They
satisfy assumption of the lemma with d replaced by d − 1. Therefore, there exist
disjoint two-dimensional rectangles (Sij )1≤j≤kj

in Mi such that for all 1 ≤ j ≤ ki ,

|Ai ∩ Sij | ≤ C2 · |Sij |,
and ∣∣∣∣Ai ∩ ⋃

j

Sij

∣∣∣∣ ≥ δd−1 · |Ai |.

It is easy to conclude that the two-dimensional rectangles (Sij )1≤j≤ki ,1≤i≤ 1
3 R1

sat-
isfy all the requirements of the lemma. Indeed, they are disjoint,∣∣∣∣A ∩ ⋃

ij

Sij

∣∣∣∣ = ∑
i

∣∣∣∣Ai

⋃
j

Sij

∣∣∣∣ ≥ 1

3
R1 · δd−1 · |Ai | ≥ 1

3
R1 · δd−1 · |A|

3 · R1
= δd · |A|,

and for each i and j ,

|A ∩ Sij | = |Ai ∩ Sij | ≤ C2 · |Sij |.
The proof is complete. �
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5.2. Isoperimetric inequality in two dimensions. The main goal of this sec-
tion is to prove the following lemma. It immediately implies Theorem 2.5 in
the case d = 2, but actually gives an isoperimetric inequality which holds for all
A ∈ QK,s,0(xs) with 1 ≤ |A| ≤ 1

2 · |QK,s ∩G0|.
LEMMA 5.6. Let d = 2. Let ln and rn, n ≥ 0, be integer sequences such that

for all n, ln > 8rn, ln is divisible by rn and

(43)
∞∏

j=0

(
1 −

(
4rj

lj

)2)
≥ 15

16
and 3456 ·

∞∑
j=0

rj

lj
≤ 1

106 .

Then for any integers s ≥ 0, L0 ≥ 1, and K ≥ 1, xs ∈ Gs , and two families of
events D and I, if all the vertices in Gs ∩ QK,s(xs) are s-good, then for any A ⊆
QK,s,0(xs) such that 1 ≤ |A| ≤ 1

2 · |QK,s(xs) ∩G0|,

|∂QK,s,0(xs)A| ≥ 1

106 · |A| 1
2 .

REMARK 5.7. (1) Assumptions (43) and the constant 1
106 in the result of

Lemma 5.6 are not optimal for our proof, but rather chosen to simplify calcula-
tions.

(2) We believe that an analogue of Lemma 5.6 holds for all d ≥ 2, but cannot
prove it. There is only one place in the proof where the assumption d = 2 is used;
see Remark 5.9.

PROOF. Fix s ≥ 0 and K ≥ 1 integers, xs ∈ Gs . Recall the definition of
QK,s,i(xs) from (19), and write Qi for QK,s,i(xs) throughout the proof. Note that
Qs = QK,s(xs) ∩G0 and for all i, Qi−1 ⊆ Qi .

Let A be a subset of Q0 such that 1 ≤ |A| ≤ 1
2 · |Qs |. We need to prove that

|∂Q0A| ≥ 1
106 · |A| 1

2 . First of all, without loss of generality we can assume that
both A and Q0 \A are connected in G0. (For the proof of this claim, see page 112
in [26], Section 3.1.)

Let B,B1, . . . ,Bm be all the connected components (in G0) of Qs \A, of which
B is the unique component intersecting Q0, and Bi’s are the “holes” in Qs com-
pletely surrounded by A. (See Figure 5.) The boundary of A in Q0 does not contain
any edges adjacent to Bi ’s. It is convenient to absorb all the holes Bi’s into A to
get the set A′ with the same boundary in Q0, but with an important feature that its
exterior vertex boundary in Qs is ∗-connected. More precisely, let

A′ =A∪
m⋃

i=1

Bi and Q′
i = Qi ∪

m⋃
i=1

Bi.

Then (a) ∂Q′
0
A′ = ∂Q0A, (b) |A′| ≥ |A|, (c) A′ is connected in G0, (d) Q′

0 \A′ =
Q0 \ A (in particular, connected in G0), and (e) for any x, x′ ∈ E = {y ∈ Qs :
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FIG. 5. The set A′ is obtained from A by adding to it all the holes Bi completely surrounded by A.
This operation does not change the boundary of A in Q0.

{x, y} ∈ ∂QsA′ for some x ∈ A′} (the exterior vertex boundary of A′ in Qs ) there
exist z0 = x, z1, . . . , zm = x′ ∈ E such that |zk − zk+1|∞ = L0 for all k (i.e., E
is ∗-connected). Properties (a)–(d) are immediate from the definition of A′, and
property (e) follows from [16], Lemma 2.1(ii), and the facts that A′ and Qs \ A′
are connected in G0.

By properties (a)–(b) of A′, it suffices to prove that∣∣∂Q′
0
A′∣∣ ≥ 1

106 · ∣∣A′∣∣ 1
2 .

By Lemma 2.4 and the first part of (43), |A′| ≤ |A| + |Qs \Q0| ≤ 9
16 · |Qs |. Thus,

by Lemma 5.1,

(44)
∣∣∂QsA′∣∣ ≥ 1

4
· ∣∣A′∣∣ 1

2 .

Therefore, it suffices to prove that

(45)
∣∣∂Q′

0
A′∣∣ ≥ 2

5 · 105 · ∣∣∂QsA′∣∣.
The proof of (45) is done by partitioning ∂QsA′ \ ∂Q′

0
A′ into the sets δi of edges

with one end vertex in A′ and the other in Qi \Qi−1 and comparing the cardinality
of δi’s with that of ∂QsA′. If ∂QsA′ is very large (macroscopic), then all δi are
negligibly small in comparison to ∂QsA′. It is more delicate to estimate the size of
δi’s if ∂QsA′ is small, as the contribution of some δi ’s to the boundary ∂QsA′ may
be quite significant. In this case, we will introduce a suitable scale on which ∂QsA′
is large, and view A′ as a disjoint union of subsets of boxes on the new scale. Let

δi = ∂Q′
i
A′ \ ∂Q′

i−1
A′.
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Then, δj ’s are disjoint and for any 1 ≤ i ≤ s,

(46)
∣∣∂Q′

0
A′∣∣ = ∣∣∂Q′

i
A′∣∣ − i∑

j=1

|δj |.

Let

t = max
{

0 ≤ i ≤ s : ∣∣∂QsA′∣∣ ≥ 1

12
· Li

L0

}
.

The scale Lt is the correct scale to study ∂QsA′. As we will see below in (47),
the intersection of ∂QsA′ with Qi \Qi−1, i ≤ t (holes of size significantly smaller
than Lt ), is negligible in comparison to ∂QsA′. In particular, it will be enough to
conclude (45) in the case t = s, see (50). If t < s, then ∂QsA′ is small and may have
a significant intersection with Qt+1 \ Qt . An additional argument will be used to
deal with this case; see below (51).

We begin with an estimation of the part of ∂QsA′ adjacent to “small holes”.

CLAIM 5.8. For all 1 ≤ i ≤ t ,

(47) |δi | ≤ 3456 · ri−1

li−1
· ∣∣∂QsA′∣∣.

PROOF. By the definition of Qi’s (see also Figure 2), the set Qi \ Qi−1 can
be expressed as the disjoint union of boxes Sj = G0 ∩ (yj + [0,2ri−1Li−1)

2), for
some y1, . . . , yk ∈ (ri−1Li−1) · Z2, such that every box Sj is within �∞ distance
Li from at most 36 Sj ′ ’s. (By Remark 2.3, each Li-box contains at most 4 Sj ’s,
and it is adjacent to at most 8 other Li-boxes, hence 4 · 9 = 36.)

To estimate the size of δi , we consider two cases: (a) ∂QsA′ is adjacent to few
Sj ’s, in which case δi is very small, (b) ∂QsA′ is adjacent to many Sj ’s, in which
case many of the Sj ’s will be well-separated and A′ will be spread out. To han-
dle this case, we will use the fact that the exterior vertex boundary of A′ is ∗-
connected, thus the majority of edges in ∂QsA′ will be “in between” Sj ’s. (See
Figure 6.)

Let Ni be the total number of those Sj ’s which are adjacent (in G0) to A′. Since
for each j , |∂Qs Sj | ≤ 8 ri−1Li−1

L0
, it follows that |δi | ≤ Ni · 8 ri−1Li−1

L0
. We consider

separately the cases Ni ≤ 36 and Ni > 36.
If Ni ≤ 36, then

(48) |δi | ≤ Ni · 8
ri−1Li−1

L0
≤ 36 · 8 · ri−1

li−1
· Li

L0
≤ 36 · 8 · 12 · ri−1

li−1
· ∣∣∂QsA′∣∣,

where the last inequality follows from the definition of t and the fact that i ≤ t .
If Ni > 36, then A′ is adjacent to at least �Ni

36 �(≥ 2) of Sj ’s which are pairwise
at �∞ distance at least Li from each other. Recall from property (e) of A′ that E is
the exterior vertex boundary of A′, which is ∗-connected. Since E intersects each
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FIG. 6. Since every Sj is within Li distance from at most 35 other Sj ’s, if the set A′ is adjacent
to many Sj ’s then it must be adjacent to some sufficiently separated Sj (drawn in light grey), and
its boundary is thus stretched between these Sj ’s. In two (and only two) dimensions, this is sufficient
to conclude that the boundary of A′ is much larger than its part adjacent to all the Sj ’s, which we
call δi .

of the �Ni

36 � well separated Sj ’s, the intersections of E with 1
3Li -neighborhoods of

the Sj ’s are disjoint sets of vertices of cardinality ≥ 1
3

Li

L0
each. Therefore, |E | ≥

1
3

Li

L0
· Ni

36 , and we obtain that

(49) |δi | ≤ Ni · 8
ri−1Li−1

L0
≤ 36 · 3 · 8 · ri−1

li−1
· |E | ≤ 36 · 3 · 8 · 4 · ri−1

li−1
· ∣∣∂QsA′∣∣,

where the last inequality follows from the fact that each vertex of E is adjacent to
at most 4 edges from ∂QsA′.

Combining (48) and (49), we get (47). �

If the boundary ∂QsA′ is macroscopic, namely, if t = s, then the intersection of
∂QsA′ with any hole is negligible, and Claim 5.8 immediately implies (45). Indeed,
by (46) and (47),

(50)
∣∣∂Q′

0
A′∣∣ = ∣∣∂Q′

t
A′∣∣ − t∑

j=1

|δj | ≥
(

1 − 3456 ·
∞∑

j=0

rj

lj

)
· ∣∣∂QsA′∣∣,

and (45) follows from (50) and the second part of (43).
In the rest of the proof, we consider the case of small ∂QsA′, namely t < s. In

this case,

(51)
1

12
· Lt

L0
≤ ∣∣∂QsA′∣∣ <

1

12
· Lt+1

L0
≤ 1

12
· Ls

L0
.
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As already mentioned, this case is more delicate, since ∂QsA′ may have large inter-
section with big holes, for instance, δt+1 is generally not negligible in comparison
to ∂QsA′.

We first consider the case when ∂QsA′ is still relatively big in comparison to the
boundary of holes in Qt+1 \ Qt . Assume that |∂QsA′| > 14 · 36 · 8 · rtLt

L0
. In this

case, we will show that

(52) |δt+1| ≤ 1

14
· ∣∣∂QsA′∣∣ and

∣∣∂Q′
t+1

A′∣∣ ≥ 1

7
· ∣∣∂QsA′∣∣.

Together with Claim 5.8, (52) is sufficient for (45). Indeed, by (46),

(53)
∣∣∂Q′

0
A′∣∣ = ∣∣∂Q′

t+1
A′∣∣ − t+1∑

j=1

|δj | ≥
(

1

14
− 3456 ·

∞∑
j=0

rj

lj

)
· ∣∣∂QsA′∣∣,

and (45) follows from (53) and the second part of (43).

PROOF OF (52). To estimate the size of δt+1, we proceed as in the proof of
(47). The set Qt+1 \ Qt can be expressed as a disjoint union of boxes Sj = G0 ∩
(yj + [0,2rtLt )

2), for some y1, . . . , yk ∈ (rtLt ) ·Z2, such that every box is within
�∞ distance Lt+1 from at most 36 of the boxes. Since |∂QsA′| < 1

12 · Lt+1
L0

and the
exterior vertex boundary of A′ is ∗-connected, the set A′ can be adjacent (in G0)
to at most 36 such boxes (in fact, to at most 4 · 4 = 16), which implies that

(54) |δt+1| ≤ 36 · 8
rtLt

L0
≤ 1

14
· ∣∣∂QsA′∣∣,

where the last inequality follows from the assumption on |∂QsA′|.
To estimate |∂Q′

t+1
A′| from below, we view A′ as a disjoint union of subsets

A′
j of Lt+1-boxes, and estimate from below the relative boundary of each A′

j in
the corresponding box. By definition, Qt+1 is the disjoint union of boxes G0 ∩
(zj + [0,Lt+1)

2), zj ∈ GK,s,t+1(xs). Let A′
j be the restriction of A′ to the box

(zj + [0,Lt+1)
2). By (44) and (51), for every j ,∣∣A′

j

∣∣ ≤ ∣∣A′∣∣ ≤ 16 · ∣∣∂QsA′∣∣2 ≤ 1

9
· ∣∣G0 ∩ [0,Lt+1)

2∣∣.
By applying Lemma 5.1 in each of G0 ∩ (zj + [0,Lt+1)

2),

(55)
∣∣∂Q′

t+1
A′∣∣ ≥ ∑

j

∣∣∂G0∩(zj+[0,Lt+1)
d )A′

j

∣∣ ≥ 1

7
· ∑

j

∣∣∂G0A′
j

∣∣ ≥ 1

7
· ∣∣∂QsA′∣∣.

The combination of (54) and (55) gives (52). �

It remains to consider the case |∂QsA′| ≤ 14 · 36 · 8 · rtLt

L0
. In this case, ∂QsA′ is

comparable to the boundary of holes in Qt+1 \Qt . We will show that

(56)
∣∣∂Q′

t
A′∣∣ ≥ 1

2 · 105 · ∣∣∂QsA′∣∣.
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Together with Claim 5.8, (56) is sufficient for (45). Indeed, by (46),

(57)
∣∣∂Q′

0
A′∣∣ = ∣∣∂Q′

t
A′∣∣ − t∑

j=1

|δj | ≥
(

1

2 · 105 − 3456 ·
∞∑

j=0

rj

lj

)
· ∣∣∂QsA′∣∣,

and (45) follows from (57) and the second part of (43).

PROOF OF (56). Since ∂QsA′ is comparable to the boundary of holes in
Qt+1 \ Qt , this time we will look at A′ on the scale rtLt . By Lemma 2.4 and
the assumption that lt is divisible by rt , Qt can be expressed as a disjoint union of
boxes (zj + [0, rtLt )

2), zj ∈ (rtLt ) ·Z2. Let A′
j be the restriction of A′ to the box

(zj +[0, rtLt )
2). We will compare the boundary ∂QsA′ to the relative boundary of

A′
j ’s in the respective boxes.

If for all j , |A′
j | ≤ 1

4 · |G0 ∩ [0, rtLt )
2|, see Figure 7(left), then by Lemma 5.1

applied in each of G0 ∩ (zj + [0, rtLt )
2),∣∣∂G0∩(zj+[0,rtLt )2)A′

j

∣∣ ≥ 1

9
· ∣∣∂G0A′

j

∣∣.
Since the sets ∂G0∩(zj+[0,rtLt )2)A′

j are disjoint subsets of ∂Q′
t
A′,

∣∣∂Q′
t
A′∣∣ ≥ ∑

j

∣∣∂G0∩(zj+[0,rtLt )2)A′
j

∣∣ ≥ 1

9
· ∑

j

∣∣∂G0A′
j

∣∣ ≥ 1

9
· ∣∣∂QsA′∣∣,

which implies (56).

FIG. 7. The case when the boundary of A′ is comparable to the boundary of holes on the scale
of A′. Two subcases: A′ has small intersection with every rtLt -box (left) or large intersection with
some rtLt -box (right). In the second subcase, we can identify a box (̃z +[0, rtLt )

d ) in which A′ has
non-trivial density.
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On the other hand, if |A′
j | > 1

4 · |G0 ∩ [0, rtLt )
2| for at least one j , see Fig-

ure 7(right), then there exists z̃ ∈ Gt such that:

• G0 ∩ (̃z + [0, rtLt )
2) ⊂ Qt and

• 1
4 · |G0 ∩ [0, rtLt )

2| ≤ |A′ ∩ (̃z + [0, rtLt )
2)| ≤ 3

4 · |G0 ∩ [0, rtLt )
2|.

Indeed, if none of zj ’s satisfies the two requirements, then there exist j1 and j2

such that |zj1 − zj2 |∞ = rtLt , |A′
j1

| > 3
4 · |G0 ∩ [0, rtLt )

2| and |A′
j2

| ≤ 1
4 · |G0 ∩

[0, rtLt )
2|. Then z̃ = λ · zj1 + (1 − λ) · zj2 satisfies the two requirements for some

λ ∈ (0,1). (If rt is divisible by 2, then one can take λ = 1
2 .)

By applying Lemma 5.1 to G0 ∩ (̃z + [0, rtLt )
2),∣∣∂Q′

t
A′∣∣ ≥ ∣∣∂G0∩(̃z+[0,rtLt )2)

(
A′ ∩ (̃

z + [0, rtLt )
2))∣∣

≥
(

1 −
√

3

2

)
· ∣∣A′ ∩ (̃

z + [0, rtLt )
2)∣∣ 1

2 ≥
(

1 −
√

3

2

)
· 1

2
· rtLt

L0

≥ 1

16
· rtLt

L0
≥ 1

16 · 14 · 36 · 8
· ∣∣∂QsA′∣∣,

where the last inequality follows from the assumption on |∂QsA′|. This inequality
completes the proof of (56). �

To summarize, the desired relation (45) between ∂Q′
0
A′ and ∂QsA′ follows from

the three inequalities (50) (the boundary ∂QsA′ is macroscopic), (53) (the bound-
ary ∂QsA′ is small, but much bigger than the boundaries of holes on the given
scale) and (57) (the boundary ∂QsA′ is small and comparable to the boundaries of
holes on the given scale). The proof of Lemma 5.6 is complete. �

REMARK 5.9. The only step in the proof of Lemma 5.6 that uses (crucially!)
the assumption d = 2 is the derivation of (49). More precisely, the fact that the
boundary of a set is well approximated by simple paths. In higher dimensions, this
is clearly not the case (the dimension of the boundary is generally bigger than the
dimension of a simple path), and the above argument breaks down. See Figure 6.

5.3. Isoperimetric inequality in any dimension for large enough subsets. In
this section, we prove the following theorem, which includes Theorem 2.5 as a
special case.

THEOREM 5.10. Let d ≥ 2, c > 0. Let ln and rn, n ≥ 0, be integer sequences
satisfying assumptions of Lemma 5.6 and such that

(58)
∞∏
i=0

(
1 −

(
4ri

li

)2)
≥ e

− 1
16(d−1) and

∞∏
i=0

(
1 −

(
4ri

li

)d)
≥ 1 − 1

2d+2

1 − 1
2d+3

.
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Then for any integers s ≥ 0, L0 ≥ 1, and K ≥ 1, xs ∈ Gs , and two families of events
D and I, if all the vertices in Gs ∩ QK,s(xs) are s-good, then any A ⊆ QK,s,0(xs)

with

min
{
c · |QK,s ∩G0|,

(
Ls

L0

)d2}
≤ |A| ≤ 1

2
· |QK,s ∩G0|

satisfies

|∂QK,s,0(xs)A| ≥ c2

2d · 32d · 27d · 106 ·
(

1 −
(

2

3

) 1
d
)

· (
1 − e

− 1
16(d−1)

) · |A| d−1
d .

PROOF. Fix s ≥ 0 and K ≥ 1 integers, xs ∈ Gs and assume that all the vertices
in Gs ∩QK,s(xs) are s-good. Take A ⊆ QK,s,0(xs) such that |A| ≤ 1

2 · |QK,s ∩G0|.
We consider separately the cases |A| ≥ c · |QK,s ∩ G0| and |A| ≥ (Ls

L0
)d

2
. In

fact, we will use the result for the first case to prove the result for the second.
In the first case, we use Corollaries 5.4 and 5.5 to the selection lemma from

Section 5.1.2 to identify a large number of disjoint two-dimensional slices in the
ambient box QK,s ∩G0 which on the one hand have a small nonempty intersection
with A, and on the other, all together contain a positive fraction of the volume of
A. We estimate the boundary of A in each of the slices using the two-dimensional
isoperimetric inequality of Lemma 5.6. Since the slices are pairwise disjoint, we
can estimate the boundary of A by the sum of the boundaries of A in each of the
slices.

In the second case, we consider a coarse graining of A by densely occupied
Ls -boxes. If the number of densely occupied Ls -boxes is small, then A is scattered
in QK,s ∩ G0 and has big boundary. If, on the other hand, the number of densely
occupied Ls -boxes is big, then the set of such boxes has large boundary (the poorly
occupied boxes adjacent to some densely occupied ones). Each pair of adjacent
densely and poorly occupied Ls -boxes are contained in a 2Ls -box. Vertices from
A occupy a nontrivial fraction of vertices in this 2Ls -box. Thus, we can estimate
the boundary of A restricted to this box using the first part of the theorem. By
summing over all pairs of adjacent densely and poorly occupied Ls -boxes, we
obtain a desired lower bound on the size of the boundary of A.

We first consider the case |A| ≥ c · |QK,s ∩ G0|. By Corollaries 5.4 and 5.5,
there exist

≥ c

2 · 9d−2 ·
(

KLs

L0

)d−2

two-dimensional subrectangles Si in QK,s ∩G0 (see Figure 8) such that for all i,

|A∩ Si | ≥ c

2 · 9d−2 ·
(

KLs

L0

)2
and |A∩ Si | ≤ e

− 1
8(d−1) ·

(
KLs

L0

)2
.
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FIG. 8. Left: a two-dimensional slice Si . Right: perforation QK,s,0(xs) ∩ Si of Si and the inter-
section of A with Si (drawn in grey).

By Lemma 2.4 [applied to the perforation QK,s,0(xs) ∩ Si of Si ] and the first part

of (58), |QK,s,0(xs) ∩ Si | ≥ e
− 1

16(d−1) · (KLs

L0
)2, which implies that for all i,

|A∩ Si | ≤ e
− 1

16(d−1) · ∣∣QK,s,0(xs) ∩ Si

∣∣.
We apply the two-dimensional isoperimetric inequality of Lemma 5.6 and Re-
mark 5.2 to each of the sets A∩ Si in QK,s,0(xs) ∩ Si , and obtain that for all i,∣∣∂QK,s,0(xs)∩Si

(A∩ Si)
∣∣ ≥ 1

106 · (
1 − e

− 1
16(d−1)

) · |A∩ Si | 1
2

≥ 1

106 · (
1 − e

− 1
16(d−1)

) · c

2 · 3d−2 · KLs

L0
.

Since all ∂QK,s,0(xs)∩Si
(A∩ Si) are disjoint subsets of ∂QK,s,0(xs)A,

|∂QK,s,0(xs)A| ≥ ∑
i

∣∣∂QK,s,0(xs)∩Si
(A∩ Si)

∣∣
≥ c

2 · 9d−2 ·
(

KLs

L0

)d−2
· 1

106 · (
1 − e

− 1
16(d−1)

) · c

2 · 3d−2 · KLs

L0
(59)

≥ c2

4 · 27d−2 · 106 · (
1 − e

− 1
16(d−1)

) · |A| d−1
d .

This completes the proof of Theorem 5.10 for sets with |A| ≥ c · |QK,s ∩G0|.
Next, we consider the case |A| ≥ (Ls

L0
)d

2
. Let

As = {
x ∈ Gs : A∩ (

x + [0,Ls)
d) �=∅

}
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be the set of bottom-left corners of Ls -boxes which contain a vertex from A. Note
that |As | ≥ |A| · (

L0
Ls

)d . We also define the subset Ãs of As corresponding to the
densely occupied boxes,

Ãs =
{
x ∈ Gs : ∣∣A∩ (

x + [0,Ls)
d)∣∣ ≥ 3

4
·
(

Ls

L0

)d}
.

We consider separately the cases when |Ãs | ≥ 1
2 · |As | and |Ãs | ≤ 1

2 · |As |.
We first consider the case |Ãs | ≥ 1

2 · |As |, that is, the number of densely occupied
boxes is large.

Since 3
4 · (Ls

L0
)d · |Ãs | ≤ |A| ≤ 1

2 · |QK,s ∩G0|,

|Ãs | ≤ 2

3
· |QK,s ∩G0| ·

(
L0

Ls

)d

= 2

3
· ∣∣QK,s(xs) ∩Gs

∣∣.
By applying Lemma 5.1 to Ãs ⊂ QK,s(xs) ∩Gs , we get

(60) |∂QK,s(xs)∩Gs
Ãs | ≥

(
1 −

(
2

3

) 1
d
)

· |Ãs | d−1
d .

Next, we zoom in onto the boundary ∂QK,s(xs)∩Gs
Ãs . Take any pair x ∈ Ãs and

y ∈ (QK,s(xs) ∩Gs) \ Ãs from ∂QK,s(xs)∩Gs
Ãs . Note that

∣∣A∩ (
x + [0,Ls)

d)∣∣ ≥ 3

4
·
(

Ls

L0

)d

and ∣∣A∩ (
y + [0,Ls)

d)∣∣ <
3

4
·
(

Ls

L0

)d

.

Take a box (z + [0,2Ls)
d) in QK,s(xs) ∩ G0 containing both (x + [0,Ls)

d) and
(y +[0,Ls)

d), where z ∈ (QK,s(xs)∩Gs). Note that A occupies a nontrivial frac-
tion of vertices in (z + [0,2Ls)

d). More precisely,

3

2d+2 · ∣∣(z + [0,2Ls)
d) ∩G0

∣∣ ≤ ∣∣A∩ (
z + [0,2Ls)

d)∣∣
≤

(
1 − 1

2d+2

)
· ∣∣(z + [0,2Ls)

d) ∩G0
∣∣.

Moreover, all the vertices in (z + [0,2Ls)
d ∩Gs are s-good. We are in a position

to apply the first part of the theorem to A ∩ (z + [0,2Ls)
d) in (z + [0,2Ls)

d).
Combining the upper bound on |A ∩ (z + [0,2Ls)

d)| with the lower bound on
the volume of the perforation Q2,s,0(z) = QK,s,0(xs) ∩ (z + [0,2Ls)

d) given by
Lemma 2.4 and the second part of the assumption (58), we obtain that∣∣A∩ (

z + [0,2Ls)
d)∣∣ ≤

(
1 − 1

2d+3

)
· ∣∣QK,s,0(xs) ∩ (

z + [0,2Ls)
d)∣∣.
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Therefore, by the first part of the theorem (with c = 3
2d+2 ) applied to the subset

A∩ (z + [0,2Ls)
d) of Q2,s,0(z) and Remark 5.2,∣∣∂QK,s,0(xs)∩(z+[0,2Ls)d)

(
A∩ (

z + [0,2Ls)
d))∣∣

≥ 1

2d+3 · 9

4 · 4d+2 · 27d−2 · 106 · (
1 − e

− 1
16(d−1)

) · ∣∣A∩ (
z + [0,2Ls)

d)∣∣ d−1
d

≥ 3

4
· 9

8d+3 · 27d−2 · 106 · (
1 − e

− 1
16(d−1)

) ·
(

Ls

L0

)d−1
.

This inequality gives us an estimate on the part of the boundary ∂QK,s,0(xs)A
contained in (z + [0,2Ls)

d) for each z ∈ (QK,s(xs) ∩ Gs) such that the cube
(z + [0,2Ls)

d) contains an overcrowded and undercrowded adjacent Ls -boxes
(x + [0,Ls)

d) and (y + [0,Ls)
d) with x ∈ Ãs and y ∈ (QK,s(xs) ∩ Gs) \ Ãs . By

(60), the total number of such z’s is

≥ 1

d2d−1 · |∂QK,s(xs)∩Gs
Ãs | ≥ 1

d2d−1 ·
(

1 −
(

2

3

) 1
d
)

· |Ãs | d−1
d ,

where the factor 1
d2d−1 counts for possible overcounting, since every cube (z +

[0,2Ls)
d), z ∈Gs , contains at most d2d−1 pairs x, y with {x, y} ∈ ∂QK,s(xs)∩Gs

Ãs .
Moreover, every edge from ∂QK,s,0(xs)A belongs to at most 2d cubes (z +

[0,2Ls)
d), z ∈ Gs . Thus,

|∂QK,s,0(xs)A| ≥ 1

2d
· ∑
z∈Gs

∣∣∂QK,s,0(xs)∩(z+[0,2Ls)d)

(
A∩ (

z + [0,2Ls)
d))∣∣.

By putting all the estimates together, we obtain that

|∂QK,s,0(xs)A| ≥ 1

2d
· ∑
z∈Gs

∣∣∂QK,s,0(xs)∩(z+[0,2Ls)d )

(
A∩ (

z + [0,2Ls)
d))∣∣

≥ 1

2d
· 1

d2d−1 ·
(

1 −
(

2

3

) 1
d
)

· |Ãs | d−1
d

(61)

× 3

4
· 9

8d+3 · 27d−2 · 106 · (
1 − e

− 1
16(d−1)

) ·
(

Ls

L0

)d−1

≥ 1

2d · 32d · 27d · 106 ·
(

1 −
(

2

3

) 1
d
)

· (
1 − e

− 1
16(d−1)

) · |A| d−1
d ,

where the last inequality follows from the case assumption |Ãs | ≥ 1
2 · |As | ≥ 1

2 ·
|A| · (L0

Ls
)d .
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It remains to consider the case |Ãs | ≤ 1
2 · |As |. In this case, A is scattered in

QK,s(xs) ∩G0, and should have big boundary. Indeed, for each x ∈As \ Ãs ,

1 ≤ ∣∣A∩ (
x + [0,Ls)

d)∣∣ <
3

4
·
(

Ls

L0

)d

.

By the lower bound on the volume of the perforation Q1,s,0(x) = QK,s,0(xs) ∩
(x + [0,Ls)

d) given in Lemma 2.4 and the second part of (58),

∣∣QK,s,0(xs) ∩ (
x + [0,Ls)

d)∣∣ ≥ 1 − 1
2d+2

1 − 1
2d+3

·
(

Ls

L0

)d

≥ 3

4
·
(

Ls

L0

)d

.

Thus, (x + [0,Ls)
d) contains vertices from both A and QK,s,0(xs) \ A. By

Lemma 2.4, Q1,s,0(x) = QK,s,0(xs) ∩ (x + [0,Ls)
d) is connected in G0, thus it

contains an edge from ∂QK,s,0(xs)A. Since all (x + [0,Ls)
d), x ∈ As \ Ãs are dis-

joint, we conclude that

(62) |∂QK,s,0(xs)A| ≥ |As \ Ãs | ≥ 1

2
· |As | ≥ 1

2
· |A| ·

(
L0

Ls

)d

≥ 1

2
· |A| d−1

d ,

where the last inequality follows from the case assumption.
The proof of Theorem 5.10 in the case |A| ≥ (Ls

L0
)d

2
is complete by (61)

and (62). �

REMARK 5.11. We believe that Theorem 5.10 holds for all A with |A| ≤
1
2 · |QK,s ∩ G0|. With a more involved proof, we can relax the assumption |A| ≥
(Ls

L0
)d

2
of Theorem 5.10 to |A| ≥ (Ls

L0
)2d . Since this does not give us the result for

all A, and the current statement of Theorem 5.10 suffices for the applications in
this paper, we do not include this proof here.

6. Open problems.

1. Consider the random conductance model on the edges of the infinite cluster S∞
with ergodic conductances {ce}e∈S∞ satisfying the moment conditions from [2],
Theorem 1.3: E[cp

e ] < ∞ and E[c−q
e ] < ∞ with p,q ∈ (1,∞] and 1

p
+ 1

q
< 2

d
.

Prove the quenched invariance principle, Harnack inequalities, and the local
central limit theorem. We remark that the quenched invariance principle for
the random conductance model on the infinite cluster of Bernoulli percolation
under the above moment assumptions has been recently proved in [31].

2. The approach of [2] has been extended in [3] to a class of graphs satisfying [3],
Assumption 1.1, which is reminiscent of Definition 4.1, but stronger. The main
difference is that we do not require that an isoperimetric inequality is satisfied
by subsets of a ball, but by those of a local extension of the ball. It would be
interesting to see if the machinery developed in [2, 3] can be applied to the
random conductance model on graphs with all large balls being very regular in
the sense of Definition 4.1.
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3. A classical example of percolation model with correlations is the random clus-
ter model; see, for example, [22]. It is quite a challenging open problem to show
that the supercritical random cluster model satisfies the assumptions S1–S2.

4. As remarked in Section 1.2.2, the vacant set of random interlacements and the
level sets of the Gaussian free field satisfy the assumptions P1–P3 and S2 for
all supercritical parameters and S1 for a non-empty subset of parameters. It
is a difficult open problem to prove that in both models, the assumption S1 is
satisfied for all supercritical parameters.

5. (This question was asked by Jürgen Jost.) The multiscale renormalization ideas
developed in this paper seem to rely strongly on the geometry of the lattice Zd ,
for instance, the connectedness of the set QK,s,0(xs) in Lemma 2.4. Can the
techniques of this paper be extended to (a class of) Cayley graphs of Abelian
groups?

APPENDIX: PROOFS OF THEOREMS 1.16–1.20

In this section, we give proof sketches of Theorems 1.16, 1.17, 1.18, 1.19 and
1.20. Their proofs are straightforward adaptations of main results in [7, 8] from
Bernoulli percolation to our setup.

PROOF OF THEOREM 1.16. The proof is essentially the same as that of [8],
Theorem 6. The only minor care that is required comes from the fact that the bound
(11) is not stretched exponential. Since this fact is used several times, we provide
a general outline of the proof. As in the proof of [8], Theorem 6, by stationarity
P1 and the ergodicity of S∞ with respect to the shift by X1 (see, e.g., [9], Theo-
rem 3.1), it suffices to prove that

Eu[(
p2n(0, x) − p2n−1(X1, x)

)2 · 1x∈S∞
] ≤ C

nd+1 · e−c
d
Zd (0,x)2

n ,

where C and c only depend on d and u. If dZd (0, x) ≥ n
1
2 (logn)

1+
S
2 , where 
S

is defined in (5), then by the general upper bound on the heat kernel (see, e.g., [4],
(1.5)),

Eu[(
p2n(0, x) − p2n−1(X1, x)

)2 · 1x∈S∞
] ≤ C · e−c

d
Zd (0,x)2

n

≤ C′

nd+1 · e−c′ d
Zd (0,x)2

n .

Thus, we can assume that dZd (0, x) ≤ n
1
2 (logn)

1+
S
2 .

Let N = N(ω) = max{Thk(y) : y ∈ BZd (0, n)}. By (11),

Eu[(
p2n(0, x) − p2n−1(X1, x)

)2 · 1x∈S∞ · 1N(ω)≥n

]
≤ Pu[

N(ω) ≥ n
] ≤ Cnd · e−c·(logn)1+
S

≤ C′

nd+1 · e−c′·(logn)1+
S ≤ C′

nd+1 · e−c′ d
Zd (0,x)2

n .
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It remains to bound Eu[(p2n(0, x) − p2n−1(X1, x))2 · 1x∈S∞ · 1N(ω)≤n]. As in [8],
Section 2, define the quenched entropy of the simple random walk on S∞ by Hn =∑

x φ(pS∞,n(0, x)), where φ(0) = 0 and φ(t) = −t log t for t > 0, and the mean
entropy by Hn = Eu[Hn]. By a general argument in the proof of [8], Theorem 6,
the heat kernel upper bound (9) implies that

Eu[(
p2n(0, x) − p2n−1(X1, x)

)2 · 1x∈S∞ · 1N(ω)≤n

]
≤ (Hn − Hn−1) · C

nd
· e−c

d
Zd (0,x)2

n .

The proof of [8], Theorem 6, is completed by showing in [8], Lemma 20, that
Hn − Hn−1 ≤ C

n
. Thus, in order to finish the proof of Theorem 1.16, it suffices

to prove that Hn − Hn−1 ≤ C
n

in our setting, too. This is a simple consequence

of Theorem 1.15. Indeed, by writing Hn as the sums over x with dZd (0, x)
3
2 ≤ n

and dZd (0, x)
3
2 ≥ n, applying (9) and (10) to the summands in the first sum, and

showing smallness of the second sum by using, for instance, the general upper
bound on the heat kernel (see, e.g., [4], (1.5)), we prove that for all n ≥ Thk(0),
Hn = d

2 logn + O(1). For n ≤ Thk(0), we use the crude bound Hn ≤ d log(2n)

(see the proof below [8], (25)). By integrating Hn and using (11), we get that
Hn = d

2 logn + O(1), which implies that Hn − H
n/2� ≤ C for some C. Since
Hn −Hn−1 is decreasing by [8], Corollary 10, we conclude that Hn −Hn−1 ≤ 2C

n
,

completing the proof of Theorem 1.16. �

PROOF OF THEOREM 1.17. The proof of Theorem 1.17 is literally the same
as the proof of [7], Theorem 1.2(a). For the upper bound, one splits the Green func-
tion into the integrals over [0,min{Thk(x), Thk(y)}] and [min{Thk(x), Thk(y)},∞).
Using general bounds on the heat kernel [see [7], (6.4) and (6.5)], one shows that
the first integral is o(dZd (x, y)2−d), and by (9), the second integral is bounded by
CdZd (x, y)2−d . For the lower bound, one estimates the Green function from below
by the integral of heat kernel over [dZd (x, y)2,∞), applies (10), and arrives at the
desired bound. �

PROOF OF THEOREM 1.18. The proof of Theorem 1.18 is identical to the one
of [8], Theorem 5. The constant functions and the projections of x + χ(x) (see
Theorem 1.11(a)) on coordinates of Zd are independent harmonic functions with
at most linear growth. Thus, the dimension of such functions is at least (d + 1).
It remains to show that the above functions form a basis. Let h be a harmonic
function h on S∞ with at most linear growth and h(0) = 0, and assume that it is
extended on Rd (see above [8], Proposition 19). By Theorem 1.13 and the upper
bound on the heat kernel (9), the proof of [8], Proposition 19, goes through without
any changes in our setting, implying that the sequence hn(·) = 1

n
h(n·) is uniformly

bounded and equicontinuous on compacts. Thus, there exists a sequence nk such
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that hnk
converges uniformly on compact sets to a continuous function h̃. By using

the quenched invariance principle of Theorem 1.11, one obtains by repeating the
proof of [8], Theorem 5, that h̃ is harmonic in Rd . Since h̃ has at most linear growth
and h̃(0) = 0, it is linear. Therefore, the function f (x) = h(x) − h̃(x + χ(x)) is
harmonic on S∞ and for every ε > 0 and all large enough k, |f (x)| ≤ εnk for
all x ∈ BS∞(0, nk/ε). By (9), ES∞,0[f (Xn2

k
)2] ≤ εn2

k for all large k. The proof
of [8], Theorem 5, is finished by applying [8], Corollary 21, which states that
f must be constant. The proof of [8], Corollary 21, is rather general and only
uses the fact that the mean entropy Hn (see the proof of Theorem 1.16) satisfies
Hn−Hn−1 ≤ C

n
. We already proved this bound in the proof of Theorem 1.16. Thus,

[8], Corollary 21, holds in our setting, and we conclude that f must be constant.
The proof is complete. �

PROOF OF THEOREM 1.19. Theorem 1.19 was proved in the case of super-
critical Bernoulli percolation in [7], Theorem 1.1, by first providing general as-
sumptions [7], Assumption 4.4, for the local limit theorem on infinite subgraphs
of Zd (see [7], Theorems 4.5 and 4.6), and then verifying these assumptions for
the infinite cluster of Bernoulli percolation. [7], Assumption 4.4, is tailored for
random subgraphs of Zd with laws invariant under reflections with respect to co-
ordinate axes and rotations by π

2 . These assumptions only simplify the expression
for the heat kernel of the limiting Brownian motion, and can be naturally extended
to the case without such symmetries.

We only consider the case of discrete time random walk (the continuous time
case is the same). As in [7], Theorem 4.5, to prove Theorem 1.19 it suffices to
show that there exist an event �′ ∈ F with Pu[�′] = 1, positive constants δ, Ci ,
and CH , and a covariance matrix 
, such that for all ω ∈ �′ ∩ {0 ∈ S∞}:
(a) for any y ∈ Rd and r > 0, as n → ∞, PS∞,0[B̃n(t) ∈ (y +[−r, r]d)] converges

to
∫
y+[−r,r]d k
,t (y

′) dy′ uniformly over compact subsets of (0,∞) (B̃n(t) is
as in (7)),

(b) there exists T1 = T1(ω) < ∞ such that for all n ≥ T1 and x ∈ S∞, pn(0, x) ≤
C1 · n− d

2 · e−C2· dS∞ (0,x)2

n ,
(c) for each y ∈ S∞, there exists RH(y) = RH(y,ω) < ∞ such that the parabolic

Harnack inequality holds with constant CH in (0,R2] × BS∞(y,R) for all
R ≥ RH(y),

(d) for h(r) = max{r ′ : ∃y ∈ [−r, r]d such that S∞ ∩ (y + [−r ′, r ′]d) = ∅}, the
ratio h(r)

r
tends to 0 as r → ∞,

(e) for any x ∈ Zd and r > 0, limn→∞ μ(S∞∩(
√

nx+[−√
nr,

√
nr]d ))

(2
√

nr)d
= Eu[μ0 ·

10∈S∞],
(f) for each x ∈ Zd and r > 0, there exists T2(x) = T2(x,ω) < ∞ such that

for all n ≥ T2, and x′, y′ ∈ S∞ ∩ (
√

nx + [−√
nr,

√
nr]d), dS∞(x′, y′) ≤

C3 · max{dZd (x′, y′), n 1
2 −δ},
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(g) for x ∈ Zd and RH as in (c), limn→∞ n− 1
2 RH(gn(x)) = 0.

It is easy to see that the above assumptions are satisfied in our setting:

(a) follows from Theorem 1.11,
(b) follows from (9),
(c) follows from Theorems 1.5 and 1.13,
(d) follows from stationarity, (6), and the Borel–Cantelli lemma,
(e) follows from a spatial ergodic theorem [23], Theorem 2.8 in Chapter 6, since

the sequence of boxes (
√

nx + [−√
nr,

√
nr]d)n≥1 is regular in the sense of

[23], Definition 2.4 in Chapter 6 (see [3], Lemma 5.1),
(f) follows from Theorem 1.10,
(g) follows from (8), Theorem 1.5, and the Borel–Cantelli lemma.

The proof of Theorem 1.19 is complete. �

PROOF OF THEOREM 1.20. Statement (a) follows from Theorem 1.19 and
(9) by repeating the proof of [7], Theorem 1.2(b), without any changes. For the
statement (c) we use bounds [7], (6.30) and (6.31), and (11), to get

(1 − ε)G
(x)

m
Pu[

M ≤ |x||0 ∈ S∞
]

≤ Eu[
gS∞(0, x)|0 ∈ S∞

]
≤ (1 + ε)G
(x)

m
+ C′Pu[M > |x||0 ∈ S∞]

|x|d−2

+ C′(Eu[
gS∞(0, x)2|0 ∈ S∞

]) 1
2 · e−c′(log |x|)1+
S

,

where M is defined in the statement of Theorem 1.20. As in [7], (6.17), by (9),

gS∞(0, x) ≤ gS∞(0,0) ≤ T0(0) +
∫ ∞
T0(0)

C′t−
d
2 dt ≤ (

1 + 2C′)T0(0).

Combining this bound with (11), we obtain that Eu[gS∞(0, x)2|0 ∈ S∞] < C′′. Let
x = ky. Since G
(ky) = k2−dG
(y), by taking limits k → ∞ and then ε → 0, we
compete the proof of statement (c). �
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