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REGULARITY OF WIENER FUNCTIONALS UNDER
A HÖRMANDER TYPE CONDITION OF ORDER ONE

BY VLAD BALLY AND LUCIA CARAMELLINO

Université Paris-Est and Università di Roma Tor Vergata

We study the local existence and regularity of the density of the law of a
functional on the Wiener space which satisfies a criterion that generalizes the
Hörmander condition of order one (i.e., involving the first-order Lie brackets)
for diffusion processes.

1. Introduction. Hörmander’s theorem gives sufficient nondegeneracy as-
sumptions under which the law of a diffusion process is absolutely continuous
with respect to the Lebesgue measure and has a smooth density. This condition
involves the coefficients of the diffusion process as well as the Lie brackets up
to an arbitrary order. The aim of this paper is to give a partial generalization of
this result to general functionals on the Wiener space. We give in this framework
a condition corresponding to the first-order Hörmander condition—we mean the
condition which says that the coefficients and the first Lie brackets span the space.
Roughly speaking, our regularity criterion is as follows. Let F = (F 1, . . . ,F n) be
a n-dimensional functional on the Wiener space associated to a Brownian motion
W = (W 1, . . . ,Wd). We denote by Di the Malliavin derivative with respect to Wi ,
so DiF = (DiF 1, . . . ,DiF n), i = 1, . . . , d . For some T > 0, we define

(1.1) λ(T ) = inf
ξ∈Rn:|ξ |=1

(
d∑

i=1

〈
Di

T F, ξ
〉2 +

d∑
i,j=1

〈
Di

T D
j
T F − D

j
T Di

T F, ξ
〉2)

,

in which 〈·, ·〉 denotes the standard inner product in Rn. We fix x and we suppose
that there exist r, λ > 0 such that

(1.2) 1{|F−x|≤r}
(
λ(T ) − λ

) ≥ 0 a.s.

Notice that, since s �→ Di
sF is defined as an element of L2([0, T ]), the quantity

Di
T F in (1.1) is not well defined. So, we will replace it by

1

δ

∫ T

T −δ
ET ,δ

(
Di

sF
)
ds

for small values of δ, where ET ,δ denotes a suitable conditional expectation [see
(2.3) for details]. Then we actually replace (1.2) with an asymptotic variant; see
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next Remark 2.2 for a discussion on the connection between the intuitive request
(1.2) and the formal hypothesis allowing to state the main result of the paper (The-
orem 2.1).

So, we assume that F is five times differentiable in Malliavin sense (actually in a
slightly stronger sense) and that the nondegeneracy condition (1.2) holds for some
T > 0. Then we prove that the restriction of the law of F to Br/2(x) is absolutely
continuous and has a smooth density.

Hypothesis (1.2) represents our nondegeneracy assumption. In the classical
case, when F = Xt is the solution of some stochastic equation, (1.2) is strongly
related to the Hörmander condition of order one, which requires the positivity of
the lower eigenvalue of the quadratic form associated to the diffusion vector fields
and to the first-order Lie brackets at x. This connection is discussed in the appli-
cation developed in Section 3. Notice that the standard Hörmander condition is a
deterministic one [there, λ(T ) plays the role of the lower eigenvalue, which is a
number], while in our general framework λ(T ) is a random variable. This leads us
to express our assumption as in (1.2): λ(T ) > λ > 0 almost surely, at least locally
on the set |F − x| ≤ r .

The analysis of the Malliavin covariance matrix under the nondegeneracy hy-
pothesis (1.2) is based on an estimate concerning the variance of the Brownian
path. This is done by using its Laplace transform, which has been studied by
Donati-Martin and Yor [4]. We employ also another important argument, which
is the regularity criterion for the law of a random variable given in [2]: it allows
one to use integration by parts formulas in an “asymptotic way”.

The main result is Theorem 2.1, and Section 2 is devoted to its proof, for which
we use results on the variance of the Brownian path which are postponed to Ap-
pendix A. In Section 3, we illustrate the result with an example from diffusion
processes with coefficients which may depend on the path of the process.

To the best of our knowledge, there are not many results concerning general
vectors on the Wiener space—except of course the celebrated criterion given by
Malliavin and the Bouleau Hirsh criterion for the absolute continuity. Another cri-
terion proved by Kusuoka in [6] and further generalized by Nourdin and Poly [10]
and Nualart, Nourdin and Poly [9] concerns vectors living in a finite number of
chaoses. All these criterions suppose that the determinant of the Malliavin covari-
ance matrix is nonnull in a more or less strong sense—but give no hint about the
possible analysis of this condition. This remains to be checked using ad hoc meth-
ods in each particular example. So the main progress in our paper is to give a rather
general condition under which the above mentioned determinant behaves well.

2. Existence and smoothness of the local density. Let us recall some no-
tation from Malliavin calculus (we refer to Nualart [11] or Ikeda and Watanabe
[5]). We work on a probability space (�,F,P ) with a d-dimensional Brownian
motion W = (W 1, . . . ,Wd) and we denote by Ft the standard filtration associ-
ated to W . We fix a time-horizon T0 > 0 and we denote by Dk,p the space of
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the functionals on the Wiener space which are k times differentiable in Lp in
Malliavin sense on the time interval [0, T0] and we put Dk,∞ = ⋂

p≥1 D
k,p . For a

multi-index α = (α1, . . . , αk) ∈ {1, . . . , d}k and a functional F ∈ Dk,p , we denote
DαF = (Dα

s1,...,sk
F )s1,...,sk∈[0,T0] with Dα

s1,...,sk
F = D

αk
sk · · ·Dα1

s1 F . Moreover, for
|α| = k we define the norms∣∣DαF

∣∣p
Lp[0,T0]k :=

∫
[0,T0]k

∣∣Dα
s1,...,sk

F
∣∣p ds1, . . . , dsk and

(2.1)

‖F‖k,p = ‖F‖p +
k∑

r=1

∑
|α|=r

E
(∣∣DαF

∣∣p
L2[0,T0]r

)1/p
.

If F = (F 1, . . . ,F n), we set∣∣DαF
∣∣p
Lp[0,T0]k =

n∑
i=1

∣∣DαF i
∣∣p
Lp[0,T0]k and ‖F‖k,p =

n∑
i=1

∥∥F i
∥∥
k,p.

Moreover, we will use the following seminorms:

�F �k,p,q =
k∑

r=3

∑
|α|=r

E
(∣∣DαF

∣∣p
Lq [0,T0]r

)1/p

=
k∑

r=3

∑
|α|=r

E

((∫
[0,T0]r

∣∣Dα
s1,...,sk

F
∣∣q ds1 . . . dsr

)p/q)1/p

.

Notice that � · �k,p,q does not take into account ‖F‖p and the norm of the first
two derivatives. Moreover, for q = 2 we find out the usual norms but if q > 2 the
control given by �F �k,q,p (on the derivatives of order larger or equal to three) is
stronger than the one given by ‖F‖k,p . We define the spaces

Dk,p = {
F : ‖F‖k,p < ∞}

, Dk,p,q = Dk,p ∩ {
F : �F �k,p,q < ∞}

.

Clearly, Dk,p,q ⊂ Dk,p for q > 2 and for q = 2 we have equality. We also denote

Dk,∞ = ⋂
p≥1

Dk,p, Dk,∞,q = ⋂
p≥1

Dk,p,q,

(2.2)
Dk,∞,∞ = ⋂

p≥1

⋂
q≥2

Dk,p,q .

For s < t , we denote

F t
s = Fs ∨ σ(Wu − Wt,u ≥ t) = σ(Wv, v ≤ s) ∨ σ(Wu − Wt,u ≥ t).

Now, for a fixed instant T ∈ (0, T0], we denote by ET ,δ the conditional expectation
with respect to FT

T −δ , that is,

(2.3) ET ,δ(�) = E
(
� | FT

T −δ

)
.
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We will use the following slight extension of the Clark–Ocone formula: for F ∈
D1,2 and for 0 ≤ δ < T one has

(2.4) F = ET ,δ(F ) +
d∑

i=1

∫ T

T −δ
ET ,T −s

(
Di

sF
)
dWi

s .

(2.4) is immediate for simple functionals, and then can be straightforwardly gen-
eralized to functionals in D1,2.

For δ ∈ (0, T ), we consider a family of random vectors

a(T , δ) = (
ai(T , δ), ak,j (T , δ)

)
i,k,j=1,...,d

and we assume that a(T , δ) is FT
T −δ measurable. We denote

[a]i,j (T , δ) = ai,j (T , δ) − aj,i(T , δ),

a(T , δ) =
(

d∑
i=1

∣∣ai(T , δ)
∣∣2 +

d∑
i,j=1

∣∣ai,j (T , δ)
∣∣2)1/2

,

λ(T , δ) = inf|ξ |=1

( d∑
i=1

〈
ai(T , δ), ξ

〉2 +
d∑

i,j=1

〈[a]i,j (T , δ), ξ
〉2)

.

(2.5)

For p ≥ 1, α > 0,0 < δ < T , we define

εα,p,T ,δ(a,F )

:=
d∑

i=1

(
E

((
1

δ

∫ T

T −δ

∣∣∣∣ET ,δ(D
i
sF ) − ai(T , δ)

δ
1
2 +α

∣∣∣∣2 ds

)p))1/2p

+
d∑

i,j=1

(
1

δ2

×
∫ T

T −δ

∫ s1

T −δ
E

(∣∣∣∣ET ,δ(D
j
s2D

i
s1

F) − ai,j (T , δ)

δα/2

∣∣∣∣2p)
ds1 ds2

)1/2p

.

(2.6)

Our main result is the following.

THEOREM 2.1. Let F = (F 1, . . . ,F n) be FT0-measurable with F i ∈ D2,∞,
i = 1, . . . , n. We fix y ∈ Rn and r > 0 and we suppose that there exists α,λ∗ > 0,
γ ∈ [0, 1

2), T ∈ (0, T0] and a family a(T , δ) = (ai(T , δ), ai,j (T , δ))i,j=1,...,d , of
FT

T −δ measurable vectors such that for every p ≥ 1

(i) lim sup
δ→0

εα,p,T ,δ(a,F ) < ∞,

(ii) lim sup
δ→0

δpγE
(
ap(T , δ)

)
< ∞,(2.7)

(iii) lim sup
δ→0

δ−pP
({|F − y| ≤ r

} ∩ {
λ(T , δ) < λ∗

})
< ∞.
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Then the following statements hold.

A. Suppose that F i ∈ ⋃
p>6 D

5,∞,p, i = 1, . . . , n. Then the law of F on Br/2(y) :=
{x : |x − y| < r/2} is absolutely continuous with respect to the Lebesgue mea-
sure. We denote by pF the density of the law.

B. Suppose that for some k ≥ 5 one has F i ∈ Dk,∞,∞, i = 1, . . . , n. Then

pF ∈ ⋂
p≥1

Wk−5,p(
Br/2(y)

)
.

REMARK 2.2. Morally, Di
T F ∼ 1

δ

∫ T
T −δ ET ,δ(D

i
sF )ds. Then condition (i) in

(2.7) says that we may replace Di
T F by ai(T , δ), and we have a precise control

of the error. The same for Di
T D

j
T F , which is replaced by ai,j (T , δ), so (i) in (2.7)

gives Di
T D

j
T F −D

j
T Di

T F ∼ [a]i,j (T , δ). It follows that the lower eigenvalue λ(T )

defined in (1.1) is close to the lower eigenvalue λ(T , δ) of the quadratic form asso-
ciated to a(T , δ). Therefore, the asymptotic non-degeneracy condition (iii) in (2.7)
written in terms of λ(T , δ) gives the formal statement of the intuitive nondegener-
acy request (1.2) involving λ(T ).

REMARK 2.3. Notice that we may ask the nondegeneracy condition (iii) in
(2.7) to hold in any intermediary time T ∈ (0, T0] and not only for T = T0 (we
thank to E. Pardoux for a remark in this sense).

The proof is postponed to Section 2.4. We first need to state some preliminary
results.

2.1. A short discussion on the proof of Theorem 2.1. Let us give the main ideas
and the strategy we are going to use to prove Theorem 2.1.

We will focus on the law of F under PU where U is a localization random
variable for the set {|F − y| ≤ r}. We want to prove that this law is absolutely
continuous with respect to the Lebesgue measure—this implies that the law of F

restricted to {|F − y| ≤ r} is absolutely continuous (and this is our aim). In order
to do it, we proceed as follows: for each δ > 0 we construct some localization
random variables Uδ in such a way that on the set {Uδ �= 0} the random variable
F has nice properties—this means that we may control the Malliavin derivatives
and the Malliavin covariance matrix of F on the set {Uδ �= 0}. This allows us to
build integration by parts formulas for F under PUδ . The Lp norms of the weights
which appear in these integration by parts formulas blow up as δ → 0 but we have
a sufficiently precise control of the rate of the blow up. On the other hand, we will
estimate the total variation distance between the law of F under PU and under PUδ .
We prove that this distance goes to zero as δ → 0 and we obtain sufficiently precise
estimates of the rate of convergence. Then we use Theorem 2.13 in [2], that we
recall here in next Theorem 2.10, which guarantees that if one may achieve a good
equilibrium between the rate of the blow up and the rate of convergence to zero,
then one obtains a density for the limit law.
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It is worth stressing that the strategy employed here is slightly different from the
usual one. In fact, in the next (2.8) we decompose F as F = ET ,δ(F ) + Zδ(a) +
Rδ and one would expect that we approximate F by ET ,δ(F ) + Zδ(a). But we
do not proceed in this way. We keep all the time the same random variable F

(which includes Rδ) but we change the probability measure under which we work
in order to have a good localization: we replace PU by PUδ . The decomposition
F = ET ,δ(F ) + Zδ(a) + Rδ is not used in order to produce the approximation
ET ,δ(F ) + Zδ(a) but just to analyze the properties for F itself under different
localizations given in PUδ . As we will see soon, such a decomposition appears as
a Taylor expansion of order one in which Zδ(a) represents the principal term and
Rδ is a reminder in the sense that it is small on the set {Uδ �= 0}.

2.2. Preliminary results. Let F ∈ D4,2. Using twice Clark–Ocone formula
(2.4), we obtain

(2.8) F −ET ,δ(F ) = Zδ(a) + Rδ(F )

with

Zδ(a) =
d∑

i=1

ai(T , δ)
(
Wi

T − Wi
T −δ

)
(2.9)

+
d∑

i,j=1

ai,j (T , δ)

∫ T

T −δ

(
Wi

s − Wi
T −δ

)
dWj

s

and Rδ(F ) = R′
δ(F ) + R′′

δ (F ) with

R′
δ(F ) =

d∑
i=1

∫ T

T −δ

(
ET ,δ

(
Di

sF
) − ai(T , δ)

)
dWi

s

+
d∑

i,j=1

∫ T

T −δ

∫ s1

T −δ

(
ET ,δ

(
Dj

s2
Di

s1
F

) − ai,j (T , δ)
)
dWj

s2
dWi

s1
,

R′′
δ (F ) =

d∑
i,j,k=1

∫ T

T −δ

∫ s1

T −δ

∫ s2

T −δ
ET ,T −s3

(
Dk

s3
Dj

s2
Di

s1
F

)
dWk

s3
dWj

s2
dWi

s1
.

(2.10)

Since T and δ are fixed, we will use in the following shorter notation:

ai = ai(T , δ), ai,j = ai,j (T , δ), a = a(T , δ).

We will use the Malliavin calculus restricted to Ws , s ∈ [T −δ, T ]. Straightforward
computations give

Dj
s Zδ(a) = aj + ∑

i �=j

[a]i,j (
Wi

s − Wi
T −δ

) + rj ,

(2.11)
with rj = ∑d

i=1 ai,j

(
Wi

T − Wi
T −δ

)
.
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We denote

q1(W) = |WT − WT −δ|, q2(W) = 1

δ

∫ T

T −δ
|Ws − WT −δ|2 ds,

Gδ =
∫ T

T −δ
|DsRδ|2 ds

(2.12)

and we define

�T,δ =
{
q1(W) ≤ 1

8a

√
λ∗
d

}
∩ {

q2(W) ≤ 1
}

(2.13)

∩
{
Gδ ≤ λ∗

34
δ2

}
∩ {

λ(T , δ) ≥ λ∗
}
.

We set σF,T ,δ as the Malliavin covariance matrix of F associated to the Malliavin
derivatives restricted to Ws , s ∈ [T − δ, T ], that is,

(2.14) σ
i,j
F = σ

i,j
F,T ,δ =

∫ T

T −δ

〈
DsF

i,DsF
j 〉

ds, i, j = 1, . . . , n.

The main step of the proof is the following estimate. It is based on an analysis of
the variance of the Brownian path, which is done in Appendix A.

LEMMA 2.4. Let F = (F 1, . . . ,F n) with F i ∈ D4,2. Let 0 ≤ δ < T be fixed
and ET ,δ be defined in (2.3). Then for every p ≥ 1

(2.15) ET ,δ

(
1�T,δ

(detσF,T ,δ)
−p) ≤ Cn,p

λ
pn∗ δ2pn

with

Cn,p = 2�(p)

∫
Rn

|ξ |n(2p−1)e− 1
34 |ξ |2 dξ.

PROOF. By using Lemma 7-29, page 92 in [3], for every n × n dimensional
and nonnegative defined matrix σ , one has

(detσ)−p ≤ �(p)

∫
|ξ |n(2p−1)e−〈σξ,ξ 〉 dξ,

so that

ET ,δ

(
(detσF )−p1�T,δ

) ≤ �(p)

∫
|ξ |n(2p−1)ET ,δ

(
1�T,δ

e−〈σF ξ,ξ 〉)dξ.

Since �T,δ ⊂ {Gδ ≤ λ∗
34δ2}, we have

〈σF ξ, ξ〉 ≥ 1

2
〈σZδ(a)ξ, ξ〉 − 〈Gδξ, ξ〉 ≥ 1

2
〈σZδ(a)ξ, ξ〉 − Gδ|ξ |2

≥ 1

2
〈σZδ(a)ξ, ξ〉 − λ∗

34
δ2|ξ |2
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so that

ET ,δ

(
(detσF )−p1�T,δ

) ≤ �(p)

∫
|ξ |n(2p−1)e

λ∗
34 δ2|ξ |2ET ,δ

(
1�T,δ

e−〈σZδ(a)ξ,ξ 〉)dξ.

We fix ξ ∈ Rn and we choose j = j (ξ) such that

〈aj , ξ〉2 + ∑
i �=j

〈[a]i,j , ξ 〉2 ≥ λ∗
d

|ξ |2.

This is possible because we are on the set �T,δ ⊂ {λ(T , δ) ≥ λ∗}. Then by (2.11)

〈σZδ(a)ξ, ξ〉 =
∫ T

T −δ

〈
Dj

s Zδ(a), ξ
〉2

ds

=
∫ T

T −δ

(
〈aj , ξ〉 + 〈rj , ξ〉 + ∑

i �=j

〈[a]i,j , ξ 〉(
Wi

s − Wi
T −δ

))2
ds.

We define

β2
j (ξ) = ∑

i �=j

〈[a]i,j , ξ 〉2
and for β2

j (ξ) > 0,

bs(j, ξ) = 1

βj (ξ)

∑
i �=j

〈[a]i,j , ξ 〉(
Wi

T −δ+s − Wi
T −δ

)
.

Notice that b(j, ξ) is a Brownian motion under PT ,δ . We also set bs(j, ξ) = 0 in
the case β2

j (ξ) = 0. Then the previous equality reads

〈σZδ(a)ξ, ξ〉 =
∫ δ

0

(〈aj , ξ〉 + 〈rj , ξ〉 + βj (ξ)bs(j, ξ)
)2

ds.

We use now Lemma A.1 in Appendix A with α = 〈aj , ξ〉, β = βj (ξ), r = 〈rj , ξ〉
and bs = bs(j, ξ). We have to check that the assumptions there are verified. Using
the Cauchy–Schwarz inequality, we obtain

1

δ

∣∣∣∣∫ δ

0
bs(j, ξ) ds

∣∣∣∣ ≤
(

1

δ

∫ δ

0

∣∣bs(ξ)
∣∣2 ds

)1/2

≤
(

1

δ

∫ δ

0
|WT −δ+s − WT −δ|2 ds

)1/2
=

√
q2(W) ≤ 1.

Moreover, since α2 + β2 ≥ λ∗
d

|ξ |2 we have

|r|2 ≤ |rj |2|ξ |2 ≤ da2q2
1 (W)|ξ |2 ≤ 1

64

λ∗
d

|ξ |2 ≤ 1

64

(
α2 + β2)

.

So the hypothesis are verified: by using (A.3) we obtain

ET ,δ

(
1�T,δ

e−〈σZδ(a)ξ,ξ 〉) ≤ 2e− δ2
17 (|α|2+|β|2) ≤ 2e− δ2λ∗

17d
|ξ |2 .
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We come back and we obtain

ET ,δ

(
(detσF )−p1�T,δ

) ≤ 2�(p)

∫
|ξ |n(2p−1)e

λ∗
34d

δ2|ξ |2e− δ2λ∗
17d

|ξ |2 dξ

= 2�(p)

∫
|ξ |n(2p−1)e− δ2λ∗

34 |ξ |2 dξ = Cn,p

λ
pn∗ δ2pn

,

where the last equality easily follows by a change of variable. �

We also need the following estimate.

LEMMA 2.5. Suppose that (2.7)(i) holds and let Gδ be defined as in (2.12).

A. If F i ∈ ⋃
p>6 D

4,∞,p, i = 1, . . . , n, there exists ε > 0 such that

(2.16) lim sup
δ→0

δ−εP
(
Gδ ≥ δ2)

< ∞.

B. If F i ∈ D4,∞,∞, i = 1, . . . , n then (2.16) holds for every ε > 0.

PROOF. A. Let F ∈ (D4,∞,p)n for some p > 6. We recall that R′
δ and

R′′
δ are defined in (2.10). We write R′

δ(F ) = ∑d
i=1 ri

δ + ∑d
i,j=1 r

i,j
δ and R′′

δ =∑d
i,j,k=1 r

i,j,k
δ , with

ri
δ =

∫ T

T −δ

(
ET ,δ

(
Di

sF
) − ai(T , δ)

)
dWi

s ,

r
i,j
δ =

∫ T

T −δ

∫ s1

T −δ

(
ET ,δ

(
Dj

s2
Di

s1
F

) − ai,j (T , δ)
)
dWj

s2
dWi

s1
,

r
i,j,k
δ =

∫ T

T −δ

∫ s1

T −δ

∫ s2

T −δ
ET ,T −s3

(
Dk

s3
Dj

s2
Di

s1
F

)
dWk

s3
dWj

s2
dWi

s1
.

Step 1. We estimate Gi
δ = ∫ T

T −δ |Di
sr

i
δ|2 ds. For s ∈ [T − δ, T ] we have Di

sr
i
δ =

ET ,δ(D
i
sF ) − ai(T , δ) so

Gi
δ =

∫ T

T −δ

∣∣ET ,δ

(
Di

sF
) − ai(T , δ)

∣∣2 ds.

It follows that
1

δε
P

(
Gi

δ ≥ δ2) ≤ 1

δε
δ−2p

∥∥Gi
δ

∥∥p
p

= 1

δε
E

(∣∣∣∣δ−1
∫ T

T −δ

∣∣∣∣ET ,δ(D
i
sF ) − ai(T , δ)

δ1/2

∣∣∣∣2 ds

∣∣∣∣p)
≤ 1

δε
× δ2αpε

2p
α,p,T ,δ(a,F )

and consequently, by our hypothesis (2.7) (i), this term satisfies (2.16) for every
ε > 0 (it suffices to take p sufficiently large).
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Step 2. We estimate G
i,j
δ = ∑d

�=1
∫ T
T −δ |D�

s r
i,j
δ |2 ds. We have

D�
s r

i,j
δ = 1i=�

∫ s

T −δ

(
ET ,δ

(
Dj

s2
Di

sF
) − ai,j (T , δ)

)
dWj

s2

+ 1j=�

∫ T

s

(
ET ,δ

(
Dp

s Di
s1

F
) − ai,p(T , δ)

)
dWi

s1

=: 1i=�u
i,j
s + 1j=�v

i,j
s .

We have

E

(∣∣∣∣∫ T

T −δ

∣∣ui,j
s

∣∣2 ds

∣∣∣∣p)

≤ δp−1
∫ T

T −δ
E

(∣∣ui,j
s

∣∣2p)
ds

≤ Cδp−1
∫ T

T −δ
E

(∣∣∣∣∫ s

T −δ

(
ET ,δ

(
Dj

s2
Di

sF
) − ai,j (T , δ)

)2
ds2

∣∣∣∣p)
ds

≤ Cδ2p−2
∫ T

T −δ

∫ s

T −δ
E

(∣∣ET ,δ

(
Dj

s2
Di

sF
) − ai,j (T , δ)

∣∣2p)
ds2 ds

= Cδ2p+αp 1

δ2

∫ T

T −δ

∫ T

T −δ
E

(∣∣∣∣ET ,δ(D
j
s2D

i
s1

F) − ai,j (T , δ)

δα/2

∣∣∣∣2p)
ds1 ds2

≤ Cδ2p+αpε
2p
α,p,T ,δ(a,F ).

Using Chebyshev inequality, we obtain

P

(∫ T

T −δ

∣∣ui,j
s

∣∣2 ds ≥ δ2
)

≤ Cδ−2pδ2p+αpε
2p
α,p,T ,δ(a,F ) = Cδαpε

2p
α,p,T ,δ(a,F )

which by (2.7)(i), satisfies (2.16) for every ε > 0. For v
i,j
s , the argument is the

same.
Step 3. We estimate G

i,j,k
δ = ∑d

�=1
∫ T
T −δ |D�

s r
i,j,k
δ |2 ds. We have

D�
s r

i,j,k
δ = 1i=�

∫ s

T −δ

∫ s2

T −δ
ET ,T −s3

(
Dk

s3
Dj

s2
Di

sF
)
dWk

s3
dWj

s2

+ 1j=�

∫ T

T −δ

∫ s2

T −δ
1s<s1ET ,T −s3

(
Dk

s3
Dj

s Di
s1

F
)
dWk

s3
dWi

s1

+ 1k=�

∫ T

T −δ

∫ s1

T −δ
1s<s2ET ,T −s

(
Dk

s D
j
s2

Di
s1

F
)
dWj

s2
dWi

s1

+
∫ T

T −δ

∫ s1

T −δ

∫ s2

T −δ
1s<s3D

�
sET ,T −s3

(
Dk

s3
Dj

s2
Di

s1
F

)
dWk

s3
dWj

s2
dWi

s1

=: 1i=�u
i,j,k
s + 1j=�v

i,j,k
s + 1k=�w

i,j,k
s + zi,j,k,�

s .
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By using Hölder’s and Burkholder’s inequalities as in step 1, one obtains

E

(∣∣∣∣∫ T

T −δ

∣∣ui,j,k
s

∣∣2 ds

∣∣∣∣p)

≤ δ3p−3
∫ T

T −δ

∫ T

T −δ

∫ T

T −δ
E

(∣∣Dk
s3

Dj
s2

Di
sF

∣∣2p)
ds3 ds2 ds

≤ δ3p−3�F �
2p
3,2p,2p.

An identical bound holds for E(| ∫ T
T −δ |vi,j,k

s |2 ds|p) and E(| ∫ T
T −δ |wi,j,k

s |2 ds|p).
As for zi,j,k,�, one more further integral appears, so we get

E

(∣∣∣∣∫ T

T −δ

∣∣∣∣zi,j,k,�
s

∣∣2 ds
∣∣p)

≤ δ4p−4�F �
2p
4,2p,2p.

By summarizing, we get

E

(∣∣∣∣∫ T

T −δ

∣∣DsR
′′
δ

∣∣2 ds

∣∣∣∣p)
≤ δ3p−3�F �

2p
4,2p,2p

so that for every p > 1

P

(∫ T

T −δ

∣∣D�
sR

′′
δ

∣∣2 ds ≥ δ2
)

≤ Cδ−2pδ3p−3�F �
2p
4,2p,2p = Cδp−3�F �

2p
4,2p,2p.

Suppose first that F i ∈ ⋃
p>6 D

4,∞,p . Then we may find p > 3 such that
�F �4,2p,2p < ∞, and consequently the above quantity is upper bounded by

Cδp−3. This means that (2.16) holds for ε < p − 3. If F i ∈ D4,∞,∞ then we
may take p arbitrary large and so we obtain (2.16) for every ε > 0. �

We will also need the following property for Gδ .

LEMMA 2.6. If F ∈ Dk+1,2p then

‖Gδ‖k,p ≤ C
(‖F‖2

k+1,2p + δ
∥∥a(T , δ)

∥∥2
4p

)
,

where C denotes a constant depending on k,p, d only.

PROOF. For G ∈ (Dk,p)n, we set |D(k)G| = ∑k
�=0

∑
|γ |=� |Dγ G|2, where, for

|γ | = �, ∣∣Dγ G
∣∣2 =

∫
[0,T ]�

∣∣Dγ
s1···s�G

∣∣2 ds1 · · ·ds�,

that is, |Dγ G| is the one given in (2.2) with p = 2. Here, the case |γ | = 0, that is
γ =∅, reduces to the original random variable: D∅G = G and |D(0)G| = |G|.

In the following, we let C denote a positive constant, independent of δ and the
random variables we are going to write. And we let C vary from line to line.
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We take Gδ = ∫ T
t−δ |DsRδ|2 ds and we first prove the following (deterministic)

estimate: there exists a constant C depending on k and d such that

(2.17)
∣∣D(k)Gδ

∣∣ ≤ C
∣∣D(k+1)Rδ

∣∣2.
For k = 0, this is trivial. Consider k = 1. One has

Di
uGδ =

d∑
�=1

∫ T

t−δ
2D�

sRδD
i
uD

�
sRδ ds,

so, by using the Cauchy–Schwarz inequality, we get

|DGδ|2 ≤ 4
d∑

i,�=1

∫ T

T −δ

∣∣∣∣∫ T

T −δ
2D�

sRδD
i
uD

�
sRδ ds

∣∣∣∣2 du

≤ 4
d∑

i,�=1

∫ T

T −δ
du

∫ T

T −δ
2
∣∣D�

sRδ

∣∣2 ds

∫ T

T −δ
2
∣∣Di

uD
�
sRδ

∣∣2 ds

≤ C
∣∣D(1)Rδ

∣∣2∣∣D(2)Rδ

∣∣2 ≤ C
∣∣D(2)Rδ

∣∣4
and (2.17) holds for k = 1. For k ≥ 2, we use the following straightforward for-
mula: if α denotes a multi-index of length k, then

DαGδ =
d∑

�=1

∫ T

T −δ

(
2D�

sRδD
αRδ + ∑

β∈Pα

DβD�
sRδD

α\βD�
sRδ

)
ds,

where Pα is the set of the nonempty multi-indeces β which are a subset of α and
α \ β stands for the multi-index of length |α| − |β| given by eliminating from α

the entries of β . By using the above formula and the Cauchy–Schwarz inequality,
one easily gets∫

[T −δ,T ]k
∣∣Dα

s1,...,sk
Gδ

∣∣2 ds1 · · ·dsk

≤ C

(∣∣D(1)Rδ

∣∣2∣∣D(k)Rδ

∣∣2 +
k∑

r=1

∣∣D(r+1)Rδ

∣∣2∣∣D(k−r+1)Rδ

∣∣2)

≤ C
∣∣D(k+1)Rδ

∣∣4
and (2.17) follows. Passing to expectation in (2.17), it follows that

‖Gδ‖k,p ≤ C‖Rδ‖2
k+1,2p

and by recalling that Rδ = F −ET ,δ(F ) − Zδ(a), we obtain

‖Gδ‖k,p ≤ C
(‖F‖2

k+1,2p + ∥∥Zδ(a)
∥∥2
k+1,2p

)
.
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From (2.9), by using Hölder’s inequality we get

∥∥Zδ(a)
∥∥
k+1,2p ≤

d∑
i=1

∥∥ai(T , δ)
∥∥

4p

∥∥Wi
T − Wi

T −δ

∥∥
k+1,4p

+
d∑

i,j=1

∥∥ai,j (T , δ)
∥∥

4p

∥∥∥∥∫ T

T −δ

(
Wi

s − Wi
T −δ

)
dWj

s

∥∥∥∥
k+1,4p

≤ C
∥∥a(T , δ)

∥∥
4pδ1/2 + C

∥∥a(T , δ)
∥∥

4pδ

≤ Cδ1/2∥∥a(T , δ)
∥∥

4p,

and the statement follows. �

REMARK 2.7. If (2.7) (ii) holds, then lim supδ→0 δ‖a(T , δ)‖2
4p = 0 because

in this case one takes γ < 1/2, so that for F ∈ (Dk+1,2p)n one has

sup
δ>0

‖Gδ‖k,p < ∞.

2.3. Localization. We will use a localization argument from [2] that we recall
here. We consider a random variable U taking values in [0,1] and we denote

(2.18) dPU = UdP.

This is a nonnegative measure [but generally not a probability measure—one must
divide with E(U) to get a probability measure]. We denote

‖F‖U,p := EU

(|F |p)1/p = E
(|F |pU

)1/p and
(2.19)

‖F‖U,k,p := ‖F‖U,p +
k∑

r=1

∑
|α|=r

EU

(∣∣DαF
∣∣p
L2[0,T0]r

)1/p
.

Clearly, ‖F‖U,k,p ≤ ‖F‖k,p . For a random variable F ∈ (D1,2)n, we denote

(2.20) σU,F (p) = EU

(
(detσF )−p)1/p

.

We assume that U ∈ D1,∞ and that for every p ≥ 1

(2.21) mp(U) := EU

(|D lnU |p)
< ∞.

In Lemma 2.1 in [1], we have proved the following.

LEMMA 2.8. Assume that (2.21) holds. Let F ∈ (D2,∞)n be such that
detσF �= 0 on the set {U �= 0}. We denote σ̂F the inverse of σF and we assume that
σU,F (p) < ∞ for every p ∈ N. Then for every V ∈ D1,∞ and every f ∈ C∞

b (Rn),
one has

(2.22) EU

(
∂if (F )V

) = EU

(
f (F )Hi,U (F,V )

)
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with

Hi,U (F,V ) =
n∑

j=1

(
V σ̂

j,i
F LF j − 〈

D
(
V σ̂

j,i
F

)
,DF j 〉

(2.23)
− V σ̂

j,i
F

〈
D(lnU),DFj 〉)

.

Suppose that lnU ∈ Dk,∞. Iterating (2.22) one obtains for a multi-index α =
(α1, . . . , αk) ∈ {1, . . . , n}k

EU

(
∂αf (F )V

) = EU

(
f (F )Hα,U (F,V )

)
,

(2.24)
with Hα,U (F,V ) = Hαk,U

(
F,Hα,U (F,V )

)
,

where α = (α1, . . . , αk−1).

We will use this result with a localization random variable U constructed in the
following way. For a ∈ (0,1), we define ψa :R+ →R+ by

(2.25) ψa(x) = 1[0,a)(x) + 1[a,2a)(x) exp
(

1 − a2

a2 − (x − a)2

)
.

Then for every multi-index α and every p ∈ N there exists a universal constant
Cα,p such that

(2.26) sup
x∈R+

ψa(x)
∣∣∂α lnψa(x)

∣∣p ≤ Cα,p

ap|α| .

Let ai > 0 and Qi ∈ D1,p, i = 1, . . . , l and U = ∏l
i=1 ψai

(Qi). As an easy conse-
quence of (2.26), we obtain the following estimates:

(2.27) mp(U) ≤ C

l∑
i=1

1

a
p
i

‖Qi‖p
U,1,p ≤ C

l∑
i=1

1

a
p
i

‖Qi‖p
1,p,

where C is a universal constant. And moreover, for every k,p ∈ N there exists a
universal constant C such that

(2.28) ‖ lnU‖U,k,p ≤ C

l∑
i=1

1

ak
i

‖Qi‖k,p.

The function ψa is suited for localization around zero. In order to localize far
from zero, we have to use the following alternative version:

(2.29) φa(x) = 1[a,∞)(x) + 1[a/2,a)(x) exp
(

1 − a2

(2x − a)2

)
.

The property (2.26) holds for φa as well. And if one employs both ψai
and φai

in
the construction of U , that is if one sets

(2.30) U =
l∏

i=1

ψai
(Qi) ×

l′∏
j=1

φal+j
(Ql+j ),
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both properties (2.27) and (2.28) hold again. Then we have the following estimate.

LEMMA 2.9. Let k, l, l′ ∈ N, Qi ∈ Dk+1,∞, i = 1, . . . , l + l′ and set U as in
(2.30). Consider also some F ∈ (Dk+1,∞)n. Then for every p ≥ 1 there exist some
universal constants C > 0 and p′ > p (depending on k,n,p only) such that for
every multi-index α with |α| ≤ k one has

∥∥Hα,U (F,1)
∥∥
U,p ≤ C

(
1 + σU,F

(
p′)k+1)(

1 +
l+l′∑
i=1

1

ak
i

‖Qi‖k,p′

)(
1 + ‖F‖2nk

k+1,p′
)
.

PROOF. For G ∈ (Dr,p)n, let |D(r)G| = ∑r
�=0

∑
|γ |=� |Dγ G|2 as in the proof

of Lemma 2.6. Then the following deterministic estimate for the Malliavin weights
holds: ∣∣Hα,U (F,V )

∣∣ ≤ C

(
k∑

r=0

∣∣D(r)V
∣∣) ×

(
1 +

k∑
r=1

∣∣D(r) lnU
∣∣)

× (
1 + |detσF |−(k+1))(2.31)

×
(

1 +
k+1∑
r=1

∣∣D(r)F
∣∣ + k−1∑

r=0

∣∣D(r)LF
∣∣)2nk

.

The proof of (2.31) is straightforward, although nontrivial, and can be found in the
preprint version of the present paper; see [1]. The statement now easily follows
by applying to the RHS of (2.31) the Hölder inequality and the Meyer inequality
‖LF‖U,r,p ≤ ‖LF‖r,p ≤ C‖F‖r+2,p . �

We finally recall the result in Theorem 2.13 from [2], on which the proof of
Theorem 2.1 is based.

Consider a random variable F , a probability measure Q and a family of prob-
abilities Qδ , δ > 0. We denote by μ the law of F under Q and by μδ the law of
F under Qδ . In the following, we will take Q = PU and Qδ = PUδ as given in
(2.18), where U and Uδ are both of the form (2.30). Actually, PU and PUδ are not
probability measures but they are both finite with total mass less or equal to 1, and
this is enough.

We let EQ and EQδ
denote expectation under Q and Qδ , respectively.

Fix δ > 0. For m ∈ N∗ and p ≥ 1, we say that F ∈ Rm,p(Qδ) if for every multi-
index α with |α| ≤ m there exists a random variable Hα,δ such that the following
abstract integration by parts formula holds:

EQδ

(
∂αf (F )

) = EQδ

(
f (F )Hα,δ

)
(2.32)

∀f ∈ C∞
c ,with EQδ

(|Hα,δ|p)
< ∞.

By using Theorem 2.13 A in [2] with m = 1 and k = 0, we have the following.
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THEOREM 2.10. Let q ∈ N and p > 1 be fixed and let rn = 2(n + 1). Let
F ∈ ⋂

δ>0 Rq+3,rn(Qδ). Suppose that there exist θ > 0, C ≥ 1 and η >
q+n/p∗

2 ,
with p∗ the conjugate of p, such that one has

lim sup
δ→0

(
EQδ

(|F |rn)1/rn + ∑
|α|≤q+3

δθ |α|EQδ

(|Hα,δ|rn)1/rn

)
< ∞,(2.33)

d0(μ,μδ) ≤ Cδηθn2(q+3),(2.34)

where d0 denotes the total variation distance, that is d0(μ, ν) = sup{| ∫ f dμ −∫
f dν| : ‖f ‖∞ ≤ 1}. Then μ is absolutely continuous and has a density pF ∈

Wq,p(Rn).

PROOF. Let us first notice that Theorem 2.13 in [2] concerns a family of r.v.’s
Fδ , δ > 0, and it is assumed that all these random variables Fδ are defined on
the same probability space (�,F,P). But this is just for simplicity of notation.
In fact, the statement concerns just the law of (Fδ,Hα(Fδ,1), |α| ≤ 2m + q + 1),
where Hα(Fδ,1) are the weights in the integration by parts formulas for Fδ . So we
may assume that each Fδ is defined on a different probability space (�δ,Fδ,Qδ).
In our case, we take Fδ = F for each δ, we work on the space (�,F,Qδ) and
we have Hα(Fδ,1) = Hα,δ . We then apply Theorem 2.13 in [2] with m = 1 and
k = 0. Equation (2.33) immediately gives that supδ EQδ

(|F |n+3) < ∞ because
2(n + 1) ≥ n + 3. Moreover, in view of (2.39) in [2], the quantity Tq+3,2(n+1)(Fδ)

in the statement of Theorem 2.13 therein can be upper bounded by

Sq+3,2(n+1)(δ) := EQδ

(|F |rn)1/rn + ∑
|α|≤q+3

EQδ

(|Hα,δ|rn)1/rn .

As an immediate consequence of (2.33) and (2.34), all the requirements in Theo-
rem 2.13 in [2] hold, and the statement follows. �

2.4. Proof of Theorem 2.1. We are now ready to prove our main result.

PROOF OF THEOREM 2.1. Step 1: construction of the localization r.v.’s U

and Uδ . We consider the functions ψ = ψ1/2 and φ = φ2 defined in (2.25) and
(2.29) with a = 1

2 and a = 2, respectively. We recall that in hypothesis (2.7)
(ii) some γ < 1

2 is considered. We denote λ = 1
3(1

2 −γ ). Recall that qi(W), i = 1,2
are defined in (2.12). Then we define

Q0 = r−1|F − y|, Q1 = 68d3

λ∗δ2 Gδ, Q2 = δ−(γ+2λ)q1(W),

Q3 = q2(W), Q4 = δγ+λa, Q5 = λ(T , δ)

λ∗
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and we set

U = ψ(Q0), Uδ =
4∏

i=0

ψ(Qi) × φ(Q5).

Step 2: construction and estimate of the weights Hα,δ [defined in (2.32)] under
PUδ . We fix k ∈ N∗ and we assume that F ∈ (Dk+3,∞,∞)n.

Notice that for δλ ≤ 1
8d

√
λ∗, on the set {Uδ �= 0} we have

a(T , δ)q1(W) = (
δγ+λa(T , δ)

)(
δ−(γ+2λ)q1(W)

) × δλ ≤ δλ ≤ 1

8

√
λ∗
d

.

The other restriction required in �T,δ [see (2.13) for the definition] are easy to
check. So, we obtain

{Uδ �= 0} ⊂ {|F − y| ≤ r
} ∩ �T,δ.

Then, by using Lemma 2.4 we have

(2.35) ET ,δ

(
1{Uδ �=0}(detσF,T ,δ)

−p) ≤ Cn,p

λ
np∗ δ2np

where σF,T ,δ is given in (2.14).
We use the Malliavin calculus with respect to Ws − WT −δ, s ∈ (T − δ, T ).

So, we denote with Lδ the Ornstein–Uhlenbeck operator with respect to Ws −
WT −δ, s ∈ (T − δ, T ) and with 〈g,f 〉δ the scalar product in L2[T − δ, T ]. So,
σF,T ,δ is the Malliavin covariance matrix of F w.r.t. this partial calculus. We set,
as usual, σ̂F,T ,δ the inverse of σF,T ,δ and we set

Hi,Uδ (F,V )

:=
n∑

j=1

(
V σ̂

j,i
F,T ,δLδF

j − 〈
D

(
V σ̂

j,i
F,T ,δ

)
,DF j 〉

δ

− V σ̂
j,i
F,T ,δ

〈
D(lnUδ),DFj 〉

δ

)
.

Then (2.22) reads

EUδ

(
∂if (F )V

) = EUδ

(
Hi,Uδ (f,V )

)
.

By iteration, for a multi-index α ∈ {1, . . . , n}k we have

EUδ

(
∂αf (F )V

) = EUδ

(
Hα,Uδ (f,V )

)
,

where Hα,Uδ (f,V ) = Hαh,Uδ (f,H(α1,...,αk−1),Uδ
(f,V )). And by using Lemma 2.9,

we can find C > 0 and p′ > 1 such that

∥∥Hα,Uδ (F,1)
∥∥
Uδ,p

≤ C
(
1 + σUδ,F

(
p′)k+1)(

1 +
5∑

i=1

‖Qi‖k,p′

)(
1 + ‖F‖2nk

k+1,p′
)
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with

σUδ,F (p)p = EUδ

(
(detσF,T ,δ)

−p) = E
(
Uδ(detσF,T ,δ)

−p)
.

Since 0 ≤ Uδ ≤ 1Uδ �=0, and by using estimate (2.35) we get

σUδ,F (p)p ≤ E
(
1�T,δ

(detσF,T ,δ)
−p)

= E
(
ET ,δ

(
1�T,δ

(detσF,T ,δ)
−p))

≤ C

λ
np∗ δ2np

.

Moreover, by applying Remark 2.7 we obtain
∑5

i=0 ‖Qi‖k+1,p′ ≤ Cδ−2. So, we
conclude that if |α| ≤ k then∥∥Hα,Uδ (F,1)

∥∥
Uδ,p

≤ C

δ2n(k+1)+2

(
1 + ‖F‖2nk

k+1,p′
)

(2.36)

≤ C

δθk

(
1 + ‖F‖2nk

k+1,p′
)

with θ = 4n + 2,

where C is a universal constant depending on n, k (recall that k ≥ 1) and λ∗.
Step 3: estimate of the total variation distance. We recall that for two nonnega-

tive finite measures μ,ν the total variation distance is defined by

d0(μ, ν) = sup
{∣∣∣∣∫ f dμ −

∫
f dν

∣∣∣∣ : ‖f ‖∞ ≤ 1
}
.

We consider the measures μ and μδ defined by∫
f dμ = EU

(
f (F )

)
,

∫
f dμδ = EUδ

(
f (F )

)
,

so that d0(μ,μδ) ≤ E(|U − Uδ|). Therefore, we have

d0(μ,μδ) ≤ P

(
Gδ ≥ λ∗δ2

68d3

)
+ P

(|WT − WT −δ| ≥ δ
1
2 −λ)

+ P

(
d∑

j=1

∫ T

T −δ

∣∣Wj
s − W

j
T −δ

∣∣2 ds ≥ δ

)
+

+ P
(
a(T , δ) ≥ δ−(γ+λ)) + P

({|F − y| ≤ r
} ∩ {

λ(T , δ) < λ∗
})

=:
5∑

i=1

εi(δ).

For every r ≥ 1, by using Chebychev’s inequality we obtain ε2(δ) ≤ Cδr( 1
2 −γ ) and

in a similar way, for every r ≥ 1 then ε3(δ) ≤ Cδr/2. By (2.7)(ii),

ε4(δ) ≤ Cδr(γ+λ)E
(
ar(T , δ)

) ≤ Cδrλ
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and by (2.7)(iii) ε5(δ) ≤ Cδr for every r ≥ 1. We conclude that for every ε ≥ 1,

lim sup
δ→0

δ−εεi(δ) = 0 for every ε > 0 and i = 2,3,4,5.

The behavior of ε1(δ) is given by Lemma 2.5: if F ∈ ⋃
p>6(D

4,∞,p)n then there
exists ε > 0 such that lim supδ→0 δ−εε1(δ) = 0 and if F ∈ (D4,∞,∞) then
lim supδ→0 δ−εε1(δ) = 0 for every ε > 0. Therefore, we get

(i) F ∈ ⋃
p>6

(
D4,∞,p)n ⇒ ∃ε > 0

such that lim supδ→0 δ−εd0(μ,μδ) = 0;(2.37)

(ii) F ∈ (
D4,∞,∞)n ⇒ ∀ε > 0 then lim sup

δ→0
δ−εd0(μ,μδ) = 0.

Step 4: conclusions. We first prove part A of Theorem 2.1. Since F ∈⋃
p>6(D

5,∞,p)n, we have that (2.37)(i) holds. We apply now Theorem 2.10 with
q = 0, Q = PU and Qδ = PUδ . By using (2.36), (2.33) holds with θ = 4n + 2.
Now, we choose p > 1 sufficiently close to 1 such that(

1 − 1

p

)
× 3n3(4n + 2) < ε.

So, taking η = n
p∗ we get η >

n/p∗
2 and 3ηθn2 < ε and by using (2.37) (i) we have

that hypothesis (2.34) holds. Then, by applying Theorem 2.10, we conclude that
μ(dx) = f (x) dx and f ∈ Lp(Rn).

We prove now B of Theorem 2.1. As before, (2.33) holds with θ = 4n + 2.
Moreover, by (2.37)(ii), we get that (2.34) holds for every choice of p > 1 and of
η >

q+n/p∗
2 . So, the only restriction in the application of Theorem 2.10 is that F ∈⋂

δ>0 Rq+3,2(n+1)(Qδ). But in order to have this, we need that each component of
F is k-times differentiable in Malliavin sense with k ≥ (q + 3) + 2 = q + 5, that
is q ≤ k − 5. And we apply Theorem 2.10 with q = k − 5, giving the result. �

3. An example from diffusion processes. We consider the N dimensional
diffusion process

(3.1) dXt =
d∑

j=1

σj (Xt) dW
j
t + b(Xt) dt.

We assume that σj , b ∈ C∞
b (RN). In particular Xi

T ∈ ⋂∞
m=1 D

m,∞,∞ (see Nualart
[11]).

Our aim is to study the regularity of XT = (X1
T , . . . ,Xn

T ) with n ≤ N . One
may consider Xt as the solution of an equation with coefficients depending on
the past. We introduce some notation. For a function f : RN → RN , we denote
f = (f 1, . . . , f n) and for x = (x1, . . . , xN) ∈ RN we denote x = (x1, . . . , xn) ∈
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Rn and x̂ = (xn+1, . . . , xN) ∈ RN−n. And for x = (x1, . . . , xn) ∈ Rn and x̂ =
(xn+1, . . . , xN) ∈ RN−n we denote (x, x̂) = (x1, . . . , xn, xn+1, . . . , xN) ∈ RN . We
define

�x̂,ξ (x) =
d∑

j=1

〈
σ j (x, x̂), ξ

〉2 +
d∑

j,p=1

〈[σj , σp](x, x̂), ξ
〉2 and

�(x) = inf
x̂∈RN−n

inf|ξ |=1
�x̂,ξ (x).

PROPOSITION 3.1. We assume that σj , b ∈ C∞
b (RN) and consider a point

x0 ∈ Rn such that �(x0) > 0. Then there exists some r > 0 such that the restric-
tion of the law of XT to Br(x0) is absolutely continuous and has an infinitely
differentiable density on this ball.

REMARK 3.2. Other types of dependence on the past may be considered. For
example equations with delay (see, e.g., Mohammed [8]) or interacting particle
systems (see, e.g., Löcherbach [7]). For simplicity, we treat here the model given
by the first n components of the N -dimensional diffusion in (3.1).

PROOF. We consider aj , aj,p, j,p = 1, . . . , d defined by

aj (T , δ) = σ(XT −δ), aj,p(T , δ) =
N∑

k=1

σk
j (XT −δ)∂kσp(XT −δ).

Notice that [a]j,p(T , δ) = [σj , σp](XT −δ) so that, with the notation in (2.5), we
have λ(T , δ) ≥ �(XT −δ).

Since the derivatives of σj are uniformly bounded, one has∣∣�x̂,ξ (x) − �x̂,ξ

(
x′)∣∣ ≤ C

∣∣x − x′∣∣
for some C depending on ‖σ‖∞+‖∇σ‖∞. So we may find r > 0 such that �(x) ≥
1
2�(x0) for x ∈ B2r (x0). It follows that λ(T , δ) ≥ 1

2�(x0) for XT −δ ∈ B2r (x0).
Then

P
({|XT − x0| < r

} ∩ {
λ(T , δ) < 1

4�(x0)
}) ≤ P

(|XT − XT −δ| > r
)

≤ Ce−r2/C′δ

which proves that the hypothesis (2.7), (iii) holds true. Since σj are bounded the
hypothesis (2.7), (ii) holds true also. Let us check (2.7), (i). We compute

Dj
s XT = σ j (Xs) +

d∑
p=1

∫ T

s
∇σp(Xr)D

j
s Xr dWp

r +
∫ T

s
∇b(Xr)D

j
s Xr dr.
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So for T − δ ≤ s ≤ T , we have

ET ,δ

(
Dj

s XT

) = ET ,δ

(
σ j (Xs)

) +
∫ T

s
ET −δ

(∇b(Xr)D
j
s Xr

)
dr = aj (T , δ) + R

j
δ (s)

with

R
j
δ (s) = ET ,δ

(
σ j (Xs) − σ j (XT −δ)

) +
∫ T

s
ET ,δ

(∇b(Xr)D
j
s Xr

)
dr.

With L denoting the infinitesimal generator associated to the diffusion (3.1), one
has

σ j (Xs) − σ j (XT −δ) =
d∑

k=1

∫ s

T −δ
∇σ j (Xu)σk(Xu)dWk

u +
∫ s

T −δ
Lσ j (Xu)du,

so that

R
j
δ (s) =

∫ s

T −δ
ET ,δ

(
Lσj (Xu)

)
du +

∫ T

s
ET ,δ

(∇b(Xr)D
j
s Xr

)
dr.

Standard computations show that E(|Rj
δ (s)|2p) ≤ Cδ2p for any s ∈ [T − δ, T ], so

that

E

(∣∣∣∣1

δ

∫ T

T −δ

∣∣∣∣ET ,δ(D
j
s XT ) − aj (T , δ)

δ
1
2 +α

∣∣∣∣2 ds

∣∣∣∣p)

≤ 1

δ

∫ T

T −δ
E

(∣∣δ−( 1
2 +α)R

j
δ (s)

∣∣2p)
ds ≤ Cδ2p( 1

2 −α).

We fix T − δ ≤ s2 ≤ s1 ≤ T and we compute the second-order derivatives:

ET ,δ

(
Dp

s2
Dj

s1
XT

)
= ET ,δ

(∇σ j (Xs2)D
p
s2

Xs1

) +
d∑

k,l=1

∫ T

s1

ET ,δ

(
∂k∂lb(Xr)D

p
s2

X
l

rD
j
s1

X
k

r

)
dr

+
d∑

k=1

∫ T

s1

ET ,δ

(
∂kb(Xr)D

p
s2

Dj
s1

X
k

r

)
dr

= ap,j (T , δ) + R
p,j
δ (s1, s2)

with

R
p,j
δ = ET ,δ

(∇σ j (Xs2)D
p
s2

Xs1 − ∇σj (XT −δ)σ (XT −δ)
)

+
d∑

k,l=1

∫ T

s1

ET ,δ

(
∂k∂lb(Xr)D

p
s2

X
l

rD
j
s1

X
k

r

)
dr

+
d∑

k=1

∫ T

s1

ET ,δ

(
∂kb(Xr)D

p
s2

Dj
s1

X
k

r

)
dr.
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Similarly, as before, one has E(|Rp,j
δ (s1, s2)|2p) ≤ Cδ2p so that

1

δ2

∫ T

T −δ

∫ s1

T −δ
E

(∣∣∣∣ET ,δ(D
p
s2D

j
s1XT ) − ap,j (T , δ)

δα/2

∣∣∣∣2p)
ds2 ds1

= 1

δ2

∫ T

T −δ

∫ s1

T −δ
E

(∣∣δ−α/2R
p,j
δ (s1, s2)

∣∣2p)
ds2 ds1 ≤ Cδ2p(1−α/2).

We conclude that for α ≤ 1
2 we have εα,p,δ(a,XT ) ≤ C so that the hypothe-

sis (2.7)(i) is verified. The statement now follows by applying Theorem 2.1. �

APPENDIX A: THE VARIANCE LEMMA

In [4] [see (1.f), page 183], one gives the explicit expression of the Laplace
transform of the variance of the Brownian path on (0,1). More precisely, let B be
an one-dimensional Brownian motion and let

(A.1) V (B) =
∫ 1

0

(
Bs −

∫ 1

0
Br dr

)2
ds.

Then

(A.2) E
(
e−λV (B)) = 2λ

sinh 2λ
, λ > 0.

As an easy consequence, we obtain the following estimate.

LEMMA A.1. On a probability space, let b denote a one-dimensional Brown-
ian motion and let r be a random variable. We also consider α,β ∈ R and δ > 0
and we denote Aδ = {r2 ≤ 1

32(α2 + β2)} ∩ {|1
δ

∫ δ
0 bs ds| ≤ 1}. Then

(A.3) E

(
1Aδ exp

(
−

∫ δ

0
(r + α + βbs)

2 ds

))
≤ 2 exp

(
− δ2

17

(
α2 + β2))

.

PROOF. We consider the probability measure μδ(ds) = δ−11(0,δ)(s) ds, so
that ∫ δ

0
(r + α + βbs)

2 ds = δ

∫
(r + α + βbs)

2 dμδ(s).

Setting

Vμδ(b) =
∫ (

bs −
∫

bu dμδ(u)

)2
dμδ(s),

it is easy to check that

(A.4)
∫

(r + α + βbs)
2 dμδ(s) =

(∫
(r + α + βbs) dμδ(s)

)2
+ β2Vμδ(b)
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and

(A.5) Vμδ(b) = δV (B) with Bt = δ−1/2btδ.

We consider two cases. Suppose first that |α| ≥ 4|β|. On the set Aδ we have 2|α| ≥
|α| + |β| ≥ 8|r| and | ∫ bs dμδ(s)| ≤ 1 so we obtain∣∣∣∣r + α + β

∫
bs dμδ(s)

∣∣∣∣ ≥ |α| − |r| − |β|
∣∣∣∣∫ bs dμδ(s)

∣∣∣∣
≥ |α| − |r| − |β|

≥ 1

2
|α| ≥ 1

4

(|α| + |β|).
Using (A.4), this gives∫ δ

0
(r + α + βbs)

2 ds ≥ δ

(∫
(r + α + βbs) dμδ(s)

)2

≥ δ

16

(|α| + |β|)2 ≥ δ

16

(
α2 + β2)

≥ δ2

17

(
α2 + β2)

.

Suppose now that |α| < 4|β|. Then using (A.4), we can write∫ δ

0
(r + α + βbs)

2 ds ≥ δβ2Vμδ(b) = δ2β2V (B) ≥ δ2

17

(
α2 + β2)

V (B).

Then we have

E
(
1Aδe

− ∫ δ
0 (r+α+βbs)

2 ds)
≤ 1{|α|≥4|β|}e− δ2

17 (α2+β2) + 1{|α|>4|β|}E
(
e− δ2

17 (α2+β2)V (B))
and by using (A.2) and the estimate 2λ

sinh(2λ)
≤ 2λe−2λ ≤ 2e−λ, we get

E
(
1Aδe

− ∫ δ
0 (r+α+βbs)

2 ds) ≤1{|α|≥4|β|}e− δ2
17 (α2+β2) + 1{|α|>4|β|}2e− δ2

17 (α2+β2)

and the statement follows. �

Acknowledgments. We are grateful to E. Pardoux who made a remark which
allowed us to improve a previous version of our result.

REFERENCES

[1] BALLY, V. and CARAMELLINO, L. (2013). Positivity and lower bounds for the density of
Wiener functionals. Potential Anal. 39 141–168. MR3078335

[2] BALLY, V. and CARAMELLINO, L. (2016). Convergence and regularity of probability laws
using an interpolation method. Ann. Probab. To appear. Available at arXiv:1409.3118.

http://www.ams.org/mathscinet-getitem?mr=3078335
http://arxiv.org/abs/arXiv:1409.3118


WIENER FUNCTIONALS UNDER A HÖRMANDER TYPE CONDITION 1511

[3] BICHTELER, K., GRAVEREAUX, J.-B. and JACOD, J. (1987). Malliavin Calculus for Pro-
cesses with Jumps. Stochastics Monographs 2. Gordon and Breach Science Publishers,
New York. MR1008471

[4] DONATI-MARTIN, C. and YOR, M. (1991). Fubini’s theorem for double Wiener integrals and
the variance of the Brownian path. Ann. Inst. Henri Poincaré Probab. Stat. 27 181–200.
MR1118933

[5] IKEDA, N. and WATANABE, S. (1981). Stochastic Differential Equations and Diffu-
sion Processes. North-Holland Mathematical Library 24. North-Holland, Amsterdam.
MR0637061

[6] KUSUOKA, S. (1983). On the absolute continuity of the law of a system of multiple Wiener
integral. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 30 191–197. MR0700600

[7] LÖCHERBACH, E. (2004). Smoothness of the intensity measure density for interacting branch-
ing diffusions with immigrations. J. Funct. Anal. 215 130–177. MR2085113

[8] MOHAMMED, S.-E. A. (1998). Stochastic differential systems with memory: Theory, ex-
amples and applications. In Stochastic Analysis and Related Topics VI (Geilo, 1996).
Progress in Probability 42 1–77. Birkhäuser, Boston, MA. MR1652338

[9] NOURDIN, I., NUALART, D. and POLY, G. (2013). Absolute continuity and convergence of
densities for random vectors on Wiener chaos. Electron. J. Probab. 18 1–19. MR3035750

[10] NOURDIN, I. and POLY, G. (2013). Convergence in total variation on Wiener chaos. Stochastic
Process. Appl. 123 651–674. MR3003367

[11] NUALART, D. (2006). The Malliavin Calculus and Related Topics, 2nd ed. Probability and Its
Applications (New York). Springer, Berlin. MR2200233

UNIVERSITÉ PARIS-EST

LAMA (UMR CNRS, UPEMLV, UPEC), INRIA
F-77454 MARNE-LA-VALLÉE

FRANCE

E-MAIL: bally@univ-mlv.fr

UNIVERSITÀ DI ROMA TOR VERGATA

DIPARTIMENTO DI MATEMATICA

VIA DELLA RICERCA SCIENTIFICA 1
I-00133 ROMA

ITALY

E-MAIL: caramell@mat.uniroma2.it

http://www.ams.org/mathscinet-getitem?mr=1008471
http://www.ams.org/mathscinet-getitem?mr=1118933
http://www.ams.org/mathscinet-getitem?mr=0637061
http://www.ams.org/mathscinet-getitem?mr=0700600
http://www.ams.org/mathscinet-getitem?mr=2085113
http://www.ams.org/mathscinet-getitem?mr=1652338
http://www.ams.org/mathscinet-getitem?mr=3035750
http://www.ams.org/mathscinet-getitem?mr=3003367
http://www.ams.org/mathscinet-getitem?mr=2200233
mailto:bally@univ-mlv.fr
mailto:caramell@mat.uniroma2.it

	Introduction
	Existence and smoothness of the local density
	A short discussion on the proof of Theorem 2.1
	Preliminary results
	Localization
	Proof of Theorem 2.1

	An example from diffusion processes
	Appendix A: The variance lemma
	Acknowledgments
	References
	Author's Addresses

