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Cost-effective yet efficient designs are critical to the success of biomarker
evaluation research. Two-phase sampling designs, under which expensive
markers are only measured on a subsample of cases and noncases within a
prospective cohort, are useful in novel biomarker studies for preserving study
samples and minimizing cost of biomarker assaying. Statistical methods for
quantifying the predictiveness of biomarkers under two-phase studies have
been proposed [Biostatistics 13 (2012) 89–100, Biometrics 68 (2012) 1219–
1227]. These methods are based on a class of inverse probability weighted
(IPW) estimators where weights are “true” sampling weights that simply
reflect the sampling strategy of the study. While simple to implement, ex-
isting IPW estimators are limited by lack of practicality and efficiency. In
this manuscript, we investigate a variety of two-phase design options and
provide statistical approaches aimed at improving the efficiency of simple
IPW estimators by incorporating auxiliary information available for the entire
cohort. We consider accuracy summary estimators that accommodate auxil-
iary information in the context of evaluating the incremental values of novel
biomarkers over existing prediction tools. In addition, we evaluate the relative
efficiency of a variety of sampling and estimation options under two-phase
studies, shedding light on issues pertaining to both the design and analysis
of biomarker validation studies. We apply our methods to the evaluation of a
novel biomarker for liver cancer risk conducted with a two-phase nested case
control design [Gastroenterology 138 (2010) 493–502].

1. Introduction. Novel biomarkers have the potential to improve risk predic-
tion for diseases such as cancer. Due to the cost associated with biomarker mea-
surement, the improvement in the predictive performance of a model enriched with
novel biomarkers over a model with only clinical risk factors, throughout referred
to as the incremental value (IncV) of the novel biomarkers, needs to be rigor-
ously assessed before incorporating the enriched risk model into routine clinical
practice. A major barrier to validating prediction models is that measuring novel
markers from a large prospective cohort study may be too expensive, especially
if the event rate is low. Two subcohort sampling designs, the case cohort (CCH)
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[Prentice (1986)] and nested case control (NCC) [Thomas (1977)], are often em-
ployed as cost-effective alternatives to the standard full cohort design, and have
been recently adopted for risk marker evaluation studies [Lok et al. (2010), Wang
et al. (2011)].

These designs, while cost effective, can be challenging due to the outcome-
dependent missingness on the marker information. Statistical methods have been
developed to incorporate such missingness in estimating relative and absolute risk
parameters [Borgan, Goldstein and Langholz (1995), Langholz and Borgan (1997),
Self, Prentice et al. (1988)]. However, evaluation of the clinical utility of risk mark-
ers adds another level of complexity, requiring additional estimation of distribution
of risks in the population and its summary indices. Appropriate statistical meth-
ods for risk model evaluation under two-phase studies and guidance to efficiently
conduct the design are still lacking. Novel statistical tools that can be used for
estimating the predictive performance of a single biomarker have also been devel-
oped for both CCH and NCC studies [Cai and Zheng (2012), Liu, Cai and Zheng
(2012)]. In these approaches, simple inverse probability-weighted (IPW) estima-
tors were considered, with weights as the reciprocals of true selection probabilities
calculated based on the observed data and study design.

While such IPW estimators are simple to implement, limitations exist. First, in
many practical situations, two-phase sampling plans can be quite complicated due
to practical considerations such as the need to reuse samples previously assayed
for other studies or missing measurements due to inadequate samples. Retriev-
ing “true” sampling weights can therefore be considerably difficult in practice. In
addition, these simple IPW estimators tend to be quite inefficient because they dis-
card information from individuals without biomarker information. When auxiliary
variables related to both outcome and incomplete marker measurement are avail-
able from the entire cohort, incorporating such information in estimation may lead
to improvement in efficiency [Breslow et al. (2009a, 2009b), Saegusa and Wellner
(2013)]. In this manuscript we propose novel estimators of prediction performance
measures for two-phase studies, aiming to improve efficiency and practicality over
existing estimators. Our estimators are based on the idea of augmentation, previ-
ously considered for estimating relative risk parameters under case-cohort studies.
The augmented estimators adopt the IPW principal but use nonparametrically es-
timated weights based on auxiliary information.

Our second goal is to address study design issues, particularly regarding the im-
pact of matching on estimation efficiency when the goal is to evaluate the IncV
of novel biomarkers. In settings where routine markers or other auxiliary informa-
tion exist, matching controls to cases on baseline predictors is usually considered.
Matching is frequently adopted as a way to improve efficiency, particularly for
the estimation of relative risk parameters [Breslow, Day et al. (1980)]. However,
little is known regarding whether matching improves efficiency for the estimation
of prediction performance and IncV measures. In addition, it has been previously
noted that using augmented weights can lead to the efficiency gain of hazard ratio
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parameters for the fully observed covariates in a Cox regression model, but not so
much for the partially observed biomarkers [Qi, Wang and Prentice (2005)]. The
extent of efficiency gain due to augmentation for the estimation of prediction per-
formance or IncV parameters has not yet been studied. In this paper, we perform
extensive numerical studies to provide insight on the connection between the aug-
mented estimators under minimally matched sampling designs and the simple IPW
estimators under matched/stratified designs. We evaluate the relative efficiency of
a variety of sampling and estimation options to identify strategies that are both
efficient and practical.

2. Model specification and general estimation under two-phase studies.

2.1. Notation. Suppose the full cohort has N individuals from the targeted
population followed prospectively. Due to censoring, the underlying full co-
hort data consist of N i.i.d. copies of the vector, D = {Di = (Xi, δi,YT

i ,ZT
i )

T,
i = 1, . . . ,N}, where Xi = min(Ti,Ci), δi = I (Ti ≤ Ci), Ti and Ci denote fail-
ure time and censoring time, respectively, and subscript i indexes the subjects in
the cohort. Here, Yi = (YT

oldi ,YT
newi ) is the vector of all potential risk predictors,

Yoldi includes a set of routine markers available for all, Ynewi represents novel
risk markers only ascertained at the second phase for a selected subset of indi-
viduals, and Zi represents auxiliary variables including matching and stratification
variables available for the entire cohort. While Wi = (ZT

i ,Yoldi )
T is available for

the entire cohort, Ynewi is only available if Vi = 1, where Vi is a binary vari-
able indicating whether subject i is selected to the phase II subcohort. The two-
phase sampling only depends on Xi , δi and Zi , with the true sampling probabil-
ity π̃i = P(Vi = 1|D) = P(Vi = 1|Xi, δi,Zi) known by design. We also assume
that the risk Rt (Y) = P(Ti ≤ t |Yi = Y) follows a semiparametric transformation
model [Cheng, Wei and Ying (1995, 1997), Zeng and Lin (2006)]

1 −Rt (Y) = T0
[
log

{
H(t)

} + βT
newYnew + βT

oldYold
]

(2.1)
= T0

[
log

{
H(t)

} + βTY
]
,

where H(t) is an increasing function and T0 is a cumulative distributional function.
When T0(x) = exp{− exp(x)}, the model corresponds to the proportional hazards
model [Cox (1972)].

2.2. A general inverse probability weighted framework for two-phase stud-
ies. To incorporate outcome dependent missingness in Ynew, estimation of IPW
procedures is based on subjects with Vi = 1 and reweights the ith observation

by ωi = Vi/πi . Consider a generic IPW statistic R̂ = N− 1
2
∑N

i=1 ωiRi , where
E(Ri ) = 0. An obvious choice for πi is the true sampling probability π̃i =
P(Vi = 1|D), which leads to a class of True Weights based IPW (TIPW) statistics
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R̂TIPW = N− 1
2
∑N

i=1 ω̃iRi . The form of π̃i can be obtained explicitly for both strat-
ified CCH (sCCH) [Gray (2009), Liu, Cai and Zheng (2012)] and NCC [Cai and
Zheng (2012), Samuelsen (1997)] designs; see Appendix A of the supplementary
article [Zheng et al. (2017)] for details.

When π̃i is not directly available from the study and/or to improve efficiency
over the simple TIPW estimators, we focus on AIPW estimators that leverage
information on auxiliary variables W by nonparametrically estimating πi given
Wi . The AIPW approach replaces ω̃i with an augmented weight ω̂i = Vi/π̂i ,
where π̂i = π̂(Wi ) is an estimate of π̃i using Wi . The key to the efficiency
gain from the AIPW approach is to choose W and the estimator π̂(·) such that
E(ω̂i |Wi ) ≈ 1 and W is highly correlated with Ri . For example, one may con-
sider WNCC

i = (δi,Xi,ZT
i ,YT

oldi )
T for mNCC design and WCCH

i = (δi,ZT
i ,YT

oldi )
T

for sCCH to enable both consistent estimation of the sampling weights and effi-
ciency improvement by leveraging full cohort information on Yoldi .

When Wi is discrete, a natural choice for π̂ (·) is the empirical proportion based

on the observed data: π̂ (w) =
∑N

i=1 ViI (Wi=w)∑N
i=1 I (Wi=w)

. However, Wi often involves con-

tinuous variables. For example, for NCC designs, the sampling is dependent on
X; thus, W needs to include X to ensure the consistency of the AIPW estimators.
To incorporate continuous W, one may consider the Nadaraya–Watson estima-
tor,

(2.2) π̂(w) =
∑N

i=1 ViKh(w − Wi)∑N
i=1 Kh(w − Wi)

,

where Kh(·) = K(·/h)/h, K is a symmetric kernel density function, and h > 0
is the bandwidth. Selection of appropriate h can follow the recommendations in
Wang and Wang (2001) and Qi, Wang and Prentice (2005). Since the IPW esti-
mators could be biased if π̂i does not consistently estimate P(Vi = 1|D), such a
widely applicable nonparametric estimator, applicable to a wide range of practical
situations, is appealing.

Asymptotic behavior of AIPW estimators. Making inference under a two-phase
design with weight is generally difficult because the sampling scheme leads to
weak correlation between the Vi’s, which is not ignorable even in large samples.
Derivations for the asymptotic properties of the AIPW estimators accounting for
such correlations are given in Appendix B of the supplementary article [Zheng
et al. (2017)]. For ease of presentation, we focus on a setting where all cases are
selected and controls are sampled according to the CCH or NCC design with-
out additional matching. We also show in Appendix B that the variance reduc-
tion, �R = Var(R̂TIPW) − Var(R̂AIPW), is always greater than or equal to 0, and
thereby justifies the efficiency gain by AIPW estimators over the TIPW estima-
tors.
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3. Accuracy and incremental value evaluation.

3.1. Parameters of interest. For any subvector of Y, Y∗, and the associated
risk model for R∗

t (Y) ≡ P(Dt = 1|Y∗), Y∗ affects Dt only through the risk score
R∗

t (Y). Thus, we quantify the predictiveness of Y∗ based on the predictiveness
of R∗

t (Y). One main goal here is to quantify the prediction performance of a risk
score R∗

t (Y) for predicting Dt = I (T ≤ t) for various choices of R∗
t . An array of

measures can be considered for such evaluations. Key summary indices for char-
acterizing the accuracy of R∗

t (Y) in classifying Dt include

TPR∗
t (p) = P

[
R∗

t (Y) ≥ p|T ≤ t
]

and FPR∗
t (p) = P

[
R∗

t (Y) ≥ p|T > t
]
,

PPV∗
t (p) = P

[
T ≤ t |R∗

t (Y) ≥ p
]

and NPV∗
t (p) = P

[
T > t |R∗

t (Y) < p
]
,

where p is a risk threshold that can potentially be used to form different clinical
decisions.

The pair of summaries TPR∗
t (p) and FPR∗

t (p) specifies the cumulative distri-
bution of risks among t-year cases with Dt = 1 and noncases with Dt = 0, re-
spectively, and is a building block for other measures. For example, taking Dt as
a binary outcome for a fixed t , the proportion of t-year cases followed [Pfeiffer
and Gail (2011)] can be expressed as PCF∗

t (v) = TPR∗
t {V∗−1(1 − v)}, where

V∗(p) ≡ P{R∗
t (Y) ≤ p}. Its inverse function PNF∗

t (p) = PCF∗−1
t (p) is the frac-

tion of the general population at the highest risk that needs to be followed to ensure
that a fraction p of the t-year cases will be captured.

When no specific risk thresholds are of key interest, one may consider summary
measures to complement the display of case and control risk distributions. For
example,

AUC∗
t =

∫
TPR∗

t

{
FPR∗−1

t (u)
}
du = P

{
R∗

t (Yi) > R∗
t (Yj )|Ti ≤ t, Tj > t

}
is a time-dependent version of the area under the ROC curve (AUC), which
provides a measure of separation between the distributions of R∗

t (Y) among t-
year cases and noncases. Another frequently used prediction performance mea-
sure is the difference in mean risks (DMR) between cases and noncases at time
t , which is related to the Integrated Discrimination Improvement (IDI) statis-
tic for comparing risk models [Pencina et al. (2008)], DMR∗

t = E{R∗
t (Y)|T ≤

t} − E{R∗
t (Y)|T > t}.

To quantify the IncV in risk prediction based on a generic prediction summary
index denoted by At , one may consider IncVAt = Aupd

t − Aold
t , where Aupd

t is
evaluated for the updated model Rt (Y) constructed with Y = (YT

new,YT
old)

T as pre-
dictors, and Aold

t is the corresponding value for the risk model Rold
t (Y) = P(Dt =

1|Yold) developed using only Yold.
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3.2. Estimation and inference of accuracy summaries and IncV. We now in-
vestigate the AIPW estimation procedures for the evaluation of IncV under the
semiparametric transformation model as specified in (2.1). Specifically following
the approaches taken in Murphy, Rossini and van der Vaart (1997) and Zeng and
Lin (2006), the model parameters β = (βT

old,β
T
new)T can be obtained by maximiz-

ing a weighted semiparametric likelihood:

�̂(H,β) =
N∑

i=1

ŵi

(
δi

[
logλ1

{
eβTYiH (Xi)

} + log�H(Xi) + βTYi

]

− �1
{
eβTYiH (Xi)

})
,

where �1(x) = − logT1(x), T1(x) = T0{log(x)} and λ1(x) = d�1(x)/dx,
�H(x) = H(x) − H(x−). With β̂ as estimators for β , we can calculate R̂t (Y) =
1 − T0[log{Ĥ (t)} + β̂

T
Y], where Ĥ (t) = Ĥ (t; β̂).

To estimate the pair of key predictive performance summaries, TPR∗
t (p) and

FPR∗
t (p), for a generic risk function R∗

t (Y), we first note that under model (2.1),

TPR∗
t (p) = E{I (R∗

t (Y) ≥ p)Rt (Y)}
E{Rt (Y)}

and

FPR∗
t (p) = E[I (R∗

t (Y) ≥ p){1 −Rt (Y)}]
E{1 −Rt (Y)} .

We assume that (2.1) holds, but allow the risk function R∗
t (Y) to be derived from a

potentially misspecified submodel. This along with the AIPW principle motivates
us to estimate TPR∗

t (p) and FPR∗
t (p), respectively, as

T̂PR∗
t (p) =

∑N
i=1 ω̂iR̂t (Yi )I {R̂∗

t (Yi ) ≥ p}∑N
i=1 ω̂iR̂t (Yi )

,(3.1)

F̂PR∗
t (p) =

∑N
i=1 ω̂i{1 − R̂t (Yi )}I {R̂∗

t (Yi) ≥ p}∑N
i=1 ω̂i{1 − R̂t (Yi)}

,(3.2)

where R̂∗
t (Y) is the estimated risk function derived under the submodel for

R∗
t (Y) = P(Dt = 1|Y∗). Subsequently, we may construct augmented estima-

tors for other risk parameters. For example, we estimate PCF∗
t (v) as P̂CF

∗
t (v) =

T̂PR∗
t {V̂∗−1(1 − v)}, and PNF∗

t (q) as P̂NF∗
t (q) = P̂CF

∗−1
t (q), where V̂∗(p) =

N−1 ∑N
i=1 ŵiI {R̂∗

t (Yi) ≤ p}. An estimator for DMR∗
t is D̂MR

∗
t = ÎTP∗

t − ÎFP∗
t ,

with ÎTP∗
t = ∫

p T̂PR∗
t (p) dp and ÎFP∗

t = ∫
p F̂PR∗

t (p) dp, and an estimator for

AUC∗
t is ÂUC

∗
t = ∫

u T̂PR∗
t (u)F̂PR∗−1

t (du).
For IncV evaluations, we compare the prediction performance of the Rt (Y)

to that of Rold
t (Y) obtained by fitting (2.1) with Yold only. When the full cohort
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data are available for Yold, the estimation of model parameters associated with
P(Dt = 1|Yold) can be obtained using the standard procedures as in Zeng and Lin
(2006) without weighting.

For a generic prediction accuracy parameter At representing either TPRt (p),
FPRt (p), PCFt (v), PNFt (p), AUCt or DMRt , let Aupd

t , Aold
t , Âupd

t and Âold
t de-

note the true and estimated accuracy for Rt (Y) and Rold
t (Y), respectively. The

IncV with respect to At , IncVAt = Aupd
t − Aold

t , can be calculated as ̂IncVAt =
Âupd

t − Âold
t .

To construct confidence intervals for the accuracy and IncV parameters, in the
supplementary article, Appendix C [Zheng et al. (2017)], we provide the asymp-
totic variances of R̂IncV

At
for the CCH and NCC design based on the asymptotic

linear expansion of R̂upd
At

and R̂IncV
At

.

4. Simulations. We conducted simulations to examine the finite sample per-
formances of our proposed procedures under both two-phase designs and the im-
pact of different sampling and analysis strategies on efficiency. With a cohort of
size N = 5000, we first generated Yold and Ynew from a zero-mean bivariate normal
distribution with unit variances and correlation 0.8. The event time T was gener-
ated by conditioning on Yold and Ynew from P(T ≤ t |Y) = T0{log(α0t)+β1Yold +
β2Ynew}, with T0(x) = 1 − exp{− exp(x)}, where β1 = log(3), β2 = log(2) and
α0 was chosen to be (i) 0.1 for studying CCH designs, representing a moderate
event rate scenario; and (ii) 0.01 for NCC designs, representing a rare case sce-
nario. The censoring time C was taken to be the minimum of 2 and W , where
W followed a gamma distribution, with a shape parameter of 2.5 and a rate pa-
rameter of 2. The event rate was about 20% under the setting for studying CCH
designs, and 4% under the setting for studying NCC designs. These two full cohort
data-generating mechanisms were used for all simulation settings, and a variety of
sampling strategies were implemented to assemble the phase II data. For each sam-
pling design and parameter of interest, we obtained two IPW estimators: one with
true sampling weights, and one with the weights estimated by nonparametrically
estimating P(Vi = 1|W) as in equation (2.2).

4.1. Finite sample performance of the proposed estimators. We first assessed
the validity of our proposed inference procedures in finite samples. For simplicity,
no additional matching variables were used for sampling. For the CCH design, we
randomly sampled n1 = 105 cases from {i : δi = 1} and n0 = 3n1 controls from
{i : δi = 0}. For the NCC design, we included all individuals with δ = 1 as cases,
and, for each case, we randomly selected 3 controls from the risk set of the case.
To estimate the sampling weights for augmentation, we let W = (δ, Yold)

T for CCH
and W = (δ,X,Yold)

T for NCC.
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Based on the results of 5000 simulated datasets as shown in the supplementary
article, Table 1 [Zheng et al. (2017)], we found that all point estimates had negli-
gible bias. The asymptotic-based standard error estimators approximated the em-
pirical standard errors well with empirical coverage levels of the 95% confidence
intervals close to the nominal level for all parameters except NPV under the NCC
design. This was not surprising because, in this case, the true NPV levels were ex-
tremely close to 1, which made finite sample standard error and interval estimation
generally difficult as in any binomial proportion estimation setting [Brown, Cai and
DasGupta (2002)]. We also varied the values of bandwidth in the nonparametric
kernels to evaluate the robustness of the proposed estimators. Varying bandwidths
had little impact on estimates of accuracy summaries in the simulated settings as
shown in the supplementary article, Table 2 [Zheng et al. (2017)]. Reducing cohort
size to 1000 for CCH and 2000 for NCC showed efficiency improvement of AIPW
estimators over TIPW estimators, with slightly increasing bias; see the supplemen-
tary article [Zheng et al. (2017)], Tables 3(a) and (b), for details.

4.2. Relative efficiency of different sampling and analytical options. We con-
ducted simulation studies to examine the effect of matching or stratification by a
discrete variable Z on the efficiency of estimating various accuracy summaries. We
let Z = ∑2

l=1 I (Yold ≤ yql
), where yq is the 100qth percentile of Yold and {q1, q2}

are chosen as (i) {0.5,0.75} for the CCH design and (ii) {0.33,0.66} for the NCC
design. We compared the efficiency of AIPW and TIPW estimators obtained with
data generated from different sampling designs, with and without matching on Z.

CCH design. Irrespective of sampling strategy, a total of 150 cases with δ =
1 and 450 controls with δ = 0 were included in the phase II subcohort. Three
commonly adopted sampling strategies were considered:

• Setting A (random): randomly sampled 150 cases and 450 controls without con-
sidering Z.

• Setting B (frequency matched): randomly sampled 150 cases, then sampled con-
trols such that the distribution of Z among the selected controls was the same as
that of the cases.

• Setting C (balanced design): sampled 50 cases and 150 controls from each stra-
tum defined by the level of Z. This design led to oversampling categories with
lower prevalence.

Under the CCH design, for any given parameter of interest A that is estimated
via the TIPW approach as Â, it is possible to calculate the optimal sampling frac-
tions to minimize the variance of Â [Borgan et al. (2000)]. Suppose Â − A =
N−1 ∑N

i=1 ω̃iRAi + op(N− 1
2 ), and the target is to sample n1 cases and n0 con-

trols. Then the optimal sampling fractions that minimize the variance of Â are π∗
l1
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and π∗
l0 for the cases and controls with Z = l, respectively, where

π∗
ld = nd

Nd

Var(RA|δ = d,Z = l)1/2∑L
l′=1 vl′d Var(RA|δ = d,Z = j)1/2

,

vl′d = ∑N
i=1 I (δi = d,Zi = l′)/Nd and Nd = ∑N

i=1 I (δi = d). Note that, in prac-
tice, an estimate of π∗

ld may only be available to assist in study design if prelimi-
nary data are available. In addition, such optimal sampling fractions tend to vary
by specific measure—the sampling fractions optimal for one measure may not be
optimal for the other. Thus, it is not possible to design a study to achieve opti-
mal efficiency simultaneously for all measures. To mimic the most likely scenario
in practice, we calculated optimal fractions for βnew and used them as the basis
for sampling. The IPW estimators with true weights obtained under such a design
(using sampling fraction optimal for βnew), denoted by TIPWopt, were then used
as the benchmark for comparing the efficiency of various standard designs and
gauging the effect of augmentation.

Figure 1(a) shows the efficiencies of the TIPW and AIPW estimators obtained
under various sampling strategies, relative to the TIPWopt estimators. When true

FIG. 1. Relative efficiency (RE) of various predictive performance summaries by different designs.
Figure (a): results for CCH designs. Setting A: simple random sampling; Setting B: matched design;
and Setting C: balanced design. TIPW (top panel) and AIPW (bottom pane) estimators for each
setting are considered using TIPWopt as a benchmark for efficiency. Figure (b): results for NCC
designs. Setting D: simple random sample; Setting E: matched design. TIPW estimator under setting
D is the benchmark for efficiency.
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weights were used, the frequency matched design had similar efficiency as the op-
timal design and outperformed the random and balanced designs for a majority of
the parameters investigated. However, for the accuracy parameters at various risk
threshold levels, the efficiency of the frequency matching was much lower than
the optimal design and was comparable to or sometimes worse than the random
and balanced designs. On the other hand, the AIPW estimators were substantially
more efficient than their corresponding TIPW estimators, except for β2. Interest-
ingly, the AIPW estimators under random sampling had efficiency comparable to
or higher than those obtained from TIPWopt for all parameters of interest. When
comparing the AIPW estimators obtained across the three designs, the balanced
design generally performed the worst. Although the frequency matched design
achieves a slightly higher efficiency for a few parameters than the random design,
the random design appeared to be much more robust with regard to efficiency of
AIPW estimators across different parameters. The results here suggested that, in
practice, considering a simple random sampling scheme at the design stage and
then utilizing auxiliary information in the analysis step has the advantage in both
practical simplicity and statistical efficiency.

NCC design. For the NCC design, all cases were included and 3 controls were
sampled from the risk sets of the cases according to the following two strategies:

• Setting D (random): randomly sampled from the risk set of the case.
• Setting E (matched): randomly sampled from the case’s risk set and matched on

the value of Z of the case.

Since no simple optimal sampling strategies can be implemented for the NCC de-
sign, we used the TIPW estimator under random sampling as the benchmark for
comparison, and present in Figure 1(b) the efficiencies of the TIPW and AIPW
estimators obtained under these two designs relative to the benchmark estimator.
The matched design led to the most efficient relative risk estimators for β1 and β2,
however, the efficiency gain did not directly translate to the estimation of perfor-
mance summary parameters, and it may in fact lead to poorer efficiency compared
to a simple random sampling design. Indeed, for a majority of summary perfor-
mance parameters considered, Setting D, using a simple random sampling design
with the proposed AIPW estimators, appeared to be the most efficient. The results
further suggested the benefit of employing a simple random design followed by the
AIPW estimation procedure. Stratifying/matching based on Yold, while leading to
improved efficiency for the regression parameters, could drastically sacrifice the
efficiency for various accuracy parameters. On the other hand, the AIPW estima-
tor with random sampling always resulted in efficiency improvement. Numerical
results are presented in the supplementary article [Zheng et al. (2017)], Tables 4(a)
and (b).
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5. Example. Patients with hepatocellular carcinoma (HCC) often have poor
prognosis due to late diagnosis. Since cirrhosis of any cause and chronic infection
with hepatitis B virus (HBV) or hepatitis C virus (HCV) are the most common
risk factors for HCC, surveillance of high-risk populations may detect tumors at
an early stage when curative interventions can be implemented. Alpha fetoprotein
(AFP) is the most widely used biomarker for HCC surveillance; however, its sensi-
tivity and specificity in detecting early HCC are low. More reliable biomarkers for
HCC surveillance and early detection are sought in order to improve the outcome
of the disease.

The Hepatitis C Antiviral Long-Term Treatment against Cirrhosis (HALT-C)
Trial included 1050 patients with chronic hepatitis C and bridging fibrosis or cir-
rhosis who failed to achieve a sustained virologic response (SVR) to a combination
therapy of pegylated interferon and ribavirin. Patients were randomized to low-
dose pegylated interferon or no treatment and examined every 3 months for a total
duration of 3.5 years. Blood samples were collected at each visit for subsequent
research testing, including assays for HCC biomarkers. Ultrasound examinations
were repeated 6 months after enrollment and again every 12 months. Patients with
an elevated or rising AFP and those with new lesions detected by ultrasound were
evaluated further by CT or MRI.

One goal of the HALT-C Trial was to identify and validate markers for HCC
surveillance. As part of the trial, an NCC study was employed to assess and com-
pare the accuracy of AFP and a novel serum biomarker, des-gamma-carboxy pro-
thrombin (DCP), in predicting the risk of HCC. The NCC subcohort included all
39 HCC cases diagnosed during the follow-up. For each case, 2 controls with-
out HCC, matched for treatment assignment and presence of cirrhosis on baseline
biopsy, were selected from the risk set of the case. This resulted in a total of 77
controls in the NCC subcohort. The biomarkers were evaluated at multiple follow-
up visits, and the results on the repeated markers were reported in Lok et al. (2010),
where conditional logistic regression models were used to compare characteristics
of HCC cases, and matched controls and unconditional logistic regression were
used to evaluate the accuracy performance of the biomarkers.

To illustrate our proposed methods, only baseline measurements were consid-
ered for risk modeling. Logarithm transformed values were considered for both
AFP and DCP, denoted by logAFP and logDCP, respectively. Due to low liver
cancer incidence, methods that could improve efficiency would be helpful. For
comparison, we obtained parameter estimates using both the TIPW and AIPW ap-
proaches, where for the AIPW approach we let W = (X, δ, log AFP)T for augmen-
tation. To build a risk model with both logAFP and logDCP, we considered fitting
a Cox proportional hazards model. We obtained log hazard ratio (logHR) parame-
ter estimates with the conditional logistic regression, TIPW, and AIPW methods.
The conditional logistic regression method yielded a logHR estimate of 0.54 with
a standard error (SE) of 0.27 for logAFP and 1.54 with a SE of 0.51 for logDCP,
suggesting that DCP may serve as an independent risk factor for HCC beyond AFP.
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The logHR was estimated as 0.61 (SE: 0.22) for logAFP and 2.04 (SE: 0.33) for
logDCP based on TIPW, and 0.82 (SE: 0.18) for logAFP and 1.95 (SE: 0.32) for
logDCP based on AIPW. These results indicated that the AIPW method provided
more efficient estimates of the logHR parameters when compared to TIPW and
conditional logistic regression methods.

We subsequently evaluated the 2-year predictive performance by combining
logDCP and logAFP using the measures described in Section 3.1. The results for
evaluating the full model with both logAFP and logDCP included are presented
in the first two columns of Table 1. Across the measures we considered, point es-
timates from the two approaches in general were quite close; however, the AIPW
estimators had substantially smaller standard errors than that of the TIPW estima-
tors for most of the parameters. Combing AFP and DCP led to a good predictive
model for predicting the 2-year risk of HCC, with AUC estimated as 0.81 (95%CI:
[0.68, 0.94]) based on TIPW, and 0.82 (95%CI: [0.75, 0.90]) based on AIPW. If
the top 20% of the population based on the estimated risks is considered of high
risks, then the proportion of individuals who will be diagnosed with HCC within
two years, captured by the prediction rule, is 64% (95% CI: [38%, 89%]) based
on the TIPW estimate, and 68% (95% CI: [53%, 81%]) based on the AIPW esti-
mate.

To further evaluate whether adding DCP to the model substantially improves
accuracy when compared to the model with AFP alone, we also fit a model with
AFP alone and calculated the IncV of DCP with respect to various accuracy param-
eters as shown in Table 1. The ROC curves and risk distribution for both models
are shown Figure 2. As seen in the figures, the enriched model always had higher
TPF and higher PCF, but smaller PNF across different risk thresholds p. Formal
tests of such observed incremental values for selected p can be based on the re-
sults presented in the last two columns in Table 1. For example, IncVAUC2 was
estimated as 12.9% with 95% CI (7.0%, 18.7%) based on AIPW, indicating that
adding DCP improved in prediction accuracy beyond AFP. In addition, there was
also significant improvement with respect to PCF and PNF, with IncVPCF2(0.2) es-
timated as 21.4% (95% CI: [10.4%, 32.3%]) and IncVPNF2(0.2) estimated as 18.3%
(95% CI: [5.1%, 31.4%]), based on AIPW. The TIPW approach, while generat-
ing similar point estimates, did not produce statistically significant IncV estimates
for all parameters considered (Table 1). This example demonstrates the advan-
tage of the proposed AIPW method for estimating accuracy summaries and IncV
parameters, particularly when there are limited samples with available biomarker
measurements.

6. Discussion. Large cohort biomarker studies of rare diseases such as cancer
require thoughtful planning, from selection of study subjects and measurement of
key variables and auxiliary information to analytical strategies. Study design be-
comes even more demanding in biomarker research when measurements are based
on stored tissue or blood specimens. It is important in this setting to use research
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TABLE 1
Evaluation of biomarkers in predicting 2-year liver cancer incidence in Halt-C study. Shown below are TIPW and AIPW estimates along with their

corresponding standard errors shown in parenthesis. The log-hazard ratios and accuracy parameters were estimated for 2-year risks estimated
based on both (i) the full model with log AFP + log DCP; and (ii) the reduced model with log AFP alone. Also presented are

the TIPW and AIPW estimates for IncV parameters of log DCP above and beyond log AFP

log AFP + log DCP log AFP IncV of log DCP

Parameters TIPW (SE) AIPW (SE) TIPW (SE) AIPW (SE) TIPW (SE) AIPW (SE)

β1 0.614 (0.221) 0.822 (0.177) 0.542 (0.206) 0.771 (0.168) – –
β2 2.043 (0.333) 1.953 (0.316) – – – –
AUC 0.809 (0.066) 0.823 (0.040) 0.655 (0.079) 0.694 (0.054) 0.155 (0.129) 0.129 (0.030)

DMR 0.155 (0.376) 0.173 (0.193) 0.065 (0.148) 0.112 (0.081) 0.090 (0.473) 0.061 (0.267)

ITPR 0.168 (0.389) 0.188 (0.199) 0.108 (0.036) 0.142 (0.015) 0.060 (0.353) 0.045 (0.193)

IFPR 0.013 (0.013) 0.015 (0.007) 0.043 (0.154) 0.030 (0.087) −0.029 (0.126) −0.015 (0.082)

TPR(0.002) 0.979 (0.023) 0.981 (0.024) 0.986 (0.031) 0.989 (0.021) −0.007 (0.031) −0.008 (0.023)

FPR(0.002) 0.827 (0.123) 0.824 (0.167) 0.928 (0.060) 0.939 (0.066) −0.101 (0.073) −0.116 (0.125)

PPV(0.002) 0.014 (0.004) 0.016 (0.004) 0.016 (0.007) 0.014 (0.009) −0.002 (0.007) 0.002 (0.007)

NPV(0.002) 0.999 (0.001) 0.999 (0.001) 0.997 (0.005) 0.998 (0.005) 0.001 (0.006) 0.001 (0.006)

TPR(0.02) 0.529 (0.287) 0.562 (0.083) 0.201 (0.098) 0.328 (0.050) 0.328 (0.292) 0.234 (0.069)

FPR(0.02) 0.112 (0.070) 0.114 (0.051) 0.069 (0.328) 0.099 (0.074) 0.043 (0.249) 0.015 (0.097)

PPV(0.02) 0.052 (0.015) 0.063 (0.019) 0.042 (0.041) 0.043 (0.041) 0.011 (0.038) 0.021 (0.055)

NPV(0.02) 0.994 (0.003) 0.993 (0.002) 0.987 (0.018) 0.990 (0.006) 0.007 (0.014) 0.003 (0.005)

PCF(0.20) 0.636 (0.131) 0.667 (0.071) 0.307 (0.047) 0.453 (0.048) 0.329 (0.117) 0.214 (0.056)

PNF(0.85) 0.526 (0.119) 0.570 (0.061) 0.400 (0.051) 0.386 (0.037) 0.125 (0.120) 0.183 (0.067)
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FIG. 2. Comparing performance of two prediction models: model with AFP alone (solid lines) and
model with both AFP and DCP (dashed lines). (a) ROC curves for predicting 2-year risk of HCC with
baseline biomarker measurements. (b): risk distribution curves for individuals who were diagnosed
with HCC in 2 years.

resources wisely to achieve optimal efficiency of the study. There is a paucity of
appropriate statistical methods for biomarker assessment and guidance on design
and analysis strategies to maximize efficiency. Practical and efficient statistical
tools can enable clinical investigators to conduct more cost-effective studies and
more efficiently allocate research resources.

This manuscript contributes to such an endeavor in two ways. First, we pro-
vide a general framework for more efficiently estimating prediction accuracy and
IncV parameters via an AIPW approach under two-phase CCH or NCC designs.
Our simulation studies and application of Halt-C biomarker validation studies indi-
cate that the use of nonparametric weights to capture design selection is valid and
yields significant efficiency gain. Furthermore, the proposed approach also pro-
vides a practical solution in study settings where the true design-based sampling
probabilities are impractical to ascertain. In addition, previous work on biomarker
evaluation with two-phase studies [Cai and Zheng (2012), Liu, Cai and Zheng
(2012)] only considered evaluating the performance of a single marker. We ex-
tend the scope of work to the evaluation of multivariate risk models and IncV of
novel biomarkers under two-phase designs. Such extensions are nontrivial due to
the complex structure induced by both the correlation among different risk markers
and the sampling design.

Second, using extensive numerical studies, we demonstrated that stratification
sampling for CCH studies or matching for NCC studies can be inefficient in many
accuracy summaries when not done optimally. In the absence of preliminary data,
it is often unclear what variables for matching or what sampling fractions should be
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considered for stratification. A poor choice in matching variables may lead to loss
in efficiency and unnecessary complications in analysis. Furthermore, the sampling
fractions optimal for one parameter may not be optimal for another, and thus no
sampling strategies would be uniformly optimal across all parameters. Therefore,
using a simple sampling scheme at the design stage and then improving estimation
efficiency using the proposed augmented estimators in analysis would be a useful
alternative to considering matched designs.

We have focused on the estimation of accuracy summaries with a semiparamet-
ric approach to illustrate the AIPW approach. Alternatively, one may consider cal-
culating the accuracy summaries with a nonparametric approach as was previously
considered [Cai and Zheng (2011)], without relying on the assumption of Model
(2.1). The estimating and inference procedures with AIPW described can be easily
adopted to that setting. Our proposed estimators for evaluating the IncV of a new
prediction model improves efficiency of the existing IPW-based estimators; how-
ever, they do not achieve full efficiency as compared with a full likelihood-based
approach [Zeng and Lin (2014)]. Future exploration of the additional gain when
applying nonparametric likelihood-based procedures is warranted, even at the cost
of increased computational burden. Finally, the validity of the class of IPW estima-
tors is based on the assumption that selection is dependent on variables observable
from the full cohort. Caution should be taken when the availability of biomarker
measurement might be dependent on unmeasured variables.
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SUPPLEMENTARY MATERIAL

Supplementary Article for “Improving efficiency in biomarker incremental
value evaluation under two-phase designs” (DOI: 10.1214/16-AOAS997SUPP;
.pdf). We provide theoretical derivations and additional simulation results.
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