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Rapid technological advances have drastically improved the data collec-
tion capacity in occupational exposure assessment. However, advanced sta-
tistical methods for analyzing such data and drawing proper inference remain
limited. The objectives of this paper are (1) to provide new spatio-temporal
methodology that combines data from both roving and static sensors for data
processing and hazard mapping across space and over time in an indoor envi-
ronment, and (2) to compare the new method with the current industry prac-
tice, demonstrating the distinct advantages of the new method and the im-
pact on occupational hazard assessment and future policy making in environ-
mental health as well as occupational health. A novel spatio-temporal model
with a continuous index in both space and time is proposed, and a profile
likelihood-based model fitting procedure is developed that allows fusion of
the two types of data. To account for potential differences between the static
and roving sensors, we extend the model to have nonhomogenous measure-
ment error variances. Our methodology is applied to a case study conducted
in an engine test facility, and dynamic hazard maps are drawn to show fea-
tures in the data that would have been missed by existing approaches, but are
captured by the new method.

1. Introduction. Occupational exposure assessment refers to assessment of
the level of contaminants an employee is exposed to during their work shift. The
traditional method for occupational exposure assessment is personal monitoring
using lightweight devices that can be worn by the workers. Personal exposure
estimates are typically sought because they can be compared against regulatory
standards to ensure compliance with existing laws. However, personal monitoring
is generally expensive and requires workers to carry equipment with them dur-
ing their work. As such, it is common for a small number of measurements, on a
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small number of employees, to be collected [Tornero-Velez et al. (1997), Cherrie
(2003)], resulting in small sample sizes that cannot accurately capture true levels
of contamination. Additionally, without the ability to track worker location, there
is little ability to apportion exposures to different areas or tasks.

Occupational hazard maps, contour plots of contaminant concentration over the
two-dimensional floor plan of the workplace, have gained popularity as a method
to overcome some of the limitations of the traditional personal sampling that is
generally expensive with small sample sizes [Koehler and Peters (2013), Peters
et al. (2006, 2012), Evans et al. (2008), Ologe, Akande and Olajide (2006)]. Haz-
ard maps are commonly produced by industrial hygienists or researchers using
direct-reading instruments (DRIs) to capture contaminant concentrations at high
spatial resolution following a predetermined grid throughout the facility of interest
(hereafter, roving sensors). Such maps are powerful tools to communicate risk in
an easily understood format and to guide decisions on control strategies aimed at
reducing worker exposures [O’Brien (2003)].

Hazard maps that rely on roving monitor data alone, while cost-effective to
produce and conceptually simple, likely fail to represent the temporal variability
in concentrations present in many occupational settings [Koehler and Volckens
(2011), Lake et al. (2015)]. Augmenting the data with static sensors that collect
time series data, but at a few locations, can allow practitioners to expand the tem-
poral and spatial coverage of data collection [Lake et al. (2015)]. As DRIs be-
come more affordable and accessible, these types of exposure data (from static
and roving sensors with known spatial information) are expected to become more
abundant, but rigorous statistical methods for analyzing data and drawing proper
inference remain limited. The current hazard mapping approach to occupational
exposure assessment, although novel, represents several challenges. Maps that are
created from roving sensor data alone are often either collected over a short tem-
poral interval or aggregated over time and neglect the temporal variability in the
dataset. As such, temporal variability can be mistakenly displayed as spatial vari-
ability. In our previous work, we compared maps created using the roving sensor
data and static sensor data separately [Lake et al. (2015)]. The method employed
was somewhat ad hoc because a comprehensive statistical methodology was lack-
ing to combine the datasets (static and roving) to provide a representation of expo-
sures across space and time. The maps should give not only the most representative
indication of the mean value, accounting for both data types, but also an indication
of the variability in concentrations, as a function of both time and space.

Statistical methods for integrating different sources of data in space and/or
time have been researched in the past. For example, Isaacson and Zimmerman
(2000) developed methodology for combining environmental data that are tempo-
rally correlated and from two measurement systems. Their autoregressive moving-
average models allowed a common time trend, system-specific measurement er-
rors and missing data, for which the inference was conducted by both frequentist
and Bayesian approaches. Cowles et al. (2002) extended Isaacson and Zimmerman
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(2000) to temporally correlated data from multiple measurement systems that are
measured at distinct sites in space. A Bayesian approach was taken to estimate the
long-term trend and evaluate differences among the measurement systems. Further,
Smith and Cowles (2007) considered an integrated model for correlating point-
referenced radon and areal uranium data for quantifying a common spatial process
using also a Bayesian approach, whereas Sahu, Gelfand and Holland (2010) fused
point-referenced and areal wet deposition data in space and time. Such prior re-
search is illuminating, but none considered the possibility of roving sensors, and
thus is not directly applicable for the hazard mapping under consideration. The
objectives of this paper are (1) to develop new spatio-temporal methodology that
combines data from both roving and static sensors for data processing and hazard
mapping across space and over time in an indoor environment and (2) to compare
the new method with the current industry practice, demonstrating the distinct ad-
vantages of the new method and the impact on occupational hazard assessment and
future policy making in environmental health as well as occupational health.

Combining data from static and roving sensors in a statistically sound way is
challenging. First of all, while the roving sensors expand the spatial coverage of
data, the observations are sparse in time at any given location. This is in contrast
to the static sensors that are at a smaller number of sampling locations, but obser-
vations are denser in time at each sampling location. An ad hoc approach would
be to analyze the two types of data separately, but there is potential benefit to be
gained by developing statistical methodology that pools the two data sources and
takes full advantage of their respective strengths. In addition, inaccurate and miss-
ing data can be a thorny issue in such data analysis due to different measurement
systems, instrumentation failures, and uneven or asynchronous monitoring times,
etc. To address these challenges, we propose a novel spatio-temporal process that
has a continuous index in both space and time; that is, in the spatial domain of
interest, the sampling locations can occur anywhere, in which sense the modeling
is geostatistical [see, e.g., Cressie (1993)], whereas within the temporal window of
interest, the sampling can occur at any time and thus the modeling may be viewed
as functional [see, e.g., Ramsay and Silverman (2005)]. We then develop a model
fitting procedure that allows the fusion of the two types of data based on profile
likelihood accompanied by a fast computational algorithm. Further, to account for
potential differences between the static and roving sensors, we extend the spatio-
temporal model to allow for inhomogenous measurement error variances. Finally,
we compare our new methodology with the current industrial standard/practice
which does not model temporal variability and generates hazard maps from data
averaged in time.

As we will demonstrate in a case study conducted in an engine test facility,
the dynamic hazard maps that interpolate across space and over time are far more
informative and representative of the evolution of hazard levels in space and time.
This finding can impact the way occupational hazards are to be mapped in the
future and move the industry and regulation forward to more accurate assessment
of environmental hazards.
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2. Application and data.

2.1. Case study. A study was conducted in the spring of 2013 in an engine test
facility located in Colorado to evaluate occupational exposure [Lake et al. (2015)].
The facility has two rooms, both rectangular in shape (14.8 m by 6.5 m and 14.8 m
by 33.7 m, respectively), separated by a sliding door and encompassing a com-
bined area of about 595 m2. A floor plan is shown in Figure 1(a). In one experi-
ment, for example, an active engine, located in the upper left corner of the facility
[black square in Figure 1(a)], was operating between 10:00:00 am and 11:10:00
am, while the sliding door was open. Measurements of noise intensity were col-
lected by 18 static sensors and 2 roving sensors. The locations of the static sensors
are given in Figure 1(a), whereas the pathways of the roving sensors are shown in
Figure 1(b). The static sensors started collecting data at 9:45:00 am and ended at
11:23:20 am when they were turned off. The operation of the first roving sensor
started at 10:28:45 am and that of the second roving sensor started at 10:52:45
am. Both roving sensors were in operation until the end of the experiment, but not
continuously. Static sensor measurements were collected at every minute, while
roving sensors measured hazard levels with a resolution of 20 seconds. There are
thus 100 sampled points for each of the 18 static sensors, 105 sampled points for
the first roving sensor and 72 sampled points for the second roving sensor, for a
total of 1977 observations.

FIG. 1. (a) The floor plan of the engine test facility. The black rectangle in the upper left corner is
the source of noise, white rectangles are offices, gray rectangles are inactive engines, and dark gray
rectangles are floor openings. The locations of static sensors are numbered from 1 to 18. (b) The
pathway of the first roving sensor is drawn in open circles. The pathway of the second roving sensor
is similar, and thus omitted.
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FIG. 2. Observed noise intensity over time from 9:45:00 am to 11:23:20 am. Gray solid lines are
time series for static sensors near one noise source (#1 through 7, and 17). The black solid line is
near the secondary noise source (#18). Dashed lines are for the remainder static sensors. Filled and
open circles are samples taken by the first roving sensor that started at 10:28:45 am and the second
roving sensor that started at 10:52:20 am, respectively.

The measurements sampled over time are plotted in Figure 2. For each static
sensor, a time series of noise intensity is plotted. The static sensors near the active
engine in the upper left corner of the facility had higher intensity (gray solid lines)
than those further away (dashed lines). One static sensor (#18) was far away from
the active engine but had high noise intensity due to an unexpected noise source
outside the facility (black solid line). The roving sensors are also displayed as filled
circles (sensor 1) or open circles (sensor 2).

The static sensors all have dense sampling points in time, and thus relatively
complete profiles of the temporal processes at the sampling locations (Figure 2).
However, the spatial coverage by the static sensors is limited to the 18 sampling
locations where they were installed [Figure 1(a)]. In contrast, each roving sensor
has a wider spatial coverage [Figure 1(b)], but the information at any given location
is sparse in time (Figure 2). The sampling time points for the roving sensors are
also irregularly spaced, with occasional breaks that vary from about 20 seconds to
about 5 minutes.

2.2. Current practice of hazard mapping. In a recent review of hazard map-
ping approaches, Koehler and Peters (2013) noted that relatively simple methods
have been used to construct maps, often averaging the sensors in time before em-
ploying a spatial interpolation technique, or interpolating across space for a fixed
time and averaging the maps. We show static maps commonly obtained by indus-
trial hygienists for the case study in Figure 3, after averaging over all data in time
at each unique sampling location. The map labeled “Roving” is based on kriging
estimates and uses the roving sensors exclusively. It corresponds to early practice
with DRIs and still is the most common approach. The map labeled “Roving and
Static” incorporates both sources of data. The aggregated map gives equal weights
to observations available in the roving path (only one or two data points) and the
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FIG. 3. Static maps of the noise intensity obtained by kriging using the roving sensor data only
(left), the roving and static sensor data (center) and the static sensor data only (right), averaging
data at the same location in time.

ones from the static sensors (a hundred observations over the data collection pe-
riod). Both maps tend to show local features that are not necessarily informative. In
addition, the map labeled “Static” uses only static sensor data. It loses the local fea-
tures provided by roving sensors due to a fairly limited spatial coverage. All these
static maps naturally fail to capture the evolution of the hazard level in time and,
as we will demonstrate, misrepresent the intensity of a secondary noise source in
the southeastern part of the facility. Health effects of short duration but high-level
exposures are unclear, and the static maps in current practice have limited capacity
for studying these events.

3. Data and model specification.

3.1. Data specification. We now specify the notation for the spatio-temporal
process of a generic hazard. Let D ⊂R

2 denote a two-dimensional spatial domain
of interest, and let [0, T ] denote a temporal window of interest where T > 0. Let
s1, . . . , snS denote the locations of the static sensors, where si = (si,x, si,y)

′ is the
location of the ith static sensor and nS is the number of static sensors. For the ith
static sensor, let there be pi sampling time points, denoted as tk,i , for k = 1, . . . , pi ,
i = 1, . . . , nS. In contrast, let nR denote the number of roving sensors. For the j th
roving sensor, let there be qj sampling time points. A roving sensor generally has
different sampling locations at different sampling time points and, therefore, the
sampling locations are denoted by r1,j , . . . , rqj ,j , where rl,j = (rl,j,x, rl,j,y)

′ is
associated with sampling time tl,j , for l = 1, . . . , qj , j = 1, . . . , nR. Let ys(t) de-
note the intensity of a hazard at a given point in time t in [0, T ] and a given spatial
location s = (sx, sy)

′ ∈ D. We will denote the samples collected by the static sen-
sors as ysi (tk,i), for k = 1, . . . , pi , i = 1, . . . , nS, and the samples collected by the
roving sensors as yrl,j

(tl,j ), for l = 1, . . . , qj , j = 1, . . . , nR.
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3.2. Model specification. To model the static sensor data {ysi (tk,i)} and roving
sensor data {yrl,j

(tl,j )}, we consider a spatio-temporal model

(1) ys(t) = μs(t) + ηs(t) + εs(t),

where μs(t) is a deterministic mean function, ηs(t) is a random spatio-temporal
process with E(ηs(t)) = 0 and covariance function γ (t, s, t ′, s′) = Cov(ηs(t),

ηs′(t ′)), and εs(t) is a measurement error process with E(εs(t)) = 0, constant vari-
ance σ 2 = Var(εs(t)) and zero correlation [Cressie and Wikle (2011)]. Further, we
assume that the spatio-temporal process ηs(t) is square integrable and the spatio-
temporal covariance function of ηs(t) at location s ∈ D satisfies

(2) γ
(
t, s, t ′, s

) = γ0
(
t, t ′

)
,

where γ0(t, t
′) = γ (t, s0, t

′, s0) is a temporal covariance function at any spatial lo-
cation s0 ∈ D; that is, the temporal correlation function ηs(t) and ηs(t

′) is invariant
in space.

The spatio-temporal process ηs(t) has a type of Karhunen–Loève decomposi-
tion [see, e.g., Gromenko and Kokoszka (2013)]:

(3) ηs(t) =
∞∑

�=1

ξ�(s)ϕ�(t),

where {ϕ�(t)}∞�=1 is a sequence of deterministic orthogonal temporal functions and
{ξ�(s)}∞�=1 is a sequence of zero-mean random spatial processes that are uncorre-
lated with each other. The decomposition (3) represents the spatio-temporal pro-
cess as a linear combination of the temporal basis functions ϕ�(t) (based on the
temporal covariance function) with the random spatial processes ξ�(s) as coeffi-
cients.

We assume that the spatial covariance function of ξ�(s) takes on the form

Cov
(
ξ�(s), ξ�

(
s′)) = λ�ρ�

(∥∥s − s′∥∥; θ�

)
,

where λ� = Var(ξ�(s)) is the variance of ξ�(s), ρ�(·; θ�) is a correlation function
parameterized by θ�, and ‖ · ‖ denotes the Euclidean distance. From (3), we can
write the spatio-temporal covariance function γ (t, s, t ′, s′) of ηs(t) as

(4) γ
(
t, s, t ′, s′) =

∞∑
�=1

Cov
(
ξ�(s), ξ�

(
s′))ϕ�(t)ϕ�

(
t ′

)
.

In the case s = s′, (4) is reduced to the temporal covariance function γ0(t, t
′) =∑∞

�=1 λ�ϕ�(t)ϕ�(t
′). This makes clear that {ϕ�(t)}∞�=1 are analogous to the eigen-

functions of γ0(t, t
′) with the corresponding eigenvalues {λ�}∞�=1. It is based on (4)

that we will devise a semiparametric likelihood approach to fitting the spatio-
temporal model (1) to the static and roving sensor data, as well as mapping the
true spatio-temporal process of the hazard μs(t)+ ηs(t), while taking into account
the spatial and temporal variability.
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Our modeling approach is tailored toward the distinct features of static and rov-
ing sensor data. The spatial index is continuous in the spatial domain, and the
temporal index is continuous within the time window. Thus, the sensors can be
placed anywhere in the study area and do not need to be on a regular grid. Fur-
ther, sampling can occur at any point in time and no regular time intervals are
required. In addition, our modeling framework is semiparametric and flexible. The
specification of the deterministic mean function μs(t) is nonparametric, while the
specification of the spatio-temporal process is semiparametric in the sense that the
spatial covariance function Cov(ξ�(s), ξ�(s′)) in (4) is parametric but the temporal
covariance function γ0(t, t

′) in (2) is nonparametric. The nonparametric specifica-
tion allows for capturing different sources for a hazard, some of which are unex-
pected to be present or are present at unexpected time intervals, such as the outside
noise near sensor #18 in the case study.

The class of spatio-temporal covariance functions (4) is broad, encompassing
processes that are nonstationary and nonseparable in space and time with the
separable case corresponding to λ� = 0 for � ≥ 2. These properties can be con-
trasted to spatio-temporal kriging [Cressie and Wikle (2011), page 321], which
in many practical scenarios requires the specification of the spatio-temporal co-
variance function, and the time series of the spatial process approach [Cressie and
Wikle (2011), page 336], which requires the temporal coordinates to be sampled
at regular intervals.

4. Statistical inference.

4.1. Profile likelihood estimation. Parameter estimation by maximum likeli-
hood can be challenging due the large number of parameters in the model (1).
Thus, we use the idea of functional principal components and develop a profile
likelihood approach to estimating the model parameters [Ramsay and Silverman
(2005)]. Further, only finitely many eigenvalues are estimable from a sample co-
variance matrix in the nonparametric specification of the covariance function and,
therefore, it is necessary that, for some L ≤ mini{pi} [see Wahba (1990), page 5],

(5) ηs(t) ≈
L∑

�=1

ξ�(s)ϕ�(t).

Let ysi = (ysi (t1), . . . , ysi (tpi
))′ and μsi = (μsi (t1), . . . ,μsi (tpi

))′ denote the
vector of the data from the ith static sensor at time points tk for k = 1, . . . , pi

and the corresponding mean vector for i = 1, . . . , nS. Let yrj
= (yr1,j

(t1,j ), . . . ,

yrqj ,j
(tqj ,j ))

′ and μrj
= (μr1,j

(t1,j ), . . . ,μrqj ,j
(tqj ,j ))

′ denote the vector of the
data from the j th roving sensor at spatial locations rl,j and time points tl,j for
l = 1, . . . , qj and the corresponding mean vector for j = 1, . . . , nR. Also, let
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y = (y′
s1

, . . . ,y′
snS

,y′
r1

, . . . ,y′
rnR

)′ and μ = (μ′
s1

, . . . ,μ′
snS

,μ′
r1

, . . . ,μ′
rnR

)′ denote
the vector of all the observations and the corresponding mean vector.

Let � = diag{diag{Ai}nS
i=1,diag{diag{bl,j }qj

l=1}nR
j=1} denote a block diagonal

matrix, where

Ai =
⎛
⎜⎝

ϕ1(t1,i) · · · ϕ1(tpi,i)
...

. . .
...

ϕL(t1,i) · · · ϕL(tpi,i)

⎞
⎟⎠ and bl,j =

⎛
⎜⎝

ϕ1(tl,j )
...

ϕL(tl,j )

⎞
⎟⎠ .

Let

� =
(
�S,S �S,R
�R,S �R,R

)

with �S,S = (diag{λ�ρ�(‖si − si′‖; θ�)}L�=1)
nS
i,i′=1, where λ�ρ�(‖s − s′‖) =

Cov(ξ�(s), ξ�(s′)), λ� = Var(ξ�(s)) and ρ�(·) is a spatial correlation function that
may be modeled by the Matérn class [Stein (1999)]. Note �S,S is a block matrix
with blocks corresponding to distinct spatial locations. The submatrices �S,R and
�R,R are defined analogously; however, for a given roving sensor, each distinct
spatial location corresponds to its own block. This illustrates that the covariance
structure is more complex than a sampling scheme that involves only static sensors,
showing that roving sensors play a role in both spatial and temporal dependence.
The rank of � can be as large as L(nS + ∑nR

j=1 qj ).
Suppose ηs(t) and εs(t) are Gaussian processes. Then ξ�(s) are Gaussian pro-

cesses, and y follows a multivariate Gaussian distribution with mean μ and covari-
ance

(6) � = �′�� + σ 2IN,

where N = ∑nS
i=1 pi +∑nR

j=1 qj is the total sample size combining static and roving
sensor data and IN is the N -dimensional identity matrix.

Estimation of all the components is not always possible depending on the
choices made for the parameters θ� in the spatial correlation function ρ�(·) and
those made for the shape of the temporal process ϕ�(·). We now develop a pro-
file likelihood approach to parameter estimation. At initialization, we estimate the
mean function μs(t) by ordinary least squares (OLS) and denote the estimated
mean function as μ̂s(t). For example, a fitted mean function could comprise both
a linear model spatially and a nonparametric model temporally,

(7) μ̂s(t) = β̂0 + β̂xsx + β̂ysy +
K∑

k=1

β̂kBk(t),

where s = (sx, sy)
′, Bk(·) are cubic spline basis functions, K is the number of

basis functions that controls the smoothness of μ̂, and β̂· are the OLS estimates
of the coefficients. Let μ̂OLS denote the vector of μ̂s(t) at all sampling locations
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and time points. Let ŷ = y − μ̂OLS denote the detrended data comprising ŷsi =
(ŷsi (ti,k) : k = 1, . . . , pi)

′ for i = 1, . . . , nS and ŷrj
= (ŷrj,l

(tj,l) : l = 1, . . . , qj )
′

for j = 1, . . . , nR.
Next, we estimate λ� and ϕ�(t) by applying a functional principal component

analysis to the data from the static sensors [Ramsay and Silverman (2005), pages
178–182]. In this step, we estimate the temporal covariance function γ̂0(t, t

′) from
vectors ŷsi expanded in B-spline basis functions, obtaining a functional estimate
of ysi (t) − μsi (t) denoted by ŷsi (t). Thus,

(8) γ̂0
(
t, t ′

) = n−1
S

nS∑
i=1

ŷsi (t)ŷsi
(
t ′

)
.

The estimate of the first temporal function ϕ̂1(·) is the maximizer of

(9) max‖f (t)‖ζ =1

∫ T

0

∫ T

0
f (t)γ̂0

(
t, t ′

)
f

(
t ′

)
dt dt ′,

where ‖f (t)‖ζ = 1 in the Lζ norm, 〈f,g〉ζ = ∫ T
0 f (t)g(t)dt + ζ

∫ T
0 f ′′(t)g′′(t)dt

is an inner product, and ζ is a tuning parameter that controls the smoothness of the
estimates. The estimates of the subsequent temporal functions ϕ̂�(·) for � ≥ 2 are
the maximizer of (9) under the constraint of orthogonality of ϕ̂�(·) and ϕ̂�′(·) (in
the 〈·, ·〉ζ sense) for all �′ < �. Finally, λ� is estimated by

λ̂� =
∫ T

0

∫ T

0
ϕ̂�(t)γ̂0

(
t, t ′

)
ϕ̂�

(
t ′

)
dt dt ′

for � = 1, . . . ,L.
Unlike static sensors, it is not possible to obtain a full time series of data at a

fixed location rj,l for the roving sensor. Therefore, estimates of ϕ�(t) are based
on static sensors only, and the values of ϕ̂�(t) for the roving sensors are inter-
polated by evaluating the estimates ϕ̂�(t) at time points tl,j for l = 1, . . . , qj ,
j = 1, . . . , nR. The smoothness of ϕ�(t) estimates is influenced by the number of
basis functions K , the tuning parameter ζ and the number of functional principal
components L.

Given μ̂, λ̂� and ϕ̂�(t), we minimize the negative profile log-likelihood of θ and
σ 2 defined as

(10)
f

(
θ , σ 2) = −2�

(
θ , σ 2)

∝ ŷ′�1
(
θ , σ 2)−1ŷ + log

[
det

{
�1

(
θ , σ 2)−1}]

,

where ŷ = y − μ̂ is the detrended data vector and �1(θ , σ 2) = �(θ , σ 2; λ̂�, ϕ̂�(t))

is the covariance (6) parameterized by θ and σ 2 and evaluated at λ̂� and ϕ̂�(t).
The solutions to (10) can be obtained by using box-constrained optimization to
ensure that all estimated parameters are positive. Further, the coefficients in the
mean function (7) are updated by

β̂ = (
X′�̂−1

X
)−1X�̂

−1
y,
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where �̂ = �(θ̂ , σ̂ 2; λ̂�, ϕ̂�(t)) is the covariance (6) evaluated at the parameter
estimates and X is the design matrix for the covariates in (7).

4.2. Spatio-temporal kriging and prediction of spatial loadings. To predict
ys0(t) at an unsampled location s0 and time t0, we use

(11) ŷs0(t0) = μ̂s0(t0) + η̂s0(t0) = μ̂s0(t0) + �̂s0,t0�̂
−1

(y − μ̂),

where �̂s0,t0 = �̂(t0)
′�̂(s0)�̂(t0), �̂(t0) is � evaluated at t0, and �̂(s0) =

(�̂s0,S �̂s0,R), with �s0,S = {diag{λ�ρ�(‖s0 − si‖; θ�}L�=1}nS
i=1, and �s0,R =

{diag{λ�ρ�(‖s0 − rl,j‖; θ�}L�=1}qj

l=1,
nR
j=1. Equation (11) is used over a fine spatial

grid to generate the hazard maps over time. The prediction standard error is given
by σ̂s0(t0), where

(12)
σ̂ 2

s0
(t0) = σ̂ 2 +

L∑
�=1

λ̂�ϕ̂
2
� (t0) − �̂

′
s0,t0

�̂
−1

�̂s0,t0

+ (
x − X′�̂−1

�̂s0,t0

)′(X′�̂−1
X

)−1(
x − X′�̂−1

�̂s0,t0

)
,

and x are the covariates in (7) evaluated at s0 and t0.
We can also predict the spatial loadings ξ�(s) using conditional expectations

in an approach similar to Yao, Müller and Wang (2005) for nonspatial data. Let
s∗

1, . . . , s∗
m ∈ D be the unsampled locations of interest. The �th loading evalu-

ated at locations s∗
1, . . . , s∗

m is a linear predictor of (ξ�(s∗
1), . . . , ξ�(s∗

m)). Assuming
{ξ�(s∗

1), . . . , ξ�(s∗
m)}∞�=1 and εs(t) are jointly Gaussian, we have
(
ξ̂�

(
s∗

1
)
, . . . , ξ̂�

(
s∗
m

))′ = Ê
((

ξ�

(
s∗

1
)
, . . . , ξ�

(
s∗
m

))′ | y
)

= �̂ξ�,y�̂
−1

(y − μ̂),

where �̂ξ�,y is the plug-in estimate of �ξ�,y, and �ξ�,y is the sample covariance of
(ξ �(s

∗
1), . . . , ξ �(s

∗
m))′ and y, given by

�ξ�,y = λ�

⎛
⎜⎜⎝

ϕ�(t1,1)ρ�

(∥∥s∗
1 − s1

∥∥; θ�

) · · · ϕ�(tqnR ,nR)ρ�

(∥∥s∗
1 − rqnR ,nR

∥∥; θ�

)
...

. . .
...

ϕ�(t1,1)ρ�

(∥∥s∗
m − s1

∥∥; θ�

) · · · ϕ�(tqnR ,nR)ρ�

(∥∥s∗
m − rqnR ,nR

∥∥; θ�

)

⎞
⎟⎟⎠,

and �̂, y and μ̂ are as defined in Section 4.1.

4.3. Inhomogeneous variances. The model given in (1) assumes that the mea-
surement error variance is the same for the static and roving sensors. In practice,
however, this assumption does not always hold. In the following we extend the
data model to accommodate the situation that the measurement error variance for
the static sensors is different from the roving sensors.
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Consider model (1) again,

(13) ys(t) = μs(t) + ηs(t) + εs(t),

but with measurement error variances Var(εs(t)) = σ 2
S for static sensors and

Var(εs(t)) = σ 2
R for roving sensors. The model (13) will be referred to as the in-

homogeneous variance case. The model (1) is a special case where σ 2
S = σ 2

R and
will be referred to as the homogeneous variance case. In the inhomogeneous vari-
ance case, the covariance is a general case of (6), and the estimation algorithm is
modified by using

(14) � = �′�� + σ 2
S DS + σ 2

RDR,

where DS,DR are diagonal matrices with diagonal entries equal to 1 for static and
roving sensors, respectively, and 0 otherwise. The model (13) allows the fusion of
the two sources of data with varying degrees of spatio-temporal resolutions and
drawing inference about the true underlying process μs(t) + ηs(t). The profile-
likelihood approach to parameter estimation is modified as follows. The data are
detrended with initial estimates of μ using (7), and the λ� and ϕ�(t) terms are
estimated using functional principal component analysis over the static sensors as
before. Given μ̂, λ̂� and ϕ̂(t), we minimize the negative profile log-likelihood of θ ,
σ 2

S and σ 2
R defined as

(15)
f

(
θ , σ 2

S , σ 2
R
) = −2�

(
θ , σ 2

S , σ 2
R
) = ŷ′�2

(
θ , σ 2

S , σ 2
R
)−1ŷ

+ log
[
det

{
�2

(
θ , σ 2

S , σ 2
R
)}] + N log(2π),

where ŷ = y − μ̂ and �2(θ , σ 2
S , σ 2

R) = �(θ , σ 2
S , σ 2

R; λ̂�, ϕ̂�(t)) given in (14) is pa-
rameterized by θ , σ 2

S and σ 2
R evaluated at λ̂� and ϕ̂�(t). The coefficients in the

mean function are updated by

β̂ = (
X′�̂−1

X
)−1X�̂

−1
y,

where �̂ = �(θ̂ , σ̂ 2
S , σ̂ 2

R; λ̂�, ϕ̂(t)) and X is the design matrix for the covariates
in (7).

5. Case study: Spatio-temporal occupational hazard mapping.

5.1. Model fitting. Before fitting an inhomogeneous variance model for the
noise data, we selected the tuning parameters by a leave-one-sensor-out cross-
validation approach. More specifically, we considered a grid of values for the
number of deterministic spline basis functions K , the number of temporal prin-
cipal components L and the principal components smoothing parameters ζ , and
searched for a minimizer of the estimated mean squared prediction error (MSPE);
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see Appendix A.2 of the Supplemental Materials. The selected parameters are
L = 3, K = 12 and ζ = 0. The estimated deterministic component is

μ̂s(t) = 83.64 − 0.40sx + 0.31sy + Ŝ(t),

where the spline term Ŝ(t) is shown in Figure 7(a). The estimates of the spa-
tial process variances are λ̂1 = 13.20, λ̂2 = 8.07 and λ̂3 = 0.13. The estimates
for spatial range parameters, assuming an exponential spatial covariance model
ρ�(‖si − si′‖; θ�) = exp{−‖si − si′‖/θ�}, for � = 1,2,3, are θ̂1 = 22.34, θ̂2 =
10.83l and θ̂3 = 40.34. The nonparametric estimates of the temporal functions
ϕ�(·) are shown in Figure 7(b). The estimated measurement error variances are
σ̂ 2

S = 1.49 and σ̂ 2
R = 1.05. The parameter estimates for the homogeneous variance

case and for the case in which only the static sensor data are used are given in
Table 1. The inhomogeneous variance case is denoted by STDF (which stands for
spatio-temporal data fusion), the homogeneous variance case by STDFh, and the
scenario with static sensors only by STDF*.

A series of dynamic hazard maps for the predicted noise intensity using our
STDF model in Figure 4 show overall low intensity levels at the beginning and near
the end of the study (panels 09:50 am and 11:20 am). They identify peaks in most
time transects around the spatial coordinates sx = 2.5 and sy = 35, where the noise
source is located. The noise intensity decreases as the readings are made further
away from the noise source. In addition, a secondary noise source located near
sensor #18 is captured [see also Figure 1(a)]. The standard errors of the predicted

FIG. 4. Dynamic hazard maps with contour lines obtained from the spatio-temporal data fusion
(STDF) method; each panel corresponds to a point in time from 9:50 am to 11:20 am at 10-minute
intervals.
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FIG. 5. Prediction standard error maps for the dynamic hazard maps given in Figure 4; each panel
corresponds to a point in time from 9:50 am to 11:20 am at 10-minute intervals.

noise intensity across time and space are plotted in Figure 5. As expected, lower
standard errors are found near the static sensors and along the trajectories of the
roving sensors, as shown in Figure 1. The prediction standard error is larger at
sites further apart from the static sensors location. The locations visited by the
roving sensors display smaller standard errors than unsampled sites but higher
standard errors than the static sensors’ sites. The prediction standard error levels
at roving sensor locations are carried over time and do not change as a function of
the roving sensor position. The prediction standard errors are also larger in general
at the end of the experiment (starting at around 11:20 am). This corresponds to the
time period in which the main source of noise was turned off, and the secondary
noise source increased in intensity, as shown in Figure 2. Such an increase in the
standard error levels is due to ϕ̂2(t) in (12), which captures the temporally short,
but high local noise intensity change around sensor 18 and the temporally short,
abrupt decrease in noise intensity in the northernmost room.

Figure 6 maps the estimated (ξ̂�(s∗
1), . . . , ξ̂�(s∗

m))′, � = 1,2,3 over a fine grid of
spatial locations s∗

1, . . . , s∗
m, with each � loading standardized to have zero mean

and standard deviation one. The temporal components ϕ̂�(t), � = 1,2,3 are shown
in Figure 7(b). The interpretation of the the temporal functions ϕ�(·) can be made
in light of Figure 2, as well as the Karhunen–Loève expansion based on (5). The
first temporal component ϕ̂1 is nearly constant around 1 (Figure 7). The corre-
sponding ξ̂1(s) shown in Figure 6 shows higher noise intensity values in the north-
ern room and near the secondary source around sensor #18. For the second tem-
poral component, since ϕ̂2 is negative until approximately 11:10 am, it subtracts
the ξ̂2(s) effect from ξ̂1(s), but after 11:10 am it adds the effect of the secondary
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FIG. 6. Estimated (ξ̂�(s∗1), . . . , ξ̂�(s∗m))′, � = 1,2,3. Each � loading is standardized to have zero

mean and standard deviation one. The associated variability coefficients are λ̂1 = 13.20, λ̂2 = 8.07
and λ̂3 = 0.13.

noise source. Thus, in the dynamic hazard maps (Figure 4), the noise intensity is
higher in the northern room before 11:10 am, and afterward the noise intensity
is higher near sensor #18. The third temporal component ϕ̂3 is associated with a
much smaller variance (λ̂3 = 0.13), and does not impact the hazard map as much
as the first two components. The roles of ϕ̂3 and ξ̂3(s) seem to be compensating
ξ̂1(s) and ξ̂2(s) at the very beginning and the very end of the experiment in order
for the hazard map to be closer to background noise.

The standard errors for the parameter estimates are obtained via cross-validation
by leaving one sensor out at each time, as detailed in Appendix A.1, and are shown
in Table 1. While the main objective of Table 1 is to quantify the uncertainty re-
garding the parameter estimates, we note that the large range parameter estimate
θ̂3 reflects a relatively weak spatial dependence. Consequently, the standard error
for θ̂3 also might be inflated by static sensors within a certain radius of each other

FIG. 7. (a) Deterministic effect for the temporal component estimated with a spline function; (b)
ϕ̂�(t), � = 1,2,3 components, corresponding to a random effect in the temporal component.
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TABLE 1
Parameter estimates and cross-validated standard errors (in parenthesis). STDF denotes

spatio-temporal data fusion for the inhomogeneous variance case, STDFh for the homogeneous
variance case, and STDF* for only the static sensors

Coefficient STDF STDFh STDF*

β0 83.64 (4.52) 83.53 (4.49) 82.23 (3.59)
βx −0.40 (0.08) −0.40 (0.08) −0.38 (0.11)
βy 0.31 (0.04) 0.31 (0.04) 0.31 (0.04)
θ1 22.34 (2.93) 22.20 (2.95) 13.17 (1.83)
θ2 10.93 (2.13) 12.08 (1.88) 30.99 (2.57)
θ3 40.34 (11.15) 40.34 (11.10) 32.56 (8.42)
σ 2

S 1.49 (0.16) 1.48 (0.15) 1.46 (0.12)

σ 2
R 1.05 (0.29) – –

being removed during the cross-validation step. Table 1 also displays how the rov-
ing sensors affect the estimates of the spatial dependence coefficients. When only
the static sensors are used, the range parameter estimates θ̂2 and θ̂3 are similar.
However, when the roving sensors are included, the estimate θ̂2 becomes quite a
bit smaller than θ̂3 and is more informative, in the sense that the spatial effect of
the secondary noise source becomes more prominent owing to the roving sensors
near this secondary source toward the end of the experiment. This illustrates that
the inclusion of roving sensors adds information about the spatial dependence at
finer scales.

5.2. Scientific implications. Both static (Figure 3) and dynamic (Figure 4)
hazard maps capture the high noise intensity in the northern room near the work-
ing engine. However, the dynamic hazard maps also show that the average inten-
sity of hazard exposure in the southern room increases during the period between
10:00 am and 11:00 am when the engine in the northern room is turned on. Fur-
ther, the outside noise source is detected in the southeastern corner after 11:10 am.
In particular, the intensity levels exceed 85 dB, which is generally viewed as a
harmful level for exposures longer than 8 hours. While the static maps do detect a
small noise peak near the same location, the predicted intensity levels are under-
stated.

The problem of interpolating hazard maps in time and space from discrete sam-
pled observations was discussed in Koehler and Peters (2013). While kriging is
well accepted for spatial interpolation in the occupational hygiene literature, often
the observations or the hazard maps are averaged in time to produce estimates, and
thus the temporal aspect of the data is ignored. To compare our method with the
existing approaches, we consider kriging using the roving data only and kriging
while incorporating roving and static sensor data, both averaging the observations
in time. We also consider fixed-time universal kriging (UK), fixed-time thin-plate
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spline (TPS) and fixed-time simple linear regression on the spatial coordinates
(LM). By fixed-time we mean that a time point is fixed and the spatial map is con-
structed for the data corresponding to the time transect selected, thus preserving
some of the temporal structure from the data.

To compare the methods globally, the MSPE values for our spatio-temporal
data fusion method are obtained using the leave-one-sensor-out cross-validation
described in Appendix A.1. We generate prediction maps at every time point in
which the static sensors were sampled, and averaged the values across space and
over time. When including the roving sensors, the inhomogeneous variance case
(STDF) has an MSPE of 11.82, and the homogeneous version (STDFh) has an
MSPE of 11.66. When using only the static sensors (STDF*), the MSPE is 14.56.
The MSPE for the static map using roving sensors only is 37.42, and the MSPE
for the static map incorporating roving and static sensor data is 38.33. This shows
a clear advantage of our method over the current practice of using static maps. For
the other alternative approaches, the MSPE for fixed-time universal kriging (UK)
is 24.4, thin-plate spline regression (TPS) is 14.99, and simple linear regression
model (LM) is 25.14, all of which are outperformed by our method. We observe
that the homogeneous variance case gives similar predictions to the inhomoge-
neous variance case.

In Figure 8 we focus on a small-scale example from the dataset to illustrate the
possibility of detecting short duration hazard intensity peaks. The static sensors
are sampled every minute (Section 2.1), and thus the measurements are available
between 11:04 am and 11:05 am. For the UK and TPS generated maps, we use
data from 11:04 am and 11:05 am, and interpolate linearly the values from the
maps at times 11:04:20 and 11:04:40. We can see in Figure 8 that UK maps do not
capture the secondary noise source in the southeastern part of the facility. This is
because the method underestimates the range of spatial dependence, and produces
predictions that resemble a plane except where the static sensors are located. On
the other hand, the TPS method oversmooths the data, losing local features such as
the sharper distinction between the northern and southern rooms in the facility. We
omit the linear model estimates, which are planes only. In addition, Figure 9 shows
the corresponding standard error maps for each method in Figure 8. We observe
that the STDF maps generally have lower standard errors than those of UK. The
TPS only has comparable standard errors when very near the static sensors, but
otherwise much higher standard errors than either STDF or UK.

A final remark is that we can consider cases in which the spatial covariance
function is not exponential. For example, we repeated the analysis using the
Matérn class of covariance functions, with known smoothness parameter ν = 2.5.
The resulting hazard maps (not shown) are similar except for slightly smoother
contour lines. We anticipate that our method is robust to the choice of a covariance
function in the Matérn class.
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FIG. 8. Comparison of STDF hazard map with maps created by universal kriging (UK) and thin–
plate splines (TPS) methods. For the UK and TPS, data are from 11:04:00 and 11:05:00, and inter-
polated linearly between 11:04:20 and 11:04:40. Black points mark the static sensor locations, while
white points mark the roving sensor locations at the corresponding time.

6. Discussion. In this paper, we have developed a spatio-temporal static and
roving data fusion model, with each data sensor having potentially different instru-
ment variances. The approach to model fitting and statistical inference has been ap-
plied to produce hazard maps that capture dependence across space and over time
in indoor environments. Modeling the spatio-temporal dependence structure al-
lows the hazard maps to capture features that are missed by the current practice in
occupational hazard assessment. Furthermore, our approach enables continuous-
time prediction of hazard, which the existing approaches are unable to produce.

With the semiparametric model specification, our method is able to detect unex-
pected hazard sources that occur sporadically during a study. A sudden fluctuation
of intensity, such as the secondary noise source in the southeastern corner of the
facility, are undetected or underestimated when using current practices, but can
be detected by our method. Moreover, health effects of short duration but high-
level exposures are unclear, and our method provides a way to better capture such
transient exposures.
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FIG. 9. Comparison of standard errors of STDF hazard maps with the standard error of universal
kriging (UK) and thin-plate splines (TPS) methods. For UK and TPS, data are from 11:04:00 and
11:05:00, and interpolated linearly between 11:04:20 and 11:04:40. Black points mark the static
sensor locations, while white points mark the roving sensor locations at the corresponding time.

Cross-validation shows that our methodology outperforms the traditional meth-
ods in the scientific application, a conclusion that is corroborated by the simula-
tion study given in Appendix B of the Supplemental Materials. The simulations
have also demonstrated that our method is robust to different instrument variances,
while the traditional approaches tend to provide less accurate prediction.

While the height of the sensors is not accounted for directly, the model with
heterogeneous measurement error variances may accommodate possibly different
heights for different sensors. It would be interesting, however, to examine this third
dimension more closely, as well as to consider three-dimensional hazard maps
when data are collected at different heights [see, e.g., Tracey et al. (2014)].

Other covariance modeling allows for nonseparability, although stationarity in
time is generally assumed [Gneiting (2002), Ma (2003), Quick, Banerjee and Car-
lin (2015)]. Stein (2005) proposed models that are asymmetric in time, allowing
for different smoothness degrees in space over time. It may be of interest to ex-
tend such models and develop estimation methods for fusion of static and roving
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sensor data. Moreover, while the methodology developed here is geared toward
spatio-temporal hazard mapping, we believe that other scientific disciplines might
benefit from our approach for fusing data with very different spatial and/or tem-
poral scales. For example, for data collected by individuals with personal devices
versus data collected at stationary monitoring stations used to study exposure and
averse health effects in environmental epidemiology [see, e.g., Hall and McMullen
(2004)]. The applicability of our approach to other scientific studies is currently
under investigation, such as integration of animal movement data with static field
cameras in ecological monitoring. At this point, our preliminary studies show that
when the sample size increases, the increase in the computational cost is higher
for more roving sensor data than static sensor data. For datasets of much larger
sample size with more sampling locations and/or time points, the proposed profile
likelihood approach would need to be improved for it to be more computationally
feasible by utilizing some form of approximation, such as blocking [Caragea and
Smith (2007), Chu, Wang and Zhu (2014)] or tapering [Furrer, Genton and Ny-
chka (2006), Kaufman, Schervish and Nychka (2008), Du, Zhang and Mandrekar
(2009), Chu, Zhu and Wang (2011)], in the covariance matrix inversion. We leave
this for future research as well.
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presentation.

SUPPLEMENTARY MATERIAL

Appendix: Tuning parameter selection and simulation study
(DOI: 10.1214/16-AOAS995SUPPA; .pdf). The Appendix contains a description
of the leave-one-sensor-out cross-validation procedure for MSPE evaluation and
tuning parameter selection, a detailed approach for the choice of tuning parame-
ters for the smoother terms and number of components for the data analysis in Sec-
tion 5, and a simulation study comparing the static and roving sensor data fusion
for the spatio-temporal mapping (STDF) method to fixed-time universal kriging,
thin-plate spline smoothing and least squares regression.

Animation: Animated versions of Figures 1–2 and Figures 4–5 (DOI:
10.1214/16-AOAS995SUPPB; .zip). This supplemental material contains ani-
mated versions, dynamic in time, for the indicated figures.
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