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In mass spectrometry (MS) based quantitative proteomics research, the
emerging iTRAQ (isobaric tag for relative and absolute quantitation) and
TMT (tandem mass tags) techniques have been widely adopted for high
throughput protein profiling. In a typical iTRAQ/TMT proteomics study,
samples are grouped into batches, and each batch is processed by one multi-
plex experiment, in which the abundances of thousands of proteins/peptides
in a batch of samples can be measured simultaneously. The multiplex la-
beling technique greatly enhances the throughput of protein quantification.
However, the technical variation across different iTRAQ/TMT multiplex
experiments is often large due to the dynamic nature of MS instruments.
This leads to strong batch effects in the iTRAQ/TMT data. Moreover, the
iTRAQ/TMT data often contain substantial batch-level nonignorable miss-
ing entries. Specifically, the abundance measures of a given protein/peptide
are often either observed or missing altogether in all the samples from
the same batch, with the missing probability depending on the combined
batch-level abundances. We term this unique missing-data mechanism as
the Batch-level Abundance-Dependent Missing-data Mechanism (BADMM).
We introduce a new method—mixEMM—for analyzing iTRAQ/TMT data
with batch effects and batch-level nonignorable missingness. The mixEMM
method employs a linear mixed-effects model and explicitly models the
batch effects and the BADMM. With simulation studies, we showed that,
compared with existing approaches that utilize relative abundances and ig-
nore the missing batches under the missing-completely-at-random assump-
tion, the mixEMM method achieves more accurate parameter estimation and
inference. We applied the method to an iTRAQ proteomics data from a
breast cancer study and identified phosphopeptides differentially expressed
between different breast cancer subtypes. The method can be applied to
general clustered data with cluster-level nonignorable missing-data mecha-
nisms.
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1. Introduction.

1.1. Quantitative proteomics research based on iTRAQ/TMT data. Proteins
are complex macromolecules responsible for nearly every task of cellular life and
essential for the structures and functions of human tissues and organs. However,
the discovery of protein biomarkers in cancer diagnosis, prevention and treatment
has achieved only modest success, partially because the abundances of proteins are
difficult to quantify. To date, MS-based platforms still serve as the workhorses in
quantitative proteomics research. Traditional high-throughput mass-spectrometry
(MS) experiments usually process samples one by one; and the process of each
sample involves extensive fractionation, resulting in weeks of experimental time.
The long time and high cost required for such experiments greatly limit the scale
of most proteomics studies.

To improve the efficiency of MS-based protein quantification, labeled multiplex
proteomics experiments, such as the iTRAQ (isobaric Tag for relative and Abso-
lute Quantitation) and TMT (tandom mass tags), were introduced about a decade
ago and have become increasingly popular in recent years [Ross et al. (2004),
Werner et al. (2014), Wiese et al. (2007)]. For example, in an iTRAQ-MS-based
study, samples are first grouped into batches (4 or 8 samples per batch), and then
each batch is processed by one iTRAQ multiplex experiment consisting of three
steps: (1) intact proteins of each sample are enzymatically digested into smaller
segments of amino acid sequences, that is, peptides; (2) peptides from different
samples in one batch are labeled with different isotope-coded covalent tags and
are mixed together; (3) the mixtures are introduced into MS instruments, where
peptides from different samples in the same batch are identified and quantified
together. In this way, multiple samples can be processed together, which greatly
reduces the overall quantification time and cost. For instance, Paulo et al. (2014)
successfully quantified the protein abundances in nine mice using 10-plex TMT ex-
periments across three tissue types and studied the effects of two mitogen-activated
protein/extracellular signal-regulated kinase inhibitors on protein abundances. In
addition, McAlister et al. (2014) have shown that multiplexed quantitation via
iTRAQ/TMT enables more accurate quantification of protein/peptide abundances.
Other successful examples include Franken et al. (2015), in which the authors
used 10-plex TMT experiments to examine the changes in protein thermal stabil-
ity across the proteome. Rauniyar and Yates III (2014) reviewed the studies based
on multiplexed experiments and suggested combinations of experimental design
and optimal data acquisition methods to increase the precision and accuracy for
obtaining the relative protein abundances in multiplexed quantitative proteomics
studies.

1.2. Motivating iTRAQ proteomics data from the CPTAC project. To im-
prove our ability to diagnose, treat and prevent cancer, the National Cancer In-
stitute launched the Clinical Proteomic Tumor Analysis Consortium (CPTAC,
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http://proteomics.cancer.gov) to systematically identify proteins that are derived
from alterations in cancer genomes [Ellis et al. (2013), Liebler et al. (2014),
Mertins et al. (2016), Paulovich et al. (2010), Zhang et al. (2016)]. The CPTAC has
recently conducted global proteome and phosphoproteome profiling of a subset of
breast, colon and ovarian cancer samples that have been extensively characterized
in The Cancer Genome Atlas (TCGA, http://cancergenome.nih.gov) [The Cancer
Genome Atlas Network (2012)]. So far, this is the first attempt to characterize pro-
tein activities in cancer samples using sophisticated proteomics experiments on
a large scale. Specifically, in the breast cancer project, 108 breast cancer tumor
samples from 105 breast cancer patients (three of them have two tumor samples)
have been analyzed with iTRAQ experiments to identify proteins related to breast
cancer clinical variables and outcomes.

Another aim of the CPTAC project is to “set standards, establish procedures,
and provide reagents to enable cancer researchers to effectively and reproducibly
use proteomics approaches” [Ellis et al. (2013), Paulovich et al. (2010)]. Advances
in methods and tools, especially the ones accounting for the unique characteristics
of proteomics data like the method proposed in this paper, will better facilitate
the achievement of those missions and will in turn lead to improved diagnostics,
therapies and potentially preventive measures for cancer.

In this paper, we will focus on analyzing the phosphoproteomics data from the
breast cancer CPTAC study. Phosphorylation is a key post-translational modifi-
cation and plays a central role in many biological processes. Phosphorylation at
different sites of one protein could induce different biological activities. Our goal
is to identify individual phosphorylated peptides, that is, phosphopeptide, up- or
down-regulated in triple negative breast cancer tumors compared to other subtypes
of breast cancer. The investigation will provide important insights into breast can-
cer etiology and help identify protein biomarkers.

1.3. Batch effect and batch-level nonignorable missing data. Given the pop-
ularity and the efficiency of the iTRAQ/TMT technique, there is a pressing need
for tailored methods for analyzing data from multiplex iTRAQ/TMT experiments.
Though the iTRAQ/TMT-based batch-processing greatly reduces the cost and im-
proves the efficiency of data generation, the consequent batch effects are substan-
tial due to the dynamic nature of the MS instrument. To alleviate this problem, a
general practice is to include a common reference sample in each batch for quality
control. For example, in the 4-plex iTRAQ experiments of the CPTAC breast can-
cer study, each batch consisted of 3 breast tumor samples and a common reference
sample. The reference sample was created by combining 40 tumor samples in the
CPTAC breast cancer study.

Conventional approaches analyze the relative abundances of proteins/peptides
in the target samples relative to the reference sample in the same batch. For exam-
ple, in the aforementioned works [Franken et al. (2015), McAlister et al. (2014),
Paulo et al. (2014), Rauniyar and Yates III (2014)], after proper normalization
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across multiplex experiments, relative abundances were used to perform ANOVA,
t-test or fold-change analyses. Largely, this strategy assumes that, in each multi-
plex run, experimental noises affect the reference sample in the same way as they
affect the targeted samples, and thus calculating relative abundances removes the
batch-level experimental variations. However, due to the complicated process of
protein/peptide identification and quantification in the MS instruments, the target
samples and reference sample could be subject to different experimental variations
[Karp et al. (2010)]. Therefore, relative abundance measures cannot fully capture
these data features.

Furthermore, most of the analyses in the literature were performed based on
only observed data, and the missing protein abundances were largely ignored. It
is well known that, in the general MS experiments, the lower the abundance of
a given peptide, the more likely the peptide is missing in the output data [Chen,
Prentice and Wang (2014), Wang et al. (2006)]. This missing-data mechanism is
nonignorable [Rubin (1976)], and ignoring those missing protein/peptide abun-
dances may lead to biased estimation and inference. More uniquely, data from
iTRAQ/TMT-MS experiments often have a substantial amount of “batch-level”
nonignorable missing data. Since all the samples in a batch are processed together
in these experiments, a given peptide is either detected and quantified or missing
from all the samples in the same batch. The missing probability of a peptide largely
depends on the combined abundances of the peptides from all the samples in the
same batch (the batch-level abundance). We term this missing-data mechanism the
“Batch-level Abundance-Dependent Missing-data Mechanism (BADMM).” Fig-
ure 1 shows an illustration of the iTRAQ data on one peptide and its BADMM.
Subsequently, protein quantification is often obtained as a summary of the pep-
tide abundances in the protein and is also subject to the BADMM. In addition to
BADMM, sporadic missingness may occur at the individual sample level. Sporadic
missingness refers to the scenario where a peptide/protein is missing in some but
not all of the samples in the same batch. Since the proportion of sporadic missing
data is usually small (e.g., <1% sporadic versus >99% batch-level missingness
in the motivating CPTAC data set), we assume these sporadic missing-values are
missing-completely-at-random and are ignorable [Rubin (1976)].

Given the presence of substantial batch effects, batch-level missingness (about
50%–80% per sample in our motivating CPTAC data) and small sample sizes in
most labeled proteomics data, it is essential to account for the batch design and the
nonignorable missingness deliberately to improve the precision of estimation and
inference with such data. In this work, we propose to directly model the absolute
abundances of proteins/peptides and their variance structures due to the batch de-
sign. By modeling the absolute abundances instead of the relative abundances, we
can better characterize the variance of protein abundances in target samples and
improve the power of statistical tests. This strategy has been employed for analyz-
ing other types of proteomics data from mass spectrometry experiments [Chang
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FIG. 1. An illustration of a 4-plex iTRAQ data matrix of one peptide. Let YN×4 be the abundance
data for the peptide. And 3 × N tumor samples are randomly grouped into N batches and are pro-
cessed by N iTRAQ experiments. In each iTRAQ experiment i (i = 1, . . . ,N ), besides three tumor
samples, a common reference sample is also processed together. Due to the sampling mechanism in
mass spectrometry instruments, usually a peptide is either observed or missing in all four samples
in one experiment. If missing, the missing indicator for the ith batch, Mi , is set to be 1. The missing
probability of the batch relates to the total peptide abundance level in the batch. The lower the total
abundance, the more likely the peptide will be missing in the experiment (batch).

et al. (2012)]. Since samples in the same batch are subject to the same experi-
mental conditions and procedures, a mixed-effects model with a random effect for
each batch is a natural way to account for the experimental design [Laird and Ware
(1982)].

The BADMM in the iTRAQ/TMT data hinders the direct application of a
mixed-effects model. With BADMM, the probability of a protein/peptide being
missing in a batch depends on the combined abundance of the protein/peptide
in the batch. The missing data are not missing at random and are nonignorable
[Rubin (1976)]. To obtain unbiased estimation and valid inference, the missing-
data mechanism needs to be properly modeled and accounted for. Existing work
on modeling the nonignorable missingness in iTRAQ/TMT data [Hill et al. (2008),
Luo et al. (2009)] and the selection model for longitudinal data with nonignorable
missingness [Ibrahim and Molenberghs (2009)] consider the probability of miss-
ingness for a protein/peptide in each sample independently. Since the probability
of missingness for a protein/peptide is not independent between samples within
the same batch, a simple linear shift or quantile normalization may not appropri-
ately normalize the data. Oberg et al. (2008) proposed an approach which iterates
between estimating the batch/sample effects and estimating the protein/peptide ef-
fects. Specifically, the batch/sample effects were estimated using the entire set of
data and were considered fixed for computational feasibility. In contrast, we pro-
pose to model the batch-level missing-data pattern (BADMM) and incorporate it
into a mixed-effects model. We model the probability of a protein/peptide being
missing (in all of the samples) in a batch as a function of the total protein/peptide
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abundance in the batch. This probabilistic missing-data mechanism provides an
attractive way to account for the characteristics of iTRAQ/TMT and MS experi-
mental complexities. Compared to a censoring model [Little and Rubin (2002)],
it does not depend on a fixed detection threshold; it is more flexible and better
depicts the experimental procedure.

1.4. Outline. To properly analyze iTRAQ/TMT data as characterized by the
output from the CPTAC project, we introduce mixEMM—a mixed-effects model
coupled with the probabilistic BADMM in Section 2. In Section 3, we use an Ex-
pectation and Conditional Maximization (ECM) algorithm to estimate the fixed and
random effects in mixEMM. We also present an alternative probability function for
BADMM that may be suitable for more general settings. In Section 4, we perform
simulations to evaluate the performance of the mixEMM method. In Section 5,
we apply the proposed method to the motivating CPTAC iTRAQ data and identify
phosphopeptides related to breast cancer subtypes. In Section 6, we summarize the
work as a useful tool for analyzing iTRAQ/TMT proteomics data and, moreover,
as a general framework to handle cluster-level nonignorable missing-data patterns
for data with repeated or clustered measures.

2. A mixed-effects model for data with batch-level nonignorable missing-
ness. First of all, we assume the data to be analyzed have been properly pre-
processed and normalized. In the motivating CPTAC breast cancer data, each
phospho-modification of one peptide (i.e., each phosphosite) is viewed as an anal-
ysis unit because different modifications can result in different protein functions.
We refer to these analysis units as features in this and the following sections. For
one feature of interest, let Y = {yi}Qi=1 denote the complete (observed and missing)
abundances for this feature in all of the samples in the Q batches (in the CPTAC
data, Q = 36 and Y is a vector of

∑Q
i=1 pi = 144 elements). Specifically, yi is

a pi × 1 data vector of the ith batch, where pi is the number of samples in the
batch, yi1 represents the abundance in the reference sample, and yi2, . . . , yipi

rep-
resents the abundances in the targeted samples in the batch. Note that since the
raw abundance measurements from mass spectrometry instruments often follow a
very heavy-tailed distribution, the raw abundance measurements are usually sub-
ject to log transformation in the data preprocessing. If so, then Y represents the log
transformed abundances.

Suppose this feature is observed in only Qobs batches (Qobs ≤ Q). Let yobs and
ymis denote the observed and the missing data, respectively, and Y = {yobs,ymis}.
Samples in the same batch are processed by one multiplex experiment, are subject
to the same experimental procedure, and are correlated. We use a linear mixed-
effects model to account for such correlations:

(1) yi = Xiα + Zibi + ei ,

where Xi is a known fixed design matrix with dimension pi ×k, α is a k ×1 vector
of parameters for fixed effects, Zi is a known covariate matrix of dimension pi ×h
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for random effects, bi ∼ N(0,Dh×h) represents the random effect coefficient spe-

cific to each batch of samples, and ei
i.i.d.∼ N(0,Ri) is a diagonal covariance matrix

of dimension pi × pi . In our data application, Xi consists of a column of 1s, an
indicator variable for the reference sample, and a set of clinical variables (for ex-
ample, cancer subtype indicators); bi is of length 1 (h = 1); Zi is a vector of 1s; and
for 4-plex iTRAQ experiments, Ri has diagonal elements {σ 2

0 , σ 2, σ 2, σ 2}, where
σ 2

0 is the variance corresponding to the reference sample and σ 2 is the variance of
the other three samples. Since the reference sample was created by combining 40
tumor samples in the CPTAC breast cancer study, we expect it to have a different
variance than other individual tumor samples.

According to (1), we have yi ∼ N(Xiα,�i ), where �i = ZiDZT
i + Ri . Our

goals are to obtain the maximum likelihood estimates (MLEs) of the fixed and
random effects while accounting for the nonignorable BADMM and to draw infer-
ences on the fixed effects for identifying features related to clinical variables (Xi).

As described in the previous section, for a given feature, the lower its combined
abundance across all of the samples in one batch, the more likely all measures
of the feature in the batch will be missing during the experiment. Let Mi be the
missing indicator of this feature in the ith batch: Mi = 1 if the feature is missing in
the ith batch, and Mi = 0 otherwise. We model this BADMM using an exponential
probabilistic model:

(2) Pr(Mi = 1|yi ) = g
(
1T yi;γ0, γ

) = exp
(−γ0 − γ · 1T yi − γ 2 · Ci

)
,

where γ0 is a scaling constant determined by the missing rate of each pro-
tein/peptide; and γ models the relationship between protein/peptide abundances
versus missing probabilities. In (2), Ci is a set of covariates associated with the
experiment i (or the ith batch) and γ 2 is the corresponding coefficient. In our mo-
tivating example, we do not have any experiment-specific (or batch-specific) co-
variate, and thus the last term is not considered. Since yi is an abundance measure
and all positive, yi > 0, the missing-data parameters (γ0, γ ) are non-negative, and
the above probability function always takes value between 0 and 1. When γ > 0,
the missing-data mechanism is nonignorable, and when γ = 0, the missing-data
mechanism is missing at random or missing completely at random if no batch-
level covariates are considered.

We first treat γ0 and γ as known missing-data mechanism parameters. We
discuss extensions to scenarios in which those parameters are unknown in Sec-
tion 3.3. Moreover, in Section 3.5, we discuss other flexible probability functions
for BADMM.

3. An ECM algorithm to calculate MLEs. To obtain the MLEs that maximize
the observed-data likelihood function considering the missing-data mechanism, we
employ an ECM algorithm and term the proposed method mixEMM (Mixed-Effects
Models with BADMM).
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Let � = {α, σ 2
0 , σ 2,D} denote the set of parameters of interest. If ymis and bi

were observed, the MLEs for Ri , D and α based on the likelihood of the com-
plete data (yobs,ymis,b,M) can be easily calculated. Thus, we employ an ECM
algorithm [Meng and Rubin (1993)]: in the expectation (E) step of the (t + 1)th
iteration, we calculate Q(�|�(t))—the expected value of the log-likelihood given
the observed data and current parameter estimates. In the conditional maximiza-
tion (CM) step, we obtain the current parameter estimates �̂(t+1) by maximizing
Q(�|�(t)). Given the proposed BADMM in equation (2), closed-form solutions
are available in the CM step. By iterating through the E and CM steps, the likeli-
hood of the observed data will always increase, and we will obtain the MLEs at
the convergence [Chen, Prentice and Wang (2014)].

3.1. E step. In the E step, the expected log-likelihood function for the com-
plete data given the observed data and the current parameter estimates can be writ-
ten as

Q
(
�|�(t)) = Eymis,b|yobs,M;�(t)

[
logL(�;yobs,ymis,b,M)

]
= ∑

i∈O

Ebi |yi ,Mi;�(t)�(yi ,bi ,Mi = 0;�)

+ ∑
i /∈O

Eyi ,bi |Mi ;�(t)�(yi ,bi ,Mi = 1;�)

= I1 + I2,

where O denotes the set of indices of the observed batches. Existing literature on
modeling the nonignorable missingness in iTRAQ/TMT data [Hill et al. (2008),
Luo et al. (2009)] and the selection model for longitudinal data with nonignor-
able missingness [Ibrahim and Molenberghs (2009)] consider the probability of
a feature’s missingness in each sample independently. Those methods can han-
dle sample-level nonignorable missing data, but are not directly applicable to
iTRAQ/TMT data with batch-level missingness. In contrast, we will take the miss-
ing batches into account by explicitly modeling the BADMM—a major innovation
of the proposed method.

For the observed batches,

I1 = ∑
i∈O

Ebi |yi ,Mi;�(t)

{
log

[
f (yi |α,Ri ,bi)

] + log
[
f (bi |D)

]
+ log

[
f (Mi = 0|yi )

]}
.

The last term log[f (Mi = 0|yi )] does not involve parameters of interest.
To obtain the conditional expectation, we first calculate the conditional distri-

bution of bi for i ∈ O as a normal distribution with mean and variance

b(t)
i = E

(
bi |yi ,Mi = 0,�(t)) = D(t)ZT

i W(t)
i

(
yi − Xiα

(t)),(3)

�
(t)
i = var

(
bi |yi ,Mi = 0,�(t)) = D(t) − D(t)ZT

i W(t)
i ZiD(t),(4)
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where W(t)
i = (�

(t)
i )−1 = (ZiD(t)ZT

i + R(t)
i )−1. It follows that

I1 = const−1/2
∑
i∈O

(
log |Ri | + (

yi − Xiα − Zib
(t)
i

)T
R−1

i

(
yi − Xiα − Zib

(t)
i

)
+ tr

(
V(t)

i R−1
i

) + log |D| + b(t)
i

T
D−1b(t)

i + tr
(
D−1�

(t)
i

))
,

where V(t)
i = var(ei |yi ,Mi = 0,�(t)) = Zi�

(t)Zi for i ∈ O.
To calculate I2, we first compute the conditional expectation and variance of

yi and bi for i /∈ O. Given Pr(Mi = 1|yi ) in equation (2), it is easy to see that,
for i /∈ O,

y(t)
i = E

(
yi |Mi = 1,�(t)) = Xiα

(t) − γ�
(t)
i 1,(5)

var
(
yi |Mi = 1,�(t)) = �

(t)
i ,(6)

where �
(t)
i = ZiD(t)ZT

i + R(t)
i . It follows that, for i /∈ O,

b(t)
i = E

(
bi |Mi = 1,�(t)) = E

(
E

(
bi |yi ,�

(t))|Mi = 1,�(t))
(7)

= D(t)ZT
i W(t)

i

(
y(t)
i − Xiα

(t)),
�

(t)
i = var

(
bi |Mi = 1,�(t))

= E
(
var

(
bi |yi ,�

(t))|Mi = 1,�(t)) + var
(
E

(
bi |yi ,�

(t))|Mi = 1,�(t))(8)

= D(t),

V(t)
i = var

(
ei |Mi = 1,�(t)) = R(t)

i .(9)

Then we can obtain the following for the missing batches of samples:

I2 = ∑
i /∈O

Eyi ,bi |Mi;�(t)

{
log

[
f (yi |α,Ri ,bi)

] + log
[
f (bi |D)

] + log
[
f (Mi = 1|yi )

]}
= const−1/2

∑
i /∈O

(
log |Ri | + (

y(t)
i − Xiα − Zib

(t)
i

)T
R−1

i

(
y(t)
i − Xiα − Zib

(t)
i

)
+ tr

(
V(t)

i R−1
i

) + log |D| + b(t)
i

T
D−1b(t)

i + tr
(
D(−1)D(t)) + 2γ · 1T y(t)

i

)
.

3.2. CM step. In the CM step, we sequentially maximize the expected
complete-data log-likelihood for the parameters of interest. In the first step of
CM, we obtain the estimate for D that maximizes Q(�|�(t)):

D(t+1) = 1

Q

Q∑
i=1

(
b(t)

i b(t)
i

T + �
(t)
i

)
.(10)
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Then, conditioned on the current R(t)
i , the estimate for α is given by

α(t+1) =
(

Q∑
i=1

XT
i

(
R(t)

i

)−1
Xi

)−1(
Q∑

i=1

XT
i

(
R(t)

i

)−1(
y(t)
i − Zib

(t)
i

))
,(11)

where y(t)
i = yi when Mi = 0, and y(t)

i = Xiα
(t) − γ�

(t)
i 1 when Mi = 1.

Last, we can obtain the estimates for σ
2(t+1)
0 and σ 2(t+1) conditioned on α(t+1):

σ0
2(t+1) = 1

Q

Q∑
i=1

[(
y

(t)
i1 − Xi1α

(t+1) − Zi1b(t)
i

)2 + v
(t)
i11

]
,(12)

and

σ 2(t+1) =
{

Q∑
i=1

[ pi∑
j=2

(
y

(t)
ij − Xijα

(t+1) − Zij b(t)
i

)2

(13)

+ (
tr V(t)

i − v
(t)
i11

)]}/(
Q∑

i=1

pi − Q

)
,

where v
(t)
i11 denotes the first diagonal element of V(t)

i . By iterating through the
E- and CM-steps, MLEs for the fixed effects and variance components can be
obtained.

In addition, through computing the information matrix of the log-likelihood
function of the observed data, we can estimate the variance of α̂ using

v̂ar(α̂) =
(∑

i∈O

XiWiXi

)−1
.(14)

We can then perform the Wald test to detect nonzero α.

3.3. Estimation of the missing-data mechanism parameter. In real applica-
tions, the missing-data mechanism parameter � = {γ0, γ } in (2) is often unknown
and needs to be estimated. One simple approach is to use the missing percentage
and sum of abundance based on available data of each feature to model the rela-
tionship between the probability of missingness and the abundance. Specifically,
we assume all of the features in one data set are subject to the same missing-data
mechanism. We calculate the average batch-level abundance for each feature j

based on the observed data and denote it as tj and also obtain the missing percent-
age of feature j as πj = 1 − Qj,obs/Q, where Qj,obs is the number of batches in
which feature j is quantified. We can estimate � in (2) by

�̂ = arg min
�={γ0,γ }

∑
j

(
log(πj ) + γ0 + γ tj

)2
.(15)
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Alternatively, one can also employ the profile likelihood approach proposed in
Chen, Prentice and Wang (2014) to jointly estimate the parameters of interest and
the missing-data mechanism parameters. Let L�(�) = L(yobs,M;�,�). One can
evaluate L�(�) at different � values and choose the � that gives the maximum
over the likelihood profile. As shown in Chen, Prentice and Wang (2014) with
both simulations and real data examples, the estimated � based on available case
estimates of protein abundance is very close to the profile likelihood estimates,
especially when the sample size is limited as in most proteomics studies. Moreover,
in Section 4.3, we demonstrate that the available case estimate of � is very close
to the true values under all the simulation settings considered in this paper. Thus,
we use the available case estimates of the missing-data mechanism parameter in
our data analysis.

3.4. An outline of the algorithm to fit the mixEMM model. In summary, we
implement an ECM algorithm to fit the mixEMM model for analyzing iTRAQ/TMT
proteomics data. An outline of the ECM algorithm is provided in Algorithm 1.
Note that, for the small amount of sporadic missingness, we treat them as missing-
completely-at-random [Rubin (1976)] and remove the corresponding data points
from the evaluation of the likelihood function. Specifically, if a protein is measured
in l (l < 4) samples in a 4-plex iTRAQ experiment, we will set pi = l and apply
the proposed method.

3.5. Logit probability functions for BADMM. The probability of missing-
ness in (2) is designed to characterize the BADMM for abundance data from
iTRAQ/TMT or other proteomics experiments. By using an exponential function,
the probability of missingness in (2) can be naturally integrated with the density
function of normal distributions. Thus, closed-form solutions can be obtained in
the ECM algorithm, which makes the computation efficient.

Alternatively, a logistic function is often used to model the probability of miss-
ingness as a function of protein/peptide abundances and other experiment-specific

Algorithm 1 An algorithm to fit the mixEMM model
1. Estimate missing-data mechanism parameter � by (15).
2. Obtain the initial estimate �(0) for fixed effects and variance components.
3. E-step: For the exponential missing-data mechanism function, given �̂, calcu-

late the conditional expectations and variances of ymis, ei ,bi given the observed

yobs, M, and the current parameter estimates �̂
(t−1)

according to (3), (4), (5)
and (6).

4. CM-step: Given the estimated sufficient statistics, obtain the current estimates
of D, α, σ 2

0 , and σ 2 using (10), (11) and (12) and (13), respectively.
5. Repeat 3–4 until convergence.
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covariates [Little and Rubin (2002), Luo et al. (2009)]:

(16) logit
(
Pr(Mi = 1|yi )

) = γ0 + γ · 1T yi + γ 2 · Ci .

The interpretations of the missing-data mechanism parameters, γ0, γ and γ 2 are
similar to those for the exponential missing-data mechanism in (2), except that
those parameters are not required to be non-negative in the logit missing-data
mechanism.

For the logit missing-data mechanism in (16), we will use numeric integration
[Pinheiro and Bates (1995)] to obtain the conditional means and variances for y(t)

i ’s
in the missing batches, and replace the corresponding terms in (7), (8) and (9) with
the following:

y(t)
i = E

(
yi |Mi = 1,�(t))

=
∫

yiP (Mi = 1|yi )φ(yi ,Xiα
(t),�

(t)
i ) dyi∫

P(Mi = 1|yi )φ(yi ,Xiα(t),�
(t)
i ) dyi

,

var
(
yi |Mi = 1,�(t)) = E

(
yiyT

i |Mi = 1,�(t)) − y(t)
i y(t)

i

T
,

b(t)
i = E

(
bi |yi ,Mi = 1,�(t)) = D(t)ZT

i W(t)
i

(
y(t)
i − Xiα

(t)),
var

(
bi |yi ,Mi = 1,�(t)) = D(t) − D(t)ZT

i W(t)
i ZiD(t)

+ D(t)ZT
i W(t)

i var
(
yi |Mi = 1,�(t))W(t)

i ZiD(t), and

V(t)
i = var

(
ei |yi ,Mi = 1,�(t))

= ZiD(t)ZT
i − ZiD(t)ZT

i W(t)
i ZiD(t)ZT

i

+ RiW
(t)
i var

(
yi |Mi = 1,�(t))W(t)

i Ri .

4. Simulations.

4.1. Comparison of modeling absolute abundance via mixEMM versus mod-
eling relative abundance. To remove batch effects in iTRAQ/TMT-based pro-
teomics analyses, a standard practice is to analyze the relative abundance of a
protein/peptide in the target samples relative to the abundance level of the pro-
tein/peptide in the reference sample from the same batch, and assess the asso-
ciation of relative abundance of each protein/peptide with the phenotype. In this
simulation section, we will show that directly modeling absolute abundance with
mixEMM is better than the conventional analysis based on relative abundances.

4.1.1. Simulation 1. Generate data based on multivariate normal distributions.
We simulated 1000 multivariate normal data sets yi ∼ N(Xiα + Zibi ,R) with
p = 4 for a batch size of Q = 40 and Q = 200. In each batch, we assume that
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the first sample is the reference sample and the rest are target samples. The fixed
effects are α. Here Xi is a p × (k + 1) (k = 2) covariate matrix for each observa-
tion i with the first column being 1 and α = (10,−a, a)T . In assessing the type I
error rate, we set a = 0. In evaluating the power, we set a = 0.7 when Q = 40 and
a = 0.3 when Q = 200. Here we included only a random intercept for each batch.
The random effect is bi ∼ N(0,D), and Zi is a vector of 1’s. The matrix R is a
diagonal matrix with diagonal elements (σ 2

0 , σ 2, σ 2, σ 2). Note that σ 2
0 represents

the variance of the reference sample, and it is purely due to experimental variation
across the different iTRAQ/TMT multiplex. While σ 2 represents the variance of
the target samples, it is a combination of both biological and experimental varia-
tion. Thus, the reference sample variance is often smaller than the variance of other
tumor samples. We simulated three settings: (I) the sample variation and experi-
mental variation are large, σ 2

0 = 2, σ 2 = 4,D = 3; (II) the sample variation and ex-
perimental variation are small, σ 2

0 = 1, σ 2 = 2,D = 1; and (III) the experimental
variation for the reference sample is extremely small, σ 2

0 = 0.01, σ 2 = 4,D = 3.
Note that simulation setting III is the setting ideal for linear regression based on
relative abundance. We generated approximately 40% missing data at the batch
level by the mechanism in (2) with γ0 = 0 and γ = 0.1. We also generated an
additional 5% sporadic (random) missingness.

When applying the mixEMMmethod, based on the estimated MLEs for the fixed
effects and their variance estimates in (14), we first obtained the Wald test statis-
tics for testing H0 : α−1 = 0, where α−1 stands for the fixed effects other than the
mean (i.e., the intercept). We then derived the p-values by approximating the null
distribution through permuting the order of batches of response variables. We com-
pared the proposed mixEMM method incorporating BADMM with γ = 0.1 versus
the mixEMM model with γ = 0. Note that, when γ = 0, the missing mechanism is
treated as missing at random (or missing completely at random) and ignorable.

We also compared the performance of mixEMM with that of the conventional
analysis based on relative abundances. Specifically, we assumed the simulated yi

representing log abundances and calculated the relative abundance measures as
yij − yi1 for j = 2,3,4. We then treated relative abundances as responses and
fitted linear regressions to detect significant associations (regression coefficients).
Again, p-values were derived through permutation tests in the same way as we did
for mixEMM.

Table 1(a) shows that with permutation-based p-values, all three methods can
control type I error rates in different scenarios at the p-value threshold of 0.05.
Compared with the conventional approach of analyzing relative abundances, both
versions of mixEMM enjoyed much improved power [Table 1(b)]. In particular,
when experimental variation is large, the improvement of power can be up to
3-fold. Even when the variation of the reference samples is extremely small and the
batch effects have limited impact on relative abundances, the power of mixEMM
is still more than twice that of linear regression analysis based on relative abun-
dances. We repeated the simulation at the p-value threshold of 0.01 and reached
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TABLE 1
Simulation 1 results. We compare (a) the type I error rates and (b) the power of the mixEMM method

with and without considering BADMM, as well as linear regressions using relative
abundances as responses

Methods

The proposed Linear
mixEMM regression

# batch Simulation with γ = 0.1 The mixEMM on relative
(experiment) setting in BADMM with γ = 0 abundance

(a) Type I error rates at the p-value threshold of 0.05
40 Large sample/experimental variation

(σ 2
0 = 2, σ 2 = 4,D = 3) 0.055 0.056 0.044

Small sample/experimental variation
(σ 2

0 = 1, σ 2 = 2,D = 1) 0.053 0.053 0.040

Minimum experimental variation
(σ 2

0 = 0.01, σ 2 = 4,D = 3) 0.042 0.043 0.054

200 Large sample/experimental variation
(σ 2

0 = 2, σ 2 = 4,D = 3) 0.045 0.045 0.061

Small sample/experimental variation
(σ 2

0 = 1, σ 2 = 2,D = 1) 0.071 0.070 0.052

Minimum experimental variation
(σ 2

0 = 0.01, σ 2 = 4,D = 3) 0.054 0.046 0.053

(b) Power at the p-value threshold of 0.05
40 Large sample/experimental variation

(σ 2
0 = 2, σ 2 = 4,D = 3) 0.437 0.442 0.176

Small sample/experimental variation
(σ 2

0 = 1, σ 2 = 2,D = 1) 0.780 0.773 0.293

Minimum experimental variation
(σ 2

0 = 0.01, σ 2 = 4,D = 3) 0.663 0.657 0.230

200 Large sample/experimental variation
(σ 2

0 = 2, σ 2 = 4,D = 3) 0.491 0.472 0.190

Small sample/experimental variation
(σ 2

0 = 1, σ 2 = 2,D = 1) 0.838 0.842 0.349

Minimum experimental variation
(σ 2

0 = 0.01, σ 2 = 4,D = 3) 0.696 0.695 0.244

the same conclusion (results not shown). These results clearly demonstrated the
advantage of modeling the batch design through a mixed-effects model, which
helps to characterize the variance structure in the data more precisely. The two
versions of mixEMM (γ = 0.1 v.s. γ = 0) enjoy similar power in all settings. This
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suggests that BADMM has only limited impacts on the testing results. However,
in the next section, we will demonstrate that incorporating BADMM will improve
parameter estimation.

4.1.2. Simulation 2. Generate data based on real iTRAQ outputs. In this sim-
ulation, we generated data based on the phosphoproteomics profiles from the CP-
TAC breast cancer study (please see Section 5 for details). Specifically, we started
with the abundance measurements of 3182 phosphosites fully observed in all 36
batches. Each batch has three tumor samples and one reference sample. We ran-
domly selected 1000 out of the 3182 phosphosites, and then randomly split all
108 tumor samples into two groups of equal sizes. After that, we randomly picked
300 out of the 1000 phosphosites. For each of these 300 phosphosites, we added
δ = sσi to the abundances of the samples in the first group, where s was set to 0.5
or 0.7 to reflect different signal sizes, and σi was the standard deviation (SD) of
the abundance for the ith phosphosite. We then generated 40% batch-level missing
values using model (2) with γ0 = 0 and γ = 0.043. We repeated this process and
obtained 10 replicate data sets.

We applied two versions of mixEMM with the missing-data parameter γ = 0 or
γ estimated from the data. For comparison, a linear regression based on the relative
abundance was also performed. For all methods, we derived permutation based p-
values. In Figure 2, we reported the power and false discovery rate (FDR) when the

FIG. 2. Simulation 2 results. Based on simulation data generated from real iTRAQ outputs, we
compare the performance of the mixEMM methods and the linear regression which used relative
abundances as responses. The colors of the bars represent different methods. The heights of the bars
represent either FDRs or powers of various methods. Bars corresponding to different signal levels
were labeled with “s = 0.5” and “s = 0.7” in the x-axis, respectively. For mixEMM.0, γ = 0 was
used. For mixEMM.gamma, γ̂ based on observed data was used.
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targeted FDR was set at 0.05. For different signal sizes, both versions of mixEMM
are more powerful than the linear regression based on relative abundances.

4.2. The BADMM modeling in mixEMM. We simulated 1000 multivariate nor-
mal data sets similar to before with α = (10,−1,1)T , σ 2

0 = 2, σ 2 = 4. We gener-
ated approximately 40% missing data at the batch level by the mechanism in (2)
with γ0 = 0 and γ = 0.1, and an additional 5% sporadic (random) missingness.

Table 2 shows the relative Mean Squared Errors (MSEs) of mixEMM incorpo-
rating BADMM (γ = 0.1) versus mixEMM without considering BADMM (γ = 0)
on estimates for the fixed effects and variance with different sample sizes. The rel-
ative MSEs for the fixed effects estimates are approximately 0.8 for Q = 40 and
0.5 for Q = 200. This suggests that, by taking into account the missing batches,
the proposed mixEMM method provides more accurate estimates for fixed effects
in both the limited and large sample scenarios. The relative MSEs for variance
estimates are very close to 1, indicating that modeling the nonignorable missing-
ness mainly helps to correct the biases in the fixed effects estimates rather than the
variance estimates.

In addition to the simulations above, we also reanalyzed the simulated data us-
ing the logit missing-data mechanism function in (16) and compared the relative
MSEs. Note that the simulated data were generated from the exponential BADMM
in (2) and that we used the logit function to analyze the data with γ0 = 0 and
γ = 0.1; that is, the missing-data mechanism is potentially misspecified. The rela-
tive MSEs based on the logit function are close to those based on the true BADMM
with only a minor loss of efficiency. Since the logit function is quite flexible and
fits the observed missing-data pattern well, the overall biases of the fixed effects
estimates are quite small. This suggests that the logit BADMM function is a gen-
eral and flexible missing-data mechanism function. When data are generated by

TABLE 2
The comparison of relative MSEs and computation time for estimates of fixed effects and variance
components obtained from incorporating BADMM (γ = 0.1) relative to those assuming missing at

random (γ = 0) in mixEMM. The missing data are generated according to the exponential BADMM
in (2). We compare the relative MSEs when the true missing-data mechanism is accounted for in the

estimation of the mixEMM algorithm and when the logit BADMM is used in the estimation with
estimated missing-data mechanism parameters. The results are based on 1000 repeated simulations

Computation
# experiment Time

Methods Q α σ 2
0 σ 2 D (in hours)

mixEMM with 40 0.848 1.014 1.006 1.184 0.287
exponential BADMM 200 0.492 1.016 1.006 1.015 1.514

mixEMM with 40 0.851 1.004 1.002 1.047 4.460
logit BADMM 200 0.538 1.007 1.004 0.983 24.243
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logit BADMM and reanalyzed by exponential BADMM, as long as the exponen-
tial pattern nicely fits the observed missing-data pattern, the conclusions are similar
(results not shown).

When the two BADMM mechanisms produce similar patterns, the exponential
function is about 15 times faster than the logit function. Specifically, in terms of
computation time, it takes 0.287 and 1.514 hours for a single node computer to
analyze 1000 features based on the exponential BADMM when sample sizes are
40 and 200, respectively, whereas it takes 4.460 and 24.243 hours for the anal-
ysis based on the logit BADMM. The computation time increases rapidly with
dimensionality p and sample size n. When jointly analyzing multiple features, for
example, multiple peptides of the same protein, the superiority of the exponential
BADMM becomes more substantial. On the other hand, the logit BADMM would
be useful when the exponential pattern does not fit well.

The fit of the selected and estimated BADMM pattern should often be checked
before using the mixEMM method in the estimation and inference. For example,
in our real data application, we evaluate the fit of the exponential BADMM in
Figure 3 before the subsequent analysis.

4.3. Evaluating available-case based missing-data mechanism parameter es-
timates. When applying the mixEMM, in the simulations above, we either used
the true missing-data mechanism with true parameters or we use a misspecified
mechanism with misspecified parameters. In this subsection, we evaluated the es-
timation of the missing-data mechanism parameter. Specifically, we pooled all fea-
tures together and obtained the available case sum of abundance estimates and the
proportion of missing batch for each feature. We estimated the missing-data mech-
anism parameter based on (15) for the exponential BADMM in (2) given the data.

We simulated 1000 features with means randomly sampled from N(10,22),
other parameters similar to those in previous sections and the number of batches
Q = 40 and Q = 200. We generated batch-level missingness by (2) with γ0 = 0
and γ = 0.1, and calculated γ̂0 and γ̂ based on the 1000 features. We repeated the
procedure 100 times. Table 3 lists the distribution of γ̂0 and γ̂ . The estimates for
γ are reasonably accurate, while γ̂0 could have substantial biases. However, since
γ0 does not affect the E- or the CM-step, the overall performance of available-case
based missing-data mechanism parameters is almost identical to that of using true
parameters (data not shown).

5. Application to the CPTAC proteomics data to identify proteins related
to triple negative breast cancer tumors. Triple negative breast cancer (TNBC)
refers to breast cancer that does not express the genes for the estrogen receptor,
progesterone receptor or Her2/neu. TNBC patients have a much higher risk of re-
lapse in the first 3–5 years compared to other types of breast cancer patients. It
is also more difficult to treat TNBC since most chemotherapies target one of the
three receptors. More effective treatment strategies for TNBC patients are highly
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FIG. 3. An illustration of BADMM based on CPTAC breast cancer phosphoproteomics data. (a) A
smoothed density representation of the scatter plot of the log percentage of missing batches for each
phosphopeptide (y-axis) versus its estimated mean of total batch abundances based on the observed
data (x-axis). Note that, for one phosphospeptide and one batch, the total batch abundance is defined
as the sum of abundance measurements of this phosphopeptide in all samples of this batch [i.e.,
1T yi in equation (2)]. The mean value is then estimated using the average across all batches. This
plot is generated using the R function smoothScatter. The darker the shade is, the higher the
density is. The triangular points indicate medians of estimated means of total batch abundance of all
phosphopeptides with the same missing percentage. The white line represents the linear regression
fit of the triangular points. (b) A similar plot as (a) except that the y-axis is on the original scale. The
curve corresponds to the line in (a).

TABLE 3
The distribution of available case-based estimated missing-data mechanism parameters based on

100 repeated simulations

# batch Parameter True value min Median Mean Max

40 γ 0.1 0.093 0.101 0.101 0.107
γ0 0 −0.119 −0.059 −0.055 0.029

200 γ 0.1 0.097 0.104 0.104 0.108
γ0 0 −0.134 −0.094 −0.093 −0.014
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desirable. In this section, we applied the proposed mixEMM algorithm to the mo-
tivating proteomics data set from the CPTAC breast cancer project [Mertins et al.
(2016)] to identify phosphopeptides up- or down-regulated in TNBC tumors com-
pared to other types of breast cancer tumors. Such information would shed light on
the disease mechanism of TNBC, which may then lead to better clinical practice
for TNBC diagnosis and treatment.

In the CPTAC breast cancer project, we analyzed 108 tumor samples from 105
breast cancer patients, with 3 patients having two tumor samples. Protein profiles
were obtained through 36 four-plex iTRAQ experiments generated at Dr. Carr’s lab
at the Broad Institute of MIT and Harvard in Boston, U.S. Each iTRAQ experiment
processed 3 breast tumor samples and the reference sample, which was created by
combining 40 of these tumors. The iTRAQ-labeled peptides were fractionated and
chemically enriched for phosphopeptides. The resulting samples were processed
using high-resolution MS instruments (LS-MS/MS on Thermo Q-Exactive). Phos-
phopeptide identification and quantification were performed using Spectrum Mill
software (Agilent Technologies, Santa Clara, CA). Specifically, for phosphopep-
tide quantification, the charge state with the best peptide-spectrum match score
across all fractions and samples of one phosphosite was used as the representative
state for that phosphosite to derive the corresponding quantification measurements.
This strategy helps to reduce the impact of false phosphopeptide identifications on
the quantification results.

The phosphoproteomics data were downloaded from the CPTAC Data Coor-
dinating Center (http://proteomics.cancer.gov/programs/cptacnetwork) sponsored
by the National Cancer Institute. In total, 63,698 phosphopeptides were identified
and quantified in at least one sample. However, only 3182 (5.0%) phosphopep-
tides had complete measurements in all the samples. The missing rates of each
sample ranged from 46.78% to 79.56%. The substantial amount of missing values
in phosphoproteomics data raises a pressing need for statistical methods properly
incorporating nonignorable missingness. Among all missing observations, 97.3%
were batch-level missingness, that is, a phosphopeptide was missing in all four
samples of an iTRAQ experiment. Thus, the BADMM pattern suits these data sets
well.

Since the distribution of the raw intensity measurements has a very heavy right
tail, we performed the analysis based on log transformed abundances. Note that
all log transformed data still take positive values. We normalized each sample to
have the same median and median absolute deviation. We then filtered out the
low-quality observations and focused on the 25,961 phosphopeptides that were
observed in at least 25 (70%) of the 36 runs of the reference sample. The miss-
ing rates of each sample for these 25,961 phosphopeptides ranged from 8.40%
to 56.78% with a mean value of 19.60%. Figure 3 illustrates the relationships be-
tween the missing percentage and estimated mean of total batch abundance of each
phosphopeptide [i.e., 1T yi in equation (2)]. The exponential probabilistic model in
equation (2) accurately reflects the BADMM pattern in the data.

http://proteomics.cancer.gov/programs/cptacnetwork
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Additionally, we fitted a standard linear mixed-effects model with random in-
tercepts for the batches to the observed abundances of each phosphopeptide. The
intra-class correlations, which quantify how strongly abundance measures for the
same peptides resemble each other, for all phosphopeptides have a median of 0.788
and a mean of 0.733. Over 93.3% of the phosphopeptides have significant random
intercepts by ANOVA tests at the Bonferroni adjusted p-value threshold of 0.05.
Those suggest that the batch effects in the current data are quite strong. Our pro-
posed mixEMM model considering BADMM well suits the data.

We applied the proposed mixEMM method to identify the phosphopeptides up-
or down-regulated in TNBC tumors relative to other breast cancer tumors. In the
mixed-effects model, we included a random effect, for each iTRAQ multiplex ex-
periment, and three fixed effects: an intercept, an indicator for the reference sample
and an indicator for triple negative subtype. We also conducted the analysis using
linear regression models based on relative abundances for comparison. The result-
ing p-values of all 25,961 phosphopeptides from both methods based on permuta-
tion are illustrated in Figure 4. At the same Bonferroni adjusted p-value threshold
of 0.05, the mixEMM algorithm considering BADMM identified 44 phosphosites
corresponding to 29 unique genes as being significantly up- or down-regulated in
TNBC relative to other types of breast cancer tumors. Only 3 of these 44 phos-
phosites have complete observations in all 108 samples. Nine and three of the 44
phosphosites have a missing rate greater than 30% and 40%, respectively. In con-
trast, the conventional analysis based on relative abundances failed to detect any

FIG. 4. The relationship between p-values and missing rates. (a) The results from mixEMM-based
analysis using absolute abundances and considering BADMM; (b) the results from linear regression
analysis using relative abundances. In both (a) and (b), the X-axis represents the missing rates of
phosphosites and the Y -axis represents the negative log10 of p-values. Phosphopeptides are indi-
cated as “X”s if their p-values are below the Bonferroni corrected p-value cutoff (0.05/25961).
Otherwise, they are plotted as dots.
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significant phosphosite at the same significance threshold. Given the p-values of
both mixEMM and the conventional analysis were calculated based on permutation
and simulation results had shown that both approaches can control the type I error
rates, we concluded that the mixEMM method enjoys improved power over con-
ventional methods at the same p-value threshold. These results are consistent with
what we observed in the simulations.

The phosphosite with the most significant p-value corresponds to the gene
FOXA1, a transcription factor. The gene FOXA1 is known to be associated with
breast cancer risk [Meyer and Carroll (2012)]. A more recent work further sug-
gests that FOXA1 silencing increases migration and invasion of breast cancer cells
[Bernardo et al. (2013)]. This is consistent with our finding that phosphoprotein
of FOXA1 was significantly down-regulated in TNBC tumors, and TNBC tumors
are usually more aggressive than other subtypes of breast cancer. Moreover, ac-
cording to the STRING data base [Szklarczyk et al. (2014)], FOXA1 interacts with
another gene, SOX10, in the significant 29 gene list. The gene SOX10 is a neural
crest transcription factor. Based on a recent immunohistochemistry study [Cimino-
Mathews et al. (2013)], SOX10 has been reported to be preferentially expressed in
TNBC and was also validated as a sensitive diagnostic marker for basal-like TNBC
[Ivanov et al. (2013)]. The proposed mixEMM method detects these known TNBC
genes, which strengthens our confidence that the mixEMM method will help to re-
veal biological relevant information underlying iTRAQ data. Further investigation
on how FOXA1, SOX10 and the other 27 significant genes function may help us
better understand the disease mechanism and improve the development of novel
diagnostic and therapeutic tools for TNBC.

6. Discussion. In this paper, we propose a new method—mixEMM—for an-
alyzing data from iTRAQ/TMT proteomics experiments. The proposed mixEMM
method employs a mixed-effects model to characterize the variance structure for
the abundance measurements from iTRAQ/TMT experiments. It uses an expo-
nential probability function to model the batch-level nonignorable missing-data
mechanism (BADMM) in the iTRAQ/TMT data. The goal of our analyses is to es-
timate the fixed effects for the associations between proteomic features and sample
phenotypes (e.g., clinical outcomes). To achieve this goal, we implement an ECM
algorithm to calculate the MLEs of the parameters of interest. The superior perfor-
mance of the mixEMM method over the conventional approach is illustrated using
both simulations and a real data example.

In practice, the experimental variation across different iTRAQ/TMT experi-
ments is often large. In other words, even for the same reference sample, the pro-
tein/peptide abundance measurements in different batches measured by different
iTRAQ/TMT experiments may differ substantially. The conventional approach di-
rectly analyzes relative abundance measures, which in some sense mixes up the
variation in the target samples and the reference samples, and consequently causes
a loss of efficiency and power. In contrast, mixEMM precisely characterizes the
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experimental properties, accounts for the variations of samples across batches, and
gains substantial power improvement in the subsequent tests.

While explicitly modeling BADMM has a limited impact on testing, it improves
parameter estimations for fixed effects. In addition to the exponential probabil-
ity function for BADMM, we have also investigated the use of the logit function
for modeling the missing-data mechanism. When both functions fit the observed
missing-data pattern well, the estimation accuracies of the two functions are com-
parable, and the computationally efficient exponential function is recommended.
The logit BADMM function is more flexible and can be used in the analyses of log-
ratio data or data with more complex missing-data patterns. Other flexible missing-
data mechanism functions, such as spline functions, can be incorporated into the
proposed framework, although numerical integration would be required.

In iTRAQ/TMT experiments, different proteins/peptides with different physi-
cal and chemical properties may be subjected to different experimental variations.
Thus, it is reasonable to assume batch effects to be feature-specific as we did in
mixEMM. Nevertheless, experimental factors, such as variations in sample load-
ings, might affect the whole sample measurements. Therefore, in practice, we sug-
gest performing global normalization using all data to take care of major experi-
mental shifts before fitting the proposed mixEMM model.

This work was motivated by phosphoproteomics data in which the natural anal-
ysis unit is each individual phosphopeptide and each phosphopeptide is directly
quantified in the experiments. However, the proposed method can also be applied
to any type of proteomics assay that uses iTRAQ, including global proteomics
and glycol-proteomics. Note that, for global proteomics data, the quantification is
obtained at the peptide level, while the target analysis unit is each individual pro-
tein. To perform inference at the protein level, one strategy is to apply the proposed
mixEMM algorithm at the peptide-level data and then summarize the results of pep-
tides within each protein. Another strategy is to first calculate protein abundances
based on the mean or median of peptide abundances within each protein and then
apply the proposed mixEMM method to the summary protein abundances. A more
sophisticated treatment would be to perform a multivariate analysis and jointly
model multiple peptides of the same protein. Clough et al. (2009) compared the
two strategies based on proteomics data from label-free liquid chromatography-
MS experiments. To our knowledge, such comparisons have not been done on
labeled experiments with iTRAQ/TMT data. Research along this direction is on-
going.

In the CPTAC study, a common reference sample was included in each iTRAQ
experiment. While the common reference design is preferable for clustering anal-
ysis, it may not be the most efficient design for differential expression analysis
[Dobbin and Simon (2002)]. On the other hand, the iTRAQ protocol enables the
use of randomized block design, which may lead to better control of experimen-
tal variance. The proposed mixEMM can be easily modified to handle data from
randomized block designs.
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BADMM is a unique property for data from iTRAQ/TMT experiments. For data
from unlabeled proteomic experiments, however, missing events in different sam-
ples are independent. In these cases, a sample-level-abundance-dependent-missing
probability model would be more suitable, and mixEMM can be easily modified to
handle such structures. In addition, mixEMM can be extended to incorporate the
same prior distribution on the variance parameters of batch effects for all features.
Such a hierarchical model can help to stabilize the batch effect estimation, espe-
cially when the sample size is limited.

In our model, we assume batch effects and errors follow Gaussian distributions.
While we cannot guarantee that the assumption of the Gaussian distribution holds
in real data sets, results of simulation 2 (Section 4.1.2) suggest that the perfor-
mance of mixEMM is robust to the violation of the Gaussian assumption.

The proposed framework is not limited to proteomics data and is generally
applicable to data with repeated/clustered measures and cluster-level incomplete
data. An R package mixEMM will be available through CRAN.
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